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Abstract

In an empirical study, we investigate the ability of the Gaussian One-

Factor Model to describe adequate hedging schedule for the iTraxx CDO.

The model is able to provide some insurance against changes in several

input spreads, however, it is completely fails when hedging second order

effects, and correlation risk. Closer investigation reveals that the model

performs very well during regular market times, reducing mean absolute

hedge errors and root mean squared errors by more than 50% compared

to an unhedged portfolio. A very large proportion of the hedge error,

however, is caused by the largest 2.5% of observations. In these cases,

the model sometimes even underperforms unhedged positions. We break

down the hedge errors into first and second order effects, and in changes

in correlation and further study and analyze possible extensions.
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1 Introduction

In recent years, the literature on the pricing of CDOs has multiplied. The de-

bate on which model to use for the pricing of CDOs is still ongoing. However,

it has become market practice to use a Gaussian One-Factor Model to back out

different values of model correlation, the free parameter of the model, from the

different securities’ quotes. The so constructed implied correlation then takes a

similar role to implied volatilities of equity options and is used to price related

securities. In the presence of reliable prices, the model takes a role similar to the

Black-Scholes Model in the pricing of equity derivatives. The use of implied cor-

relation eliminates the problem of simultaneously pricing different instruments,

a major drawback of practically all one-factor models. Consequently, the model

cannot be judged by its ability to reproduce prices and hedging can be seen as the

practically most relevant model application and test (Finger (2005), St. Pierre,

Rousseau, Zavattero, van Eyeren, and Aurora (2004)).

To our knowledge, empirical validation of CDO pricing models in the literature

is sparse, Bystrom (2006) is the only related empirical study we found. There

exist a number of non-publicly available studies by banks. However, non of these

studies we know analyzed a sample which was longer than a couple of month.

Hence, this is the first article to investigate the Gaussian One-Factor Model’s

ability to prescribe adequate hedging schedules over a longer period of time.

The data for our study is based on the the iTraxx Index, which comprises the 125

most liquid Credit Default Swap contracts on European corporate entities. Based

on this Index, a standardized CDO is issued half-yearly. Our dataset contains

reliable, tradeable quotes of the Index, the CDO, and all Index constituents from

June 22, 2004 until September 19, 2007. The time to maturity for all investigated

contracts is 5 years. We calibrate a implied correlation structure for each day in

the sample period in several ways and calculate hedge ratios against changes in

an input spread. We find that a simple hedge against linear changes reduces
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the mean average hedge error (MAHE) by about 50% compared to an unhedged

position. The hedge error variance, measured by the root mean squared error

(RMSE) is also substantially reduced, typically by 20-30%. Further study reveals

that most of the hedge errors is caused by a few very large value changes. The

highest 2.5% of observations account for between 25% and 60% of the MAHE and

for between 78 and 98% of the RMSE. We scrutinize the serial dependence and

the clustering of extreme value changes. However, we are not able to capitalize

it to reduce the hedge errors. Furthermore, we study the models ability to hedge

against second order effects and changes in correlation and try to correct for a

possible dependence between implied correlations and spread changes. However,

neither of these attempts is successful. Whereas adjusting the hedge ratios seems

hardly to affect the hedge errors, hedging against second order effects and corre-

lation changes dramatically increases both, MAHE and RMSE.

The articles contribution to the literature is the first empirical study of the mar-

ket benchmark model for the valuation of CDOs. Our results confirm that the use

of implied correlations is feasible and helpful in regular, low volatility times. In

times of extreme movements of input quantities, however, the model fails. While

these results are not surprising, they have not been documented in the literature

yet. An implication of our research is that an extension of the Gaussian model

should rather include jumps in spreads and dynamic correlations than changed

factor distributions.

The remainder of this article is structured as follows: the model studied is in-

troduced in Section 2. Section 3 presents the investigated dataset and discusses

two remarkable periods, the auto crisis in May 2005 and the subprime crisis in

Summer 2007. The main part of this article, the hedging study can found in

Section 4. In Section 5 we present attempts to improve the hedge performance

by adjusting hedge ratios. Section 6 concludes.
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2 The Large Homogeneous Portfolio Gaussian

Copula Model

In this section, we present the Gaussian Copula Model, the Large Homogeneous

Portfolio Approximation (LHP), and two ways of calibrating the model to market

data, compound and base correlations. In the empirical part of this paper, we

calibrate the model to market prices. Hence, all presented equations hold under

the pricing measure.

A CDO distributes the losses from default events occurring in a portfolio of credit

risky instruments to a number of credit risky notes according to certain externally

specified rules. The distribution of losses on these tranches is given by that of the

total loss on the entire portfolio. Thus, each model for the credit portfolio loss also

is a CDO pricing model. A large number of models for the losses of credit port-

folios exist, see for example Bluhm, Overbeck, and Wagner (2003) for a survey.

The most important input quantity for all these models are the portfolio compo-

nents probabilities. These are influenced by a large number of micro-economic

factors, such as asset and equity value, (implied) volatility, and leverage, and

macro-economic factors, such as interest rates and the business cycle, as well as

measures of information quality. The influence of these factors has been confirmed

and quantified by numerous studies by, for example, Collin-Dufresne, Goldstein,

and Martin (2001), Eom, Helwege, and Huang (2004), Ericsson, Reneby, and

Wang (2006), or Yu (2005). Consequently, any model has to take into account a

large number of factors. Moreover, since also the dependence between the factor

matters, the number of model parameters grows exponentially with the number

of portfolio components. While this is important for many applications such a

managing loan portfolios, it can be undesirable or unneccessary for other appli-

cations where reliable market prices exist. In the market for equity derivatives

for example, the Black-Scholes model is used to quote option prices as implied
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volatilities. In this case, the model serves to facilitate communication and hence,

its simplicity is a value in itself. Similarly to the use of implied volatilities for

equity options, it has become common to quote implied correlations in the mar-

ket for synthetic CDOs. This is only meaningful if everyone agrees on the same

model, which is the Large Homogeneous Gaussian Copula Model (LHGM). How-

ever, this does not imply that all market participants agree on the same model

for pricing purposes.

It is generally understood and accepted that Gaussian models cannot describe

the distribution of financial data accurately. This is normally attributed to the

light tails and the symmetry of the normal distribution. In comparison to other

models however, these models are well understood and easy to handle. Thus,

they are very popular and widely used, frequently in modifications to adjust for

their shortcomings. We refer to Embrechts, McNeil, and Straumann (2002) and

Embrechts, Frey, and McNeil (2005) for an overview and discussion of Gaussian

models; Andersen and Sidenius (2005a), and Burtschell, Gregory, and Laurent

(2005) discuss possible extensions and give an overview of factor models for CDO

pricing.

In a factor (copula) model, an entity i defaults, if the factor

Xi = αiM +
√

1 − α2
i Wi (1)

falls below a certain specified level.1 The factor Xi is the weighted sum of a

systematic market component M , affecting all entities in the portfolio, and an

idiosyncratic component Wi, which affects i only. The model is further determined

by the assumption of specific distributions for M , Wi and αi. In a Gaussian

Copula Model M and Wi are independent standard normally distributed and the

1The factor is frequently perceived as the asset value of a firm, the barrier as the present

value of its debt.
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αi are constant.2 The correlations between different entities’ factors are

ρij = αiαj (2)

and are referred to as the default correlations. In combination with a model which

relates the entities default probabilities and the respective loss-given-default to

their factors Xi, a distribution of the portfolio loss is completely specified. For

convenience, the time until the default event is frequently assumed to be expo-

nentially distributed with a constant default intensity. The loss given default is

often assumed to be a constant fraction of the invested notional.

For a fixed time horizon t Vasicek (1977) derived the distribution of the relative

loss on a large homogeneous portfolio of identical debtors. All debtors default

with probability p, the loss in the case of default is he same and equal to 1, and

the default correlation is equal to ρ between any two debtors. Conditional on the

realization of the common factor M , the relative portfolio loss is binomially dis-

tributed. Increasing number of obligors in the portfolio to infinity and integrating

over the distribution of the common factor, the unconditional distribution of the

relative portfolio θ is:

FG(θ) = PPP (loss ≤ θ) = Φ

(√
1 − ρΦ−1(θ) − Φ−1(p)

α

)

, (3)

which is the Large Homogeneous Portfolio Approximation (LHP). The existence

of closed-form LHPs is commonly seen as desirable for any factor model since it

allows for the fast calculation of prices. O’Kane and Schloegl (2005) published

a note for the LHP for the t-distribution case. Hull and White (2005) further

generalize the t-distribution case. Moosbrucker (2006) and Kalemanova, Schmid,

and Werner (2007) give the LHP for the Variance Gamma and Normal Inverse

Gaussian distributions, respectively. As the LHGM, none of these models can

perfectly price the investigated CDO. Thus they would also need to be calibrated

2Under practically all factor specifications the Xi follow a tractable distribution Fi; thus,

considering the transformed factors Fi (Xi), the equivalence to copula models becomes obvious.
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using a correlation structure. However, it is questionable whether the calibra-

tion of an implied correlation structure is feasible: correlation looses its meaning

outside of the Gaussian setting. Moreover, all of these models will have more

parameters that prices exist for the calibration. Since that, we found no reason

to prefer any of these models in an empirical study and, hence, only present the

results for the LHGM.

All the above equations are independent of time and describe the distributions

for a given horizon of time. This is due to the transformation by the factors’

distribution and, consequently, the copula is independent of time. In a model

calibration, however, the default probability depends on time. Substituting the

probability of default prior to time t, p(t), for p in equation (3) introduces time

dependence to the model.

