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Abstract 

 

Britten-Jones and Neuberger (2000), and Jiang and Tian (2005) derived a model-free 

implied volatility under the pure diffusion assumption and asset price processes with 

jumps, respectively. In this paper, we first extend their model-free implied volatility to 

the processes of both asset price and volatility with jumps. We then compare the 

forecasting abilities of different volatility estimates for individual options with the 

underlying assets of 304 U.S. firms during the period from January 4, 1999 to 

December 31, 2004. The volatility estimates include the model-free implied volatility, 

the Black-Scholes implied volatility, the realized volatility (calculated by 

high-frequency intraday data) and the conditional volatility under GJR model. For 

one-day-ahead estimation, 54% of firms indicate that the realized volatility measured 

by 5-minute interval returns outperforms other estimates. The Black-Scholes implied 

volatility has the best performance for 62% of firms when the forecast horizon agrees 

with the period form the closed day after expiration date to next expiration. The 

empirical results also show the forecasting performance of model-free implied 

volatility is worse than that of Black-Scholes implied volatility whether the estimation 

of one-day-ahead or monthly prediction. Overall, the results show that there is less 

volatility information contained in the model-free expectations than in the 

at-the-money implied volatilites. 
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1. Introduction 

It is widely recognized that the option implied volatility is a good estimator to predict 

future volatility of stock index, for recent researches such as Christensen and Prabhala 

(1998), Fleming (1998), Lin, Strong and Xu (1998) and Blair, Poon and Taylor (2001). 

However, the strictest argument of the Black-Scholes implied volatility (Black and 

Scholes (1978)) is based on a constant volatility assumption. Therefore, the 

conditional volatility under time series models such as ARCH (Engle (1982)), 

GARCH (Bollerslev (1986)) and other ARCH specifications were also placed 

important on researches. 

 Alternative implied volatility called model-free implied volatility is constructed 

by Britten-Jones and Neuberger (2000), extending the work of Derman and Kani 

(1994), Dupire (1994, 1997), and Rubinstein (1994), who only considered the 

volatility as a deterministic instead of stochastic process. The advantage of model-free 

implied volatility is general because it is neither based on a deterministic volatility 

process nor a constant volatility assumption, and it does not require other 

option-pricing model besides option price alone. 

 Jiang and Tian (2005) generalized the model-free volatility to asset price process 

with jumps and examined the volatility forecast abilities of the model-free implied 

volatility, the Black-Scholes implied volatility and the historical volatility. They found 

the model-free implied volatility performs best for Standard & Poor’s 500 index. In 

contrast, Taylor, Yadav and Zhang (2006) found the model-free implied volatility 

contains less volatility information than the Black-Scholes implied volatility for 

individual stocks during January 1996 to December 1999. 

 In this paper, we first extended the Britten-Jones and Neuberger (2000), and 

Jiang and Tian (2005) model free implied volatility models to asset price and 
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volatility with jumps proposed by Duan, Ritchken and Sun (2006). We then compare 

the forecasting abilities of for different volatility measures, including the model-free 

implied volatility, the Black-Scholes implied volatility, the conditional volatility 

provided by GJR model, and the historical volatility measured by high-frequency 

intraday data for individual options with the underlying assets of 304 U.S. firms 

during the period from January 4, 1999 to December 31, 2004.  

We also extend the curve-fitting method of Taylor, Yadav and Zhang (2006) by 

considering the no-arbitrage condition on the volatility curve construction. We also 

included more than double the amount of their samples and our sample period, which 

was from January 4, 1999 to December 31, 2004, is also longer than their study. In 

addition, we adopt high frequency data to calculate the realized volatility for our 

historical volatility proxy. The advantage of high-frequency data is it could hold 

higher information content than daily data for estimating the true volatility and it is an 

unconditional volatility, which means it is not based on specific volatility models, 

such as the time series model or the stochastic volatility model. 

 Our empirical results show that the realized volatility measured by 5-minute 

intraday returns outperforms other volatilities, for one-day-ahead estimation in ARCH 

including the conditional volatility under GJR, the model-free implied volatility, and 

the Black-Scholes implied volatility. However, the Black-Scholes at-the-money 

implied volatility has the leading forecasting ability across our 304 firms when the 

forecast horizon extends until the expiration date in OLS regression. 

 The remainder of this article proceeds as follows: the next section derived the 

model-free implied volatility formula under Merton (1979) jump process and GARCH 

jump process, respectively. Section 3 describes volatility constructions and our data. 

Section 4 presents empirical methodology and results. The final section contains the 

conclusions.  
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2. Model-Free Implied Volatility 

2.1 Model-Free Implied Volatility with Jumps in the Return of Underlying Asset 

Britten-Jones and Neuberger (2000) derived the model-free implied volatility under 

the diffusion assumption. Assume that the dynamics process of underlying stock price 

be  
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First, we take jumps in the return of underlying asset into consideration in this section. 

We consider a continuous trading economy with trading interval ],0[ T . Assume that 

the dynamic process of underlying stock price as follows 
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The jump size tY  are log normal distributed with parameters µ  and δ  and the 

Poisson process ]},0[:{ TtN t ∈  with intensity λ .  

  Under this situation, the expected value of the implied volatility is 
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where ]1[ −= tYEk . 

  In order to get the implied volatility with jump framework, we define a stock 

process with different volatility term.  
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and tN  is a Poisson with mean tλ , when given the number of jump variance is 

constant. µ  and k  are the parameters of tY . Given the times of jumps, n, the 

process of 
N

B

tS  described in equation (1). Therefore we can use the method 

mentioned above to calculate the implied volatility under the jump process. 

 

Proposition 1: The expected value of squared returns between the time 0 to the date T 

under the jump process is as follows 
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and ),( KTC
nB  be a set of option prices when given the number of jumps, n. 

 

2.2 Model-Free Implied Volatility with Jumps in Return and Volatility 

In the literatures, jumps could happen in both asset return and volatility. In this section, 

we use NGARCH(1,1) jump framework mentioned in Duan, Ritchken, and Sun (2005) 

to calculate the implied volatility. 

According to Duan, Ritchken and Sun, assume that 
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where 0β  is positive and 1β , 2β  are nonnegative to ensure that the local scaling 

process is positive. Assume that the single period continuously compounded interest 

rate is constant, say r. Thus the following restrictions must hold 
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Define a new measure Q  by following 
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    Above all, we consider the NGARCH(1,1)-Normal model. In order to consistent 

with condition in Britten-Jones and Neuberger (2000), we set r=0. The following 



 

 7 

Lemma 2.2.1 and Proposition 2 could be obtained under these assumptions. And we 

can prove Proposition 2 by the similar transformation in section 2.1. 

 

Lemma 2.2.1 : If there is no jump and r=0, the NGARCH(1,1) model can be 

expressed as  
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Proposition 2 : The expected value of squared returns between the time 0 to the date 

T under NGARCH(1,1) model is as follow 
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where ),( KTCG  be a set of option prices under NGARCH(1,1)-Normal model.
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3. Data and Volatility Calculation 

3.1 Model-Free Implied Volatility Formula 

As mentioned earlier, Britten-Jones and Neuberger (2000) derived the model-free 

implied volatility under the diffusion assumption; the risk-neutral expectation of 

underlying variance can be replaced as
2
: 
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Were 0,TF  is the underlying forward price and ( ),P K T  and ( ),C K T  denote the 

put and call option price with strike price K . Equation (1) means that the variance 

expectation can display the form of integration of all out-the-money option prices 

weighted by the square strikes. The new VIX is a typical application of model-free 

implied volatility. 

 In September 2003, the CBOE launched the new volatility index, and it was 

based on the model-free implied volatility. They calculate the new volatility index, 

VIX, using S&P 500 index options calculated from the following formula
3
: 
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Where T  is time to expiration, r is the risk-free interest to expiration, 0K  is the 

strike price used to decide ( ),iQ K T  is call or put option price, ( ),iQ K T  is call 

price with strike 
i

K  if 0i
K K≥  and it is put price otherwise, and 

i
K∆  is the 

interval between strike price, defined as 1 1

2

i i
K K+ −− 4

. 

                                                 
2
 See the proof in Appendix A. 

3
 The source downloaded from the site: http://www.cboe.com/micro/vix/vixwhite.pdf 

4
 

i
K∆  for the lowest strike is defined as the difference between the lowest strike and the next higher 
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0,TF  is the forward index level derived form index prices and 0K  is first strike 

below 0,TF  in the definition of VIX. However, we use equation (20) to calculate the 

model-free implied volatility by approximating the underlying strike price
i

K  is 

continuous; therefore, we ignore the final term of equation (20) by setting 0 0,TK F=  

when calculating the model-free implied volatility. 

 

3.2 Implementations of the model-free implied volatility 

We require out-the-money option prices as many as possible in this paper so we can 

estimate the model free volatility expectation in equation (19). There are no adequate 

available stock options for us to directly calculate model-free implied volatility in 

practice. Hence, we apply the implementation method stated by Taylor, Yadav and 

Zhang (2006) to calculate the model-free volatility expectation. Their method of 

volatility curve fitting is based on Malz (1997). 

Malz (1997) presented the volatility smile could be described as a quadratic 

function form an option’s delta instead of directly taken from the exercise price, stated 

by Shimko (1993). The quadratic volatility function is stated as follows: 

( ) ( ) ( )
2

ˆ 2 0.5 16 0.5
i atm rr i str i

σ φ φ φ∆ = − ∆ − + ∆ − ,              (21) 

where the constant, 
atm

φ , provides the basis of this volatility curve, 
rr

φ  is the 

coefficient to indicate the skew of this volatility curve, and the second power 

coefficient, 
str

φ , shows the degree of curvature for this volatility curve. 

