
The Compass Rose Pattern in Electricity Prices 
 

Jonathan A. Batten and Mahmoud Hamada 
 
 
Jonathan A. Batten 
Department of Finance 
Hong Kong University of Science & Technology 
Clear Water Bay, Kowloon, Hong Kong 
Tel: ++852-2358 8202 
Fax: ++852-2358 1749 
Email: jabatten@ust.hk
 
Graduate School of Management,  
Macquarie University 
CBD Campus Level 6, 51-57 Pitt St 
Sydney, NSW 2000, Australia 
Tel: ++61-2-8274-8344,  
Fax: ++61-2-8274-8370 
Email: jonathan.batten@mgsm.edu.au 
 
 
Mahmoud Hamada 
Energy Risk Management 
Energy Australia 
570 George St 
Sydney, NSW 2000, Australia 
 
 
31st October 2007 
 
JEL: C22; C32; E31; F30; G15 
 
Keywords: chaos; compass rose; electricity prices; fractal; high-frequency data; Hurst 
 
Abstract 
The compass rose pattern appears in high-frequency returns of spot electricity prices. 
Once these returns are filtered using autoregressive filtering, no pattern remains. This is 
unexpected and suggests that factors other than discreteness contribute to the compass 
rose pattern. Though the series are non-normal in terms of their distribution, statistical 
tests fail to identify significant chaos, or fractal structures, in price returns. The phase 
diagram of the filtered returns provides a useful visual check on independence, a property 
necessary for pricing and trading derivatives and portfolio construction, as well as 
providing useful insights into the market dynamics.  
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The Compass Rose Pattern in Electricity Prices 
 

1. Introduction 

The "Compass Rose" pattern was originally identified in stock returns by Crack and 

Ledoit (1996) and appears in phase portraits or scatter diagrams as rays emanating from a 

centre when returns are plotted against their first order lagged value (in a two 

dimensional space), or first and second order lagged values (in a three dimensional space). 

While Crack and Ledoit (1996) recognized that this pattern was an artefact of market 

microstructure – due to price clustering, discreteness (Kramer and Runde, 1997; Wang 

and Wang, 2002; Mitchell and McKenzie, 2006), tick size (Szpiro, 1998) and data 

frequency (Wang, Hudson and Keasey, 2000; Cai, Hudson and Keasey, 2003; Lee, 

Mathur and Gleason, 2005), technical traders, amongst others, have hoped that this 

technique could be used to identify deterministic structure in returns, which could then  

be used to improve predictability and provide abnormal trading returns. 

 

We undertake an experiment from the alternate perspective. Rather than attempt to 

identify a nonlinear, or deterministic structure in a financial series, we investigate a return 

series well known for having such a structure: the spot electricity market. For example, 

Bessembinder and Lemmon (2002) and Longstaff and Wang (2004) identify daily, 

weekly and annual cycles in spot and forward electricity prices. It is not surprising that 

when phase portraits of electricity price returns are plotted, a compass rose is revealed. 

Second, we then model the spot returns using autoregressive techniques. These and other 

models have been shown to successfully capture serial correlation (autocorrelation) for 

use in forecasting future spot prices (Bessembinder and Lemmon, 2002). Finally, we 
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investigate the residuals from this modelling for the presence of a compass rose. Having 

removed linear dependence through autoregressive filtering of returns we then compare 

the two series and find that the compass rose, evident in the unfiltered series, has now 

disappeared. Various statistical tests are conducted to explain this finding, including the 

test for independence described by Brock, Dechert, Scheinkman and Le Baron (1996), 

which highlight differences in randomness in the two series. 

 

The paper is set out as follows. The next section (2) describes the data and modelling 

method used, section three provides the results and the final section allows for some 

concluding remarks. 

 

2. Data and Method. 

The financial series investigated are returns on half-hourly prices in the Australian spot 

electricity market, termed the National Electricity Market (NEM). Prices are traded in 

markets as an amount of Australian dollars (1A$ = 0.88 US$) per megawatt hour. The 

NEM started operation on the 13 December 1998 and now comprises the electricity 

industries in the major Australian states of Queensland, New South Whales, Victoria, 

South Australia and Tasmania, which together form one competitive wholesale pool. In 

2006, the NEM oversaw the electricity production, network transmission and trading 

functions of 180,000 Giga Watt hours (GWh) per annum, an industry with annual 

turnover of over A$6 billion. This comprises private corporations in Victoria and South 

Australia, and state-owned corporations in NSW and Queensland. The NEM is governed 

by the National Electricity Code which, among other goals, ensures competition among 
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power suppliers in the multi-state service area in an effort to reduce overall energy costs 

for consumers and end users. The National Electricity Market Managing Company 

(NEMMCO) is in charge of operating and administering the market according to the code 

(see AFMA, 2005).  