2.1 Default Probabilities

To obtain an estimate for the default probabilities, we solve a simple Credit

Default Swap (CDS) pricing equation. A CDS is quoted as the spread s which

makes the expected value of the premiums on the contract equal to the expected

value of its loss. In a CDS initiated at time t0 = 0 with premium payments at

t1, ..., tT , the premium receiver (seller) of the contract suffers a loss L, which is

assumed to be independent of the default probability.3 At any time t0 ≤ t̃ ≤ t1,

the CDS contract quote includes an accrued premium, equal to the spread pro

rata temporis since t0. Hence, the pricing equation at t̃ reads

L

T
∑

i=1

e−ritiPPP (default in (ti−1, ti]) = s

(

t̃ − t0
t1 − T0

+

T
∑

i=1

e−ritiPPP (default after ti)

)

,

(4)

where the interest rates rt are assumed to be known and constant. For simplicity,

we assume that all default events occur precisely at the times of the premium

3In many cases it is even assumed to be constant and equal to 40%. This assumption is used

for example in the Bloomberg system’s CDS valuation tools.
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payments. These two assumptions do not have a strong influence on prices:

interest rates enter both sides of the pricing equations in a similar way and the

effect of changing interest rates is rather weak,4 see for example Longstaff and

Rajan (2007). Since in the case of a default event, the protection seller receives

the spread premium accrued since the last (quarterly) payment date, the timing

of a default event does not have a strong effect on the value of a contract.

As announced above, we set

PPP (default before ti) = 1 − e−λti (5)

for the default probabilities in equation (4), and solve for λ for given spread

s, interest rates r(ti), and loss given default L. Since the default probabilities

are assumed to be equal for all CDS contracts in the iTraxx Index and CDO

portfolio, it is unclear which of the 125 individual spreads to use. Candidates for

a representative spread are the index spread, the average spread of all contracts

in the index, and the duration weighted average of the spreads in the index. In

the empirical part, we consider these three candidates. We refer to these spreads

as the input spreads of the model.

2.2 CDO pricing

The CDO studied slices the portfolio loss on the iTraxx Index into tranches: a first

tranche takes all the losses on the portfolio up to a level K1 = 3%, from this level

on, a second tranche suffers all the losses up to a level K2 = 6%. Consequently, a

third to sixth tranche take the subsequent losses to the levels of 9%, 12%, 22%,

and 100%. Denoting the expected loss on such a tranche for a time horizon t by

4Consequently, the effect of stochastic interest rates and of daycount conventions is also

weak.
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ELKj−1,Kj
(t), its pricing equation corresponds to equation (4):

T
∑

i=1

e−riti
(

ELKj−1,Kj
(ti) − ELKj−1,Kj

(ti−1)
)

= (6)

s

(

t̃ − t0
t1 − T0

+
T
∑

i=1

e−riti
(

1 − ELKj−1,Kj
(ti−1)

)

)

,

where default probabilities have been replaced by expected losses.5 The expected

relative loss on a CDO tranche can be calculated from the distribution in (3)

by integration. It depends on the correlation as the only free parameter. Given

the interest rates and the input default probabilities, this parameter is used to

calibrate the model to market quotes for each tranche. The calibrated correlations

are referred to as implied correlations. Regarding default timing and interest

rates, we make the same assumptions as for the CDS valuation above.

2.3 Compound correlations and base correlations

The correlations backed out by direct application of the model to individual

tranche prices are called “compound correlations.” They show a pronounced

smile: the correlation on the second loss tranche is lower than that of all other

tranches as can be seen in Figure 1. Since this shape of the implied correlations

is impractical for interpolations,6 it has become standard to consider an alterna-

tive type of implied correlations called “base correlations.” These were suggested

by McGinty, Beinstein, Ahluwalia, and Watts (2004) and are discussed by e.g.

St. Pierre, Rousseau, Zavattero, van Eyeren, and Aurora (2004) and Willemann

and Isla (2007). Base correlations are calculated by iteratively calibrating ex-

pected losses to tranche prices and utilizing the interrelation between expected

5In the case of a CDS EL(t) = L ·PPP (default before t).
6In order to price off-market tranches with attachment and detachment levels different from

those of the standard tranches, market practitioners use interpolated implied correlations. In

the presence of a smile interpolation is difficult, if not impossible.

9



losses on sequential tranches with an attachment level of 0:

EL
ρ0,i+1,ρ0,i

Ki,Ki+1
(t) = EL

ρ0,i+1

K0,Ki+1
(t) − EL

ρ0,i(t)
K0,Ki

. (7)

Superscripts were introduced to indicate the dependence of senior tranche ex-

pected losses on junior tranche implied (base) correlations; note that the base

correlation of a senior tranche depends on all base correlations of the more junior

tranches. The expected loss on a tranche suffering losses from attachment level

Ki up to detachment level Ki+1 is equal to the difference between the loss on a

tranche suffering losses from 0 to Ki+1 (priced with base correlation ρ0,i+1) and

that on a tranche suffering losses from 0 to Ki (priced with base correlation ρ0,i).

As can be seen in Figure 2, base correlations increase with seniority and hence, in-

terpolating is straightforward. McGinty, Beinstein, Ahluwalia, and Watts (2004)

report that the Gaussian copula model occasionally cannot be calibrated to mar-

ket prices of the 3-6% second loss tranche. Whereas this does not happen for

base correlations. However, a similar problem has been found for the pricing of

the 12-22% tranche with base correlations by St. Pierre, Rousseau, Zavattero, van

Eyeren, and Aurora (2004). This is also the case in our empirical study, hence the

gaps in the surfaces in Figures 1 and 2 . For the valuation of non-standard struc-

tures, correlation is seen as a function of the attachment-detachment level and

interpolated to match attachment detachment levels. Even though, this proce-

dure seems to be market practice, it is questionable because it does not guaranty

arbitrage free pricing. For a given correlation structure, tranches with negative

expected losses can be found.

2.4 Sensitivities and CDO hedging

In a given valuation framework, a CDO tranche’s value’s sensitivity to changes in

the model’s factors can be calculated. Using these, positions in a tranche can be

hedged, i.e. immunized against small changes in these quantities. In the case of

the iTraxx CDO, hedge portoflios can be formed from the CDS Index, the CDO
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tranches, and the individual underlying names. Since we use the LHGM, we do

not consider hedges using individual CDS contracts. Also, we do not hedge in

the iTraxx Index because it serves as an input to the model. We only use the

CDO tranches to hedge each other.

Portfolios consisting of the CDO tranches only are frequently used to construct

trading positions which are referred to as “correlation trades.” An increase in

correlation - if the default probability remains unchanged - decreases the expected

loss on the first loss tranche, while that of the more senior tranches increases.

This is because the default probability determines the expected loss on the entire

portfolio whereas the correlation determines the shape of the loss distribution:

high correlation leads to higher probabilities of high losses, reducing the value

of higher tranches, whereas it reduces the probability of lower losses, increasing

the value of lower tranches, and vice versa. Hence, long positions in the first

loss tranche hedged against changes in the individual default probabilities (i.e.

spread movements) using short positions in the more senior tranches are seen as

“long correlation.” Accordingly, short positions in the first loss tranche hedge

by long positions in the more senior tranches are seen as “short correlation.”

Mostly, the first two or three tranches are used in these trades since for these the

sensitivities towards all parameter changes are the highest. Consequently, these

are the most liquidly traded of the five standard index tranches. The second loss

tranche takes a special role: since it lies between the first loss piece and the senior

tranches for which the effects of changing spreads and correlations is clear, it can

at times behave more like one or the other, depending on the level of spread and

correlation. See Felsenheimer, Gisdakis, and Zaiser (2006) or Rajan, McDermott,

and Roy (2007) for a more detailed description of correlation and CDO trading

strategies.

The sensitivities of the CDO tranches net present value (NPV) with respect to

the input spread are referred to as delta, and gamma. More formally these are
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the first and second derivative with respect to the spread,

∆Tranche =
∂Tranche

∂s
(8)

ΓTranche =
∂2Tranche

∂2s
, (9)

Tranche is the tranche’s NPV and the s is the spread. The tranches NPV is the

difference of the left and right side of equation (4), at inception of a position it

is 0.

The sensitivity to changes in correlation is called rho. Its role is similar to that

of the volatility derivative “vega” in the Black-Scholes formula, we define

RTranche =
∂Tranche

∂ρTranche

, (10)

where ρTranche is the tranche implied correlation. In the case of a default event, the

value of all tranches is reduced: either a tranche is hit by the default event, or its

protection cushion decreases. This effect is quantified as the omega or “default01”

of a contract. Since the considered iTraxx index contains only investment grade

companies, default events are very rare. In fact, there is no default event in

the sample period. Thus, we do not study the effect of the omega here. Since

the value of the CDS index is (by the absence of arbitrage) equal to the sum of

the CDO tranches (including the value of a non-quoted 22-100% tranche), the

sensitivities of the CDS index can be attributed to the different tranches. All the

sensitivities are highest for the more junior tranches. The (relative) impact of

default events decreases with subordination, while the (relative) effect of spread

changes increases. This is further studied by Skarabot, Roy, and Ryu (2007).

We do not hedge changes in time decay or interest rates. Time decay is not

a risk by itself since it is perfectly previsible. As argued above, interest rate

effects are offsetting, they affect the premium and the protection side of the CDS

contract in a similar way.Ehlers and Schönbucher (2006) suggest that there might

me macroeconomic factors that drive both, CDS spread and interest rates. This

effect might be important in periods of distress, such as in the subprime lending
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crisis in 20077. However, by the same argument as above it affects both, the

premium and the protection side of the contracts and thus, we ignore it for this

study.