The model-free implied is assumed in risk-neutral measure, delta 
i

∆  is defined 

as the first derivative of Black-Scholes call option price with respect to the underlying 

                                                                                                                                            

strike. Likewise, 
i

K∆  for the highest strike is the difference between the highest strike and the next 

lower strike. 
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forward price: 
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Here *σ  is defined as the implied volatility with the strike price nearest to the 

forward price 0,TF  as *σ 5
. Taylor, Yadav and Zhang (2006) suggested to estimate 

the three parameters ( atmφ , rrφ  and strφ ) of volatility quadratic function by 

minimizing the following function: 

( )( )
2

1

ˆ ; , ,
N

i i i i atm rr str

i

w σ σ φ φ φ
=

− ∆∑ ,                   (23) 

where N  is the number of observed strike price that could be use to calculate delta 

i∆  that was given by equation (22), ( )1i i iw = ∆ − ∆  and its purpose is to reduce the 

impact of the away-the-money options. iσ  denotes the observed implied volatility 

corresponding the strike price iK  and ( )ˆ ; , ,i i atm rr strσ φ φ φ∆  is Malz’s (1997) 

volatility quadratic function in equation (21). 

 At least three different available strike prices of options are required to estimate 

the parameters of quadratic volatility function by minimizing equation (23). The 

constraints are placed on so that the volatility curve is always positive
6
. In addition, 

we also consider the no-arbitrage condition where the out-the-money call (put) price 

decreases as strike price increases (decreases). 

                                                 
5
 Taylor, Yadav, and Zhang (2006) followed Bliss and Panigirtzoglou (2002, 2004) look 

*σ  is a 

constant for a convenient one-to-one mapping between delta and the strike price. 
6

 We assume 0strφ >  to ensure the volatility curve we fitted is a convex function, and 

2 16 0rr atm strφ φ φ− <  for volatility curve is always positive. 
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 Afterwards we equally divide the 1000 parts covering the range from 0 to rT
e

− , 

then find the corresponding volatility on the volatility quadratic function. Finally, we 

fitted and obtain the one-to-one mapping strike price from the strike price’s inverse 

function of equation (22).  

 Now we can calculate the out-the-money option price which is required in 

equation (20) by Black-Scholes option pricing formula. We add 0.01 times of 0,TF  

continuously to the maximum strike price until the least put price is less than 0.001 

cents, and also extend the minimum strike price by the same increment, 0.01 times of 

0,TF  as well, while least call price is greater than 0.001 cents. The extrapolation 

method is used to eliminate the truncated error caused by the integral beyond the 

strike price range between the minimum and the maximum strike price and we 

assume that the extended implied volatilities are equal to appropriate end-point 

volatility of the quadratic function. 

 

3.3 Data Descriptions 

In this study, the option data used is from Ivy DB database of OptionMetrics and the 

high-frequency stock price data is from the Trade And Quotation (TAQ) database. Our 

sample period goes from January 4, 1999 through December 31, 2004 and includes 

1508 trading days. We use the CUSIP code to match the firms in Ivy DB database and 

in TAQ database. 

 The implied volatilities used to constrict volatility curves are obtained from the 

Ivy DB because the implied volatility provided by Ivy DB is considered the dividends 

and option exercised types. They set the theoretical option price equal to the midpoint 

of best closing bid price and best closing offer price, then they back out the implied 

volatility from Black-Scholes formula if the option is European; and from the 
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Cox-Ross-Rubinstein binomial tree model if the option is American. When 

constructing a volatility curve, each of the implied volatilities within the same trading 

day must map to a strike price for calculating corresponding delta. If it is available for 

both call and put option, the average value of the two implied volatilities is used. 

 The forward price 0,TF  is required for calculating the model-free implied 

volatility. It is the future value of spot stock price reduced by the present value of all 

the dividends before the maturity time, T, as follows: 

0, 0 0,

rT

T i

i

F S D e
 

= − 
 

∑ ,                      (24) 

where 0S  is the underlying spot price, 0,iD  is the i-st dividend whose ex-date are in 

the interval [0, T]. Both spot price and dividend distribution are included in the Ivy 

DB.  The sign r  denotes the risk-free interest rate that corresponds to each option’s 

expiration. It is obtained by linearly interpolating between the two closed zero-curve 

rates on the zero curve file provided by the Ivy DB, and each discount factor of 

dividends is obtained similarly.  

 The details for data filters from Ivy DB and TAQ database are described in the 

next two parts. 

 

3.4 Construction of the model-free and Black-Scholes implied volatility 

The stock options usually have the quotes with the maturities within 30 days, 60 days, 

120 days and 180 days in the marketplace. If either the options have less than eight 

days to maturity or with missing values of implied volatility are excluded from our 

data because the former may have liquidity and market microstructure problems and 

the latter can not be used to construct the volatility curve. 

 We know that at least three strike prices and their corresponding implied 

volatilities are required to construct the volatility curve in the foregoing section. The 
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data are picked for a certain day during our sample period if there are at least three 

available strike prices with the nearest maturity. Meanwhile, we switch to the second 

nearest maturity if available strikes are less than three with the nearest maturity. If the 

available strike prices are less than three with both the two nearest maturity, we treat 

our model-free implied volatility estimates and Black-Scholes implied volatility 

estimates as missing values for the certain day. We assume both model-free and 

Black-Scholes missing values are unchanged from the previous trading day
7
. 

 Following the previously mentioned rule, we search the all the firms in NYSE, 

NASDAQ and AMEX from January 4, 1999 to December 31, 2004, from the Ivy DB. 

The firms must be included in the whole sample period and the missing values for 

every firm must be less than 2 percent. A total of 481 firms stayed, we continue to 

find their intraday transaction prices from TAQ database. The data also must cover 

our sample period, with less than 2% of missing data, the same exchange and with 

active trades
8
. Finally, a total of 304 firms are included in this study. 

 The model-free implied volatility is calculated every day by the method 

described in Section 2.2. The Black-Scholes implied volatility is defined as the 

implied volatility provided by Ivy DB database whose strike price is closest to the 

forward price 0,TF .  

 The explanatory variables 
MF

σ  and 
BS

σ  for ARCH specifications denote the 

daily calculation of the model-fee implied volatility and the Black-Scholes implied 

volatility respectively, but for OLS regression, they represent the monthly 

non-overlapping
9
 forecasts. We extract the monthly non-overlapping forecasts from 

the daily model-free and the Black-Scholes series when the trading days of the 

                                                 
7
 Tow firms in our sample have missing values in the first trading day, we use the nearest volatility 

estimates after to substitute them. 
8
 See the details in Section 3. 2. 

9
 Christensen and Prabhala (1998) and Christensen, Hansen and Prabhala (2001) argued against the 

overlapping problems. 
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options follows pervious maturity date. In other words, the explained variables used in 

ARCH specifications are one-day-ahead estimations, and they used in OLS regression 

employ a forecast horizon equal to the option’s time to maturity; there are 1508 

observations for the daily volatility variables for 304 firms and at most 71 

observations for the monthly non-overlapping variables
10

. 

 Figure 1 plots daily Microsoft’s model-free implied and Black-Scholes implied 

volatility time series during our sample period. The two series have approximately the 

same tendency. The Black-Scholes volatility tends to be lower than the model-free 

volatility, it is because it only responds the near-the-money option’s behavior, but the 

model-free responds the volatilities of all the out-the-money options. 

3.5 Construction of the realized volatility 

Unlike stock return, volatility is a latent variable. The general measure for realized 

volatility is the standard deviation over the relevant return horizon, but the measure is 

restricted to calculate daily volatility when using daily return. Therefore, we also use 

high-frequency data to estimate the true latent volatility by summing the intraday 

squared returns, whose advantage is it contains more information content than daily 

data. 

 An important issue for high-frequency data is the microstructure noise that 

always comes along and the higher the frequency is, the more noise it contains. 

Aït-Sahalia, Mykland, and Zhang (2005) demonstrated that the selection of optimal 

sampling interval for calculating realized volatility is dependant on the amount of 

microstructure noise relative to the volatility horizon. In other words, if a longer 

volatility horizon, such as monthly volatility, is taken for analysis, then the longer 

                                                 
10

 The monthly observations begin in the volatility forecast with the horizon form January 19, 1999 

tough the expiration date, February 20, 1999, and end in the volatility forecast for the option trading in 

November 22, 2004 until expiration date December 18, 2004. There are 71 compete monthly 

observations in our sample period, but not all of firms have 71 monthly observations restricted by the 

option data with enough available strike prices. 
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sampling interval should be selected than the daily volatility. Hence, we select 

30-minute individual stock returns to calculate monthly realized volatility and 

5-minute individual stock returns to calculate daily realized volatility. This setting is 

consistent with Jiang and Tian (2005) for index volatility. 

 ABDE (2001) calculate daily realized volatility by using 5-minute returns of 30 

DJIA firms; we employ their empirical method to calculate our daily realized 

volatility estimates. We extract 5-minute transaction prices for the target firms which 

have been picked for calculating implied volatility from TAQ database in the period 

form 9:30 EST to 16:05 EST every trading day, and the transaction record’s exchange 

must be consistent with the option record’s exchange
11

. The 5-minute prices are taken 

at or immediately before the 5-mimute ticks except the first price, that we use is the 

price at 9:30 EST or immediately after 9:30 EST. There are a total of eighty 5-minute 

prices for each trading day and we can use them to get 79 logarithmic difference 

returns. In order to ensure our stocks are liquid enough to extract 5-minute transaction 

prices, the stocks we picked are at least 158 trades per day at the beginning, the 

middle, and the end of our sample period; the three days are respectively January 4, 

1999, January 2, 2002, and December 31, 2004. 

 The 30-minute returns are constructed similarly, and we also extract 10-minute, 

15-minute, and 20-minute intraday returns that all span through the period from 9:30 

EST to 16:05 EST. Table 1 presents the summary distributions of intraday returns for 

different time intervals. In Panel A, all of the intraday returns are not significant from 

zero, and their skewness is also close to zero, but they are extremely leptokurtic. 

