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Abstract 

It is well known that credit rating transitions exhibit a serial correlation also known as a rating 

drift. This is clearly confirmed by this analysis, which also reveals that the credit rating 

migration process is additionally influenced by three non-observable hidden risk situations. This 

finding violates the common stationary assumption. The hidden risk situations in turn serially 

depend on each other in successive observation periods. Taken together, they represent the 

memory of a credit rating transition process and influence the future transient process. To take 

this into account, I introduce an extension of a higher order Markov model and a new Markov 

mixture model. These models allow me to capture these inherent serial correlation structures, to 

bypass the stationary assumption and to model the process as time non-homogeneous. An 

algorithm is introduced to derive a single transition matrix with the new additional information. 

Finally, by means of different CVaR simulations by CreditMetrics, I show that the standard 

Markov process overestimates the economic risk. 
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1 Introduction 

Markov chains play a crucial role in credit risk theory and practise, especially in estimating 

credit rating transition matrices. A rating transition matrix is a crucial input for many credit risk 

models, such as CreditMetrics (see Gupton 1997) and CreditPortfolioView (see McKinsey&Co 

1998). The most used basic Markov process is a time-homogeneous discrete time Markov chain, 

which assumes that future evolution is independent of the past and thus solely depends on the 

current rating state. The transition probability itself is independent of the time being. Ample 

empirical research has been done on the validity of these Markov properties and the behaviour 

of empirical credit rating migration frequencies.  

The following non-Markovian properties have been found and confirmed. First, Altman 

and Kao (1992), Kavvathas, Carty and Fonds (1993), Lucas and Lonski (1992) and Moody’s 

(1993) provided evidence for a so-called rating drift. They all found that the probability of a 

downgrade following a downgrade within one year significantly exceeds that of an upgrade 

following a downgrade and vice versa. The likelihood of an upgrade following an upgrade 

within a year significantly exceeds that of a downgrade following an upgrade. This means that 

the current rating somehow depends on the previous one, such that prior rating changes may 

carry predictive power for the direction of future ratings. This was also confirmed by more 

recent studies by Christensen et al. (2004), Lando and SkØdeberg (2002) and Mah, Needham 

and Verde (2005). They partly used daily time rating data and more advanced statistical tests 

(such as bootstrapped confidence intervals) for default rates or rating intensities. Furthermore, 

the downward drift is much stronger than the upward drift, and obligors that have been 

downgraded are nearly 11 times more likely to default than those that have been upgraded; see 

Hamilton and Cantor (2004). On the other hand Krüger, Stötzel, and Trück (2005) found a 

Rating Equalization, i.e. a tendency that corporates receive a rating which they already received 

2 or 3 years ago before they were up- or downgraded. In other words a downgrade following an 

upgrade is more likely than a transition in the same direction and vice versa. This might be 
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driven by the fact that the rating system is based on logit-scores and financial ratios. More 

sophisticated approaches try to model the process, especially the non-Markovian behaviour, 

such as Markov mixture models. Frydman and Schuermann (2007) showed empirically that two 

companies with identical credit ratings can have substantially different future transition 

probability distributions, depending not only on their current rating but also on their past rating 

history. They proposed a mixture model based on two continuous-time Markov chains, which 

outperforms the simple Markov model.1  The two chains differ in their rates of movement 

among ratings. Given a jump from one state, the probability of migrating to another state is the 

same for both chains, because they have the same embedded transition probability matrix. 

Hence, the model covers the observed heterogeneity in the rate of movement but does not 

explicitly capture the rating drift. The authors also conditioned their estimation on the state of 

the business cycle and industry group. However, this does not remove the heterogeneity with 

respect to the rate of movement. Second, Nickell et al. (2000) and Bangia et al. (2002) provided 

evidence that rating transitions differ according to the stage of the business cycle. They showed 

that downgrades seem to be more likely in recessions, whereas upgrades are more likely in 

expansions. In line with this finding, McNeil and Wendin (2005) used models from the family 

of hidden Markov models and found that residual, cyclical and latent components in the 

systematic risk remain even after the observed business cycle covariates are accounted for. 