The ratio to hedge one tranche against the change in the driving spread in another

tranche is given as the quotient of the tranche delta and the hedge instrument

delta,

HR =
∂Trache1

∂Tranche2
=

∂Tranche1
∂s

∂Tranche2
∂s

=
∆Tranche1

∆Tranche2
(11)

where Tranche1 denotes the NPV of a position of unit size in the hedged tranche,

and Tranche2 is the NPV of a position of unit size in the tranche used for hedg-

ing; s is the input spread level. A delta-hedged CDO tranche position’s NPV

should not be affected by small changes in the index spread. This assumes, that

all other quantities remain unchanged.

To calculate the ∆ values numerically, we follow St. Pierre, Rousseau, Zavattero,

van Eyeren, and Aurora (2004)8 and Skarabot and Gaurav (2007): we approxi-

mate the delta by considering shifting the spread level up and down by 1 bp. The

choice of 1 bp is arbitrary; we checked other values from 0.01 to 20 bp, leading

to very similar values and results in the empirical study. For the shifted spreads,

the sensitivity of the tranche position (∂Tranche1/∂s) and the hedge position

(∂Tranche2/∂s) is approximated by the change in NPV that arises due to the

spread level change holding all other parameters at current levels. For each sce-

nario, the quotient of the approximated sensitivities approximates the delta from

equation (11). The hedge ratio HR is obtained by averaging the two scenario

7Caused by distress in the subprime mortgage CDO market, on August 17, 2007 the US

Federal Bank of Reserve lowered the discount rate by 50 bp to 5.75%.
8The authors describe the methodology for the general case of a finite heterogeneous portfolio

model, i.e., not for LHP.
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results:

HR ≈ 0.5
Tranche1 (ρ, λ+1bp) − Tranche1 (ρ, λ0bp)

Tranche2 (ρ, λ+1bp) − Tranche2 (ρ, λ0bp)
(12)

+ 0.5
Tranche1 (ρ, λ

−1bp) − Tranche1 (ρ, λ0bp)

Tranche2 (ρ, λ
−1bp) − Tranche2 (ρ, λ0bp)

,

where λ
·

denotes the default intensities which result from the shifted spreads.

Corresponding subscripts mark an increased, decreased, or unchanged index level.

We obtain different sensitivities for the compound and the base correlations.9 By

construction, the deltas and hence the hedge ratios are are always positive in

the compound correlation case. For base correlations negative deltas could be

calculated. However, this never happened in our sample. The positive hedge

ratios imply that long positions in a tranche should always be hedged in short

positions in another and vice versa. All other sensitivities were calculated in a

corresponding fashion. For the sensitivity towards correlation changes, we shifted

the entire correlation curve in the base correlation case.

It is clear that on days where we encounter a model failure for any of the tranches,

no corresponding delta can be computed. We excluded these dates from the

empirical study.

9Both, the current tranche’s and the subsenior tranche’s base correlations need to be kept

constant in the base correlation approach to delta computation.
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Figure 1: Implied compound correlations for all five tranches for the entire obser-

vation period. The smile shape of the correlations can be observed throughout

the sample period. On several occasions, the model was not able to reproduce

the spread on the second loss tranche.
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Figure 2: Implied base correlations for all five tranches for the entire observation

period. The level of correlation is increasing with seniority. On several occasions,

the model was not able to reproduce the spread on some of the more senior

tranches and, consequently, also not on all more senior tranches.
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3 CDS Index and CDO tranche spreads

We investigate daily mid-market closing quotes of the five-year Dow Jones iTraxx

Europe Index, its components, and five tranches of the iTraxx CDO. The attachment-

detachment levels of the tranches are 0%, 3%, 6%, 9%, 12%, and 22% percent,10

respectively. The sample period stretches from June 22, 2004 to September 19,

2007. All data are retrieved from the Bloomberg system. The Index itself is a

single-trnche CDO which suffers from the losses on an equally weighted portfolio

of the 125 most liquid European CDS contracts on investment grade entities from

a range of industry sectors.11 New series of the iTraxx Index are introduced on

the 20th of March and September of every year, with the exception of the first

series which was launched on June 20, 2004. At each point in time, the most

recently issued iTraxx Index and CDO are called the “on-the-run” series. This is

the most liquid of the existing series.12 The dataset reports the full on-the-run

history of first seven Index series. For data quality reasons we delay the occur-

ring rolls from the second to the third and from the fourth to the fifth series

by several days in order to have quotes for all tranches for all days during the

observation period.13 Interest rates were taken from Datastream, daily quotes of

the Euribor rates for monthly maturities were used throughout the study. Figure

3 shows the quoted spreads for the iTraxx Index, the average spread of the CDS

in the on-the-run Index and the spreads of the five tranches. All tranches pay a

10The sixth tranche, which suffers from losses between 22% and 100% on the reference port-

folio is typically not quoted but quoted implicitly: by the absence of arbitrage, its price is given

by the prices of the first five tranches and the Index.
11The precise rules for the construction of the Index can be found on the Index provider

homepage, www.Indexco.com.
12As reported by, see for example Felsenheimer, Gisdakis, and Zaiser (2006) or Rajan, Mc-

Dermott, and Roy (2007), market participants tend to roll-over their trading positions around

the Index roll dates.
13The roll from series 2 to 3 was delayed to April 7, 2005. That from series 4 to 5 to May 2,

2006.
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running spread which is payed out quarterly. For the equity tranche, the running

spread is fixed to 500 basis points per year and an additional upfront premium

is quoted. For all other tranches the running spread is quoted. However, the

accrued running premium since the last payment date is to be paid paid upfront

in any transaction. The premium is quoted as a par spread, i.e. the spread that

makes the contract value equal to zero in the valuation formula (6).

Figure 3 displays the observed quotes. The data quality of the first series of the

iTraxx CDO, as well as that of the first three month of the second seems to be

lower than for the rest of the sample. Frequently, the quotes do not move and if

they do, it appears to be rather irregular. Without further study, we attribute

this irregularity to a lack of liquidity. This explanation is supported by similar

issues in the sample of the constituents quotes for the Index, where some quotes

are even missing for the first two month of the first series. However, we include

the data in our study and report all findings for each of the series separately. The

entire sample has a length of 848 daily observations. All over, the data quality

can be regarded as fairly high: quotes exist for all days in the sample period, dy-

namics are similar across all tranches and bid-ask spreads, which we also observed

for all days, tranches, and individual quotes are small. The tranche data show

a pronounced spike in December 2004. This spike even violates the no-arbitrage

conditions between the third and fourth loss tranches; this is also violated by

a second spike in tranche four in May 2005. On these dates, the model fails

to fit the prices for the affected tranches and, hence, we exclude them from the

study. The spreads of the different tranches are monotonically decreasing with

the seniority of a tranche at any point in time. The equity tranche’s running

spread of 500 bp, for example, is much higher than that of any of the more senior

tranches despite the additional up-front payment, which ranges from 5.85% to

49.53% during the observation period. Similarly, the spread on the 3-6% tranche

ranges from 38.83 to 263.30 basis points, which compares to 10.18 to 123.78 basis

points on the 6-9% tranche. The minimum and maximum spread were 4.22 and
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Figure 3: Tranche spreads of the iTraxx CDO, the iTraxx Index, and the average

and duration-weighted average spread over the sample period. The vertical lines

indicate the roll dates between the series. The spreads decline over the period

and show very moderate dynamics. An exception are the spreads during of third

series, the period of the GM and Ford downgrades and on the end of the sample

period in the subprime crisis.

72.61 bp on the 9-12% tranche (we ignore the peaks in the second and third series

for these values) and 1.68 and 38.86 bp on the 12-22% tranche (we ignore the

peak in the second series), respectively. These values compare to an minimal
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Index 0-3% 3-6% 6-9% 9-12% 12-22%

Index 1.0000 0.2941 0.3851 0.4735 0.3028 0.2366

0-3% 1.0000 0.5619 0.4831 0.2300 0.0690

3-6% 1.0000 0.8326 0.4646 0.4839

6-9% 1.0000 0.7140 0.7263

9-12% 1.0000 0.7308

12-22% 1

Table 1: Correlations between changes (first differences) in the iTraxx Index

and the CDO tranches. It can be seen that the correlations are highest close

to the diagonal. Thus, neighboring tranches are expected to show similar spread

dynamics. The first-loss tranche and the most senior tranche seem have the lowest

correlation to the other tranches.

Index spread of 20.16 bp and a maximal spread of 66.33 bp. The differences in

spreads reflect the differences in risk associated with the respective tranches. It is

apparent from Figure 3 that all tranches (spreads and upfront payments) are to

some extent positively correlated with the Index. This is intuitively clear, since

a change in the default risk of the reference basket should generally be reflected

by the pricing of all tranches. However, the degree to which a change in the

basket spread is reflected in the tranche spreads differs across tranches and is not

consistent over time, the tranches feature different sensitivities to changes in the

basket credit quality. Market-wide changes in credit quality are reflected in price

changes of all five tranches, while idiosyncratic changes’ effect depends on the

respective spread level as well as on the tranche size and subordination, see e.g.

Fitch (2006) and Mina and Stern (2003). As an illustration, we show the corre-

lations between the changes in spreads (upfront payment) between the tranches

and the Index in Table 1. Summarizing, the correlations between the Index and

the tranches are surprisingly weak, in particular in comparison to US data, for

which Longstaff and Rajan (2007) find much higher correlations. The pattern of
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correlations is peculiar, with the equity tranche featuring the largest correlation,

while it is very similar for the four more senior tranches. This pattern (roughly)

corresponds to the correlations of US data where correlations are decreasing with

increasing seniority (Longstaff and Rajan (2007)). To foreshadow the results

of the later hedging study it is clear that hedging tranches in non-neighboring

tranches will be much harder than hedgig in the next junior or senior tranches.