Panel B provides their first to third order autocorrelations, and their autocorrelations 

are low and decrease as the time intervals rise, which implies that the longer time 

                                                 
11

 The transaction records for each firm have different price performances from different exchange, so 

we extract the transaction prices form the exchange where is primary exchange for our option data. 
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interval diminishes, the more microstructure noise there is. 

 After we construct intraday returns, the annualized realized volatility is measured 

by the following equation: 

(1) 2

, ,

1

251 n

RE t T i

i

rσ
τ =

= ∑ ,                         (25) 

where 
i

r  denotes the intraday stock return, τ  is the volatility relevant horizon, and 

n is the number of intraday returns form t to T. 

 Alternative measure for annualized realized volatility based on standard 

deviation of daily returns is: 

( )
2

(2)

, , ,

1

251
RE t T i t T

i

r r
τ

σ
τ =

= −∑ ,                      (26) 

where 
i

r  is the stock daily return and ,t T
r  is the average return during this period τ .

 The explanatory variable 
LRE

σ  for ARCH specifications and OLS regression 

analysis in the next section denotes the lagged daily realized volatility that is the 

realized volatility at time t-1 calculated by equation (25) with 5-minute returns. 

Following Jiang and Tian (2005), we adopted it for historical volatility proxy by 

assuming the volatility process is a Markov process. It contains the nearest 

information for forecasting future volatility. The (1)

RE
σ  and (2)

RE
σ  in OLS regression 

represent the monthly realized volatility measured by equation (25) with 30-minute 

returns and (26) with daily returns provided by Ivy DB. 

 Table 2 reports summary statistics of the realized volatilities calculated by 

different time interval returns. The distinction between Panel A and Panel B is the 

volatility horizons. The volatilities of Panel A are daily volatilities calculated by 

equation (25), and the volatilities of Panel B are monthly estimates by summing the 

daily volatilities during the corresponding option maturity period. Both of them are 
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annualized values. The distributions for different time intervals are similar, and the 

same tendency for both daily and monthly results is they both decrease as the time 

interval increases. This result implies the shorter time interval contains more 

information and more microstructure noises. 

 Table 3 provides the cross-sectional correlation matrices of daily and monthly 

realized volatility for different time intervals. We can see both the daily and monthly 

correlations are high, but the daily correlation for different time intervals is lower than 

the monthly correlation. That implies the time intervals influence the daily realized 

volatility estimation easier. Therefore, in the analysis of ARCH specifications in next 

section, we also report the results from the five different time intervals (5-, 10-, 15-, 

20- and 30-minute). 

 

4. Empirical methodology and Result 

4.1 Descriptive Statistics 

The summary statistics for all variables used in ARCH specifications and regression 

are reported in Table 4. Panel A provides summary statistics for the daily model-free 

implied volatility. The daily Black-Scholes at-the-money implied volatility and the 

difference between model-free and Black-Scholes implied volatility, the daily 

estimates are used in ARCH specification. Panel B presents the summary statistics for 

the monthly non-overlapping variables used in the OLS regression analysis, including 

the two kinds of realized volatility estimates are the model-free implied volatility, 

MF
σ , and the Black-Scholes implied volatility, 

BS
σ , and the lagged realized volatility 

LRE
σ . 

 As shown in Table 4, either daily or monthly model-free implied volatilities are 

higher than Black-Scholes implied volatilities. In Panel B, realized volatility that used 
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intraday returns is lower than the ones that used daily returns. It is because we ignored 

the overnight effect when estimating the realized volatility. Both the Black-Scholes 

and model-free implied volatilities are lager than realized volatility, which is known 

to be a downward biased measured of the risk-neutral expected variance for the 

Black-Scholes implied volatility and a positive bias by Jensen’s inequality
12

 for the 

model-free implied volatility. 

 Table 5 presents the cross-sectional mean and median values of the correlation 

matrices across 304 firms. The correlation matrix for each firm are calculated using 

the monthly non-overlapping volatilities. From the correlation matrix, we can find the 

Black-Scholes implied has the highest correlation and the lagged realized volatility 

has the lowest correlation, for both measurements of realized volatility despite the 

statistics, mean or median. Overall, the highest correlation is between the model-free 

and the Black-Scholes implied volatility. 

 

4.2 ARCH specifications 

4.2.1 Description of Model 

This model is combined with the models below: Glosten, Jagannathan, and Runkle 

(1993), Blair, Poon and Taylor (2001) and Taylor, Yadav and Zhang (2006). The 

general specification is as bellow: 

( )
1

1/ 2

2 2 22 2
, 1 , 1 , 11 1 1

,

, ~ . . . 0,1 ,

.
1 1 1 1

t t t

t t t t

MF t BS t RE tt t t
t

r

h z z i i d N

s
h

L L L Lγ δ λ

µ ε θε

ε

γσ δσ λσω αε α ε

β β β β

−

−
− − −− − −

= + +

=

+ +
= + + +

− − − −

          (27) 

Where the daily stock returns tr  is modeled by conditional mean µ , residuals tε , 

                                                 

12
 The Jensen’s inequality is as 

( ) ( )
2

0

0 20 0

, max 0,
2

T
Q t

t

C K T S KdS
E dK

S K

∞
  − −   ≤    
∫ ∫ . 
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and previous residuals 1t
ε −  with coefficient θ . The standard residuals 

t
z  assume 

the following as a standard normal distribution. L is the lag operator to capture the 

autocorrelation of conditional variance 
t

h . The conditional variance is described as 

four different explanations of volatility: 

(1)   The GJR(1,1) model in Glosten, Jagannathan, and Runkle (1993): 

Place restrictions on 0λ γ δλ β γ β δ β= = = = = = , and the conditional 

variances are as follows: 2 2

1 1 1 1t t t t t
h s hω αε α ε β−

− − − −= + + + ,  

where 1t
s −  is a dummy variable, it is 1 if 1 0

t
ε − <  and 0 otherwise. 

(2)   The volatility model only with explanations of model-free volatility alone: 

Place restrictions on 0λ δα α β λ β δ β−= = = = = = = , and the conditional 

variances are as follows: ( ) 2

, 1 11
t MF t t

h hγ γβ ω γσ β− −= − + + , 

where , 1MF t
σ −  is daily model-free implied volatility at period t-1, form 

dividing annualized volatility values by 251 . 

(3)   The volatility model only with explanations of Black-Scholes volatility alone: 

Place restrictions on 0λ γα α β λ β γ β−= = = = = = = , and the conditional 

variances are as follows, ( ) 2

, 1 11t BS t th hδ δβ ω δσ β− −= − + + , 

where , 1BS t
σ −  is daily Black-Scholes implied volatility at period t-1, from 

dividing annualized volatility values by 251 . 

(4)   The volatility model with explanations of lagged realized volatility alone: 

Place restrictions on 0γ δα α β γ β δ β−= = = = = = = , and the conditional 

variances are as follows, ( ) 2

, 1 11t RE t th hλ λβ ω λσ β− −= − + + , 

where lagged realized volatility, , 1LRE t
σ − , is daily realized volatility at period 
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t-1. 

 

4.2.2 Parameter Estimation 

The parameters are estimated by maximizing the quasi-log-likelihood function: 

( )
1

log
n

t

t

LLF l
=

− = Θ∑ ,                        (28) 

with 

( ) ( ) ( )( ) ( )21
log 2 log

2
t t t

l h zπ Θ = − + Θ + Θ  . 

Where Θ  presents a set of the parameters in the ARCH specifications, this method 

of estimation assumes that the standardized returns 
t

z  follow the standard normal 

distribution. We set the restrictions on the parameter to guarantee the positive 

conditional variances
13

. 

 Table 6 presents the summary statistics of parameter estimates from the four 

ARCH specifications defined in equation (27). Mean, Med, Lq, and Uq are the mean, 

median, lower quartile and upper quartile respectively for each estimates across 304 

firms. Panel A provides the estimates for GJR(1,1)-MA(1) model. Panel B and Panel 

C provide the values estimated by the model-free implied volatility and Black-Scholes 

implied volatility respectively. Panel D provides the values estimated by the realized 

volatilities form different time interval returns. Numbers in the last two rows for each 

panel are the percentages of estimates that are significantly different from zero at the 

5% and 10% significant levels. 

 The first model is the GJR model, which describes the conditional volatility as 

asymmetry by α  and α −  for positive and negative residuals respectively. The 

estimates of α  and α −  are not significantly different from zero at 5% level for the 

                                                 
13

 We follow Taylor et al. (2006), the constraints are 0ω > , 0α ≥ , 0a a
−+ ≥ , 0β ≥ , 

0λβ ≥ , 0γβ ≥ , and 0δβ ≥ . 
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mass of firms. This is probable that the asymmetric volatility model can not describe 

the volatility well. The median of the volatility persistence parameter 0.5α α β−+ +  

equals to 0.996. 

 The second model only use the information proved by time series of model-free 

implied volatility. We use one-day-ahead model-free volatility, , 1MF t
σ − , to calculate 

the conditional variances. For half of the firms, the estimates of γ  are between 0.55 

and 0.71; 67.7 percent of firms have estimates γ  that are significantly different from 

zero at 5% level. In contrast, only 29.9 percent of firms have estimates γβ  are 

significantly different from zero at the same level. This suggests that the conditional 

variance calculated from the model-free implied volatility is provided mainly by 

, 1MF t
σ −  and the information provided by older implied volatility is limited. 

 The third model uses only the information contained in the time series of 

Black-Scholes implied volatility, , 1BS t
σ − , to calculate the conditional variances. For 

half of the firms, the estimates of δ  are between 0.6 and 0.9 and 71 percent of δ  

are significantly different from zero at 5% level. Generally speaking, δ  exceeds γ  

and δβ  is less than γβ . 

