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Abstract

We revisit the apparent historical success of technical trading rules on

daily prices of the Dow Jones index. First, we use the False Discovery

Rate as a new approach to data snooping. The advantage of the FDR

over existing methods is that it is more powerful and not restricted only

to the best rule in the sample. Second, we perform persistence tests and

conclude that an investor would not have been able to select ex ante the

future best-performing rules. Finally, we show that the performance fully

disappears once transaction costs are taken into account.
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1 Introduction

Technical analysis involves the study of past price and volume data in order to

predict future prices. Its ability to generate profits is the subject of a continuous

debate. Academics have long been skeptical about the usefulness of this form

of analysis. They argue that it is inconsistent with the theory of market effi-

ciency, which states that all available information must be reflected in security

prices. Practitioners, in spite of the contempt among academics, have histor-

ically devoted significant resources to technical trading rules. A substantial

segment of the investment industry employs indicators which include moving

averages, support and resistance levels, and other filter rules. In hopes of re-

solving this conflict, researchers have undertaken numerous studies of technical

analysis. The resulting literature has found mixed results and academics have

yet to agree on whether technical analysis can be used to generate economic

performance.

In this paper we revisit existing results on the performance of technical

trading rules by focusing on three issues that have been only partly addressed

in the literature. The first issue known as data snooping is the problem whether

the apparent performance of a particular trading rule is really significant and

not simply due to luck and the abuse of data mining techniques. The second

issue is whether and how an investor can possibly select the best technical rules

prior to committing his money. The third issue is the impact of transaction

costs on the performance of the strategies. To investigate these three issues,

we use the same framework as Sullivan, Timmermann and White (1999) (later

STW), who examine the performance of 7′846 technical trading rules on 100

years of daily prices of the Dow Jones Industrial Average (DJIA) index. During

the 100-year period and before transaction costs, technical rules seem to be a

useful tool to generate superior returns, even after accounting for data snooping.

To illustrate the first issue, consider an investor who back-tests several quan-

titative trading strategies on historical data. By looking long enough and hard

enough on a given set of data, he will always find a mechanical trading rule

that works, even if it does not genuinely possess predictive power over asset

returns. The observed good performance may simply be due to chance rather

than to any merit inherent in the strategy yielding the returns. Similarly, if

you put enough monkeys on typewriters, one of the monkeys will write the Il-

iad in ancient Greek. But would you bet any money that he is going to write
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the Odyssey next? Because of the sheer size of the sample, you are likely to

find a lucky monkey once in a while. The same applies to traders. These two

examples of data snooping problems could be easily resolved with a meaningful

out-of-sample experiment. Unfortunately, unlike in engineering sciences, it is

quasi impossible to design replicable experiments in finance, and typically only

a single history for a given phenomenon of interest is available. Researchers

have long been aware of the dangers of data snooping, but often have no other

choice than to reuse existing data1. Recently, techniques have been proposed to

rigorously measure the effect of data snooping, e.g., the bootstrap reality check

(BRC) of White (2000), and the stepwise multiple testing method of Romano

and Wolf (2005) (later RW).

The first contribution of this paper is to use the False Discovery Rate (FDR)

as a new measure of data snooping. The FDR was first introduced by Ben-

jamini and Hochberg (1995), and extended by Storey (2002). It is defined as

the expected proportion of trading rules incorrectly identified as generating ab-

normal performance among all the selected rules. More precisely, we employ

the FDR+/−, developed by Barras, Scaillet and Wermers (2007) on the basis

of the FDR. The FDR+/− gives the proportion of false discoveries separately

among rules delivering respectively positive and negative returns. Compared

to statistical methods used in previous studies, the advantage of the FDR ap-

proach is that it allows to construct a ‘portfolio’ of rules, in order to diversify

risk in much the same way as adding companies to a stock portfolio. Our study

confronts our FDR approach with the BRC—the data snooping measure used

in STW, and with RW method. The BRC only indicates whether the rule that

performs best in the sample indeed beats the benchmark, after accounting for

data snooping. It provides no information on the other strategies. Though

potentially able to detect further outperforming rules, RW method controls a

conservative error measure, which prevents it from detecting more than a few

rules. However, even with the increased power of our FDR approach, we are

not able to detect enough trading rules generating significant positive returns.

The second contribution concerns how an investor could have possibly de-

termined the best trading rules prior to investing his money. Although it may

be the case that we are able to find technical rules that performed well histori-

cally, there is no indication that it is possible to select ex ante the trading rules

that will generate superior performance in the future. We tackle this issue in
1See Lo and MacKinley (1990), White (2000), and the references therein.
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two ways, by performing persistence tests, and by investigating whether certain

categories of trading rules perform better under particular economic conditions.

To run the persistence analysis, we form portfolios of technical rules using

the FDR approach on a two-year trailing window of data. We hold the port-

folios for one year, then re-form them, sliding the training window one year

forward. This yields a time series of portfolios returns obtained by exploiting

only historically available information. Then, we measure the performance of

the resulting portfolios and compare it to the performance of the rules that

performed best ex post. While persistence analysis has been applied to mutual

funds, e.g., Carhart (1997), to our knowledge this is the first time this type of

persistence tests are performed on technical trading rules. STW only mention

that the best rule selected by the end of 1986 “did not continue to generate

valuable economic signal in the subsequent 10-year period”. This result needs

further investigation, as during that time period even in-sample performance

is poor2. Jacquier and Yao (2002) implement another approach to persistence

analysis also inspired by the mutual fund literature. They follow Brown and

Goetzmann (1995), and estimate for example the probability that a trading

rule beats the benchmark over two consecutive periods. Their study is limited

to the ten moving average rules of Brock, Lakonishok and LeBaron (1992), and

shows that the performance is not persistent at horizons shorter than five years.

Allen and Karjalainen (1999) also point out that the rules need to be chosen

using price data available before the start of the testing period. However, their

study is different from ours as its principal aim is to tackle the problem induced

by the ex post specification of rules3. Our tests show that the performance of

a portfolio of trading rules does not persist out-of-sample.

In order to check whether an investor could improve his performance by

switching to specific trading rules depending on the state of the economy, we

condition on the business cycle when selecting the rules. Our analysis based

on the dates of the National Bureau of Economic Research (NBER) shows that

this approach does not yield better returns. Hence, it is hard to imagine how

an investor could have picked the future outperforming strategies.
2STW also report the performance of what they call the cumulative wealth rule. This

strategy generates a trading signal based solely on past information. However, it is unlikely

that an investor would have followed this strategy, and it does not help in forming a portfolio.
3Whereas most of the studies seek to test whether particular kinds of technical analysis

rules have forecasting ability, Allen and Karjalainen (1999) use a genetic algorithm to compose

the rules, which avoids much of the arbitrariness involved in choosing which rules to test.
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The third contribution of this paper is the in-depth analysis of the impact

of transaction costs. The rules selected before transaction costs produce many

trading signals and their performance is likely to be wiped out once we take

into account these costs. Transaction costs are difficult to measure precisely as

they include unobservable components such as the price impact of a trade, and

they have been declining over time. To circumvent this difficulty, we examine

how the performance of technical rules evolves across a whole range of transac-

tion costs and lending fees levels (in the case of short selling). We explain why

break-even transaction costs are not a satisfactory indicator, and why it is im-

portant to consider transaction costs already during the selection process, e.g.,

the training period of the persistence tests. We find that the initial performance

fully disappears after the inclusion of transaction costs.