We call tranches that share an attachment-detachment level neighboring. Given

the low correlation, we expect the most-senior tranche to be the hardest to hedge.

The Auto Crisis One example of events that affect the CDO tranches dif-

ferently is given by the “Auto Crisis,” the period following the downgrades of

Ford’s and General Motors’ debt junk status by S&P on May 5, 2005. During

this period, the Index surged from 42.42 basis points to a high of 60.3 basis

points on May 17, 2005. Although these US based companies’ debt was not

part of the iTraxx Europe, the downgrades triggered a large demand for long-

protection positions in the Index and the equity tranche as traders who had sold

protection became concerned with idiosyncratic risks and sought to unwind their

outstanding short protection positions (see Hawkins (2005), Packer and Wool-

ridge (2005), or Felsenheimer, Brommundt, Gisdakis, and Zaiser (2006) for a

discussion). Whereas the Index’ surge was accompanied by a large increase of

the equity tranche (the upfront payment rose from 28.96 to 49.12%), it can be seen

that mezzanine and senior tranches did not follow the movements on the Index.

Reportedly, many credit hedge funds were following “relative value arbitrage”

strategies in the beginning of 2005 by which they were selling protection on the

0-3% equity tranche and buying protection on the 3-6% mezzanine tranche, such

that their portfolio was neutral to market-wide changes in credit spreads. While

these positions provided a positive running premium, they were heavily exposed

to changes in individual firms credit quality, or to changes in implied correlations

of the equity and mezzanine tranches (“long correlation” trades, see the previous
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section and Packer and Woolridge (2005)). The spread on the 3-6% mezzanine

tranche remained virtually constant over the period in question (168.25 bp on

May 5 and 168.83 bp on May 17) and the more senior tranches increased only

very slightly. In Figure 4, left, we display the implied compound correlation of

the equity and mezzanine tranche along with the tranche spreads and the Index

spread. While the correlation on the second loss tranche decreases significantly

during the period from 0.1 to practically 0, it remained rather stable around 0.2

for the first loss tranche. The decreasing correlation shows that the crisis is seen

as a credit event affecting only a few companies. Frequently, this period of time

is also referred to as the “correlation crisis.”

The Subprime Crisis A completely different scenario is the subprime crisis

in the summer of 2007. As concerns about the future growth and a possible

recession in the United States increased, housing price growth slowed and prices

even started to decline in some areas. This lead to an increased number of

foreclosures on subprime mortgages, i.e. credit contracts with very low debtor

quality. These mortgages were typically wrapped up in mortgage backed securities

(MBOs) and sold to institutional investors, who were attracted by the comparably

high yield for the given rating. Since house prices grew rapidly in the previous

years, default and foreclosure rates on MBOs were at historic lows and, thus,

the risk associated with these structures appears to have been underestimated.

As housing prices started to decline and foreclosure rates went up, investors

became concerned about their exposure to these risks and started to sell off their

MBO positions, leading to a rapid decline in market prices. This in turn lead

to an increase in risk aversion among investors. At some points, the market for

subprime MBOs dried out almost completely, as no buyers could be found. As

a consequence of this illiquidity, mortgage lenders were not able to sell off their

mortgage portfolios putting them into distress and forcing several into filing for

Chapter 11. The right panels of Figure 4 show the Index spread and the spreads
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Figure 4: Tranche spreads, Index spreads, and implied compound correlations

(dotted lines) during the two cirses. Whereas the implied correlation on the

second loss tranche decreased significantly during the auto crisis, it remains prac-

tically unchanged during the subprime crisis. For the first loss tranche, however

the correlation increases during the end of the sample period, indicating a higher

risk of joint default events.

of the first and second tranche of the CDO along with their correlations. From

July 16, 2007 to July 30, 2007, the Index spread surged from 27.69 to 66.33

bp. The quotes on the first loss tranche almost doubled from 14.87% to 28.39%

during that period while the spread on the second loss tranche almost tripled from

80.50 to 221.50 bp, respectively. The spreads on the higher tranches increased by

even higher factors, the 12-22% loss tranche’s spread for example went from 4.04
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to 26.08 bp. To the contrary, correlations appear to be practically unchanged

during the crisis, indicating that the market wide increase in spreads was mostly

driven by increased (risk neutral) default probabilities. We cannot detect extreme

behavior of the implied compound correlations. While the compound correlation

for the first loss tranche increases, that of the second tranche practically remains

unchanged. This is also the case for the correlations of the higher tranches.

Correlations only start to change only in August, as spread volatility increases.
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4 Calibration and Hedging

On each day of the sample period, we calibrate the pricing equation (6) to the

observed quotes. This way, we back out a time series of implied correlation for

each tranche. The calibration is done by changing the tranche correlation. We

estimate the necessary default probabilities from the spread of the iTraxx index,

the average spread of the CDS contracts in the portfolio, and from the duration-

weighted average spread of the CDS contracts.

Intuitively, we expect the first two of these spreads to be very similar: the index

is an equally weighted portfolio of the CDS contracts. However, while both the

equally weighted portfolio and the index suffer the same loss in the case of a

default event, the change in the premium after default is different: while the

portfolio loses the specific spread of the defaulted contract, the index spread

is reduced by the proportion of the defaulted contract on the index notional.

Historically, these spreads are close to each other. The difference between these

spreads fluctuates. During the observation period, the Index spread is up to 10.6

basis points (bp) higher and up to 6.7 bp lower than the average spread. Some

authors (e.g. Choudry (2006)) argue that the index spread should be equal to the

duration-weighted average spread of the CDS contracts. This would be the case

for the yield-to-maturity (YTM) of a portfolio of bonds which is the duration

weighted average of the YTM of its components. As for the average spread,

however, the premium on the two portfolios change differently after a default

event. In the extreme cases, the Index is 11.6 bp higher and 6.1 bp lower than

the duration weighted average spread. The bottom panel of Figure 3 displays

all three spreads, all three spreads are similar and comove closely. The duration

weighted average spread and the average spread appear to be more closely related

to each other than to the index spread. The difference between these two spreads

is between 0.3 and -1.4 bp (duration weighted minus average spread).

Figures 1 and 2 display the implied compound correlations and base correlations
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for the three input spreads. The compound correlations show a pronounced

“smile” throughout the sample period: the correlation level for the second loss

tranche is much lower than that of any other tranche. Base correlation overcome

this undesirable feature and increase in tranche seniority. By construction, base

correlations for all tranches comove much stronger than compound correlations.

Consequently, the latter seem to behave much more heterogeneously; compare for

example the two most junior tranches. Since the correlations are backed out of

the same data, however, all the plots have the same information content. Similar

to the tranche spreads in Figure 3, the senior tranches’ correlations appear to be

much less volatile than those of the junior tranches.

For all implementations, on several days of the sample period no correlation could

replicate market prices. These dates show up as gaps in the correlation surfaces.

Of course it is problematic if a model cannot be fitted to market data. In this

article, however, we ignore these difficulties and exclude these dates from the

empirical study. As mentioned in the previous section, we suspect some of these

dates to be caused by data errors in the sample.

4.1 Performance of the Delta Hedge

Using the hedge ratios from (12), we form portfolios that are hedged against the

linear effect of spread changes by. The portfolios consist of a long position of unit

size in one tranche and a position whose size is given by the appropriate hedge

ratio of one of the other tranches. We construct all possible hedge portfolios using

any two tranches. As indicated by the correlation matrix in Table 1, we expect the

hedges in tranches that share an attachment-detachment level to perform better

than that in the other tranches. We report the mean absolute hedging errors

(MAHE) and the root mean squared errors (RMSE) for the entire sample period

in Tables 2 to 6. Figure 5 and 6 apportion the MAHE among the different series

for compound and base correlations using the iTraxx spread as an input. Tests
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could not reject the hypothesis that the observed hedge errors have a zero mean.

As expected, most of the hedges are successful: the MAHE is lower than that

of the unhedged position in the tranche. An exception are hedges in “distant”

tranches, for example those involving the first and the fifth tranche. Generally,

hedges involving the fifth tranche seem not to work very well. Given the low

correlation between the respective spreads in Table 1, however, this is no surprise.

The RMSE points into the same direction: portfolios consisting of neighboring

tranches also have a lower hedge error standard deviation. Hedges in more distant

tranches seem frequently to be able to reduce the MAHE, however, they fail

to reduce the RMSE. The hedge errors decrease in magnitude with increasing

tranche seniority. Also, hedge errors calculated using base correlations tend to be

smaller than those for compound correlations. Comparing the MAHE and RMSE

of the different input spreads, we cannot conclude that one of the three spreads

is superior to the others.

For each implementation and tranche, the hedge errors are qualitatively similar

for all the six series: a hedge that performed well in one series also performs well

in the others; the ordering of the hedge portfolios by MAHE remains practically

unchanged. This is revealed in Figures 5 and 6. Irrespective of the input spread,

the hedge errors are largest in the third and seventh series, which are the on-the-

run tranches during the Auto Crisis in 2005 and the Subprime Crisis 2007. The

lowest hedge errors are found in the fourth and fifth series for all tranches.