 The fourth model uses only the lagged realized volatility with five different time 

interval returns: 5-minute, 10-minute, 15-minute, 20-minute and 30-minute. λ  tends 

to increase and λβ  tends to decrease as time intervals rises. Around seventy percents 

of λ  are significantly different from zero at 5% level for each time intervals but the 

numbers of λβ  are significantly different from zero at 5% increase with time 

intervals. 

 The weight in conditional variance for the second, third and fourth model are 
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respectively defined by 
1 γ

γ

β−
, 

1 δ

δ

β−
 and 

1 λ

λ

β−
. These values indicate the 

degree of information content contained in each model. We can find 
1 λ

λ

β−
 is higher 

than 
1 γ

γ

β−
 and 

1 δ

δ

β−
 regardless of time intervals and 

1 γ

γ

β−
 is the least for the 

majority of 304 firms in Table 6.  

 Figure 2 respectively shows the relation between 
1 γ

γ

β−
 and 

1 δ

δ

β−
 in Panel A, 

the relation between 
1 γ

γ

β−
 and 

1 λ

λ

β−
 in Panel B and the relation between 

1 δ

δ

β−
 

and 
1 λ

λ

β−
 in Panel B for 304 firms in our sample. The scatter diagram slants toward 

Black-Scholes axis in Panel A, only one point drops above the 45-degree line. The 

scatter diagram slants toward Realized axis with 268 firms in Panel B. Finally, there 

are 208 firms with the larger weight values for Realized volatility in Panel C. This 

result implies the lagged realized volatility contains the most information in all of 

volatility estimates. 

 

4.2.3 Model Fitting 

Here we use log-likelihood function values to judge the performance of each model. A 

higher log-likelihood value indicates a higher responsibility for the model fitting. The 

first column in Panel A of Table 8 shows the percentage of log-likelihood values order 

across all the firms. The percentage for each row presents how many of the firms 

including in the six probable outcomes. 

 First, we decide what explanatory variable is our historical volatility. The 

log-likelihood values for lagged realized volatility are close for each time intervals. 

However, 35.5% of firms have highest log-likelihood values for 5-minute interval and 

21.1%, 17.4%, 11.5% and 14.5% for 10-, 15-, 20- and 30-minute interval respectively. 

Therefore, we take the 5-minute realized volatility to represent our lagged realized 
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volatility. Then we compare the performance of this lagged realized volatility with the 

conditional volatility under GJR model; 88.5 percent of firms have larger 

log-likelihood value in lagged realized volatility model. Thus we use lagged realized 

volatility for our explanatory variable of historical volatility. 
LRE

L , 
MF

L  and 
BS

L  

denote the log-likelihood value under the 5-minute lagged realized volatility model, 

the model-free implied volatility model and the Black-Scholes implied volatility 

model respectively. 

 More than a half the firms have a log-likelihood value, 
LRE

L , which is higher 

than 
MF

L  and 
BS

L  and only 14.8% and 31.3% of firms have highest 
MF

L  and 
BS

L  

respectively. This result suggests the lagged realized volatility calculating by 5-minute 

returns is the superior estimate for predicting 

 

4.3 OLS regression 

4.3.1 Description of Model 

Following Canina and Figlewski (1993), Christensen and Prabhala (1998), Jiang and 

Tian (2005) and Taylor et al. (2006), we apply univariate and encompassing 

regression to inspect the information content from different volatility explanatory 

variables. While the univariate regressions here is used to judge the model 

explanations provided by the single volatility explanatory variable we also use it to 

compare the forecasting abilities with different individual volatility explanatory 

variables. The encompassing regression addresses the relative importance of 

competing volatility expectation variables and implies the marginal contribution when 

new expectation variables are included in the model. 

 The regression model is as follows: 

, , , , , , , , ,RE t T LRE LRE t T MF MF t T BS BS t T t T
σ α β σ β σ β σ ε= + + + + ,          (29) 
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where , ,RE t T
σ  is some measure of the monthly realized volatility form time t to time 

T. The lagged realized volatility , ,LRE t T
σ  is our explanatory variable for historical 

volatility, , ,MF t T
σ , and , ,BS t T

σ  are non-overlapping model-free implied volatility and 

Black-Scholes implied volatility respectively. All of the variables here are annualized 

values. 

 

4.3.2 Parameter Estimation and Explanation Performance 

Table 7 presents summary statistics for the parameter estimates, adjusted R-square, 

mean square errors (MSE) and Durbin-Watson statistics across 304 firms. Med, Lq, 

and Uq are the median, lower quartile and upper quartile respectively for each 

estimates across 304 firms. Numbers in the parentheses are the number of firms 

whose coefficient estimates are significantly different from zero at the 5% and 10% 

significant level. 

 The first part of Panel A is the univariate regression with explained variable, 

(1)

RE
σ , which is measured by 30-minute intraday returns. Almost all firms the estimates 

for 
LRE

β , 
MF

β  and
MF

β  are significantly different from zeros. The median of them 

are 0.50, 0.78 and 0.86 respectively. From the median of adjusted R-square, the value 

of Black-Scholes is the highest (0.55) and the value of model-free is slightly lower 

(0.53) and the value of lagged realized volatility is only 0.39. This evidence refers the 

Black-Scholes implied volatility contains more information than one-day-ahead 

estimation of realized volatility. 

 We continue discussing the encompassing regression with two different variables 

in Panel A. When the lagged realized volatility variable, , ,LRE t T
σ , is added into the 

univariate model of the model-free and the Black-Scholes, both models increase 5% 
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in responsibility. For the majority of firms, the coefficients of them are both 

significantly different from zeros. However, when the bivariate regression model 

includes , ,MF t T
σ  and , ,BS t T

σ  at the same time, only 15.8% of firms whose
MF

β  are 

significantly different form zeros and the increments of adjusted R-square from 

univariate model with , ,MF t T
σ and univariate model with , ,BS t T

σ  are both small. This 

result can be explained by the high correlation between the model-free implied 

volatility and the Black-Scholes implied volatility in Table 3. 

 The last model includes all of these three explanatory variables, , ,LRE t T
σ , , ,MF t T

σ  

and , ,BS t T
σ . The median of adjusted R-square is 0.6 and only 38 firms whose incepts 

MF
β  are significantly different form zeros; 118 firms whose incept

BS
β  are 

significantly different form zeros. This could be due to the two implied volatility 

contain similar information. The medians of 
LRE

β , 
MF

β  and 
BS

β  are 0.19, 0.12 and 

0.47 which suggests the Black-Scholes volatility is the most informative one. 

 The explained variable of Panel B is monthly non-overlapping realized volatility, 

(2)

RE
σ , measured by daily returns. The result is similar to Panel A, but the adjusted 

R-square values and the firms that are significantly different from zero are all less 

than Panel A. The result is released by the lower correlation between (2)

RE
σ  and other 

variables. 

 Most of the Durbin-Watson statistics are not small enough to reject the null 

hypothesis that the regression residuals are correlated. Therefore, there is no 

autocorrelation problem in our analysis. 

 Panel B of Table 8 presents the performance of each variable in univariate 

regression with explained variable, (1)

RE
σ . The results refer that the Black-Scholes is 
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the best estimate for 61.8% of our firms to forecast the monthly realized volatility in 

the horizon relevant option’s life. We also consider changing those volatility variables 

to their logarithms and their variances, the performances under variance and logarithm 

regression models are similar to Table 8 for each explanatory variable. The 

Black-Scholes implied volatility is best estimate for 63.8% of the 304 firms when the 

volatility variables change to their logarithm and for 59.2% of the 304 firms when the 

volatilities are replaced by their variances. The results are shown in Appendix B. 

 

4.4 Comparisons of the performance 

4.4.1 Comparison for groups defined by average available strike prices  

We already know that 
LRE

σ  performs best in one-day-ahead estimation and 
BS

σ  

performs best in monthly volatility forecast. We continue considering whether the 

performance under different groups is the same or not. Figure 2 shows the average 

available strikes for the 304 firms. Average strike numbers of most of firms are 

between 4 and 6. As a firm has more available strikes, the option prices are possibly 

more efficient so that the model-free implied volatility and Black-Scholes implied 

volatility should perform better than lagged realized volatility. 

 Hence, we allocate 304 firms into 3 groups by average number of available strike 

price, 
i

N . Group 1 (with 40 firms; n=40) includes the firms with 
i

N  between 3 and 

4.Group 2 (n=101) includes the firms with 
i

N  between 4 and 5. Group 3 (n=163) 

includes the firms with 
i

N  higher than 5. The resorted results are showed in the 

second, third and fourth columns of Table 8. 

 After dividing all firms into three groups, we find the best performance of the 

lagged realized volatility decreases from 85% to 40%, the best performance of the 

model-free implied volatility increases from 5% to 18% and the best performance of 
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the Black-Sholes implied volatility increases from 10% to 42% in Panel A. The null 

hypothesis that there is no relationship between the performance of ARCH model and 

these three groups is rejected by 3×3 contingency table test at the 5% significant level, 

with chi-square value 33.26. Similar tendencies for adjusted R-square after grouping 

is showed in Panel B. The contingency table test with chi-square value 27.29 tells us 

the tendencies are also significant. 

 

4.4.2 Comparison for groups defined by intermediate delta options  

In Malz’s (1997) study, the 0.25-, 0.5- and 0.75-delat options anchor the volatility 

curve and their relation between the three parameters of the quadratic volatility. If the 

option delta is outside the range of 0.15 to 0.85, the price could be bias, so we use the 

number of intermediate delta options to group our firms. 

 The 304 firms are divided into 3 groups by average number of delta values 

within the interval [0.15, 0.85], that are denoted 
i

D . Group 1 (n=85) contains the 

firms with 
i

D  between 1 and 2.Group 2 (n=137) includes the firms with 
i

D  

between 2 and 3. Group 3 (n=82) includes the firms with 
i

D  higher than 3. 