 

Our sample data comprises 30-minute spot prices per megawatt hour (MWh) of 

electricity from the state of New South Wales, in Australian dollars (A$), from the 1st 

July 2003 to 4th July 2006, over the entire 24-hour day. There were a total of 52,752 

observations. The mean price over the sample period was A$36.33 per MWh with the 

lowest price of A$4.59 and the highest price of A$9,909.03 per MWh. The economic 

implication of this range in price is significant and justifies significant resources directed 

towards hedging and risk management (Weron, 2000; Chang and Park, 2007). Figure 1 

shows a time series plot of the mean spot electricity price (Pt) over the 24-hour day. The 

average price per MWh peaks at A$105.7 in the afternoon around 16:00, then rises again 

to A$71.2 around 18:30pm. The lowest prices occur during the early hours of the 

morning, with the average lowest price (A$15.2) occurring at 4:00am. 

 

(Insert Figure 1) 

We first estimate the intraday 30-minute returns (ΔPt) for the spot electricity price (Pt) 

allowing 

 ΔPt = log(Pt ) – log(Pt-1)        (1)  

which is common in financial time series analysis, where the interval t-1→ t, is 30-

minutes. Over the entire sample period the mean of ΔPt was 0.00001 and 
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indistinguishable from zero at the 95% confidence interval. The series returns had a 

standard deviation of 0.07723 with slight positive skewness (0.122) and significant 

kurtosis (177.51) and consequently failed standard tests for normality (Anderson-Darling 

test was 3.642, p < 0.005). 

(Insert Figure 2) 

As expected from the literature, the returns show a regular cycle across the 24-hour day 

with significant variation between the forty-eight, 30-minute intervals. An F-test for 

variation in these 48 averages was 192.11 (p-value 0.000) with a pooled standard 

deviation of 0.0714. A plot of the mean and standard deviation of 30-minute returns is 

provided in Figure 2. The minimum average return was -0.0741 (19:30pm) and the 

highest was 0.0932 (18:00pm), while the lowest standard deviation was 0.0244 (4:00am) 

and the highest was 0.2167 (18:00pm). This suggests the lowest variation in price occurs 

in the early morning and the highest in the late afternoon, early evening. 

 

(Insert Figure 3a and 3b) 

 

Time dependence in returns is clearly evident from a correlogram of returns, displayed in 

Figure 3a for 240 lags, a number corresponding to 5-days of 48 intervals. Note the 

significant declining positive autocorrelation of the five peaks at lags 48, 96, 144, 192 

and 240 with values of 0.464 (t-statistic 94.25), 0.414 (t-statistic 68.57), 0.374 (t-statistic 

of 55.16), 0.352 (t-statistic 6.77) and 0.338 (t-statistic 43.04) respectively. This is 

consistent with the declining influence of previous day’s returns on current day returns 

for a specific 30-minute return interval.  
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Figure 3b highlights the structure across 48 lags, corresponding to one day. Within each 

day the autocorrelation is initially positive at lag 1 (0.199, t-statistic = 45.74), negative at 

lag 3 (-0.091, t-statistic = -19.97) and thereafter increasing to -0.025 at lag 10 (t-statistic 

= -5.16). This autocorrelation pattern resembles an autoregressive process and is 

consistent with patterns identified by other researchers in other electricity markets (e.g. 

Rambharat et al. 2005). This feature of the time-series generally invalidates the usual 

assumption of independent identically distributed (iid) residuals. Also, the normality 

assumption for residuals does not hold because of the return spikes. However, when 

taking weekly averages, the spikes and the serial correlation are smoothed and the data 

can be modelled using conventional time series techniques. Weekly averaging also 

eliminates the presence of daily and weekly cycles. 