4.2 Largest Hedge Errors and Serial Dependence

A closer look at the hedge errors reveals that the largest absolute hedge errors are

20 to 100 times higher than the MAHE or the RMSE. This difference is smaller

for portfolios of neighboring tranches and largest for portfolios consisting of the

first and second and fourth and fifth tranche. Thus, a couple of events contribute

a huge proportion to the (average) hedge performance. The contribution of the 20
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Spread Corr. Unh. Tr. 2 Tr. 3 Tr. 4 Tr. 5

Average base MAHE 65.60 (24.90%) 36.55 (31.12%) 42.03 (34.53%) 49.43 (34.25%) 55.80 (31.08%)

base RMSE 139.86 (78.02%) 92.87 (88.56%) 116.87 (91.10%) 148.38 (92.61%) 137.00 (86.81%)

comp. MAHE 65.60 (24.90%) 44.17 (32.45%) 42.79 (34.79%) 53.44 (39.63%) 53.84 (31.71%)

comp. RMSE 139.86 (78.02%) 118.27 (89.41%) 122.74 (90.52%) 186.84 (95.10%) 134.56 (86.99%)

Index base MAHE 65.63 (24.95%) 39.55 (35.85%) 42.50 (35.09%) 49.18 (33.86%) 54.27 (31.87%)

base RMSE 139.98 (78.05%) 116.94 (92.78%) 118.25 (91.07%) 144.93 (92.10%) 135.70 (87.79%)

comp. MAHE 65.63 (24.95%) 41.85 (33.06%) 40.92 (34.92%) 48.30 (34.82%) 64.12 (42.80%)

comp RMSE 139.98 (78.05%) 112.29 (89.78%) 116.89 (91.22%) 156.83 (93.50%) 280.30 (97.11%)

Dur. Weig. base MAHE 65.39 (24.98%) 36.57 (31.12%) 41.89 (34.52%) 49.52 (34.31%) 55.72 (31.25%)

base RMSE 139.86 (78.00%) 92.90 (88.56%) 116.75 (91.11%) 148.82 (92.65%) 137.39 (86.93%)

comp. MAHE 65.39 (24.98%) 43.91 (32.60%) 42.75 (34.85%) 60.32 (41.99%) 77.57 (35.36%)

comp. RMSE 139.86 (78.00%) 117.86 (89.53%) 122.68 (90.51%) 236.26 (96.61%) 239.25 (92.62%)

Table 2: Measures for the hedge errors of Tranche 1. First Column: Unhedged Position. In brackets is the relative

contribution of the 20 largest changes in value to the respective measure.
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Spread Corr. Tr. 1 Unh. Tr. 3 Tr. 4 Tr. 5

Average base MAHE 10.88 (37.62%) 15.99 (30.98%) 7.45 (36.27%) 10.44 (40.39%) 12.79 (35.71%)

base RMSE 32.17 (91.88%) 39.31 (85.30%) 26.05 (94.68%) 53.21 (98.20%) 39.42 (92.92%)

comp. MAHE 23.74 (42.59%) 17.14 (33.14%) 11.02 (41.46%) 18.93 (49.39%) 20.15 (40.51%)

comp. RMSE 78.47 (93.07%) 44.91 (87.45%) 38.06 (94.10%) 94.61 (98.28%) 63.91 (92.90%)

Index base MAHE 12.11 (44.26%) 17.04 (33.28%) 7.28 (35.81%) 10.47 (39.74%) 12.60 (35.08%)

base RMSE 44.55 (95.81%) 44.73 (87.46%) 25.23 (94.64%) 51.57 (98.00%) 38.69 (92.81%)

comp. MAHE 21.24 (44.66%) 17.13 (33.48%) 10.91 (44.66%) 15.24 (41.55%) 23.63 (52.58%)

comp RMSE 72.10 (93.73%) 45.09 (87.62%) 39.79 (95.57%) 61.45 (96.68%) 131.18 (98.64%)

Dur. Weig. base MAHE 10.86 (37.64%) 15.92 (31.12%) 7.42 (36.33%) 10.46 (40.52%) 12.79 (35.88%)

base RMSE 32.12 (91.88%) 39.32 (85.27%) 26.00 (94.69%) 53.39 (98.21%) 39.56 (92.97%)

comp. MAHE 23.15 (42.65%) 17.02 (33.39%) 10.87 (41.38%) 18.19 (55.99%) 33.89 (46.67%)

comp. RMSE 76.55 (93.08%) 44.92 (87.43%) 37.66 (94.16%) 114.03 (99.24%) 132.22 (95.81%)

Table 3: Measures for the hedge errors of Tranche 2. Second Column: Unhedged Position. In brackets is the relative

contribution of the 20 largest changes in value to the respective measure.
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Spread Corr. Tr. 1 Tr. 2 Unh. Tr. 4 Tr. 5

Average base MAHE 5.25 (44.05%) 2.92 (37.66%) 7.19 (36.86%) 3.73 (39.87%) 4.48 (36.11%)

base RMSE 17.42 (93.56%) 10.12 (94.35%) 20.64 (89.04%) 18.30 (97.64%) 14.21 (92.78%)

comp. MAHE 7.20 (46.95%) 3.50 (44.80%) 7.42 (37.90%) 4.67 (43.75%) 5.73 (36.49%)

comp. RMSE 26.66 (94.35%) 13.44 (95.58%) 21.89 (89.76%) 22.62 (97.75%) 17.52 (91.15%)

Index base MAHE 5.20 (45.06%) 2.82 (38.61%) 7.13 (37.18%) 3.76 (40.29%) 4.61 (36.62%)

base RMSE 17.52 (93.35%) 10.01 (94.77%) 20.61 (89.19%) 18.40 (97.65%) 14.53 (92.50%)

comp. MAHE 6.61 (48.71%) 3.46 (46.18%) 7.40 (38.33%) 3.72 (31.27%) 6.83 (48.14%)

comp RMSE 25.49 (95.42%) 13.49 (96.15%) 21.94 (89.96%) 11.90 (92.24%) 35.69 (98.02%)

Dur. Weig. base MAHE 5.21 (44.11%) 2.90 (37.80%) 7.13 (36.99%) 3.73 (39.81%) 4.53 (36.62%)

base RMSE 17.34 (93.56%) 10.09 (94.39%) 20.59 (88.99%) 18.29 (97.64%) 14.39 (92.79%)

comp. MAHE 7.12 (46.96%) 3.48 (44.73%) 7.36 (38.15%) 5.51 (52.99%) 9.87 (44.59%)

comp. RMSE 26.42 (94.29%) 13.37 (95.58%) 21.88 (89.71%) 31.86 (98.92%) 36.89 (95.33%)

Table 4: Measures for the hedge errors of Tranche 3. Third Column: Unhedged Position. In brackets is the relative

contribution of the 20 largest changes in value to the respective measure.
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Unh. Tr. 5

Average base MAHE 3.79 (48.64%) 2.45 (44.87%) 2.31 (44.35%) 4.56 (43.62%) 2.89 (45.72%)

base RMSE 16.32 (97.12%) 13.07 (98.45%) 12.71 (98.32%) 16.45 (94.26%) 13.53 (97.49%)

comp. MAHE 4.97 (55.67%) 3.12 (53.88%) 2.55 (49.15%) 5.15 (48.28%) 3.17 (44.37%)

comp. RMSE 23.69 (97.87%) 16.41 (98.52%) 13.88 (98.43%) 20.58 (95.88%) 13.77 (96.88%)

Index base MAHE 3.67 (50.36%) 2.39 (46.29%) 2.28 (45.22%) 4.60 (43.91%) 2.90 (45.94%)

base RMSE 16.26 (97.29%) 13.14 (98.56%) 12.76 (98.38%) 16.56 (94.28%) 13.55 (97.54%)

comp. MAHE 4.13 (51.66%) 2.52 (45.24%) 1.96 (34.98%) 4.54 (44.37%) 3.20 (46.16%)

comp RMSE 19.59 (97.56%) 11.26 (97.33%) 7.02 (94.14%) 16.85 (94.88%) 15.20 (97.55%)

Dur. Weig. base MAHE 3.77 (48.83%) 2.44 (45.13%) 2.30 (44.38%) 4.54 (43.78%) 2.89 (45.69%)

base RMSE 16.30 (97.15%) 13.06 (98.47%) 12.70 (98.33%) 16.44 (94.23%) 13.51 (97.49%)

comp. MAHE 6.57 (50.88%) 3.39 (50.40%) 3.40 (46.12%) 5.12 (48.54%) 5.65 (39.45%)

comp. RMSE 25.93 (97.02%) 17.03 (98.53%) 15.52 (97.80%) 20.57 (95.86%) 19.01 (93.55%)

Table 5: Measures for the hedge errors of Tranche 4. Fourth Column: Unhedged Position. In brackets is the relative

contribution of the 20 largest changes in value to the respective measure.
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Tr. 4 Unh.