Third, Altman and Kao (1992) found that the time since issuance of a bond seems to have an 

impact on its rating transitions. They analysed a pool of corporate bonds and their ratings from 

the initial issuance up to 10 years post-issuance and found that the older bonds are, the more 

likely they are to be downgraded or upgraded in comparison to newly issued bonds. They also 

came up with an additional ageing effect by showing that within these bond data, defaults peak 

at the third year and then decrease again. Kavvathas (2000) provided further evidence that 

upgrade and downgrade intensities increase with time since issuance (except for BBB and CCC 

                                                     
1 It is an extension of the Continuous Time Mover-Stayer Model; see Frydman, Kadam (2004).  
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rated bonds regarding the downgrade intensity). Further in the analysis of Krüger, Stötzel, and 

Trück (2005), the time-homogeneity assumption itself is clearly rejected by an Eigenvalue and 

Eigenvector comparison. Fourth, Nickell et al. (2000) investigated the issuers’ domicile and 

found for example that Japanese issuers are more likely to be downgraded in comparison to the 

international average. This was confirmed in later research by Nickell et al. (2002), providing 

fifth evidence that the issuers’ domicile and business line in a multivariate set, along with the 

business cycle, also impact rating transitions. The credit cycle has the greatest impact thereupon. 

Finally, Nickell et al. (2000) found that the volatility of rating transitions is higher for banks and 

that large rating movements are just as likely or more likely for industrials.  

In this study, I focus on the credit rating migration evolution, the serial correlation 

supposed by the rating drift and the time-homogeneity assumption. Hence, a comparison 

between different Markov models is conducted and the economic impact of all these 

assumptions is shown. The goal is to account for the non-Markovian findings with respect to the 

inherent serial correlation and the non-stationary. I introduce two new models, the Markov 

Transition Distribution model (MTD) for higher order dependencies and the Double Chain 

Markov Model (DCMM) for non-stationary higher order time series modelled by hidden states. 

I show that the rating transient behaviour is more complex than is commonly assumed and that 

serial correlation cannot be captured by simply taking the tuple of the current and the previous 

ratings into account, as the drift might suggest. In this analysis, I tackle the serial correlation in a 

dynamic way by taking into account the direction from where the previous rating migrated as 

well as the whole risk situation from the previous and current ratings. The results reject the 

stationary assumption in rating migrations and therefore confirm and endorse Lando and 

Skødeberg’s study (2002). Furthermore, I show where this violation comes from and where it 

takes place. In the peer group, I find that the best model to capture all these issues is the double 

chain Markov model based on three hidden states. In a time-discrete world, each hidden state 

depends on its predecessor. This model also incorporates the idea proposed by Frydman and 
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Schuermann (2006), but supplements it with additional information about the risk intensities, the 

likelihood of occurrence of the hidden states and the “normal” most probable risk situation, 

represented by the first hidden state. The model does not assume that the probability of one 

particular state has to be the same for both chains; or, equivalently, in the manner of the DCMM 

for the hidden states. Given the underlying data, the process might be better described by 

introducing three risk situations compared to the two Markov chains. Additionally, the DCMM 

also covers the memory of a drift, which is not possible with those mixture models. 

In the next section, the underlying data are described. In Section 3, the models necessary for 

the analysis are explained: the Independence Model, the standard time-homogeneous discrete 

time Markov chain, the higher order Markov models, the hidden Markov chain in brief and the 

Double Chain Markov Model in detail. In Section 4, the results are presented and validated with 

some test statistics. Furthermore, with the help of serially correlated random numbers, the 

difference to the assumed simple correlation structure by the rating drift is shown. Then an 

algorithm deriving a final matrix that preserves as much information as possible from the risk 

history is introduced. Finally, with the help of the final matrix, the economic impact is shown by 

a CreditMetrics simulation; Section 5 concludes. 

 

 

2 Data description 

This study is based on S&P rating transition observations and covers 11 years of rating history 

starting on 1 January 1994 and ending 31 December 2005. The data are taken from Bloomberg 

with no information on whether the rating was solicited by the issuer or not.2 Given the broad 

range of different ratings for a given obligor, I use a rating history for the senior unsecured debt 

of each issuer. I treat withdrawn ratings as non-information, hence distributing these 

probabilities among all states in proportion to their values. In order to obtain an unbiased 

                                                     
2 See Poon and Firth (2005) or Behr and Güttler (2006) for recent research in this area. 
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estimation of the rating transitions, I do not apply the full rating scale (including the + and - 

modifiers of S&P), because the sample size in each category would be too small. Instead, I use 

the mapped rating scale with 8 rating classes, from AAA to D, throughout. 