 

Next we filter the short-term autocorrelated innovations in the return process via an 

autoregressive (AR) model. Of specific interest is the residual ψt after applying various 

filters (AR(1) →AR(10) to ΔPt given the autoregressive behaviour evident in the 

correlogram (Figures 3a and 3b). This model has the following mathematical form, with 

the general autoregressive term βnΔPt-n = AR(n): 

 

tttttt PPPPP ψββββα +ΔΔ+Δ+Δ+=Δ −−−− 10103322110 ......                          (2) 

(Insert Table 1 about here) 

Table 1 provides the coefficients for Equation 2 in the spot electricity returns. Note that the 

coefficient α0 = 0.0000 (t-statistic = 0.016), which is statistically and economically 

insignificant. The two most significant terms are β1 = 0.1956 (t-statistic = 44.965) and β3 = -
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0.102 (t-statistic = -22.960) being the prior 30-minute and 90 minute time periods. To model 

electricity prices it would be necessary to apply longer, lagged moving average terms (for 

example one–day lagged residuals, ψt-48) to remove the effects of longer time dependence 

(due to regularity in demand based upon the time of day shown in Figure 1). However, our 

interest is on the lower order price dependence as revealed in the short-term autocorrelation 

structure. It is this short-term structure that will influence the presence of the compass-rose 

pattern in a phase portrait of returns.  

 

(Insert Figure 4a, 4b and 4c) 

 

3. The Compass Rose in Electricity Prices 

A three dimensional phase portrait, or scatter plot, of electricity returns (ΔPt) plotted 

against first (ΔPt-1) and second (ΔPt-2) order lagged values is provided in Figure 4c. Note 

the rays emanating from the centre of the cube clearly form a star or compass rose pattern. 

This is clearer in Figures 4a and 4b which shows a two dimensional plot of electricity 

returns (ΔPt) plotted against the first lag (ΔPt-1). Figure 4a and 4b plots the range of 

returns from 0.00 to ± 0.50, while 4b plots a smaller range of returns from 0.00 to ± 0.15). 

Though clear in both figures, the compass rose pattern is very much a function of both 

the scale and the symbols used to record each observation: if both the scale and symbols 

are too large, then the compass rose pattern is lost. As Kramer and Runde (1997) note, 

the former is due to the relative relationship between the changes in price to the price. 

Plotting the change in electricity price to price level (not reproduced here) also highlights 

the clustering of prices in the area between zero and A$200. The importance of price 
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clustering and its impact on asset pricing has long been a concern for market researchers 

(e.g. Osbourne, 1962; Niederhoffer, 1965; Antoniou and Vorlow, 2005). 

 

The economic interpretation of the compass rose pattern provides an interesting insight 

into the electricity market dynamics. First, the most obvious of the compass rose lines 

occur when x and y = 0 (i.e. ΔPt = 0 and ΔPt-1 = 0, termed no-change prices) and when x 

= y (i.e. ΔPt = ΔPt-1, when the change is the same). Further analysis using a two-way 

cross-tabulation of the frequency of no-change and same prices versus half-hourly time 

highlights statistically significant daily variation in no-change and same prices (for 

example, the chi-square test for the no-change association was 715.11 with 47 degrees of 

freedom and p-value = 0.000). More specifically the greatest frequency of both no-

change and same prices (a total of 1599 and 1176 observations respectively) occurs 

between 1200-430pm, while the least number is from 600am to 900am and then 600pm 

to 1030pm. This is linked to the daily demand cycle clearly visible in Figure 1.  

 

Attention should also be drawn to the line with a negative parabolic form which declines 

through the origin in the two dimensional plot in Figure 4b (and a diagonal line in 4c due 

to the smaller scale). The pairs in the top-left quadrant indicate negative returns followed 

by positive returns in the next period (half hour). Having them clustered in this manner 

suggests that when prices fall below a certain level there is an immediate systematic 

response from some of the generators in the state (NSW) that would withdraw capacity, 

say 100MW from the market to decrease supply so that prices then rise as a result of the 

law of supply and demand.  
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For the pairs in bottom-right quadrant, this is the case of positive returns followed by 

negative ones. So, as soon as prices rise to a certain level, there is an immediate 

systematic capacity offered by the generator (100MW) to take advantage of high prices. 

This action of over supply then pushes prices down as a consequence. The curve is not 

linear because the effect of withdrawing, or supplying, of the systematic capacity 

(100MW) is not linear on price. So this may suggest inefficiency in the electricity market, 

and an arbitrage opportunity for some generators. 