Average base MAHE 2.19 (41.54%) 1.54 (35.21%) 1.36 (34.37%) 1.46 (41.58%) 2.04 (43.10%)

base RMSE 7.01 (92.11%) 4.38 (89.88%) 3.86 (89.27%) 5.70 (95.59%) 6.55 (90.45%)

comp. MAHE 2.24 (43.73%) 1.48 (41.46%) 1.37 (35.83%) 1.42 (41.25%) 2.06 (41.96%)

comp. RMSE 7.68 (92.68%) 4.73 (91.71%) 3.98 (87.99%) 5.39 (95.02%) 6.52 (90.07%)

Index base MAHE 2.07 (43.54%) 1.46 (36.97%) 1.38 (36.09%) 1.45 (43.02%) 2.06 (43.01%)

base RMSE 6.88 (92.45%) 4.32 (90.75%) 4.00 (89.28%) 5.94 (96.12%) 6.57 (90.53%)

comp. MAHE 2.88 (58.31%) 1.96 (57.08%) 1.78 (51.63%) 1.53 (46.50%) 2.65 (55.80%)

comp RMSE 17.74 (98.76%) 12.60 (98.97%) 10.70 (98.48%) 7.58 (97.58%) 15.34 (98.33%)

Dur. Weig. base MAHE 2.17 (41.75%) 1.52 (35.44%) 1.38 (35.19%) 1.45 (41.54%) 2.02 (43.33%)

base RMSE 6.98 (92.11%) 4.36 (89.94%) 3.95 (89.50%) 5.67 (95.55%) 6.54 (90.36%)

comp. MAHE 2.29 (48.81%) 1.52 (41.72%) 1.39 (37.31%) 1.35 (37.34%) 2.04 (42.32%)

comp. RMSE 8.79 (95.68%) 4.78 (91.38%) 4.08 (89.91%) 4.06 (90.26%) 6.52 (90.00%)

Table 6: Measures for the hedge errors of Tranche 5. Fifth Column: Unhedged Position. In brackets is the relative

contribution of the 20 largest changes in value to the respective measure.
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Figure 5: Mean absolute hedging errors (MAHE) for hedge portoflios of the five

tranches of the iTraxx index, constructed using the index spread and compound

correlations. The numbers on the y-axis refer to the tranche used to hedge re-

spective tranche. The solid line shows the error for the entire sample, the thin

lines for the respective series.

hedge errors of both signs to the measures is given in Tables 2 to 6 in brackets. For

the MAHE, these observations contribute between 25 and 53% of the hedge error,

whereas the RMSE seems almost completely determined by these observations,

the minimum contribution is 78%, whereas the maximum is 98% of the RMSE.

Figure 7 pictures the changes in (unhedged) tranche values in basispoints for the

implementation using index spreads. Inspecting the graphs clearly reveals the

higher risk associated with the tranches which suffer from earlier losses. Volatil-

ity seems to change over time: during the second and third series, and during the

seventh series, large changes occured. During the first and forth to sixth series,

tranche values hardly changed. Remarkably, the largest changes in value of both

signs on the unhedged portfolios tend to occur on (around) the same dates for

all tranches. Second, large changes in value on a tranche seem to be frequently
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Figure 6: Mean absolute hedging errors (MAHE) calculated using the index

spread and base correlations.

followed or preceded by large changes of the opposite sign. Whereas some of the

earlier large value changes might be attributed to lower data quality during the

first part of the sample period, we clearly recognize the higher volatility of the

hedge errors during the Auto and Subprime crises.

Motivated by the former observations, we check whether there is autocorrelation

in the value changes of the unhedged positions. We found practically no autocor-

relation for all tranches (values around ±0.1) with the exception of the second

tranche, where we found an autocorrelation of the daily changes of about -0.2

for all compound correlation cases and for the index spread implementation in

the base correlation case. For the fourth tranche, the autocorrelation was about

-0.3 for the base correlation cases and -0.2 for the average and duration weighted

average spread in the compound correlation case. Thus, we cannot conclude that

there is autocorrelation in the value changes. However, we check for possible ef-

fects by extending the holding period of the hedge portfolio to 2 and 5 days for the

best performing hedges of the one-day holding period. The errors increase sub-
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stantially when doubling the rebalancing period to two days. Average increases

add about 50% to the MAHE but increase the RMSE by a factor of 3 to 5.14

The further extension to five days leads to practically no further increase in the

MAHE and RMSE. This indicates that there might be some serial dependence in

the hedge errors. The relative increase in the MAHE and RMSE for the not so

well performing hedges is stronger, MAHE can almost double whereas RMSE can

be up to 10 times larger. The MAHE and RMSE are calculated using overlapping

hedge-periods. If we use non-overlapping hedge-periods, the numbers practically

do not change.

4.3 Decomposing the Change in Value

Motivated by the results from the first section, we decompose the changes in

tranche value in three components: the first and second order absolute effect of

spread changes (delta and gamma) and the effect of correlation changes. Specif-

ically, these effects are ||∆ (spreadt−spread t−1) ||, ||Γ/2 (spreadt−spread t−1)
2 ||,

and ||R (ρt − ρt−1) ||. In order to have a meaningful comparison, we normalize by

the sum of these three effects and display their relative contribution to the change

in value in Figures 8 and 9 for all five tranches for the model implementation using

the average spread as the driver of the default probabilities. Note the different

scale on the ordinate. For the two implementations using the index spread and the

duration weighted spread, the results are very similar. The predominant driver

of the changes in tranche value is the delta effect, the linear contribution of the

changes in the driving spread. For the first tranche it accounts for practically the

entire change in tranche value. For the other tranches its contribution is also very

high. On several occasions, however, it drops to much smaller levels. The second

order effect of the spread change is much smaller for all tranches. Throughout

14If the hedge errors variance is constant over time and hedge errors of subsequent days are

independent then the increase in MAHE should be 41% (
√

2 − 1) for the step from one to two

days. It should be 2 for the increase in RMSE.
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Figure 7: Value changes in an unhedged position in the respective CDO tranches

in basis points from the Index spread implementation. One can clearly see the

higher risk associated with more junior tranches. Moreover, it is obvious that

there are times of higher and lower volatility. Remarkably, the largest changes in

tranche value of both signs are followed or preceded by very large changes of the

opposite sign. Vertical lines again indicate the index roll dates.

the sample it is less than 5% of the total change in value. The effect of changing

correlations is complementary to that of the the delta: it is practically inexistent

for the first tranche. For the other tranches, however, its contribution spikes on

several occasions. On the dates of these spikes, the delta hedged portfolio typ-

ically drastically underperformed the unhedged portfolio. If also the change in

correlation had been hedged, it would in most cases have compensated for a large
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Figure 8: Relative contribution of the delta, gamma, and rho effects to the change

in tranche value for compound correlations implemented with the Index spread.

The main driver of value change is the linear component in the spread (delta),

while the second order effect is much smaller. The effect of correlation changes

seems to be small. This is due to the fact that correlations are usually small.

However, large changes in spreads typically coincide with large changes in corre-

lations.

part for the hedge error. Motivated by this finding, we added a position to the

hedge portfolios in order to match the sensitivity to correlation and to the second

order effect of changes in the spread. Since this portfolio could be formed from

any two of the index tranches, there are twelve possible hedge portfolios for each

tranche (if we form portfolios using only two tranches). We decided to display
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Figure 9: Relative contribution of the delta, gamma, and rho effects to the change

in tranche value for base correlations implemented with the Index spread. The

main driver of value change is the linear component in the spread (delta), while

the second order effect is much smaller. The effect of correlation changes seems

to be small. This is due to the fact that correlations are usually small. However,

large changes in spreads typically coincide with large changes in correlations.

only the results for the hedge portfolio formed from the two tranches for which the

delta hedge performed best for most implementations; these are also the portfolios

which have the gamma and rho which is closest to that of the hedged tranche.15

While this portfolio construction is clearly very naive, it could help to reduce the

15The delta hedged portfolios consist of the original and the second, third, second, third and

forth tranche for the first to fifth tranche, respectively. To these a position in the third, first,

fourth, second, and third tranche was added.
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5

Average base MAHE 640.18 93.31 170.34 165.83 99.43

base RMSE 4668.72 304.81 1235.03 1434.96 635.32

comp. MAHE 64.07 126.89 170.88 32.44 7.94

comp. RMSE 161.89 390.70 4206.01 108.56 26.92

Index base MAHE 605.01 90.22 192.14 119.25 89.48

base RMSE 6074.67 282.42 2027.38 698.50 978.37

comp. MAHE 72.16 112.41 27.75 37.67 8.83

comp RMSE 322.91 353.91 154.42 175.83 35.44

Dur. Weig. base MAHE 527.95 95.10 101.87 115.89 46.29

base RMSE 1778.32 287.79 454.16 447.64 227.54

comp. MAHE 65.08 123.29 247.47 113.15 5.63

comp. RMSE 165.76 370.48 6508.95 503.51 19.34

Table 7: Hedge errors of the portfolios hedged against delta and gamma. Both,

the MAHE and RMSE increased significantly. The hedge portfolios were con-

structed from the two tranches that performed best in delta hedging the respec-

tive tranche.

risk when hedging equity options. Tables 7 and 8 report the resulting MAHE

and RMSE. The errors increased drastically for most implementations and mod-

els. When hedging all three effects, delta, gamma, and rho, the performance is

even worse. Closer inspection can trace the error back to two sources. First, the

gamma and rho differ drastically between tranches which leads to hedge portfolios

including long and short positions in both tranches much larger in size than for the

simple delta hedged portfolio. Consequently, the hedge errors of these portfolios

have a much larger variance increasing MAHE and boosting RMSE. Consid-

ering hedges which are constructed to achieve minimal variance as motivated by

Ross (1997) could eventually overcome this difficulty. However, the simple model

considered here does not allow for such calculations. The second source of error
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5

Average base MAHE 520.13 5764.80 64.99 30.66 9.59

base RMSE 7931.39 135363.37 386.03 217.27 48.05

comp. MAHE 51.44 3142.77 8.30 25.90 3.20

comp. RMSE 150.73 18270.27 42.72 146.15 11.38

Index base MAHE 212.05 530.49 342.44 31.64 8.12

base RMSE 2486.38 2981.75 8426.76 244.37 56.06

comp. MAHE 49.65 7198.44 28.28 38.79 3.60

comp RMSE 129.97 116282.74 608.69 441.80 19.14

Dur. Weig. base MAHE 2129.50 650.83 98.36 45.67 11.74

base RMSE 55760.13 5409.53 907.45 319.08 92.90

comp. MAHE 58.30 13276.09 8.74 157.91 2.40

comp. RMSE 260.08 292960.86 56.25 1672.15 9.87

Table 8: Hedge errors of the portfolios hedged against delta and gamma. Both,

the MAHE and RMSE increased significantly. The hedge portfolios were con-

structed from the two tranches that performed best in delta hedging the respec-

tive tranche.
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affects the sensitivity to correlation changes: a hedge against correlation changes

only works if there is a common factor driving the correlations for all tranches.