I apply an international sample of 11,284 rated companies, distributed as 60% from the 

USA, 4.6% from Japan, 4.6% from Great Britain, 3.3% from Canada, 2.5% from Australia, 26% 

from France, and 2.4% from Germany. The rest of the sample is distributed over South America, 

Europe and Asia. The data set consists of 47,937 rating observations (31% upgrades, 69% 

downgrades). The rating categories D (default), SD (selected default) and R (regulated) are 

treated as defaults and I find 492 defaulted issuers for S&P. For 82 issuers, more than one 

default event is obtained, whereby the assumption is adopted that if a company is going into 

default, it will stay there. I therefore do not allow any cured companies, which means that I keep 

the current rating history until the first default occurs.  

 

 

3 Model description 

As a starting point, and to show that rating transitions do not follow complete random walks, I 

introduce the Independence Model. It assumes that each successive observation is independent 

of its predecessor. Next, the standard model in this area, the discrete time-homogeneous Markov 

chain in first order, is defined as:  let tX  be a discrete random variable taking values in a finite 

set { }mN ,,1L= . The main property of a first order Markov chain is that the chain forgets about 

the past and only allows the future state to depend upon the current state. The time-

homogeneous assumption states that the probability of changing from one state to another is 

independent from the time being. In other words, the future state at time 1+t  and the past state 

at time 1−t  are conditionally independent given the present state iX t = . This Markov property 

indicates that the evolution of the direction is independent of the time being. The transitions 

between the different ratings states are captured in a time-independent transition probability 
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matrix Q, where each row sums equal to one; see Brémaud (2001). The transition probabilities 

are then defined as:  

( )110 iXiXPq ttij === −      where { }miit ,,1,, 0 KK ∈                                     (1) 

As the rating drift might suggest, the most straightforward way to incorporate serial correlation 

into the estimation process would be to take observations from an obligor’s past rating history 

into account instead of merely conditioning the future rating on the current one. At first glance, 

the most intuitive way would be to model it as a homogeneous Markov chain in a higher order 

mode. In a higher order Markov chain of order l , the future state depends not only on the 

present state but also on ( )1−l  previous states, which seems to cover the required path 

dependence assumed in this simple dependence structure. The transition probabilities of a higher 

order Markov chain are defined as: 

( )110,, ,,
0

iXiXiXPq tllttiil
==== −− KK      where { }miit ,,1,, 0 KK ∈             (2) 

For the purpose of illustration, we will assume a second order Markov chain where 2=l  with 

only three states ( )3=m . In this case, the future state ( )1+t  depends on the current one ( )0t  as 

well as the previous state ( )1−t ; see Pegram (1980). The transition matrix Q  is then defined for 

the above example as: 

 

 

 

 

 

     .                                                                                                                        (3) 
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with at least 8 rating categories, it would expand in a second order mode to a matrix with a 

dimension of 64x8. Even if it seems to be a straightforward way to consider memory in the 

estimation process, the huge number of rating combinations necessary for a fully parameterised 

model is obviously a major drawback. Additionally, matrices with these kinds of dimensions are 

not feasible as input for other models (e.g. reduced form models), especially since the estimated 

matrices always result in a sparse matrix. Nevertheless, in order to see whether this estimation 

technique really best captures the migration behaviour and the serial correlation, I will take it 

into account.  

In order to bypass this problem and to extend the idea of higher order Markov chains, I 

introduce the Mixture Transition Distribution (MTD) introduced by Raftery (1985) and further 

developed by Berchtold (1999 and 2002). The major advantage of this model is that it replaces 

the global contribution of each lagged period to the present by an individual contribution from 

each lag to the present. In this way, it bypasses the problem of the large number of estimated 

parameters from the MC_2 but is capable of representing the different order amounts in a very 

parsimonious way. In general, an l-th order Markov model needs to estimate ( )1−mml  

parameters, whereas the MTD model with the same order only needs to estimate 

( )[ ] 11 −+− lmm  parameters, meaning that there is only one additional parameter for each lag. In 

general, the MTD model explains the value of a random variable tX  in the finite set 

{ }mN ,,1K=  as a function of the l previous observations of the same variable. This Model 

allows the effect of each lag on the present to be considered separately Hence, the conditional 

probabilities are a mixture of linear combinations of contributions to the past and will be 

calculated as: 

( ) ( )∑
=

−−− ======
l

g
ggttgtltt iXiXPiXiXiXP

1
01110 ,, λK .                            (4) 

Here gλ  denotes the weights expressing the effect of each lag g on the present value of X (i.e. 