 

Recall that standard statistical tests reject normality in the sampled electricity returns 

largely due to the presence of positive kurtosis. From Equation 2, a series of residuals ψt 

may be obtained. While now lacking the low order autocorrelation structure of the original 

series, the ψt series remains non-normal, with high kurtosis (180.14) and slight skewness 

(0.536) and a slightly smaller standard deviation (0.0749). The mean remains close to zero. 

A sum of the returns from the initial series totals 0.3288, indicative of a positive price drift 

in the return series, whereas the filtered series has a sum of close to zero at four decimal 

places, which is more consistent with a random series without drift. 

 

(Insert Figure 5a, 5b and 5c) 

 

The conclusion of various authors, including Szpiro (1998) and Wang and Wang (2002), 

is that price discreteness (for example, the electricity price quotes are to two decimal 

places) was the sole and necessary condition for the appearance of the compass rose. This 

conclusion is challenged by the plots of the residuals ψt against first and second order 
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lags in two and three dimensional phase portraits. These are illustrated in Figures 5a, 5b 

and 5c. What is immediately apparent is the disappearance of the compass rose in all 

figures. Note that care has been exercised to ensure that both the symbols for the 

observations and the scale are the same as those used in Figures 4a, 4b and 4c. Reducing 

the scale of the axes does not change this result and despite the discreteness of the series 

the compass rose pattern has now been removed. This is also clear from repeating the two-

way cross-tabulation of the frequency of no-change and same prices versus half-hourly 

time on the filtered returns. Now, the number of observations along the major compass 

rose lines when ΔPt = 0 and ΔPt-1 = 0 is 80 and ΔPt = ΔPt-1 is 75 (instead of 1599 and 

1176 respectively). Fundamentally, though non-normal in terms of its distribution, the ψt 

series appears now to be more random, and more likely iid compared with the unfiltered 

returns.  

 

Non randomness in the returns may be verified by estimating the test statistic described 

by Brock, Dechert, Scheinkman and LeBaron (1996), henceforth termed the BDSL 

statistic. This test is commonly used in time-series analysis and may also be used for 

checking the null hypothesis of white noise (iid process) against the unspecified 

alternative, which may suggest deterministic chaos, or a stochastic nonlinear process (see 

Antoniou Vorlow, 2005). 

 

Under the assumption of independence, the test statistic lies close to zero. To estimate the 

BDSL statistic, it is necessary to specify the embedding dimension, or number of 

consecutive data points used - generally a number from two to five for long time series 
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data - and a threshold term ranging from 0.5 to 2. For large samples distribution, the 

BDSL statistic is approximated by an asymptotic normal distribution, with a value of 

greater than 1.96 signifying a rejection of the null that the data are iid at the 5% level of 

significance (see McKenzie, 2001 for a discussion.)  

 

(Insert Table 2) 

 

The results from this analysis for both series are provided in Table 2. To simplify 

presentation, various embedding dimension values from 2 to 6, with a single threshold 

value of 0.7 are shown. In all cases the z-statistic fails to reject the null hypothesis that 

the observations of the series are independent, although the filtered series has values 

closer to zero (and therefore more “random”) than the raw return series. The test 

coefficient also increases as the embedding dimension increases. Note that Crack and 

Ledoit (1996) and Mitchell and McKenzie (2006) suggest the presence of the compass 

rose pattern may distort the null distribution of the BDSL test for nonlinearity. 

Specifically, Kramer and Runde (1997) empirically test this proposition and find that the 

null distribution of the BDSL test is distorted in the presence of discreteness in the time 

series.  

 

An alternate approach is to determine the presence of long-term dependence in the time-

series of electricity price returns. Long-term dependence is frequently linked to the 

presence of fractal structures, which may be measured using the rescaled adjusted range 

technique of Hurst (1951). This technique yields an exponent (H), which under the 
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assumption that the series follows a Gaussian random walk equals 0.5. In turn the failure 

to identify long-term dependent effects also lends support to the proposition that the time 

series investigated conforms to normally distributed, standard Brownian motion. The 

statistical method employed for measuring long-term dependence in this study is based on 

the adjusted local measure of the rescaled range of Mandelbroot and Wallis (1969) and Lo 

(1991), as adopted by Batten and Ellis (2005).  