Only the common changes, that are parallel shifts, in the correlations would be

hedged. If a portfolio is hedged against these, any non-parallel changes can have

a much higher effect on the portfolio value than in the unhedged case. This is

what happened in our sample. We performed a principal component analysis for

the changes in all correlations displayed. A single component explained 63.22%

(76.71%, 76.71%) and of the total variation of the compound correlations and

98.15% (97.70%, 97.76%) of the variation of the base correlations for the imple-

mentation with the Index (average, duration weighted average) spread. For the

CDO with 10 years to maturity and using weekly data Willemann and Isla (2007)

find the first principal component to explain 87% of the total correlation variation.

The difference in the explained variance between the two correlation schemes is

obvious: by construction, base correlations of higher tranches depend on that of

the more junior tranches. This does not imply that base correlations are to be

preferred to hedge correlation risk. Non-parallel changes have different effects in

both schemes. However, we conclude that it should be possible to hedge against

parallel changes in correlation in general. In the naive way investigated above,

however, it is not possible. Moreover, if correlation is assumed to be changing

over time, it should also be modeled as dynamic in the model setup. Several ex-

tensions of the Gaussian copula models can be seen as having random correlation

coefficients: most considered alternatives to the normal distribution are mixture

distributions, i.e. the product of a normally distributed random variable with one

of a different distribution. Andersen and Sidenius (2005b) and Burtschell, Gre-

gory, and Laurent (2005) discuss several of these extensions. However, all these

models describe correlation as essentially static and not as a dynamic quantity

that evolves over time.
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5 Adjusting Hedge Ratios

The latter results from the previous section are disappointing: the LHGM is not

able to provide advice on how to hedge against changes in correlation or second

order effects of the spreads. While the second order effect is responsible for

only a small proportion of the change in the present value of a tranche position,

the correlation change has a large impact on several occasions. Figure 7 reveals

that the days of the largest changes in correlation also coincide with the largest

changes in the driving spread (Index, average, duration weighted). Motivated

by this finding, we investigate the interrelation between correlation changes and

spread changes. This was also suggested by St. Pierre, Rousseau, Zavattero, van

Eyeren, and Aurora (2004) and also Calamaro and Meli (2004). We estimate the

coefficient in a simple linear regression between spread changes and correlation

changes

ρ(t) − ρ(t − 1) = β (spread(t) − spread(t − 1)) . (13)

Table 9 lists the slope coefficients from a regression using the entire sample period

and the subsamples of the individual index series of the base correlation imple-

mentation using the duration weighted spread. While the explanatory power of

the regressions (measured by the R2 ) is very small, about 10% in all cases, all

coefficients are highly significant. We also ran the regression including a non-zero

intercept. When estimated, the intercept is not significantly different from zero.

Thus, we assume a zero intercept. A non-zero intercept would need more careful

considerations since it could lead to arbitrage opportunities. Also, correlation has

to stay in the interval [0, 1]. We reran the regressions for the individual series.

The coefficients for these regressions were not significant, however. In Figures 10

and 11, we report the hedge errors (MAHE) for the simple delta-hedged portfolios

for the Index spread implementation. We use the adjusted hedge ratios

HRadj =
∂Tranche1

∂Tranche2
=

∂Tranche1
∂s

+ ∂ρ(s)
∂s

∂Tranche1
∂ρ

∂Tranche2
∂s

+ ∂ρ(s)
∂s

∂Tranche1
∂ρ

, (14)

42



Series Tr. 1 Tr. 2 Tr. 3 Tr. 4 Tr. 5

All 0.00047 0.00066 0.00012 -0.000159 -0.00060

Series 1 0.00480 0.00654 0.00794 0.00995 0.01864

Series 2 0.01250 0.01798 0.01825 0.02009 0.02584

Series 3 -0.00251 -0.00114 -0.00039 -0.00006 0.00029

Series 4 0.00176 0.00377 0.00444 0.00482 0.00455

Series 5 -0.00028 0.00168 0.00276 0.00328 0.00487

Series 6 -0.00745 -0.00934 -0.01054 -0.01145 -0.01224

Series 7 0.00004 -0.00074 -0.00183 -0.00259 -0.00403

Table 9: Slope coefficients for the regressions in equation (13) for the base corre-

lations using average spreads for all tranches. In the top row, the results for the

entire sample period are displayed, below we show those for the sub-samples of

the respective series. In the regression changes in the duration weighted spread

and base correlations were used. The slope coefficient was highly significant for

the entire sample period. For the sub samples, it was not significant on the 5%

level for any of the regressions.
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where the second summand is comes from the relation ρ(s + ds) = ρ(s) + β ds.

The figures correspond to Figures 5 and 6. The hedge ratios were adjusted using

the regression results from the individual series regressions. Given the small slope

coefficients, it is not surprising that the order of magnitude of the hedge errors did

not change much. However, the adjusted hedge errors are a little bit smaller when

the the adjusted hedge ratios for the individual series. This can be seen particu-

lar well for the base correlations/Index spread case. In Tables 10 to 14, we show

the MAHE and RMSE resulting from the regression using the entire sample. In

brackets behind the MAHE we report the test statistic for an adjusted t-test, the

brackets behind the RMSE contain the p-value of a variance ration test. We test

whether the hedge error is smaller for the adjusted hedge ratio. The t-statistic

can be interpreted as follows: a value between ±1.96 indicates that the hedge

errors are not significantly different on the 95% confidence level, and a statistic

of above 1.64 indicates that the hypothesis that the hedge error using the ad-

justed ratio is smaller cannot be rejected. We can interpret the statistics even

further: a statistic below -1.64 means that the opposite hypothesis cannot be re-

jected, i.e. the adjusted portfolio performs worse than the unadjusted. While for

the first two tranches, the improvement seems not to be statistically significant,

it becomes controversial for the higher tranches. There the difference between

adjusted and unadjusted hedge ratios are frequently found to be significantly dif-

ferent but often they don not improve but become worse. Comparing the results

for base correlations and compound correlations, we cannot find strong differ-

ences to the unadjusted case. The results seem to be significant in more cases

for base correlations which also seem to outperform compound correlations by a

small amount in the hedge performance.
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Spread Corr. Unh. Tr. 2 Tr. 3 Tr. 4 Tr. 5

Average base MAHE 65.60 (-) 36.58 (-5.13) 41.91 (0.43) 49.24 (0.47) 55.66 (0.84)

base RMSE 139.86 (-) 92.95 (0.98) 115.32 (0.70) 146.69 (0.75) 136.04 (0.83)

comp. MAHE 65.60 (-) 43.88 (-2.24) 42.72 (-3.95) 53.43 (-28.03) 53.80 (4.32)

comp. RMSE 139.86 (-) 117.95 (0.94) 122.76 (0.99) 186.77 (0.99) 134.37 (0.96)

Index base MAHE 65.63 (-) 39.66 (-2.27) 42.59 (-2.23) 49.08 (-1.41) 54.23 (-0.46)

base RMSE 139.98 (-) 117.33 (0.93) 118.63 (0.94) 144.74 (0.97) 135.17 (0.78)

comp. MAHE 65.63 (-) 41.66 (-3.47) 40.81 (-2.40) 48.38 (-1.87) 64.16 (-2.43)

comp. RMSE 139.98 (-) 111.91 (0.93) 116.85 (1.00) 156.97 (0.98) 280.26 (1.00)

Dur. Weig. base MAHE 65.39 (-) 36.57 (-16.48) 41.83 (0.82) 49.44 (0.83) 55.64 (1.31)

base RMSE 139.86 (-) 92.92 (0.99) 116.18 (0.89) 148.14 (0.90) 136.89 (0.91)

comp. MAHE 65.39 (-) 43.63 (-1.49) 42.69 (-3.39) 60.27 (-2.23) 77.08 (-0.75)

comp. RMSE 139.86 (-) 117.55 (0.94) 122.70 (1.00) 235.46 (0.92) 236.79 (0.77)

Table 10: Hedge Errors of Tranche 1 using the adjusted hedge ratios for the entire sample. In brackets behind the MAHE

are the t-statistics comparing the differences of the hedge errors of the adjusted and unadjusted portfolios. The brackets

behind the RMSE contain the p-values of a variance ratio test between the adjusted and unadjusted hedge error variance.