Overall, all three points that we investigate lead to the conclusion that

technical trading rules—at least those from STW universe—could not have

been used to generate significant profits. Though we are using a more powerful

approach to select outperforming rules, the apparent historical success is wiped

out by the inclusion of transaction costs and the absence of persistence. Our

findings are in line with the Efficient Market Hypothesis (EMH) advocated by

academics, and run against supporters of technical analysis.

Section 2 describes the universe of technical trading rules and the per-

formance measures. Section 3 reviews existing methods to account for data

snooping and presents our FDR based approach. Section 4 presents our empir-

ical findings when transaction costs are omitted. In Section 5, we analyze the

impact of transaction costs and the influence of the state of the business cycle.

2 Universe of trading rules and performance mea-

sures

2.1 Technical analysis

The conflict between the level of resources dedicated to technical analysis in the

investment industry and academic theories of market efficiency has yet to be re-

solved. If the Efficient Market Hypothesis is correct, technical analysis should

not work at all. The prevailing market price should reflect all information,

including past price movements. Numerous studies provide results consistent

with this traditional academic argument. For example, Allen and Karjalainen
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(1999) find little support for the technical strategies they examine, and Fama

and Blume (1966) and Bessembinder and Chan (1998) show that transaction

costs could offset the benefits of technical analysis. Furthermore, Sullivan et al.

(1999) and Jegadeesh (2000) warn to the danger of data snooping and survivor-

ship biases when evaluating technical rules. Other studies have found results

consistent with the practitioner view by providing evidence that technical anal-

ysis can predict price movements. For example, Neftci (1991), Brock et al.

(1992), Taylor and Allen (1992), Blume, Easley and O’Hara (1994), Osler and

Chang (1995), and Lo, Mamaysky and Wang (2000) test different technical

trading rules and find evidence that technical analysis provides information be-

yond that already incorporated in the current price. More recently, Kavajecz

and Odders-White (2004) explore the relation of technical analysis to liquid-

ity provision. An explanation why technical analysis might work can be found

in the field of behavioral finance, which suggests that investors may not be

completely rational and that their psychological biases could cause prices to de-

viate from their ‘correct’ level (e.g., DeBondt and Thaler (1985), and Barberis,

Shleifer and Vishny (1998)). Therefore, sophisticated speculators will not trade

purely on consideration of the economic fundamentals, but will also aim to

exploit market movements generated by less sophisticated, ‘noise traders’. For

example, some technical predictions may be self-fulfilling. If everyone believes a

technical analysis signal saying that stock X will rebound at $30, they will buy

as the price approaches that level. Schmidt (2002) shows using a simple agent-

based market dynamics model that if the technical traders are able to affect

the market liquidity, their concerted actions can move the market price in the

direction favorable to their strategy. Therefore, knowledge of chart signals can

be essential as they have a bearing on the action of many market participants.

2.2 Universe of trading rules

To investigate whether technical trading rules generate superior performance,

we need to specify a universe of technical rules from which investors could have

drawn their strategies. When applied to a series of past prices, a trading rule

indicates whether a long position, a neutral position (i.e., out of the market),

or a short position should be taken in the next time period. Formally, we

consider that to the k-th rule corresponds a signal function sk,t−1, based on

the information up to time t− 1, which returns the value 1 for a long position,

0 for a neutral position, and −1 for a short position. In order to allow for
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comparison with their results, we stick to STW universe, which consists of

l = 7′846 rules divided into five categories: filter rules, moving averages, support

and resistance rules, channel breakouts, and on-balance volume averages. See

Brock et al. (1992), and STW for an explanation of the rules and their exact

parameterizations.

In order to be included in the universe, a rule has to fulfill a certain number of

requirements. For example, STW explain that it is important that the strategy

was known at the time its performance is evaluated, and that it was possible

for an investor to implement it. Suppose that some technical trading rules can

be found to unambiguously outperform the benchmark over the sample period,

but that these are based on technology (e.g., neural networks) that only became

available after the end of the sample. As investors would not have been able to

apply these rules, such evidence cannot lead to any meaningful conclusions.

2.3 Performance measures

Each rule k, 1 ≤ k ≤ l, generates an investment signal sk,t−1 for each prediction

period t, R ≤ t ≤ T . For each rule, we compute a test statistic ϕk, which

measures the performance of the rule relative to a benchmark. The statistic is

defined in such a way that ϕk = 0 under the null hypothesis that rule k does

not generate abnormal performance relative to the benchmark.

Following STW, we focus our analysis on two simple performance criteria:

the mean return, which measures the absolute performance, and the Sharpe

ratio, which measures the average excess return per unit of total risk. For the

mean return criterion, we set the rule of a neutral position at all times (zero

return, always out of the market) as the benchmark. Hence, the test statistic

of rule k is simply its mean return. In the case of the Sharpe ratio criterion, we

follow standard practice and compute the return in excess of the risk-free rate.

This implies that trading rules earn the risk-free rate on days where a neutral

signal is generated.

Let yt be the (arithmetic) period t return on the price series on which

the strategies are applied. We use the same notation as STW and denote

by fk,t = ln(1 + sk,t−1yt) the (logarithmic) period t return generated by rule

k. Then, the test statistic for the mean return criterion can be written as

ϕk = f̄k = 1
N

∑T
t=R fk,t+1, where N = T − R + 1 is the number of prediction

periods.

In order to obtain the expression for the Sharpe ratio, let fek,t = sk,t−1yt−rf,t
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denote the (arithmetic) period t excess return of rule k, where rf,t is the risk-free

rate. The mean excess return can be written as f̄ek = 1
N

∑T
t=R f

e
k,t+1, and the

standard deviation as σek = 1
N−1

∑T
t=R

(
fek,t+1 − f̄ek

)2
. Then, the test statistic

for the Sharpe ratio is simply ϕk = SRk = f̄e
k
σe

k
.

2.4 Data

The nearly eight thousand parameterizations of trading rules are applied to the

same data set as in STW, namely daily closing prices on the Dow Jones Indus-

trial Average (DJIA) index. It can be argued that until the recent introduction

of exchange-traded funds (ETFs), it was impossible to trade stock indices fre-

quently without incurring significant transaction costs. ETFs are open-ended

collective investment schemes, traded as shares on most global stock exchanges.