 

We begin by taking the unfiltered return ΔPt or ψt, from the autoregressive equation 

(Equation 2). For simplicity in the following exposition we simply specify ψt (ΔPt can be 

substituted). Thus, for each ψt the classical rescaled adjusted range (R/σ)n is calculated as 

 

 
1 1

Max Min
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k k
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j j
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where X n is the sample mean (1/n)ΣjXj of a ψt nd σn is the standard deviation of ψt over a 

particular series n 
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In order to capture the time-varying nature of dependence in ψt (the effects of daily and 

weekly cycles) a local measure of the Hurst exponent (h) is employed. This exponent is 

calculated as 
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Rh
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σ

=                                                                          (5) 

 

Under the null hypothesis of no long-term dependence, the value of hn = 0.5. For time-

series exhibiting positive long-term dependence, the observed value of the exponent hn > 

0.5. Time-series containing negative dependence are alternatively characterised by hn 

<0.5. Importantly for equilibrium reverting processes the local Hurst exponent should be 

negative, since a movement back towards the equilibrium should follow a movement 

away from equilibrium. For positively dependent processes another movement further 

away from equilibrium will follow the earlier movement away from equilibrium.  

 

Estimates of the local Hurst exponent are calculated for (N – n + 1) times overlapping 

subseries of length n, with n having a set value. In this case, n is arbitrarily set to either 24 

(equivalent to 12 hours), 48 (equivalent to 1 day), and then 240 (equivalent to 5-days). The 

procedure in effect creates a time-series of exponent values.  

 

(Insert Table 3) 

 

The local Hurst statistics for the unfiltered electricity returns (ΔPt) and those returns 

filtered using the autoregressive model of Equation 2 (ψt,) are presented in Table 3. 

Under the null hypothesis of no long-term dependence, hn = 0.5. What is significant about 

these results is the importance of the sample length in estimating h. When n is less than 

one day (e.g. n = 24) h24 > 0.5 for the 95% confidence interval. In this instance the 
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sample average h24= 0.79926 for the unfiltered and h24= 0.79853 for the filtered series. 

This result suggests a positively dependent return process where intraday positive price 

changes tend to follow positive and vice versa.  

 

On the other hand h48 < 0.5 for the 95% confidence interval, is suggestive of a mean 

reverting process with the sample average h48= 0.49057 for the unfiltered and h24= 

0.49534 for the filtered series. That is for the one day sample length, positive price 

changes follow negative and vice versa. As the sample length becomes longer than one 

day it becomes less distinguishable from a random process. Thus for one week samples 

(h240) the process is only slightly positively dependent and barely indistinguishable at the 

95% level from a random process (the sample average h240 = 0.51250 for the unfiltered 

and h240 = 0.51391 for the filtered series). Filtering the series using autoregressive 

techniques removes the effects of short term serial or autocorrelation and moves the 

series closer to the random average of 0.5. However for n = 240, the h-statistic is less 

random once filtered. Overall, at longer sample lengths, the Hurst local mean is very 

close to 0.5000 which means there is no significant fractal structure, although since h ≠ 

0.5000 at the 95% level of confidence, we cannot accept that the series is random. This 

appears to be a more sensitive test for randomness than the BDSL statistic (which was 

unable to distinguish non-randomness estimated over the entire sample length).  

 

To verify the h-statistic finding of non-randomness a non-parametric runs test was also 

conducted. In the case of the filtered series the observed number of runs O = 33,796, 

while the number of positive observations N+= 16,937 and the number of negative 
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observations N- = 35,805. The expected number of runs µ= 22,997, while the variance of 

runs σ2 = 10,026. The key Z-statistic estimated as Z = (O – μ)/ σ  = 107.85 rejects the null 

hypothesis of randomness. This also was the case for the unfiltered series. 

 

4. Conclusions 

This study began by discussing the presence of deterministic structure in the returns of 

spot electricity prices, due to the cyclic effects of demand and supply. This is evident in 

both low and high order correlograms, and the presence of a compass rose in a phase 

diagram of various lagged electricity returns. The presence of clear autoregressive 

behaviour allows the filtering of returns using conventional autoregressive modeling. We 

then compare the residual series from this modeling with the original series. Although 

both series remain non-normal, the residual series no longer displays –irrespective of the 

range of returns - the compass rose pattern in either a two, or three dimensional, phase 

diagram. This result is unexpected given the conclusions of Wang and Wang (2002) that 

discreteness is a necessary condition for the appearance of the compass rose.  