Again, the first column gives the results for an unhedged Position.
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Spread Corr. Tr. 1 Unh. Tr. 3 Tr. 4 Tr. 5

Average base MAHE 10.87 (15.61) 15.99 (-) 7.40 (0.85) 10.32 (0.92) 12.72 (1.95)

base RMSE 32.13 (0.97) 39.31 (-) 25.35 (0.45) 52.29 (0.62) 39.02 (0.77)

comp. MAHE 23.26 (0.36) 17.14 (-) 10.87 (3.47) 18.63 (1.67) 19.77 (1.03)

comp. RMSE 77.28 (0.66) 44.91 (-) 37.86 (0.88) 93.85 (0.82) 63.11 (0.71)

Index base MAHE 12.09 (7.98) 17.04 (-) 7.25 (-12.11) 10.36 (-4.01) 12.52 (-1.46)

base RMSE 44.40 (0.92) 44.73 (-) 25.12 (0.90) 50.95 (0.73) 37.98 (0.57)

comp. MAHE 20.96 (1.72) 17.13 (-) 10.93 (1.10) 15.26 (1.30) 23.51 (0.91)

comp. RMSE 71.43 (0.79) 45.09 (-) 39.95 (0.91) 61.66 (0.92) 131.19 (1.00)

Dur. Weig. base MAHE 10.86 (63.30) 15.92 (-) 7.40 (1.48) 10.41 (1.75) 12.75 (3.43)

base RMSE 32.11 (0.99) 39.32 (-) 25.75 (0.78) 53.04 (0.85) 39.37 (0.89)

comp. MAHE 22.70 (0.13) 17.02 (-) 10.72 (2.48) 18.00 (-0.50) 33.21 (-0.59)

comp. RMSE 75.46 (0.68) 44.92 (-) 37.46 (0.87) 112.75 (0.74) 129.65 (0.57)

Table 11: Hedge Errors of Tranche 2 using the adjusted hedge ratios for the entire sample. In brackets behind the MAHE

are the t-statistics comparing the differences of the hedge errors of the adjusted and unadjusted portfolios. The brackets

behind the RMSE contain the p-values of a variance ratio test between the adjusted and unadjusted hedge error variance.

Again, the second column gives the results for an unhedged Position.
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Spread Corr. Tr. 1 Tr. 2 Unh. Tr. 4 Tr. 5

Average base MAHE 5.34 (-0.01) 2.98 (-1.05) 7.19 (-) 3.74 (18.51) 4.50 (9.88)

base RMSE 17.56 (0.81) 10.10 (0.99) 20.64 (-) 18.41 (0.86) 14.32 (0.83)

comp. MAHE 7.16 (6.75) 3.48 (-19.17) 7.42 (-) 4.64 (12.00) 5.69 (8.19)

comp. RMSE 26.58 (0.93) 13.42 (0.97) 21.89 (-) 22.48 (0.86) 17.41 (0.85)

Index base MAHE 5.22 (20.76) 2.83 (32.44) 7.13 (-) 3.74 (-13.53) 4.57 (-5.62)

base RMSE 17.50 (0.97) 10.01 (1.00) 20.61 (-) 18.26 (0.84) 14.33 (0.68)

comp. MAHE 6.55 (6.55) 3.46 (-21.21) 7.40 (-) 3.72 (5.24) 6.79 (3.23)

comp. RMSE 25.39 (0.91) 13.51 (0.97) 21.94 (-) 11.87 (0.94) 35.47 (0.86)

Dur. Weig. base MAHE 5.24 (3.28) 2.92 (0.50) 7.13 (-) 3.73 (113.39) 4.54 (62.33)

base RMSE 17.39 (0.93) 10.09 (0.99) 20.59 (-) 18.32 (0.96) 14.41 (0.97)

comp. MAHE 7.09 (5.32) 3.46 (-13.77) 7.36 (-) 5.49 (-4.31) 9.75 (-3.13)

comp. RMSE 26.36 (0.94) 13.36 (0.98) 21.88 (-) 31.59 (0.80) 36.36 (0.67)

Table 12: Hedge Errors of Tranche 3 using the adjusted hedge ratios for the entire sample. In brackets behind the MAHE

are the t-statistics comparing the differences of the hedge errors of the adjusted and unadjusted portfolios. The brackets

behind the RMSE contain the p-values of a variance ratio test between the adjusted and unadjusted hedge error variance.

Again, the third column gives the results for an unhedged Position.
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Unh. Tr. 5

Average base MAHE 3.84 (-3.05) 2.48 (-3.33) 2.30 (-26.17) 4.56 (-) 2.90 (46.37)

base RMSE 16.38 (0.91) 13.08 (0.97) 12.70 (0.98) 16.45 (-) 13.53 (0.98)

comp. MAHE 4.97 (186.68) 3.11 (-23.27) 2.55 (-35.93) 5.15 (-) 3.16 (50.26)

comp. RMSE 23.69 (1.00) 16.40 (0.99) 13.88 (0.99) 20.58 (-) 13.76 (0.98)

Index base MAHE 3.70 (25.50) 2.41 (24.01) 2.29 (37.36) 4.60 (-) 2.90 (-15.57)

base RMSE 16.25 (1.00) 13.15 (0.99) 12.77 (0.98) 16.56 (-) 13.53 (0.96)

comp. MAHE 4.11 (14.03) 2.52 (-44.93) 1.95 (-64.10) 4.54 (-) 3.18 (9.00)

comp. RMSE 19.58 (0.99) 11.26 (0.99) 7.02 (0.98) 16.85 (-) 15.11 (0.87)

Dur. Weig. base MAHE 3.79 (-2.96) 2.45 (-4.19) 2.30 (-220.21) 4.54 (-) 2.89 (142.22)

base RMSE 16.32 (0.96) 13.07 (0.99) 12.70 (1.00) 16.44 (-) 13.51 (1.00)

comp. MAHE 6.58 (16.19) 3.41 (-10.52) 3.43 (-16.24) 5.12 (-) 5.63 (-17.96)

comp. RMSE 25.95 (0.98) 17.04 (0.98) 15.54 (0.98) 20.57 (-) 18.95 (0.93)

Table 13: Hedge Errors of Tranche 4 using the adjusted hedge ratios for the entire sample. In brackets behind the MAHE

are the t-statistics comparing the differences of the hedge errors of the adjusted and unadjusted portfolios. The brackets

behind the RMSE contain the p-values of a variance ratio test between the adjusted and unadjusted hedge error variance.

Again, the fourth column gives the results for an unhedged Position.
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Spread Corr. Tr. 1 Tr. 2 Tr. 3 Tr. 4 Unh.

Average base MAHE 2.22 (-16.82) 1.55 (-12.21) 1.36 (-72.16) 1.46 (-45.38) 2.04 (-)

base RMSE 7.07 (0.80) 4.40 (0.85) 3.86 (0.96) 5.68 (0.93) 6.55 (-)

comp. MAHE 2.24 (-14.00) 1.47 (-35.99) 1.37 (-42.20) 1.42 (-87.98) 2.06 (-)

comp. RMSE 7.69 (0.97) 4.72 (0.94) 3.98 (1.00) 5.40 (0.97) 6.52 (-)

Index base MAHE 2.08 (20.67) 1.47 (21.89) 1.38 (33.51) 1.45 (40.39) 2.06 (-)

base RMSE 6.86 (0.94) 4.33 (0.98) 4.01 (0.98) 5.93 (0.97) 6.57 (-)

comp. MAHE 2.88 (34.66) 1.96 (-78.63) 1.78 (-66.58) 1.53 (-62.56) 2.65 (-)

comp. RMSE 17.76 (0.98) 12.60 (1.00) 10.68 (0.97) 7.56 (0.95) 15.34 (-)

Dur. Weig. base MAHE 2.18 (-28.21) 1.53 (-22.19) 1.38 (-170.54) 1.45 (-215.39) 2.02 (-)

base RMSE 7.01 (0.90) 4.38 (0.93) 3.94 (1.00) 5.67 (1.00) 6.54 (-)

comp. MAHE 2.29 (-20.89) 1.52 (-30.55) 1.40 (-44.20) 1.35 (96.39) 2.04 (-)

comp. RMSE 8.80 (0.96) 4.77 (0.98) 4.08 (0.97) 4.06 (1.00) 6.52 (-)

Table 14: Hedge Errors of Tranche 5 using the adjusted hedge ratios for the entire sample. In brackets behind the MAHE

are the t-statistics comparing the differences of the hedge errors of the adjusted and unadjusted portfolios. The brackets

behind the RMSE contain the p-values of a variance ratio test between the adjusted and unadjusted hedge error variance.

Again, the fifth column gives the results for an unhedged Position.
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Figure 10: Mean absolute hedging errors (MAHE) for hedge portfolios of the

five tranches of the iTraxx Index, constructed using the Index spread, compound

correlations and adjusted hedge ratios. The numbers on the y-axis refer to the

tranche used to hedge respective tranche. The solid line shows the error for the

entire sample, the thin lines for the respective series.
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Figure 11: Mean absolute hedging errors (MAHE) calculated using the Index

spread, base correlations and adjusted hedge ratios.
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6 Conclusions

In an empirical study, we found the Gaussian One-Factor Copula Model to pro-

vide hedge ratios which could substantially reduce the risk on portfolios of CDO

tranches. This result was robust across six implementations of the model using

three input spreads and two correlation regimes, base and compound correla-

tions. We found base correlation implementations to perform better than those

using compound correlations. As expected, hedges in tranches that share an

attachment-detachment level performed better than those in other tranches.

Extending the holding period of the hedge portfolios from one to two and five

trading days, we found some evidence for serial dependence in the hedge errors.

Moreover, extreme value changes tend to occur simultaneously for all tranches

and to cluster in time. However, we were not able to utilize these two observa-

tions dependence to reduce the hedge errors.

Simple hedges against the risk of changing correlations, and second order effects

of spread changes were constructed. The model failed dramatically on this task.

Thus, we conclude that hedging these risks is not possible using the simple model.

The reason for this is the essentially static model setup. In order to improve the

models ability to describe hedging schedules, the inclusion of jumps and dynamic

correlations seem to be crucial.

Motivated by our findings on serial dependence, we performed an regression be-

tween spread and correlation changes. This proved a weak but significant interre-

lation. Adjusting the hedge ratios for this interrelation reduced hedge errors some

cases. However, the reduction was very small and in most cases not significant.
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