Typically, ETFs try to replicate a stock market index, a market sector, or a

commodity such as gold or petroleum. Investors can sell short ETFs, use a

limit order, use a stop-loss order, buy on margin, and invest as much or as little

money as they wish. In addition to these stock-like features, most ETFs have

a lower expense ratio than comparable mutual funds. The DIAMONDS Trust

is an ETF designed to “correspond to the price and yield the performance of

the DJIA”4. For the period after the fund inception date in January 1998, we

applied the technical rules both directly to the DJIA index series, and to the

DIAMONDS ETF. The very similar results obtained indicate that it has be-

come realistic to assume that investors apply technical rules directly to a stock

market index.

The data in STW finish in 1996. We consider the same subperiods as STW,

and add one period for the new data between January 1997 and July 2007 (see

Table 1). For comparison, we also run the strategies on the 100-year period

from the inspection of the DJIA index. Results for this latter sample should

be viewed with caution, as market conditions have evolved dramatically in the

last 100 years. Furthermore, managers never get to trade for 100 years before

their performance is evaluated. Finally, when computing the Sharpe ratio, we

use the same risk-free rate as STW5.

[Table 1]
4See the DIAMONDS Trust prospectus available at the American Stock Exchange webpage.
5We are grateful to A. Timmermann for providing us the DJIA index and risk-free rate

series.
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3 Data snooping measures

3.1 Problem formulation and existing methods

In an attempt to settle the conflict between academic theories and the methods

employed by practitioners, we investigate whether it is possible to find technical

trading rules able to generate significant positive performance6. For each rule

k, 1 ≤ k ≤ l, we test the null hypothesis H0k of no abnormal performance,

versus the alternative HAk of the presence of abnormal performance, positive

or negative:

H0k : ϕk = 0, HAk : ϕk > 0 or ϕk < 0. (1)

In an ideal world, we would reject H0k exactly for those rules that generate ab-

normal performance. In reality, this usually cannot be achieved with certainty.

In applications where several tests are carried out at once, the danger of data

snooping is great. The consequence is that trading rules are selected, which do

not possess genuine predictive power.

In the finance literature, a first solution to account for data snooping is

provided by White (2000) bootstrap reality check. The BRC tests the null

hypothesis that the performance of the best technical trading rule is no better

than the performance of the benchmark:

H0 : max
k=1,...,l

ϕk ≤ 0.

Hence, it implicitly accounts for the dependence structure of the individual test

statistics. The BRC addresses the question whether the rule that appears best

in the sample really beats the benchmark. It is the data snooping measure

used in the study of STW. However, it is not able to identify further strategies

that beat the benchmark. A first attempt to tackle this issue is the stepwise

multiple testing method of Romano and Wolf (2005). RW algorithm uses a

modified BRC as a first step, and can potentially detect further outperforming

strategies in subsequent steps, which makes it more powerful than the BRC. The

method of RW controls the familywise error rate (FWER), which is defined as

the probability of erroneously selecting one or more trading rules as significant,

when in reality they are simply lucky. The FWER is a conservative criterion,

resulting in a low power to detect superior performance, especially when the
6The present section focuses on trading rules discovery. However, the methods presented

can be applied to any multiple testing problem.
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universe of rules is large. It is not very appropriate in our case, where the goal

is to find a large number of significantly positive strategies7.

3.2 False Discovery Rate

We now present our new approach to data snooping. Benjamini and Hochberg

(1995) argue that the control of the FWER is not always necessary, especially

if the goal is to find several outperforming trading rules. They propose a more

tolerant error measure, the false discovery rate (FDR). The FDR is the ex-

pected ratio of the F trading rules erroneously selected as generating abnormal

performance—the false discoveries, over the total number R of selected rules

(see Table 2). We can write the estimator of the FDR as

F̂DR =
F̂

R̂
,

where F̂ and R̂ are estimators of F and R. See the appendix for the detailed

formulas. An FDR of 100% means that no rule is able to deliver significant

returns and that the apparent performance is purely due to luck, i.e., data

snooping. On the other extreme, an FDR of 0% indicates that all selected

strategies do genuinely generate significant performance.

[Table 2]

The FDR offers a much less conservative criterion over the FWER and,

therefore, leads to an increase in power8. Compared with RW method, the FDR

approach selects a sufficient number of rules to allow an investor to construct a

portfolio of trading rules. Another virtue of the FDR approach is its simplicity.

Once the p-values corresponding to the individual tests have been calculated,

the estimation of the FDR is straightforward. The single parameter to be

estimated is the proportion π0 of rules in the population satisfying the null
7Hansen (2005) offers some improvements over the BRC. Being less sensitive to the influence

of poor and irrelevant strategies, his method is more powerful. However, like the BRC, Hansen

method only addresses the question whether the strategy that appears best in the observed

data really beats the benchmark. Hsu and Kuan (2005) utilize the test of Hansen to reexamine

the profitability of technical analysis and conclude that there are no significantly profitable

trading rules in mature markets (i.e., DJIA and S&P 500).
8The FDR approach has received much recent attention in the statistics literature, and has

been extended by Storey (2002). See Abramovich, Benjamini, Donoho and Johnstone (2006)

for applications of the FDR and for an extensive discussion of the advantages of using the

FDR over the FWER in the field of multiple testing.
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hypothesis ϕ = 0. We obtain the individual p-values using the same resampling

technique as STW.

Technical rules for which the null hypothesis is rejected perform either better

or worse than the benchmark. Barras et al. (2007) show that the proportion

of false discoveries can be estimated separately for both outperforming and

underperforming strategies. Let R+ denote the number of significantly positive

trading rules9. F+ of them do not truly generate abnormal performance, but

are simply false discoveries. The FDR among the rules yielding positive returns,

denoted by FDR+, is defined as the expected ratio of F+ over R+. The FDR+

can be estimated as

F̂DR
+

=
F̂+

R̂+
,

where F̂+ and R̂+ are estimators of F+ and R+. Similarly, an estimator of

the FDR among the rules yielding negative returns, denoted by FDR−, can be

written as

F̂DR
−

=
F̂−

R̂−
.

We can also estimate the proportions π+
A and π−A of positive and negative trading

rules in the population. These are general indicators of the presence of positive

or negative abnormal performance. All relevant estimation procedures to get

F̂DR
+

, F̂DR
−

, π̂+
A , π̂−A , as well as the stationary bootstrap used to obtain the

individual p-values are detailed in the appendix.

The FDR provides two approaches for the construction of a portfolio of

trading rules. The first approach, which we call exploratory analysis, consists

in selecting strategies based on their p-values in a first step, and then com-

puting the resulting F̂DR
+

10. The second approach is to set the F̂DR
+

at a

predetermined rate and use the algorithm described in the appendix to pick the

corresponding trading rules. In both cases, the selected strategies are weighted

equally within the portfolio.
9We call a trading rule significantly positive if its abnormal performance is both significant

(i.e., H0 is rejected) and positive.
10Here we follow Storey (2002) who proposes to first fix the rejection region, before com-

puting the corresponding proportion of false discoveries.
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4 Empirical findings before transaction costs

4.1 FDR in practice / Evolution of performance over time

In this section, we investigate the performance of technical trading rules, us-

ing the FDR as a new data snooping measure, and ignoring transaction costs.