0i ). This model is especially feasible if the current state does not depend on past l states, but the 

past states influence the future state (with each past state exerting a unique influence).  
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In order to model the estimation as accurately as possible and to account for (possibly 

non-Markovian) influencing factors without making explicit assumptions, the last two models 

are taken from the class of hidden Markov models (HMM). A migration to a certain state can 

thus be observed without having any assumptions about what really drives the process. 

However, one important assumption and a major drawback in a HMM is that the successive 

observations of the dependent variable are supposed to be independent of each other. But in 

contrast to Christansen (2004), I also specify it in a second order mode and let the hidden states 

depend on each other within two successive periods. Let us consider a discrete state discrete 

time hidden Markov model with a set of n possible hidden states in which each state is 

considered with a set of m possible observations. The parameter of the model includes an initial 

state distribution π  describing the distribution over the initial state, a transition matrix Q  for 

the transition probabilities ijq  from state i to state j conditional on state i and an observation 

matrix ( )mbi  for the probability of observing m conditional on state i . Note that also ijq  is time 

independent.3   

In the last model, I focused on a combination of two models called a Double Chain 

Markov Model. It was first introduced by Berchtold (1999) and further developed by the 

Berchtold (2002). This model is a combination of a HMM and a non-homogeneous Markov 

chain and is thus especially feasible for modelling non-homogeneous time series. I will hereafter 

abbreviate it as DCMM. Here, the DCMM allows the observations to be dependent on each 

other, which overcomes the drawback of the standard HMM. The idea of such combinations is 

not new. First Poritzer (1982, 1988) and then Kenny et al. (1990) combined the HMM with an 

autoregressive model. Then a similar model was presented by Welkens (1987) in continuous 

time and by Paliwal (1983) in discrete time. If a time series is non-homogeneous and can be 

decomposed into a finite set of different risk situations during the time period, the DCMM can 

                                                     
3 The parameters can be estimated using the Baum-Welch algorithm; see Rabiner (1989). For further details about HMM 
models, see Rabiner (1989), Cappé, Moulines and Rydén (2005) and MacDonald and Zucchini (1997).  
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be used to control the transition process with the help of individual transition matrices for each 

hidden state. Even in the higher order case, the model can handle very complex correlation 

structures. The discrete time DCMM combines the HMM governing the relation between states 

of a non-observable variable tX  and a visible non-homogeneous Markov chain governing the 

relation between successive outputs of an observed variable tY . In order to implement memory 

into the estimation, I allow the hidden states to depend in a higher order mode on each other. Let 

l  denote the order of the dependence between the non-observable X’s and let f denote the order 

of the dependence between the observable Y’s.  tX  then depends on 1,, −− tlt XX K , whereas tY  

depends on tX  and 1,, −− tft YY K .  Using these properties, the DCMM can account for memory in 

two different ways. First, it allows several hidden states with their respective transition matrices 

and therefore enables individual risk situations to interact for l successive periods with each 

other, hence incorporating a higher order dependency for the unobserved variable tX . Second, as 

in an MC_2, the observable tY  are allowed to depend on each other for l successive periods and 

therefore permit l successive rating observations to depend on each other. Obviously, due to the 

additional dependence of successive risk situations, the DCMM clearly adds explanatory power 

to the estimation compared to the MC_2.  

A DCMM of order l  for the hidden states and of order f  for the observed states can be 

fully described by a set of hidden states ( ) { }MXS ,,1K= , a set of possible outputs 

( ) { }KYS ,,1K= , the probability distribution of the first l  hidden states given the previous states 

{ }1,1121 ,, −= ll K
K ππππ  and an l  order transition matrix of the hidden states { }

0,, jjl
aA K=  where 

( )110, ,,
0

jXjXjXPa tllttjjl
==== −− K . What makes this model very valuable and 

informative is that for every hidden state, the complete transient behaviour of every possible 

output state Y is calculated. Finally, for this output, a set of f order transition matrices between 

the successive observations Y given the particular state of X is calculated and defined as 

( )( )0jCC = .       with  ( ) ( ){ }0

0

0
,,

j
ii

j
f

cC K=                                                                    (5) 

where  ( ) ( )0110,, ,,,0

0
jXiYiYiYPc ttfftt

j
ii f

===== −− KK  
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determines the process. In the case of an order amount l > 1, the number of parameters for the 

transition matrix of the hidden states A and the transition matrix of the observations C can 

become quite large. In this case, A and each matrix of C can be replaced and approximated by an 

MTD Model; see Berchtold (2002). 