 The results are provided in the last three columns of Table 8. The tendencies for 

the log-likelihood values of three models are similar to the tendencies under the 

groups by strikes. The chi-square value is 64.81, which indicates the tendencies are 

more distinguishable. Although the chi-square statistic is statistically significant 

(28.16) in Panel B, the adjusted R-square for the model-free implied volatility does 

not increase. This refers the number of intermediate delta could not be the main 

reason to explain the adjusted R-square of model-free implied volatility is lower than 

the Black-Scholes implied volatility for the majority of our firms. 
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5. Conclusions 

In this paper, we first generalized the model-free implied volatility model derived by 

Jiang and Tian (2005). We then use individual stock option data to compare the 

forecasting performance under various volatility measures. We find the realized 

volatility measured by 5-minute intraday returns outperforms GJR conditional 

volatility and the other two implied volatilities for one-day-ahead estimation. In 

addition, the ARCH model indirectly indicates the five-minute return is the optimal 

frequency for calculating the realized volatility. However, the realized volatility 

becomes a bad estimate for predicting the monthly volatility during the option 

maturity time. We find the Black-Scholes at-the-money implied volatility has the 

highest responsibility across our firms. In the regression analysis, the Black-Scholes 

implied volatility has more information for more than sixty percent of our firms. 

 Theoretically, the model-free implied volatility should be a better estimate than 

the Black-Scholes implied volatility. Jiang and Tian (2005) reported that the 

Model-free implied volatility contains the most information content. Carr and Wu 

(2006) found the new VIX could predict movement in future realized volatility and it 

contains all the information of GARCH volatilities, but Taylor, Yadav and Zhang 

(2006) demonstrated the Black-Scholes implied volatility performed best for monthly 

volatility forecasting, which is similar to our result. 

 The forecasting ability of model-free implied volatility is weaker than the 

Black-Schloes implied volatility for individual stocks no matter what the prediction 

horizons are. It brings us to a couple conclusions. First, the rare available strike prices 

for individual stocks would induce fitting error easily. Second, the method volatility 

curve fitting could be biased and we discussed the issue in Appendix C. Third, the 

option market for individual stocks is not informationally efficient because of illiquid 
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trading. Finally, the out-the-money options are mispriced and the model-free implied 

volatility exactly extracts the error information form the out-the-money options. 
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Figure 1 The model-free and Black-Scholes implied volatility time series plots for 

Microsoft 
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This figure plots the time series of daily model-free implied volatility and daily Black-Scholes implied 

volatility during the period from from January 4, 1999 to December 31, 2004 for Microsoft. 
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Figure 2 Comparison of the estimated weight values of model-free (
1 γ

γ

β−
), 

Black-scholes (
1 δ

δ

β−
) and realized (

1 λ

λ

β−
) for 304 firms 
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This scatter diagram shows the relation between 
1 δ

δ

β−
 and 

1 γ

γ

β−
 for each firm. The x-axis 

presents the weight of information content provided by one-day-ahead Black-Scholes implied volatility. 

The y-axis presents the weight of information content provided by one-day-ahead model-free implied 

volatility. 
1 γ

γ

β−
, 

1 δ

δ

β−
 and 

1 λ

λ

β−
 are estimated by the ARCH specification models using the 

information provided by the model-free implied volatility only, the Black-Scholes implied volatility 

only and the 5-minute realized volatility only respectively. The straight line is the 45-degree line. 
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Panel B 
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The plot shows the relation between 
1 λ

λ

β−
 and 

1 γ

γ

β−
 for 304 firms. The x-axis presents the 

weight of information content provided by one-day-ahead realized volatility. The y-axis presents the 

weight of information content provided by one-day-ahead model-free implied volatility. The straight 

line is the 45-degree line. 
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Panel C 
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The plot shows the relation between 
1 δ

δ

β−
 and 

1 λ

λ

β−
 for 304 firms. The x-axis presents the 

weight of information content provided by one-day-ahead Black-Scholes implied volatility. The y-axis 

presents the weight of information content provided by one-day-ahead realized volatility. The straight 

line is the 45-degree line. 
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Figure 3 The average number of daily available strike prices for 304 firms 
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This histogram shows the distribution of average number of daily available strike prices for 304 firms. 
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Table 1 Summary distributions of intraday returns for different time intervals 

 

Panel A: summary distributions for different time intervals intraday returns 

 Mean (×10
5
) Std. Dev. Skew. Kurt. 

 Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq 

5-minute Ret. 0.137 0.270 -0.236 0.819 0.003 0.002 0.002 0.004 0.065 0.055 -0.030 0.167 25.256 19.485 13.852 33.102 

10-minute Ret. 0.110 0.280 -0.974 1.499 0.004 0.003 0.003 0.005 0.062 0.099 -0.053 0.208 22.313 15.428 11.960 23.336 

15-minute Ret. 0.165 0.420 -1.461 2.249 0.005 0.004 0.004 0.006 0.036 0.086 -0.061 0.214 19.286 14.393 11.092 19.177 

20-minute Ret. -0.531 -0.058 -3.054 2.529 0.006 0.005 0.004 0.007 0.017 0.083 -0.072 0.209 19.460 13.330 10.927 19.311 

30-minute Ret. 0.330 0.839 -2.923 4.498 0.007 0.006 0.005 0.008 0.000 0.080 -0.094 0.207 17.227 12.278 10.184 17.586 

Panel B: summary statistics for first- to third-order autocorrelation for different time intervals intraday returns  

 First-order autocorrelation Second-order autocorrelation Third-order autocorrelation  

 Min Lq Med Uq Max Min Lq Med Uq Max Min Lq Med Uq Max  

5-minute Ret. -0.183 -0.087 -0.036 0.002 0.063 -0.060 -0.016 -0.006 0.001 0.020 -0.033 -0.007 -0.001 0.006 0.019  

10-minute Ret. -0.170 -0.059 -0.028 0.000 0.053 -0.041 -0.010 0.000 0.008 0.032 -0.022 0.000 0.005 0.011 0.032  

15-minute Ret. -0.168 -0.043 -0.020 0.001 0.068 -0.042 -0.004 0.005 0.014 0.037 -0.024 -0.005 0.002 0.009 0.075  

20-minute Ret. -0.172 -0.034 -0.009 0.014 0.075 -0.040 -0.004 0.005 0.013 0.083 -0.031 -0.007 0.001 0.008 0.032  

30-minute Ret. -0.159 -0.026 -0.003 0.017 0.082 -0.038 -0.006 0.001 0.010 0.078 -0.033 -0.010 -0.002 0.004 0.040  

 
Panel A presents summary descriptive statistics, mean, standard deviation, skewness and kurtosis, for a cross-section of 304 firms. Panel B provides the summary statistics for 

first-, second- and third-order autocorrelation cross 304 firms. Mean, Med, Lq, Uq, Max and Min are respectively the mean, median, lower quartile, upper quartile, maximum 

and minimum for each statistic of intraday returns across 304 firms. The 5-minute Ret. denotes the intraday returns measured by five-minute interval prices, and so are the 

others. 
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Table 2 Summary statistics of realized volatility estimates for different time intervals 

 

 Mean Std. Dev. Max Min 

 Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq 

Panel A : summary statistics for daily realized volatility for different time intervals 
(5 )m

RE
σ  0.384 0.323 0.281 0.457 0.184 0.150 0.121 0.223 1.865 1.472 1.075 2.602 0.089 0.082 0.069 0.107 

(10 )m

RE
σ  0.368 0.313 0.271 0.436 0.182 0.151 0.124 0.217 1.872 1.513 1.127 2.416 0.078 0.072 0.060 0.093 

(15 )m

RE
σ  0.360 0.308 0.268 0.422 0.184 0.155 0.128 0.219 1.896 1.547 1.169 2.408 0.071 0.064 0.053 0.085 

(20 )m

RE
σ  0.350 0.302 0.263 0.402 0.185 0.156 0.131 0.220 1.939 1.614 1.182 2.475 0.063 0.059 0.046 0.077 

(30 )m

RE
σ  0.349 0.301 0.260 0.399 0.192 0.160 0.136 0.228 2.012 1.677 1.245 2.436 0.054 0.049 0.039 0.066 

Panel B : summary statistics for monthly realized volatility for different time intervals 
(5 )m

RE
σ  0.402 0.335 0.292 0.479 0.145 0.119 0.095 0.174 0.821 0.678 0.551 0.994 0.186 0.160 0.134 0.224 

(10 )m

RE
σ  0.388 0.327 0.286 0.456 0.139 0.116 0.095 0.166 0.795 0.660 0.545 0.960 0.180 0.157 0.133 0.217 

(15 )m

RE
σ  0.382 0.326 0.283 0.444 0.137 0.115 0.095 0.164 0.785 0.654 0.539 0.954 0.177 0.156 0.132 0.213 

(20 )m

RE
σ  0.373 0.320 0.279 0.434 0.135 0.114 0.094 0.162 0.777 0.653 0.532 0.957 0.172 0.154 0.126 0.204 

(30 )m

RE
σ  0.375 0.323 0.281 0.437 0.136 0.114 0.094 0.165 0.787 0.656 0.541 0.954 0.171 0.152 0.127 0.206 

 
The table presents summary statistics, mean, standard deviation, maximum and minimum, for a cross-section of 304 firms. Med, Lq, and Uq are the median, lower quartile 

and upper quartile respectively for each statistics of realized volatilities across 304 firms. Panel A provides daily realized volatilities for different time intervals and Panel B 

provides monthly non-overlapping realized volatilities for different time intervals. 
(5 )m

RE
σ  denotes the realized volatility measured by five-minute returns, and so are the 

others. 
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Table 3 Summary statistics of the correlation matrices 

 

 Mean Med 

 (5 )m

RE
σ  (10 )m

RE
σ  (15 )m

RE
σ  (20 )m

RE
σ  (30 )m

RE
σ  (5 )m

RE
σ  (10 )m

RE
σ  (15 )m

RE
σ  (20 )m

RE
σ  (30 )m

RE
σ  

Panel A: correlation matrix of daily realized volatility for different time intervals 