As we use the same setting as STW, we can compare our findings and show

the advantages of the FDR approach over the BRC and RW method. Table 3

presents performance results for the mean return criterion in each of the sample

periods. The top panel shows results already reported by STW, i.e., the per-

formance of the buy-and-hold strategy (DJIA), and the performance and BRC

p-value of the best rule in the sample. It also displays the performance and size

of the portfolio of trading rules constructed using the method of RW. The bot-

tom panel displays three different indicators obtained following our new FDR

based approach to data snooping. On the left-hand side is the performance of

the portfolio of trading rules obtained with the simple exploratory analysis. In

the middle are results for the portfolio constructed by controlling the FDR+ at

10%. Finally, the last columns show π̂+
A and π̂−A , the estimated proportions of

rules in the population with positive and negative performance.

[Table 3]

Over the 100-year period (1897–1996), the best rule generates a yearly mean

return of almost 16%, whereas the DJIA delivers only 4.5%. As explained by

STW, this performance stands up to the effects of data snooping since the BRC

p-value is zero. This is encouraging but provides no information on other trad-

ing rules than the best in the sample. In theory, the method of RW provides

a solution to this issue as it can possibly detect further outperforming rules.

As shown in Table 3, over the 100-year period, RW technique selects 199 rules

from the universe of nearly eight thousand. The first three columns of the bot-

tom panel present results for the FDR exploratory analysis. In the exploratory

analysis, first we select the rules having a positive return and a p-value inferior

to 5%, and put them into an equally weighted portfolio. Then we estimate

the amount of false discoveries within this portfolio and measure its perfor-

mance. For the 100-year period, 1’216 rules are selected during the exploratory

analysis—significantly more than by the RW approach, and the corresponding
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FDR is very low at 1.3%11. This difference is even more pronounced during the

individual subperiods, where the average RW portfolio size does not exceed 20.

Such a low number cannot guarantee a real diversification effect and highlights

the low power of RW method. The increased power of the FDR method is a

clear advantage when the aim is to form a portfolio of trading rules.

Globally, the conclusions from the FDR approach are in line with the BRC.

During the 100-year period until 1996 and before transaction costs, technical

analysis seems to be a useful tool to generate performance, even after accounting

for data snooping. As already reported by STW and in other studies, the his-

torical performance of technical rules tends to disappear over time. This trend

is confirmed by the new data now available for subperiod 6 (January 1997–July

2007). During that last 10-year period, the performance disappears completely.

The BRC p-value equals 1 and no single rule is selected into the FDR portfolio.

The FDR approach allows to detect the performance decline earlier, already

in subperiod 4. Whereas the BRC p-value is still strictly zero at that time,

the FDR exploratory analysis selects merely 124 rules, from which almost 30

percent are false discoveries. Furthermore, with the new indicators not limited

to a single rule, we can be assured that the disappearance of performance con-

cerns the whole universe of trading rules. This phenomenon can be explained

by cheaper computing power, lower transaction costs, and increased liquidity

which have helped to remove possible patterns in stock returns. Another il-

lustration of the usefulness of our approach is when it is not obvious how to

interpret the BRC, such as in subperiod 2 where the BRC p-value reaches 3%.

For the same subperiod, the FDR exploratory analysis selects only 132 rules,

among which almost 20 percent are false discoveries. Hence, we are confirmed

that only few trading rules generate significant performance during that time

period.

The remaining of the bottom panel presents results stemming from other

ways of applying the FDR. ‘FDR control’ corresponds to the case where we

control the FDR+ at a predetermined rate (10% in our case12) and construct

an equally-weighted portfolio of trading rules satisfying this constraint, using
11The corresponding asymptotic confidence interval computed following Genovese and

Wasserman (2004) is [1.18% 1.38%]. In the rest of the paper we do not report confidence

intervals for the FDR in order not to overload tables. The intervals are always narrow and

available upon request.
12Controlling the FDR+ at γ = 5% and γ = 20% leads to very similar results available upon

request.
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the algorithm described in the appendix. Finally, the last two columns of the

bottom panel show that π̂+
A decreases from approximately 40% to zero, while

π̂−A becomes non negligible after subperiod 3 (1939–1962) and reaches more

than 15% in subperiod 6 (1997–2007). Hence, the FDR provides us with three

different approaches which all lead to the same conclusions. A very similar

picture emerges for the Sharpe ratio criterion, as reported in Table 4.

[Table 4]

Table 5 provides summary statistics for the best-performing trading rule,

for the RW portfolio, and for the 10% FDR+ portfolio, during subperiod 3.

The rules are chosen with respect to the mean return criterion and ignoring

transaction costs. In the three cases, the number of short and long trades is

roughly balanced out, and the winning percentage is much higher for the long

than for the short trades. Long trades are also associated with average profits

superior to those on the short trades.

[Table 5]

4.2 Persistence analysis

An important issue, and another contribution of our paper, is the assessment of

how an investor could have possibly selected the future best-performing rules.

Although it may be the case that we are able to find ex post technical rules that

generate superior performance, there is no indication that it is possible to select

this rules ex ante. In this section, we tackle this problem by performing persis-

tence tests. To do so, we construct an equally weighted portfolio of technical

rules selected during a training period corresponding to the last two years. The

criterion to select the trading rules is the control of the FDR+ at a predeter-

mined level. We then measure the (out-of-sample) performance of the portfolio

over a testing period corresponding to the following year, and compare it to the

(in-sample) performance of the rules that performed best ex post. Every year,

the composition of the portfolio is updated in order to take advantage of the

new data that has become available. Each time, we move the two-year trailing

window of the training period one year forward and run the selection process

again (see Figure 1). Hence, we exploit only historically available information,

so this approach could have been easily implemented by an investor.

[Figure 1]
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[Table 6]

Table 6 displays the results of our persistence tests for subperiod 3 (1939–

1962) with the mean return as the performance measure. Though we focus on

this sample period as it exhibits high in-sample performance, the findings are

identical for other subperiods. We consider portfolios obtained by controlling

the FDR+ at different levels (1%, 5%, 10%, and 20%). For comparison, we also

report the performance of the portfolio constructed using RW methodology, of

the portfolio consisting of the 200 best rules from the training period, of the

best rule of the training period, and of the best rule provided the BRC p-value

is below 5%. The left-hand part of the table shows the (out-of-sample) perfor-

mance and size of the different portfolios rebalanced yearly as just described.

The right-hand side displays in-sample results corresponding to the unrealistic

situation where the trading rules are selected and evaluated over the same pe-

riod. An investor earns a yearly mean return of 5.3% if he applies the FDR

approach and 11.4% with RW method, which is better than the 2.4% obtained if

he naively selects the best 200 rules of the training period. Hence, following the

FDR or RW approach effectively allows to filter out some of the rules whose

apparent performance is only a data snooping artifact. The FDR approach

does not, though, allow to beat the 8.1% of the buy-and-hold strategy (DJIA).