 

The lack of a compass rose pattern is consistent with the short-term deterministic 

component in returns being successfully removed through autoregressive filtering, 

although higher order weekly and seasonal cycles remain. However, further tests of series 

independence (the BDSL and Hurst tests) favour independence and the absence of any 

significant unspecified structure, although the series remain both non-normal and slightly 

non-random by various measures. While the limitations of the BDSL test in the presence 

of discreteness have been well documented what has not been pointed out in the literature 
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is the usefulness of the phase diagram as a visual check on independence. The use of this 

procedure lies beyond the electricity price example presented here and has important 

implications for asset pricing more generally, which relies on the key assumption of 

independence. 
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Table 1 
AR(10) Filtering of Spot Electricity Returns 
 
This Table reports the coefficients, standard error, t-statistics and probability of the 
regression tttttt PPPPP ψββββα +ΔΔ+Δ+Δ+=Δ −−−− 10103322110 ......  where βnΔPt-n is the 
general autoregressive term AR(n) for AR(1) →AR(10). N= 52,752 
 

Variable Coefficient Standard 
Error

t-statistic Probability 

α 0.000000 0.000287 0.027784 0.9778
AR(1) 0.195666 0.004351 44.96559 0.0000
AR(2) -0.019001 0.004433 -4.285737 0.0000
AR(3) -0.101787 0.004433 -22.96039 0.0000
AR(4) 0.019941 0.004451 4.480292 0.0000
AR(5) -0.077062 0.004449 -17.32083 0.0000
AR(6) -0.034891 0.004449 -7.842232 0.0000
AR(7) -0.045824 0.004451 -10.29541 0.0000
AR(8) -0.022846 0.004433 -5.153308 0.0000
AR(9) -0.016591 0.004434 -3.742040 0.0002
AR(10) -0.033832 0.004352 -7.774538 0.0000

 
Table 2 
BDS Statistics for the Spot Electricity Returns 
This Table reports the BDSL (1996) test for independence of the spot electricity price 
returns and those filtered using the AR(10) model from Equation 2. The embedding 
dimension has values from 2 to 6. The test differentiates independent and identically 
distributed (iid) processes from deterministic chaos or stochastic nonlinear models. In all 
cases the z-statistic fails to reject the null hypothesis of independence. 
 

Spot Electricity Returns 
Embedding 
Dimension 

BDS 
Statistic 

Standard 
Error 

z-Statistic Probability 

 2  0.044105  0.000496  88.92691  0.0000 
 3  0.080964  0.000790  102.4892  0.0000 
 4  0.104381  0.000943  110.6607  0.0000 
 5  0.114892  0.000986  116.5209  0.0000 
 6  0.116726  0.000954  122.3749  0.0000 

AR(10) Filtered Electricity Returns 
 2  0.041014  0.000475  86.30076  0.0000 
 3  0.075037  0.000755  99.43190  0.0000 
 4  0.096181  0.000898  107.0740  0.0000 
 5  0.105850  0.000936  113.0841  0.0000 
 6  0.107085  0.000903  118.6414  0.0000 
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Table 3 
Local Hurst Statistics for the Spot Electricity Returns 
This Table reports the average local Hurst exponent test for the unfiltered electricity 
returns and those returns filtered using the autoregressive model of Equation 2. Under the 
null hypothesis of no long-term dependence hn = 0.5. Positive long-term dependence 
exists when the observed value of the exponent hn > 0.5, while negative dependence is 
alternatively characterised by hn < 0.5. Note that when n is less than one day (n= 24) h24 
> 0.5, which suggests a positively dependent processes (positive price changes tend to 
follow positive and vice versa), while for h48 < 0.5, the process is equilibrium reverting 
(positive price changes follow negative and vice versa). For longer n (h240) the process is 
slightly positively dependent although at a level barely distinguishable from a random 
process. 
 
 
 Mean estimation of local Hurst (h) 
Sample n = 24 n = 48 n = 240 
ΔPt 0.79926 0.49057 0.51250 
ψt 0.79853 0.495343 0.51391 
    
95% confidence interval    
ΔPt 0.79786-0.80065 0.49229-0.49457 0.51197-0.51355 
ψt  0.79713-0.79993 0.48943-0.49171 0.51312-0.51471 



Figure 1 
Time-series plot of the average spot Australian electricity prices across the 24-hour day. 
 