(5 )m

RE
σ  1.000     1.000     

(10 )m

RE
σ  0.954 1.000    0.959 1.000    

(15 )m

RE
σ  0.921 0.941 1.000   0.924 0.943 1.000   

(20 )m

RE
σ  0.893 0.938 0.928 1.000  0.896 0.940 0.930 1.000  

(30 )m

RE
σ  0.853 0.898 0.928 0.918 1.000 0.856 0.899 0.929 0.919 1.000 

Panel B: correlation matrix of monthly realized volatility for different time intervals 

(5 )m

RE
σ  1.000     1.000     

(10 )m

RE
σ  0.989 1.000    0.992 1.000    

(15 )m

RE
σ  0.981 0.990 1.000   0.984 0.992 1.000   

(20 )m

RE
σ  0.973 0.988 0.988 1.000  0.978 0.990 0.990 1.000  

(30 )m

RE
σ  0.961 0.978 0.986 0.985 1.000 0.967 0.981 0.988 0.988 1.000 

 
The table presents the cross-sectional mean and median of the correlation matrices for 304 firms in our 

sample. The correlation matrix for each firm are calculated using the daily realized volatility in Panel A 

and the monthly non-overlapping realized volatilities in Panel B. 
(5 )m

RE
σ  denotes the realized volatility 

measured by five-minute returns, and so are the others. 
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Table 4 Summary statistics of volatility estimates 

 

 Mean Std Dev Max Min 

 Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq Mean Med Lq Uq 

Panel A : summary statistics for daily measures of model-free volatility and B-S implied volatility 

MF
σ  0.492 0.448 0.380 0.581 0.148 0.133 0.107 0.183 1.293 1.127 0.913 1.553 0.234 0.212 0.179 0.281 

BS
σ  0.434 0.388 0.326 0.510 0.129 0.115 0.089 0.160 0.980 0.848 0.695 1.178 0.201 0.186 0.149 0.246 

MF BS
σ σ−  0.058 0.053 0.044 0.069 0.049 0.047 0.037 0.057 0.496 0.441 0.335 0.608 -0.043 -0.032 -0.047 -0.021 

Panel B : summary statistics for monthly non-overlapping volatility estimates 

(1)

RE
σ  0.375 0.323 0.281 0.437 0.136 0.114 0.094 0.165 0.787 0.656 0.541 0.954 0.171 0.152 0.127 0.206 

(2)

RE
σ  0.401 0.352 0.298 0.472 0.172 0.149 0.122 0.214 0.997 0.867 0.709 1.233 0.150 0.140 0.108 0.180 

MF
σ  0.487 0.441 0.374 0.578 0.141 0.129 0.099 0.173 0.914 0.839 0.664 1.107 0.265 0.245 0.203 0.319 

BS
σ  0.437 0.393 0.329 0.516 0.126 0.111 0.088 0.155 0.777 0.701 0.572 0.938 0.234 0.213 0.174 0.285 

LRE
σ  0.384 0.322 0.277 0.470 0.188 0.154 0.125 0.239 1.120 0.923 0.722 1.428 0.139 0.125 0.102 0.163 

 
The table presents summary statistics, mean, standard deviation, maximum and minimum, for a cross-section of 304 firms. Mean, Med, Lq, and Uq are the mean, median, 

lower quartile and upper quartile respectively for each statistics across 304 firms selected in our sample. 
MF

σ , 
BS

σ , and 
MF BS

σ σ−  are the daily model-free implied 

volatility, the daily Black-Scholes implied volatility, and the difference between these two implied volatilities in Panel A. 
(1)

RE
σ , 

(2)

RE
σ , 

MF
σ , 

BS
σ  and 

LRE
σ  are the 

monthly non-overlapping volatilities for the realized volatility measured by intraday data, the realized volatility measured by daily data, the model-free implied volatility, the 

Black-Scholes implied volatility and the lagged realized volatility respectively in Panel B. 

 

 

 



 

 41 

Table 5 Summary statistics of the correlation matrices 

 

 Mean Med 

 (1)

RE
σ  (2)

RE
σ  MF

σ  
BS

σ  
LRE

σ  (1)

RE
σ  (2)

RE
σ  MF

σ  
BS

σ  
LRE

σ  

(1)

RE
σ  1.000     1.000     

(2)

RE
σ  0.832 1.000    0.855 1.000    

MF
σ  0.708 0.610 1.000   0.727 0.624 1.000   

BS
σ  0.724 0.621 0.946 1.000  0.744 0.629 0.959 1.000  

LRE
σ  0.619 0.519 0.626 0.636 1.000 0.632 0.535 0.642 0.661 1.000 

 
The table presents the cross-sectional mean and median of the correlation matrices across 304 firms. The correlation matrix for each firm are calculated using the monthly 

non-overlapping volatilities. 
(1)

RE
σ , 

(2)

RE
σ , 

MF
σ , 

BS
σ  and 

LRE
σ  denote these monthly non-overlapping volatilities for the realized volatility measured by intraday data, 

the realized volatility measured by daily data, the model-free implied volatility, the Black-Scholes implied volatility and the lagged realized volatility respectively. 
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Table 6 Summary statistics of ARCH parameter estimates across 304 firms 

 

Parameters  310µ ×  θ  510ω ×     α  α −  β  γ  γβ  δ  δβ  0.5α α β−+ +  
1 γ

γ

β−
 

1 δ

δ

β−
 Log-LLF 

Panel A : estimates of GJR(1,1)-MA(1) model 

 Med 0.613 -0.010 0.524 0.024 0.063 0.936     0.996   3562.661 

 Lq 0.335 -0.046 0.164 0.012 0.036 0.881     0.981   3141.519 

 Uq 0.938 0.019 1.910 0.051 0.101 0.957     0.999   3830.701 

 At 5% 12.17% 16.12% 11.84% 25.33% 42.11% 93.42%         

 At 10% 24.67% 26.64% 22.37% 37.83% 57.57% 93.42%         

Panel B : estimates of ARCH specification that use model-free volatility only 

 Med 0.513 -0.008 0.000    0.554 0.114    0.704  3580.954 

 Lq 0.246 -0.038 0.000    0.304 0.000    0.625  3163.395 

 Uq 0.790 0.023 0.199    0.714 0.516    0.775  3827.611 

 At 5% 7.57% 16.45% 5.59%    67.76% 29.93%       

 At 10% 13.82% 24.01% 7.24%    76.32% 32.24%       

Panel C : estimates of ARCH specification that use B-S volatility only 

 Med 0.519 -0.009 0.000      0.806 0.015   0.900 3580.899 

 Lq 0.276 -0.039 0.000      0.598 0.000   0.822 3157.200 

 Uq 0.785 0.021 1.066      0.906 0.293   0.973 3842.263 

 At 5% 7.57% 14.80% 3.95%      71.05% 18.09%     

 At 10% 13.82% 24.01% 6.58%      78.29% 20.07%     

The table presents summary statistics for parameter estimates, the persistence ( 0.5α α β−+ + ) and log-likelihood function of each model across 304 firms. Mean, Med, Lq, 

and Uq are the mean, median, lower quartile and upper quartile respectively for each estimates across 304 firms. Panel A provides the estimates for GJR(1,1)-MA(1) model; 

Panel B and Panel C provide the values estimated by the model-free implied volatility and Black-Scholes implied volatility respectively. 
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Parameters 310µ ×  θ  510ω ×     λ  λβ  
1 λ

λ

β−
 Log-LLF  310µ ×  θ  510ω ×     λ     λβ  

1 λ

λ

β−
 Log-LLF 

Panel D : estimates of ARCH specification that use lag realized volatility from different time intervals 

Med 0.507 -0.006 5.865 0.373 0.629 1.035 3582.988 0.525 -0.007 6.121 0.260 0.754 1.158 3572.717 

Lq 0.223 -0.037 1.667 0.190 0.460 0.832 3162.487 0.255 -0.033 1.837 0.145 0.646 0.978 3139.903 

Uq 0.806 0.022 13.278 0.564 0.778 1.233 3857.484 0.826 0.022 13.147 0.417 0.870 1.304 3844.834 

At 5% 8.22% 16.78% 39.80% 69.74% 75.99%   8.88% 17.11% 36.84% 71.38 % 92.11%   

(5 )m

RE
σ  

At 10% 15.79% 24.34% 49.34 % 81.91% 81.58 %   

(20 )m

RE
σ  

16.45 % 23.03 % 46.38 % 82.24% 93.42%   

Med 0.500 -0.005 5.462 0.324 0.696 1.093 3586.830 0.529 -0.005 5.486 0.225 0.786 1.134 3560.852 

Lq 0.245 -0.036 1.329 0.178 0.563 0.914 3161.302 0.262 -0.034 1.984 0.137 0.703 0.976 3137.262 

Uq 0.802 0.024 12.648 0.476 0.820 1.255 3854.975 0.853 0.023 12.660 0.341 0.873 1.270 3843.761 

At 5% 8.88% 17.11 % 39.14% 68.42% 84.54%   8.22% 17.11 % 35.53% 69.74 % 93.75%   

(10 )m

RE
σ  

At 10% 16.45 % 25.00% 48.03 % 81.91% 88.16 %   

(30 )m

RE
σ  

15.79 % 22.37% 43.75 % 80.59% 97.04%   

Med 0.510 -0.004 5.585 0.286 0.739 1.119 3585.219        

Lq 0.251 -0.034 1.717 0.160 0.615 0.958 3154.368        

Uq 0.815 0.024 12.461 0.432 0.849 1.260 3853.077        

At 5% 8.22% 16.78 % 34.87% 72.37 % 89.47%          

(15 )m

RE
σ  

At 10% 15.13 % 24.67% 43.09% 81.58% 91.45%   

 

       

Panel D provides the values estimated by the realized volatilities for different time intervals. Numbers in the last two rows for each panel are the percentages of estimates that 

are significantly different from zero at the 5% and 10% significant levels. 