The performance of the RW portfolio is superior but relies on insufficiently few

trading rules.

The out-of-sample performance corresponds to what an investor can reason-

ably achieve. An investor must not be lured by the prospect of achieving the

high returns of the best rules selected ex post, i.e., an artificial mean return of

almost 20% yearly for the FDR portfolio. Moreover, the significant trading rules

are dispersed across the whole tail of the distribution, i.e., controlling the FDR+

at 1%, 5%, 10%, or 20% yields the same portfolio return of 5.3%. Contrary to

Barras et al. (2007) where the few skilled mutual funds are located in the ex-

tremity of the tail, we cannot take advantage of such a property to pick the

best trading rules. The great variability of the size of the portfolios reported in

Table 6 is another indicator that it is not possible to detect the top-performing

rules ex ante. Unreported results (e.g., the composition of the portfolios built

ex ante and ex post for each testing period) show that an investor would not

have been able to pick much more than 5% of the 200 future best rules. Hence,

despite the high in-sample performance during past subperiods, the strategies

of STW universe could not have been used to generate significant performance.
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Table 6 shows that RW portfolio is often empty which illustrates the weakness

of RW method. In comparison, the FDR approach is more powerful. This is a

useful property as our goal is to detect many trading rules in order to obtain a

diversification effect. As reported in Table 7, results are identical for the Sharpe

ratio criterion.

[Table 7]

5 Impact of transaction costs

Before transaction costs, historical in-sample performance of technical trading

rules appears to be high and significant even after accounting for data snooping.

We have already seen that this performance is not persistent. In this section,

we show that even this in-sample historical success disappears once we take into

account transaction costs and short sale constraints. Previous studies13 call for

careful consideration of this issue, especially as an important proportion of the

rules that perform best before transaction costs use very short windows of data,

generate very frequent trading signals, and, hence, are likely to generate sub-

stantial transaction costs. STW try to address this issue by conducting their

experiment using price data on the S&P 500 index futures. When trading fu-

tures contracts, transaction costs are easy to control, and it is not a problem to

take a short position. However, the futures contract started trading only in 1984

which limits the interest of this approach, considering that our study begins in

1897. In this section, we tackle this issue and investigate in depth the impact of

transaction costs on the performance and characteristics of technical rules. To-

tal transaction costs are difficult to measure precisely as they include not only

the bid-ask spread but also applicable commissions, price impact costs, taxes,

short sale costs, and other immediacy costs. Moreover, they have been declining

over time. To circumvent this difficulty, we examine how the performance of

trading rules evolves across a whole range of transaction costs and lending fees

levels. Another approach, which is also taken by STW and in Bessembinder

and Chan (1998), is to compute a break-even transaction cost. However, as

STW mention themselves, such a number is difficult to assess since transaction

costs are not constant during the sample period. We explain why break-even

transaction costs are not a satisfactory measure, in particular as it is important
13See Brock et al. (1992), STW.
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to include the costs already during the selection process. Having recognized

this fact, we perform the persistence tests again, adding transaction costs in

the training period. We also examine the characteristics of portfolios of trad-

ing rules that resist the inclusion of transaction costs, and investigate whether

some categories of rules perform better under particular economic conditions,

following the NBER classification.

5.1 Transaction costs

Transaction costs are commonly decomposed into two major components: ex-

plicit costs and implicit costs. Explicit costs are the direct costs of trading, such

as broker commissions and taxes. Implicit costs, which are harder to measure,

represent such indirect costs as the price impact of the trade and the oppor-

tunity cost of failing to execute the order in a timely manner. The literature

provides a range of transaction cost estimation procedures14. The first class of

measures examines transaction cost data directly. As the latter are not easily

available, a second class of methods indirectly infer transaction costs based on

price behavior15.

For the period January 1991 to March 1993, Keim and Madhavan (1997)

estimate that, for exchange listed stocks, the average total cost for a buy or-

der is 0.49% (0.31% implicit costs + 0.18% explicit costs). Transaction costs

were significantly greater in earlier years, particularly before commissions were

deregulated in May 1975. Stoll and Whaley (1983) use published commission

schedules to estimate transaction costs during the 1960 to 1975 period. For the

largest decile of NYSE securities, they report an estimated one-way transac-

tion cost of 1.35% (the commission plus half the bid-ask spread). This figure

may overstate actual transaction costs during that interval, since it does not

accommodate the possibility of trading within the quotes, or allow for soft-

dollar payments16. This latter practice has grown since the late 1980s, and the

true decline in commission costs is even larger than the stated numbers. An-

other issue is the non-proportional increase of the price impact with the volume

traded17. However, since the emergence of ETFs, transaction costs are easier

to control.
14See Lesmond, Schill and Zhou (2004), and Mitchell and Pulvino (2001) for a review of

transaction costs estimation procedures.
15e.g., Glosten and Harris (1988) and Breen, Hodrick and Korajczyk (2002).
16See Blume (1993).
17See Glosten and Harris (1988), Breen et al. (2002), Korajczyk and Sadka (2004).
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5.2 Short selling constraints

Selling short can be expensive. In order to sell short, we must borrow the stock

from a current owner, and this stock lender charges a fee to the short seller.

The fee is determined by supply and demand for the stock in the loan market.

In addition to these direct costs, there are other costs and risks associated with

shorting, such as the risk that the short position will have to be involuntary

closed due to recall of the stock loan (short squeeze). Furthermore, legal and

institutional constraints can inhibit investors from selling short. These imped-

iments and costs are collectively referred to as short-sale constraints.

D’Avolio (2002), Duffie, Gârleanu and Pedersen (2002), Geczy, Musto and

Reed (2002), and Jones and Lamont (2002) provide useful analyzes of the eq-

uity loan market. While short-sale costs might be quite low on average, they

are systematically high exactly when they are critical. Practitioners refer to

stocks with high fees as being “special” and those with baseline fees as “gen-

eral collateral”. As for transaction costs, lending fees have declined over time.

The average shorting cost in Jones and Lamont (2002) sample (1926–1933) is

35 basis points per month. For the period 2000–2001, D’Avolio (2002) reports

only 41 basis points per year. However, 9% are loan market specials, with

fees averaging 4.3% per annum, but reaching spectacular heights in some rare

instances.

5.3 Exploratory analysis

In this section, we explore the impact of increasing transaction costs on the

performance of trading rules. We focus on subperiod 3 (1939–1962) as it ex-

hibits high in-sample performance and perform the FDR exploratory analysis.