The time series plot shows the mean spot electricity price (Pt), every 30-minutes over the 24-hour day. The prices are per megawatt hour (MWh) 
of electricity in Australian dollars (A$). The sample period is from the 1st July 2003 to 4th July 2006. The average price peaks at A$105.7 in the 
afternoon around 16:00, then rises again to A$71.2 around 18:30pm. The lowest prices are during the early hours of the morning, with the average 
lowest price (A$15.2) occurring at 4:00am. 
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Figure 2 
Time-series plot of the average 30-minute returns and standard deviation of spot Australian electricity prices across the 24-
hour day. 
 
The time series plot shows the mean and standard deviation of 30-minute spot price returns (ΔPt) for the spot electricity price (Pt) where ΔPt = 
log(Pt ) – log(Pt-1), where the interval t-1→ t, is 30-minutes. The prices are per megawatt hour (MWh) of electricity over the 24-hour day. The 
sample period is from the 1st July 2003 to 4th July 2006. The mean is the bottom bold line and the standard deviation is the top dashed line. The 
average price return peaks at 17:30. 
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Figure 3a 
Correlogram plot of the autocorrelation in electricity price returns over 240 lags 
 
This plot shows the autocorrelation of 30-minute spot price returns (ΔPt) for the spot electricity price (Pt) where ΔPt = log(Pt ) – log(Pt-1) and the 
interval t-1→ t, is 30-minutes, over 240 lags (corresponding to 5 days). The prices are per megawatt hour (MWh) of electricity over the 24-hour 
day. The sample period is from the 1st July 2003 to 4th July 2006. N= 52,752. 
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Figure 3b. 
Correlogram plot of the autocorrelation in electricity price returns over 48 lags 
 
This plot shows the autocorrelation of 30-minute spot price returns (ΔPt) for the spot electricity price (Pt) where ΔPt = log(Pt ) – log(Pt-1) and the 
interval t-1→ t, is 30-minutes, over 48 lags (corresponding to 1 day). The prices are per megawatt hour (MWh) of electricity over the 24-hour day. 
The sample period is from the 1st July 2003 to 4th July 2006. N= 52,752. 
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Figure 4a. 
Three Dimensional Phase Portrait of Electricity Returns 
Scatter plot of electricity returns (ΔPt) plotted against first (ΔPt-1) and second (ΔPt-2) order lagged values. Note the rays emanating 
from the centre clearly form a star or compass rose pattern. N= 52,752. 
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Figure 4b. 
Two Dimensional Phase Portrait of Electricity Returns 
Scatter plot of electricity returns (ΔPt) plotted against first (ΔPt-1) order lagged values with a return interval of 0.00 ± 0.50. Note the 
rays emanating from the centre clearly form a star or compass rose. N= 52,752. 
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Figure 4c. 
Two Dimensional Phase Portrait of Electricity Returns 
Scatter plot of electricity returns (ΔPt) plotted against first (ΔPt-1) order lagged values, with a return interval from 0 ± 0.015 Note the 
rays emanating from the centre clearly form a star or compass rose. N= 52,772. 
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Figure 5a. 
Three Dimensional Phase Portrait of Filtered Electricity Returns using an AR(10) Model 
Scatter plot of filtered electricity returns (Pt AR10 = ψt from Equation 2) plotted against first (Pt AR10-1) and second (Pt AR10-2) 
order lagged values. N= 52,752. Note the rays emanating from the centre have disappeared. 
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Figure 5b 
Two Dimensional Phase Portrait of Filtered Electricity Returns using an AR(10) Model 
Scatter plot of filtered electricity returns (Pt AR10 = ψt from Equation 2) plotted against first (Pt AR10-1) and second (Pt AR10-2) 
order lagged values. N= 52,752. The return interval is 0.00 ± 0.50. Note the rays emanating from the centre have disappeared. 
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Figure 5b 
Two Dimensional Phase Portrait of Filtered Electricity Returns using an AR(10) Model 
Scatter plot of filtered electricity returns (Pt AR10 = ψt from Equation 2) plotted against first (Pt AR10-1) and second (Pt AR10-2) 
order lagged values. N= 52,752. The return interval is 0.00 ±0.150. Note the rays emanating from the centre have disappeared. 
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