The general specification of ARCH model is as follows: 

1,t t t
r µ ε θε −= + +   

1/ 2 ,
t t t

h zε =   ( )~ . . . 0,1 ,tz i i d N   

2 2 22 2
, 1 , 1 , 11 1 1 ,

1 1 1 1

MF t BS t RE tt t t
t

s
h

L L L Lγ δ λ

γσ δσ λσω αε α ε

β β β β

−
− − −− − −+ +

= + + +
− − − −

 
t

s  is 1 if 
t

ε  is negative, otherwise it is 

zero. 
MF

σ  and 
BS

σ  denote the model-free implied volatility and the Black-Scholes implied volatility and the lagged realized volatility respectively. 
(5 )m

RE
σ  denotes the 

realized volatility measured by five-minute returns, and so are the others. 
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Table 7 Summary statistics of estimates for univariate regression across 304 firms 

 

α  LRE
β  

MF
β  

BS
β  Ad. R square MSE Durbin-Watson 

Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq 

Panel A: Realized volatility is calculated using high-frequency data 

0.179 0.137 0.243 0.464 0.361 0.576       0.389 0.281 0.487 0.008 0.005 0.017 1.512 1.351 1.716 

(302/303) (304/304)                

0.029 -0.008 0.074    0.706 0.583 0.793    0.526 0.404 0.620 0.006 0.004 0.013 1.613 1.401 1.803 

(80/104)    (302/303)             

0.019 -0.011 0.057       0.797 0.687 0.896 0.551 0.444 0.640 0.006 0.004 0.011 1.637 1.388 1.834 

(58/79)       (303/303)          

0.034 0.001 0.064 0.206 0.115 0.287 0.525 0.405 0.652    0.582 0.483 0.661 0.005 0.004 0.011 1.797 1.647 1.917 

(74/93) (201/222) (299/300)             

0.024 -0.005 0.054 0.191 0.090 0.271    0.613 0.506 0.745 0.595 0.498 0.674 0.005 0.004 0.011 1.806 1.638 1.931 

(58/79) (183/208)    (298/300)          

0.016 -0.018 0.054    0.154 -0.076 0.396 0.606 0.348 0.885 0.558 0.454 0.640 0.006 0.004 0.011 1.648 1.437 1.837 

 (50/75)     (48/75) (156/186)          

0.022 -0.010 0.051 0.188 0.092 0.267 0.116 -0.115 0.305 0.469 0.230 0.763 0.604 0.507 0.679 0.005 0.004 0.011 1.810 1.655 1.903 

(53/79) (182/203) (38/57) (118/144)          
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α  LRE
β  

MF
β  

BS
β  Ad. R square MSE Durbin-Watson 

Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq Med Lq Uq 

Panel B: Realized volatility is calculated using daily returns 

0.193 0.141 0.277 0.501 0.359 0.637       0.283 0.167 0.384 0.016 0.011 0.033 1.735 1.550 1.878 

(296/298) (296/299)                

0.024 -0.021 0.078    0.777 0.618 0.890    0.382 0.265 0.501 0.013 0.009 0.026 1.797 1.671 1.895 

(46/69)    (301/302)             

0.016 -0.021 0.062       0.864 0.749 0.989 0.388 0.298 0.517 0.013 0.009 0.026 1.816 1.663 1.909 

(30/51)       (303/303)          

0.026 -0.010 0.075 0.192 0.083 0.312 0.589 0.424 0.753    0.420 0.316 0.540 0.013 0.008 0.026 1.822 1.709 1.913 

(44/67) (127/157) (275/285)             

0.020 -0.019 0.064 0.176 0.065 0.303    0.700 0.500 0.857 0.424 0.327 0.542 0.012 0.008 0.025 1.836 1.706 1.929 

(37/57) (120/142)    (276/289)          

0.010 -0.026 0.059    0.234 -0.069 0.511 0.617 0.246 0.998 0.397 0.301 0.532 0.013 0.009 0.026 1.814 1.678 1.907 

(31/49)    (46/64) (95/126)          

0.015 -0.018 0.060 0.171 0.058 0.298 0.154 -0.124 0.441 0.530 0.151 0.846 0.433 0.326 0.550 0.012 0.008 0.025 1.833 1.695 1.931 

(32/54) (117/136) (37/53) (74/96)          

The table presents summary statistics for the coefficient estimates, adjusted R-square, mean square error and Durbin-Watson statistics, across 304 firms. Mean, Med, Lq, and 

Uq are the mean, median, lower quartile and upper quartile respectively for each estimates across 304 firms. Numbers in the parentheses are the number of firms whose 

coefficient estimates are significantly different from zero at the 5% and 10% significant level. The explained variable in Panel A is the monthly non-overlapping realized 

volatility, 
(1)

RE
σ , which is measured by 30-minute intraday returns. The explained variable of Panel B is monthly non-overlapping realized volatility, 

(2)

RE
σ , measured by 

daily returns. 

The regression model is specified as follow: 

 , , , , , , , , ,RE t T LRE LRE t T MF MF t T BS BS t T t T
σ α β σ β σ β σ ε= + + + +  
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Table 8 Frequency counts for the variables that best describe volatility of stock 

returns 

  Group by average available  

strike number  

Group by intermediate Delta 

 

All firms 

 Group 1 Group 2 Group 3 Group 1   Group 2 Group 3 

 n=304  n=40 n=101 n=163 n=85 n=137 n=82 

Panel A : Frequency counts for the ARCH specifications that maximize the likelihoods of 

observed stock returns 

LRE
σ  performs best 53.95%     85.00%    64.36%    39.88%    88.24%    48.18%    28.05%    

LRE MF BS
L L L> >  15.46%  25.00% 19.80% 10.43% 28.24% 12.41% 7.32% 

LRE BS MF
L L L> >  38.49%  60.00% 44.55% 29.45% 60.00% 35.77% 20.73% 

MF
σ  performs best 14.80%     5.00%    12.87%    18.40%    5.88%    15.33%    23.17%    

MF LRE BS
L L L> >  1.97%  0.00% 0.99% 3.07% 0.00% 2.92% 2.44% 

MF BS LRE
L L L> >  12.83%  5.00% 11.88% 15.34% 5.88% 12.41% 20.73% 

BS
σ  performs best 31.25%     10.00%    22.77%    41.72%    5.88%    36.50%    48.78%    

BS LRE MF
L L L> >  8.55%  5.00% 6.93% 10.43% 3.53% 9.49% 12.20% 

BS MF LRE
L L L> >  22.70%  5.00% 15.84% 31.29% 2.35% 27.01% 36.59% 

Panel B : Frequency counts for the univariate regression model that has the highest adjusted R 

squared 

LRE
σ  performs best 12.50%     32.50%    17.82%    4.29%    27.06%    10.22%    1.22%    

2 2 2

LRE MF BS
R R R> >  3.95%  15.00% 4.95% 0.61% 9.41% 2.92% 0.00% 

2 2 2

LRE BS MF
R R R> >  8.55%  17.50% 12.87% 3.68% 17.65% 7.30% 1.22% 

MF
σ  performs best 25.66%     20.00%    23.76%    28.22%    24.71%    27.01%    24.39%    

2 2 2

MF LRE BS
R R R> >  2.96%  7.50% 3.96% 1.23% 4.71% 3.65% 0.00% 

2 2 2

MF BS LRE
R R R> >  22.70%  12.50% 19.80% 26.99% 20.00% 23.36% 24.39% 

BS
σ  performs best 61.84%     47.50%    58.42%    67.48%    48.24%    62.77%    74.39%    

2 2 2

BS LRE MF
R R R> >  3.62%  2.50% 4.95% 3.07% 5.88% 2.19% 3.66% 

2 2 2

BS MF LRE
R R R> >  58.22%  45.00% 53.47% 64.42% 42.35% 60.58% 70.73% 

 

Panel A presents the performance of each variable in ARCH specification model. 
LRE

L ,
MF

L  and 

BS
L  denote the log-likelihood values of lagged realized volatility, the model-free implied volatility 

and the Black-Scholes implied volatility respectively. Panel B presents the performance of each 

variable in univariate regression with explained variable, 
(1)

RE
σ . 

2

LRE
R , 

2

MF
R  and 

2

BS
R denote the 

adjusted R-square of lagged realized volatility, the model-free implied volatility and the Black-Scholes 

implied volatility respectively. All firms are separated into three group by average strike 
i

N : Group 1 

is 3 4
i

N≤ < ; Group 2 is 4 5
i

N≤ < ; Group 3 is 5
i

N ≥ . Alternative, all firms are divided into 

three group by average the delta values between 0.15 and 0.85, 
i

D : Group 1 is 1 2
i

D≤ < ; Group 2 

is 2 3
i

D≤ < ; Group 3 is 3
i

D ≥ . 
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Appendix 

Appendix A. Proof of Proposition 1 

Lemma A.1 :  
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From equation (A.1), we get 
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By (A.2), 
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We can use the method mentioned in Britten-Jones and Neuberger (2000). 
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Lemma A.2 : 
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Proof : Under jump process, 
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From (A.4), 
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Proof of Proposition 1 :  

By Lemma A.1 and Lemma A.2, we can obtain 
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Appendix B. Proof of Lemma 2.2.1 and Proposition 2 

Lemma B.1 : If there is no jump, the dynamics of the asset price can be expressed as  
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=                                             (B.1) 

Proof : If there is no jump, then the dynamics of pricing kernel is  
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From equation (12),  
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Proof of Lemma2.2.1 : If there is no jump, the NGARCH(1,1) model is  

       
)0(

1 2
ln t

G

t

G

t

G

t

G

t Xh
h

S

S
+−=

−

                                     (B.2) 

where 

       2*)0(

1

*

2110 )( cXhhh t
G

t

G

t

G

t −++= −− βββ                             (B.3) 

       )1,0(~
)0(

NX t  

Then 

       tXht
h

SS t
G

t

G

tiG

ti

G

ti ∆+∆−=− ∆
∆−∆

)0(

)1(
2

lnln  

First, we have the following results for the conditional mean return 
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Brownian motion tZ . Applying Theorem 5.4 of Kurtz and Protter (1991) yield a 

weak converge to ),( G

t

G

t hS . Thus, the limiting model under measure Q  is  
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We assume that  
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We can calculate G

tSd ln  by Ito lemma, 
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Compared to equation (B.4), we can find that G

thb =  and 0=a . Then there have 

       t

G

tG

t

G

t dZh
S

dS
=                                              (B.6) 

 

Lemma B.2 : Under NGARCH(1,1)-Normal framework, the implied volatility is as 

follow 
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where ),( KTCG  be a set of option prices under NGARCH(1,1)-Normal model. 