Conclusions are identical for other subperiods. In line with the estimates pre-

sented above, we consider combinations between three different lending fees (0,

50 and 100 basis points yearly) and proportional one-way transaction costs that

range from 0 to 40 basis points of the traded volume. Total one-way transaction

costs during subperiod 3 were higher than 1%, meaning that even the highest

value used in our simulations remains conservative. Looking at Figure 2, we

observe that, under the mean return criterion, the roughly 800 rules selected

before transaction costs decrease to less than 100. The corresponding propor-

tion of false discoveries (F̂DR
+

) raises from less than 2% to more than 25%. In

a symmetric fashion, there are almost no significant rules with negative perfor-
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mance when we omit transaction costs, but their number increases to more than

1’100 under the highest transaction costs considered. Hence, it is already clear

from this simple analysis that the apparent historical performance disappears

when transaction costs are taken into account. Moreover, this phenomenon is

confirmed by other indicators, such as the BRC p-value and the estimated pro-

portions π̂+
A and π̂−A . π̂+

A decreases from 50% to 10%. At the same time, π̂−A ,

which is negligible at first, reaches almost 25%. Results are very similar when

the rules are selected according to the Sharpe ratio criterion (see Figure 3).

[Figures 2 and 3]

5.4 Break-even transaction costs

In the preceding sections, we choose transaction costs levels based on studies

specializing on this particular topic. However, they remain ad hoc values. One

way to circumvent this issue is to compute break-even transaction costs. Break-

even transaction costs correspond to the level of transaction costs that would

just eliminate the ex post difference between cumulative returns to traders

using technical rules versus those who buy and hold the DJIA stocks. Though

break-even transaction costs are often reported in the literature, they are not

always appropriate. First, as historical series on transaction costs are difficult

to obtain, it is hard to assess this number. Second, computing break-even

transaction costs ex post, i.e., after the rules have been selected, misses an

important issue. The problem is that the rules selected before transaction costs

tend to generate very frequent trading signals. Hence, it is natural that their

performance is highly impacted once we subtract transaction costs. Market

frictions should be included from the start. This way, longer-term rules would

be probably selected in the portfolio, resulting in a performance less sensitive

to transaction costs. To remedy this problem, we could progressively increase

transaction costs until they equal the resulting break-even transaction costs of

the selected rules. The persistence analysis presented in the following section

incorporates transaction costs already in the training period. Therefore, it does

not suffer from this weakness of break-even transaction costs.

[Tables 8 and 9]

Table 8 reports break-even transaction costs corresponding to various port-

folios of technical rules, in each of the sample periods. We consider the portfolio
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constructed by controlling the FDR+ at 10%, the portfolio of rules selected by

RW method, a portfolio containing the 200 best rules, and the best rule in the

sample. For example over the 100-year period (1897–1996), the best-performing

trading rule for the DJIA earns a mean yearly return of 15.9 percent resulting

from an average of 117 transactions per year, giving a break-even transaction

cost level of 0.14 percent per transaction. Transaction costs are likely to have

been higher at the beginning of the sample, but lower by the end of the sample.

As it is not obvious how to compute historical series on transaction costs, this

number is difficult to assess and makes it hard to draw a conclusion concerning

the profitability of the best rule in the sample. However, as soon as we consider

whole portfolios, the corresponding break-even transaction costs drop dramati-

cally (e.g., 0.0001 percent for the 10% FDR+ portfolio). This low value should

not come as a surprise since a portfolio contains an important number of rules,

which leads to a significantly increased total number of trades (see Table 9).

Hence, putting aside the above comments on break-even transaction costs, we

can conclude that transaction costs should have been unrealistically low for our

portfolios to generate profits.

5.5 Persistence analysis

We have seen that the apparent in-sample historical performance of technical

rules selected before transaction costs is wiped out by the inclusion of these

costs. Contrary to the break-even transaction costs analysis, in this section

we incorporate transaction costs already in the training period and perform

persistence tests as in Section 4.2. We believe it is important to incorporate

the frictions in the selection process, as it might help discard insignificant rules

that trade too frequently. Again, we focus on subperiod 3. We set one-way

transaction costs at 20 basis points and lending fees at 50 basis points per year,

which are conservative figures for the subperiod under consideration. As shown

in Table 10 for the mean return criterion, and Table 11 for the Sharpe ratio,

the persistence results are not better than when transaction costs are omitted.

The portfolios constructed following the different approaches are often empty

and their mean return is negative. Unreported results show that merely 1%

of the future 200 top-performing rules are selected. Again, comparison of the

performance of the portfolio where the FDR+ is controlled at 1%, 5%, 10%, or

20% shows that the significant rules are spread across the tail, which does not

facilitate the task of selecting the best strategies. Recall that after transaction
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costs, in-sample performance is also poor, barely matching the buy-and-hold

strategy.

[Tables 10 and 11]

5.6 Portfolio characteristics

In this section, we analyze the characteristics of the 10% FDR+ portfolio when

we progressively add increasing transaction costs. First, we investigate which

categories of trading rules continue to generate significant performance. Figure

4 shows the results for subperiod 3 with the mean return criterion. We see

that only filter rules and on-balance volume averages remain after the inclusion

of transaction costs. However, unreported results show that no persistent pat-

tern emerges across the subperiods as to which category is more resistant to

transaction costs. Furthermore, the results depend on the performance criterion

employed, as we observe by comparing Figure 4 and Figure 5, which presents the

analysis for the Sharpe ratio. We also investigate how the proportion of slow or

long-term versus fast or short-term rules composing the portfolio evolves when

transaction costs increase. The balance changes progressively in favor of slow

rules, meaning that once transaction costs are included, the successful rules

trade on longer-term price movements. The same trend emerges from Table 12,

which lists the best-performing rule for each level of transaction costs. Figure

6 and Figure 7 display boxplots of the number of trades generated by all the

rules constituting the 10% FDR+ portfolio under increasing transaction costs,

for respectively the mean return and the Sharpe ratio criterion. As expected,

the rules selected before transaction costs produce too many trading signals

and their performance is wiped out once we take into account these costs. Also,

Table 13 shows that once transaction costs are included, the trading rules se-

lected for subperiod 3 generate significantly less trades, and a FDR portfolio

trade averages over 300 days. This is considerably greater than the average 30.3

days per trade resulting from the FDR portfolio rules when transaction costs

are ignored (see Table 5).

[Figures 4, 5, 6, and 7]

[Tables 12 and 13]
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5.7 Performance under particular economic conditions

In order to see whether certain trading rules perform better within a particular

economic environment, we rerun our analysis conditioning on the state of the

business cycle. We use the (ex post) dates of the National Bureau of Economic

Research (NBER) to determine whether the economy is in an expansion or in

a contraction phase. The analysis shows that different categories of rules are

selected during expansions than during contractions. For example, subperiod

3 (1939–1962) contains 5 business cycles. During that time period, Moving

Averages perform better if we focus on contraction phases, and if we concentrate

on expansion phases, Support and Resistance, and Channel Breakouts rules are

selected. Over the whole sample (i.e., when no distinction between contractions

and expansions is made), none of these three categories is able to generate

constant performance. However, there does not seem to exist a stable pattern

across the different subperiods, as to which category of trading rules is superior

during a particular phase of the business cycle. The single general result is

that more rules are selected during contractions than during expansions or over

the complete sample. However, despite these differences, conditioning on the

business cycle does not allow to increase performance. The rules selected over

the whole sample still yield the best returns18. Hence, even an investor who

would know ex ante the state of the business cycle could not take advantage of

it.

6 Conclusion

In this paper, we reassess the apparent historical success of technical trading

rules on daily prices of the Dow Jones index. The three issues we investigate

lead us to the conclusion that the rules from STW universe could not have

been used to generate significant profits. First, we use the False Discovery Rate

as a new approach to account for data snooping. Being more powerful than

statistical methods used in previous studies, the FDR approach selects more

outperforming rules, which allows the construction of a diversified portfolio of

strategies. Second, we perform persistence tests in order to see whether it is

possible to find trading rules that generalize beyond the training sample. The

absence of persistence indicates that, even if we can find technical rules that

perform well historically, an investor would not have been able to select ex ante
18Detailed results are available upon request.
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the future best-performing rules. Third, we investigate the impact of trans-

action costs. Since technical trading strategies require frequent transactions,

return forecastability may not imply increased returns once transaction costs

are considered. Our analysis shows that rules selected before transaction costs

trade too frequently and that their performance is wiped out by the inclusion of

these costs. Even with the increased power of our FDR approach, we are unable

to detect enough trading rules that are persistent and robust to the inclusion

of transaction costs.
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Appendices

For the convenience of the reader, we summarize here results from Barras et al.

(2007) and STW.

A Stationary Bootstrap

For each trading rule, we test the null hypothesis of no abnormal performance.

In order to obtain the individual p-values, we follow STW and apply the sta-

tionary bootstrap of Politis and Romano (1994). This resampling technique

is chosen due to the weak correlation in the daily returns. We describe the

algorithm that generates a simulated time series of returns. The notation cor-

responds to that of the text and of STW. Let {ft, t = R, . . . , T} denote the

original series of returns. For b = 1, . . . , B, the bootstrapped series of returns

{f bt , t = R, . . . , T} are obtained as follows. q ∈ [0, 1] is a smoothing parameter.

1. Set t = R. Draw the index θ(t) at random, independently and uniformly

from {R, . . . , T}. Set f bt = fθ(t).

2. Set t = t+ 1. If t > T , stop. Otherwise, draw a random variable U from

the standard uniform distribution.

(a) If U < q, draw θ(t) at random, independently and uniformly from

{R, . . . , T}.

(b) If U ≥ q, set θ(t) = θ(t− 1) + 1. If θ(t) > T , set θ(t) = R.

Set f bt = fθ(t).

3. Repeat step 2.

The stationary bootstrap resamples blocks of varying length from the orig-

inal data. The average block length equals 1/q. The parameter q has to be

chosen according to the dependence exhibited by the data. We follow STW

who set the average block length to 10 (i.e., q = 0.1). STW show that the

results are robust to the choice of q.

For each simulated series of return, we compute the corresponding perfor-

mance measure ϕb, b = 1, . . . , B. The p-value is obtained by comparing the

original performance ϕ to the quantiles of ϕb, b = 1, . . . , B. Whereas STW

perform only 500 bootstrap iterations, we set B = 1000 19.
19As our programs are written in C++, we can afford to perform more bootstrap iterations.
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B Estimation of the FDR

Suppose that we tested the null hypothesis of no abnormal performance for each

trading rule and obtained the l corresponding p-values. We call a trading rule

significant (i.e., reject the null hypothesis) when its p-value is less than or equal

to some threshold γ. Storey (2003) shows that an estimator of the FDR is

F̂DR(γ) =
F̂

R̂
=

π̂0 l γ

# {pk ≤ γ; k = 1, . . . , l}
,

where π̂0 is an estimate of π0 ≡ l0/l, the proportion of rules in the population

generating no abnormal performance. Hence, measuring the FDR boils down

to the estimation of π0, which we describe in the following section.

C Estimation of π0

In order to estimate π0, Storey (2002) proposes a method exploiting the fact

that, for a two-sided test, null p-values are uniformly distributed over [0, 1],

whereas p-values of alternative models tend to be close to zero. Figure 8 shows

the histogram density of p-values corresponding to our l = 7′846 trading rules.

We see that beyond 0.6, the histogram looks fairly flat, which indicates that

there are mostly null p-values in this region. The height of this flat portion

gives a conservative estimate of the overall proportion of null p-values:

π̂0(λ) =
# {pk > λ; k = 1, . . . , l}

l(1− λ)
,

which involves the tuning parameter λ. It is possible to automate the selection

of λ. However, as π̂0 is not sensitive to the choice of λ when the number of

rules is high, we set λ = 0.6 by visually examining the histograms20.

[Figure 8]

D Estimation of the FDR+ and the FDR−

The FDR measures the proportion of false discoveries without distinction be-

tween trading rules with positive or negative performance. Since the multiple

test we perform in Equation (1) is two-sided with equal tail significance γ/2, the
20The automated method described in Storey (2002) produces almost identical estimates of

π0.
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false discoveries are spread evenly between outperforming and underperform-

ing trading rules. Based on that observation, Barras et al. (2007) propose the

following estimators for the FDR separately among the rules yielding positive

and negative performance:

F̂DR
+

(γ) =
F̂+

R̂+
=

1
2 π̂0 l γ

# {pk ≤ γ, ϕk > 0; k = 1, . . . , l}
,

F̂DR
−

(γ) =
F̂−

R̂−
=

1
2 π̂0 l γ

# {pk ≤ γ, ϕk < 0; k = 1, . . . , l}
.

E Estimation of π+
A and π−A

Appendix C shows how to estimate π0, from which we can deduce πA = 1 −
π0, the proportion of rules with abnormal (i.e., non zero) performance in the

population. It is useful to split πA into the proportions of rules with positive

(π+
A) and negative abnormal performance (π−A), which can be written as:

π+
A =

T+(γ) +A+(γ)
l

, π−A =
T−(γ) +A−(γ)

l
.

The notations correspond to Table 2. T+(γ) denotes the number of alternative

models with positive performance and a p-value smaller than γ. A+(γ) denotes

the number of alternative models with positive performance which are not re-

jected by the hypothesis test (i.e., with a p-value greater than γ). T−(γ) and

A−(γ) are defined accordingly for negative performance.

Using the same approach as in Appendix D, we estimate T+(γ) and T−(γ)

with:

T̂+(γ) = R̂+(γ)− F̂+(γ) = # {pk ≤ γ, ϕk > 0; k = 1, . . . , l} − 1
2
π̂0 l γ,

T̂−(γ) = R̂−(γ)− F̂−(γ) = # {pk ≤ γ, ϕk < 0; k = 1, . . . , l} − 1
2
π̂0 l γ.

As we increase γ, A+(γ) and A−(γ) tend to zero, while T+(γ) and T−(γ)

increase. Hence, by taking a sufficiently high value γ∗, we can estimate π+
A and

π−A with:

π̂+
A =

T̂+(γ∗)
l

, π̂−A =
T̂−(γ∗)

l
,

as explained in Barras et al. (2007). We set γ∗ = 0.3, which corresponds to the

value for which π̂+
A and π̂−A become constant.
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F Controlling the portfolio FDR+ level

Storey, Taylor and Siegmund (2004) show that the FDR point estimates can

be used to define valid FDR controlling procedures. Hence, we can derive the

following algorithm that allows the construction of a portfolio of trading rules

with a FDR+ level fixed at at predetermined rate. The algorithm starts with

the rule having the smallest p-value (and a positive performance). Then, the

rule corresponding to the next p-value is added and the FDR+ recomputed.