Proof : If the stock prices follow NGARCH(1,1)-Normal model and 0=r , then 
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Lemma B.3 : If 00 hh
G = , then [ ] [ ]00 hEhE

G =  

Proof : Chang(    ), p.33. 

 

Proof of Proposition 2 : By lemma B.3,  
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Appendix C. Proof of equation (19 ) 

Britten-Jones and Neuberger (2000) derived the model-free implied volatility as 

integral spreads of options with a risk-neutral underlying, for different time to 

maturity: 
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The no-arbitrage argument implies that exists a forward measure F, so Jiang and Tian 

(2005) considered the forward asset: 
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Set forward price at time t as ( )/ ,t tF S B t T=  and forward option price at time t as 

( ) ( ) ( ), , / ,F
C K T C K T B t T= . tS , here is the asset price eliminates the present 

values of all future dividends paid prior to the option maturity. Thus, equation (C.2) 

can be replaced as: 
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The proof above uses the put-call parity ( ) ( ) ( ) 0, 0, ,C K T K B T P K T S+ × = + . 

Finally, assume the bond price as ( )0, rT
B T e

−= , equation (1) has been proved. 
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Appendix B. Performances under variance and logarithm regression models 

 

Table A.1 

  Group by average available 

strike number 

Group by intermediate Delta 

 

All firms 

 Group 1 Group 2 Group 3 Group 1   Group 2 Group 3 

 n=304  n=40 n=101 n=163 n=85 n=137 n=82 

Panel A : Frequency counts for the univariate regression model that has the highest adjusted R 

squared for replacing volatility variables by their logarithms 

( )log LREσ  

 performs best 
11.51%    

 
42.50%    14.85%    1.84%    28.24%    8.03%    0.00%    

2 2 2

LRE BS MFR R R> >  6.91%  20.00% 10.89% 1.23% 16.47% 5.11% 0.00% 

( )log MFσ  

performs best 
24.67%    

 
17.50%    22.77%    27.61%    22.35%    25.55%    25.61%    

2 2 2

MF BS LRER R R> >  22.70%  17.50% 18.81% 26.38% 21.18% 21.90% 25.61% 

( )log BSσ  

performs best 
63.82%    

 
40.00%    62.38%    70.55%    49.41%    66.42%    74.39%    

2 2 2

BS MF LRER R R> >  59.21%  30.00% 58.42% 66.87% 44.71% 61.31% 70.73% 

Panel B : Frequency counts for the univariate regression model that has the highest adjusted R 

squared for replacing volatility by their variances 

LREσ  performs best 14.47%     30.00%    20.79%    6.75%    29.41%    11.68%    3.66%    
2 2 2

LRE BS MFR R R> >  9.54%  17.50% 14.85% 4.29% 18.82% 8.03% 2.44% 

MFσ  performs best 26.32%     27.50%    25.74%    26.38%    27.06%    27.74%    23.17%    
2 2 2

MF BS LRER R R> >  22.70%  17.50% 20.79% 25.15% 21.18% 23.36% 23.17% 

BSσ  performs best 59.21%     42.50%    53.47%    66.87%    43.53%    60.58%    73.17%    
2 2 2

BS MF LRER R R> >  53.62%  37.50% 45.54% 62.58% 35.29% 56.20% 68.29% 

 
Panel A presents the performance of each univariate regression mode as follows: 
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Panel B presents the performance of each univariate regression mode as follows: 
2 2

, , , , ,

2 2

, , , , ,
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All firms are separated into three group by average strike iN : Group 1 is 3 4iN≤ < ; Group 2 is 

4 5iN≤ < ; Group 3 is 5iN ≥ . Alternative, all firms are divided into three group by average the 

delta values between 0.15 and 0.85, iD : Group 1 is 1 2iD≤ < ; Group 2 is 2 3iD≤ < ; Group 3 is 

3iD ≥ . 
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Appendix C. Performance of different curve fitting methods 

 

Table A.2 

  Group by average available  

strike number 

Group by intermediate Delta 

 

All firms 

 Group 1 Group 2 Group 3 Group 1   Group 2 Group 3 

 n=304  n=40 n=101 n=163 n=85 n=137 n=82 

Panel A : Frequency counts for the ARCH specifications that maximize the likelihoods of 

observed stock returns 

noarb quadraticL L>  89.14%  92.50% 88.12% 88.96% 84.71% 92.70% 87.80% 

quadratic noarbL L>  10.86%  7.50% 11.88% 11.04% 15.29% 7.30% 12.20% 

noarb cubicL L>  89.80%  90.00% 87.13% 91.41% 89.41% 89.78% 90.24% 

cubic noarbL L>  10.20%  10.00% 12.87% 8.59% 10.59% 10.22% 9.76% 

quadratic cubicL L>  78.29%  70.00% 72.28% 84.05% 76.47% 78.10% 80.49% 

cubic quadraticL L>  21.71%  30.00% 27.72% 15.95% 23.53% 21.90% 19.51% 

Panel B : Frequency counts for the univariate regression model that has the highest adjusted R 

squared 
2 2

noarb quadraticR R>  80.59%  92.50% 83.17% 76.07% 91.76% 75.18% 78.05% 

2 2

quadratic noarbR R>  19.41%  7.50% 16.83% 23.93% 8.24% 24.82% 21.95% 

2 2

noarb cubicR R>  78.29%  72.50% 75.25% 81.60% 82.35% 77.37% 75.61% 

2 2

cubic noarbR R>  21.71%  27.50% 24.75% 18.40% 17.65% 22.63% 24.39% 

2 2

quadratic cubicR R>  59.54%  37.50% 49.50% 71.17% 48.24% 62.04% 67.07% 

2 2

cubic quadraticR R>  40.46%  62.50% 50.50% 28.83% 51.76% 37.96% 32.93% 

 

Here, we discuss three curve fitting method and compare their performance in Table 

A.2 and Table A.3. The first method used in this paper is the quadratic function fitting 

under no-arbitrage condition. The second method used in Taylor, Yadav and Zhang 

(2006) is quadratic function fitting doesn’t condition on no-arbitrage. The third 

method is the cubic splines, which Jiang and Tian (2005) used. We compare their 

performance in pair in Table A.2. 

  In Panel A, we can clearly find our method, noarbL , outperform both quadraticL  

(quadratic function fitting) and cubicL ( cubic splines fitting). There are obvious 

tendency under different group only between quadratic function method and cubic 

splines method. When the observations increase, the forecasting ability of quadratic 

function method also increases. This result indicates the quadratic function method is 

a not fitting method for the limited observations. The result is similar in Panel B. 
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Table A.3 

  Group by average available  

strike number 

Group by intermediate 

Delta 

 

All firms 

 Group1 Group2 Group3 Group1   Group2 Group3 

 n=304  n=40 n=101 n=163 n=85 n=137 n=82 

Panel A : Frequency counts for the univariate regression model that has the highest adjusted R 

squared for replacing volatility variables by their logarithms 

noabrσ  

performs best 
80.92%    

 
82.50%    78.22%    82.21%    77.65%    83.21%    80.49%    

nobar quadratic cubicL L L> >  68.42%  62.50% 62.38% 73.62% 63.53% 70.80% 69.51% 

quadraticσ  

performs best 
9.87%    

 
7.50%    9.90%    10.43%    12.94%    7.30%    10.98%    

quadratic nobar cubicL L L> >  8.88%  7.50% 8.91% 9.20% 11.76% 6.57% 9.76% 

cubicσ  

performs best 
9.21%    

 
10.00%    11.88%    7.36%    9.41%    9.49%    8.54%    

cubic nobar quadraticL L L> >  8.22%  10.00% 9.90% 6.75% 7.06% 9.49% 7.32% 

Panel B : Frequency counts for the univariate regression model that has the highest adjusted R 

squared for replacing volatility by their variances 

noabrσ  

performs best 
62.83%    

 
67.50%    63.37%    61.35%    75.29%    57.66%    58.54%    

2 2 2

nobar quadratic cubicR R R> > 43.42%  32.50% 36.63% 50.31% 41.18% 41.61% 48.78% 

quadraticσ  

performs best 
16.12%    

 
5.00%    12.87%    20.86%    7.06%    20.44%    18.29%    

2 2 2

quadratic nobar cubicR R R> > 15.46%  5.00% 11.88% 20.25% 7.06% 19.71% 17.07% 

cubicσ  

performs best 
21.05%    

 
27.50%    23.76%    17.79%    17.65%    21.90%    23.17%    

2 2 2

cubic nobar quadraticR R R> > 17.76%  25.00% 19.80% 14.72% 16.47% 17.52% 19.51% 

 

Table A.3 presents the performance across these three methods. Although our method 

has the best performances whether Panel A or Panel B, there are still about forty 

percent of firms have a better fit for other methods in Panel B. In this paper, we 

diminish curve fitting error as far as possible by using the quadratic function fitting 

under no-arbitrage condition. 

 