This process is repeated until we reach the desired FDR+ rate, and we select

the rules resulting in a FDR+ not greater than the predetermined level.
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Subperiod 1: January 1897 – December 1914
Subperiod 2: January 1915 – December 1938
Subperiod 3: January 1939 – June 1962
Subperiod 4: July 1962 – December 1986
Subperiod 5: January 1987 – December 1996
Subperiod 6: January 1997 – July 2007

Table 1: Sample periods

H0 rejected H0 not rejected Total
Null H0 true F N l0
Alternative HA true T A lA
Total R l −R l

Table 2: Possible outcomes resulting from l hypotheses tests
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Sample FDR portfolio RW portfolio 200 best rules Best rule
Subperiod 1 (1897–1914) 0.0003 0.0090 0.0016 0.3997
Subperiod 2 (1915–1938) 0.0071 0.0716 0.0026 0.1444
Subperiod 3 (1939–1962) 0.0001 0.0039 0.0013 0.1140
Subperiod 4 (1962–1986) 0.0017 0.0058 0.0010 0.1051
Subperiod 5 (1987–1996) 31.2210 - 0.0272 31.2210
Subperiod 6 (1997–2007) - - 0.0030 1.4137
100 years (1897–1996) 0.0001 0.0010 0.0010 0.1357

Table 8: Break-even transaction costs (%). This table reports the level of
transaction costs that would just eliminate the profits to traders using technical
rules, in each of the sample periods. Results are provided for the portfolio
obtained by controlling the FDR+ at 10%, for the RW portfolio, for the portfolio
consisting of the 200 best rules, and for the best rule in the sample.

(a) Average yearly return (%)

Sample FDR portfolio RW portfolio 200 best rules Best rule
Subperiod 1 (1897–1914) 7.5 15.2 12.8 19.0
Subperiod 2 (1915–1938) 10.2 16.7 10.1 16.8
Subperiod 3 (1939–1962) 3.7 12.0 8.4 25.3
Subperiod 4 (1962–1986) 9.7 15.9 7.6 24.1
Subperiod 5 (1987–1996) 13.8 - 10.0 13.8
Subperiod 6 (1997–2007) - - 3.5 9.8
100 years (1897–1996) 2.9 7.7 7.7 15.9

(b) Average yearly number of transactions

Sample FDR portfolio RW portfolio 200 best rules Best rule
Subperiod 1 (1897–1914) 27’108 1’690 8’205 47
Subperiod 2 (1915–1938) 1’432 233 3’929 116
Subperiod 3 (1939–1962) 27’711 3’065 6’400 222
Subperiod 4 (1962–1986) 5’719 2’749 7’653 229
Subperiod 5 (1987–1996) 0 - 370 0
Subperiod 6 (1997–2007) - - 1’143 7
100 years (1897–1996) 31’783 7’929 7’911 117

Table 9: Average yearly return (%) and average yearly number of
transactions. This table reports the average yearly return (%) (Panel (a)) and
the average yearly number of transactions (Panel (b)), in each of the sample
periods. Results are provided for the portfolio obtained by controlling the
FDR+ at 10%, for the RW portfolio, for the portfolio consisting of the 200 best
rules, and for the best rule in the sample.
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Figure 1: Persistence test. At time t, the portfolio is re-formed in order
to include the rules that performed best in a training period corresponding to
the last two years. The performance is then evaluated out-of-sample during a
testing period of one year. This process is repeated every year.

Figure 2: FDR exploratory analysis over increasing transaction costs:
subperiod 3 (1939–1962) with the mean return criterion. This fig-
ure displays the number of rules detected as significantly positive (R̂+) and
significantly negative (R̂−), and the corresponding false discoveries (displayed
in red). On the horizontal axis, each bracket (x, y) corresponds to a pair of
one-way transaction costs x and annualized lending fees y (in basis points).
The solid line represents the BRC p-value. The p-value can be read from the
right-hand axis.
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Figure 3: FDR exploratory analysis over increasing transaction costs:
subperiod 3 (1939–1962) with the Sharpe ratio criterion. This fig-
ure displays the number of rules detected as significantly positive (R̂+) and
significantly negative (R̂−), and the corresponding false discoveries (displayed
in red). On the horizontal axis, each bracket (x, y) corresponds to a pair of
one-way transaction costs x and annualized lending fees y (in basis points).
The solid line represents the BRC p-value. The p-value can be read from the
right-hand axis.
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Figure 4: Repartition by technical rules categories over increasing
transaction costs: subperiod 3 (1939–1962) with the mean return
criterion. This figure displays the evolution of the composition of the 10%
FDR+ portfolio when transaction costs increase. The different categories are
Filter Rules (FR), Moving Averages (MA), Support and Resistance rules (SR),
Channel Breakouts (CB), and On-Balance Volume averages (OBV). On the
horizontal axis, each bracket (x, y) corresponds to a pair of one-way transaction
costs x and annualized lending fees y (in basis points).
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Figure 5: Repartition by technical rules categories over increasing
transaction costs: subperiod 3 (1939–1962) with the Sharpe ratio
criterion. This figure displays the evolution of the composition of the 10%
FDR+ portfolio when transaction costs increase. The different categories are
Filter Rules (FR), Moving Averages (MA), Support and Resistance rules (SR),
Channel Breakouts (CB), and On-Balance Volume averages (OBV). On the
horizontal axis, each bracket (x, y) corresponds to a pair of one-way transaction
costs x and annualized lending fees y (in basis points).
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Figure 6: Number of trades over increasing transaction costs: subpe-
riod 3 (1939–1962) with the mean return criterion. This figure displays
boxplots of the number of trades generated by the rules composing the 10%
FDR+ portfolio when transaction costs increase. On the horizontal axis, each
bracket (x, y) corresponds to a pair of one-way transaction costs x and annual-
ized lending fees y (in basis points).
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Figure 7: Number of trades over increasing transaction costs: subpe-
riod 3 (1939–1962) with the Sharpe ratio criterion. This figure displays
boxplots of the number of trades generated by the rules composing the 10%
FDR+ portfolio when transaction costs increase. On the horizontal axis, each
bracket (x, y) corresponds to a pair of one-way transaction costs x and annual-
ized lending fees y (in basis points).
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Figure 8: A density histogram of the 7’846 p-values (subperiod 3 (1939–1962),
10bps one-way transaction costs, 50bps lending fees). The dashed line is the
density histogram we would expect if all rules were truly null (i.e., did not gen-
erate abnormal performance). The dotted line is at the height of our estimate
of the proportion of rules that do not generate abnormal performance (i.e., π0).
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