In general, the probability of observing one particular value 0j  in the observed sequence 

tY  at time t depends on the value of 1,, −− tlt XX K . The problem is, that in order to initialise this 

process, l  successive values of tX  are needed, but they are unobservable. The DCMM bypasses 

this problem by replacing these elements with probability distributions where the estimated 

probability of 1X  is denoted by 1π  and the conditional distribution of lX  given 11 ,, −lXX K  is 

denoted as 1,,1 −ll Kπ .  

A DCMM is then fully defined by µ  as { }CA,,πµ =  with ( )∑ −

=
−

1

0
1l

g
g MM  

independent parameters for the set of distributions π , ( )1−MM l  independent parameters for 

the transition matrices between the hidden states A , and ( )1−KMK f  independent parameters 

for the transition matrices between the observations. As µ  shows, three sets of probabilities 

have to be estimated, which is done using the EM algorithm.4 Because of the iterative nature of 

the EM algorithm, it is a re-estimation rather than estimation. Instead of giving a single optimal 

estimation of the model parameters, the re-estimation formulas forπ , A  and C  are applied 

repetitively, each time providing a better estimation of the parameters. After each iteration of the 

EM algorithm, the likelihood of the data also increases monotonically until it reaches a 

maximum. As in the standard EM algorithm, the joint probability of the hidden states ( )tε  and 

the joint distribution of the hidden states ( )tγ  are used.  For a higher order mode, π  is then 

estimated as: 

( ) ( )
( )111

01
011,,1 ,,

,,
,,ˆ

jj
jj

jj
tt

tt
ttt K

K
K

K
−−

−
−− =

γ
γ

π  .                                                                (6) 

Finally the important higher order transition probabilities between the hidden states are 

estimated as 

                                                     
4 This algorithm is also known in speech recognition literature as the Baum-Welch algorithm.  
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while the higher order transitions between the observations are estimated as  
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After the model is estimated, one can search for the optimal sequence of the hidden states in 

order to maximise the conditional probability 

( )TfT YYXXP ,,,, 11 LK +−                                                                                      (9) 

and equivalently the joint probability  

( )TfT YYXXP ,,,,, 11 LK +− .                                                                                   (10) 

This can be done with the Viterbi algorithm, which is an iterative dynamic programming 

algorithm for indicating the most likely sequence of hidden states – known as the Viterbi path. 

The goal of the algorithm is to find in an efficient way the best hidden path sequence with the 

help of hidden Markov models (see 1973). To achieve this, the Viterbi algorithm is run 

separately upon every single sequence, giving for each obligor the best non observable path of 

hidden states. 

 

 

4 Results 

4.1 In-sample assessment of various accuracy measures 

As a starting point, the Independence Model is calculated, then the homogeneous Markov chain 

of orders 1 and 2, the MTD, a HMM with 3 hidden states in first and second orders and finally, 

different combinations of the DCMM model. In order to have a quantitative criterion for 

deciding which stochastic model fits the data best, the accuracy measures log likelihood, the 

Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC) are 
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computed. For the purpose of comparison, the initial f observations are dropped. Generally, this 

is based on the model order of the time series in order to have the same number of elements 

(59,969) in the log likelihood of each model. In other words, let 01 ,, YY f K+− denote the first 

observations, then TYY ,,1 K  are the observations used in the computation of the log likelihood. 

Here, the standard model (MC_1) is set as the benchmark model. The analysis shows that the 

most significant model is a Double Chain Markov Model (DCMM) with 3 hidden states in a 

second order dependency. The outcome results in the desirable dimension of a homogeneous 

first order Markov chain. Therefore, it will hereafter be labelled as DCMM_3_2_1.  

The first model, the Independence Model, assumes that each successive observation is 

independent of its predecessor. As expected, this model strongly favours the rejection of the 

MC_1, which clearly confirms that rating transitions do not follow a random walk but are 

conditional on “something” previous (see Table 1 for the performance results). As described 

earlier, the most straightforward way to incorporate memory into the estimation would be to 

increase the order of a first order Markov chain (MC_1) to a second order Markov chain 

(MC_2).  The results clearly show an improved accuracy measure for the MC_2, indicating that 

a dependency in successive rating observations does indeed exist. The Log Likelihood drops 

from -34,063 to -31,391 and the AIC as well as the BIC reduces from 68,211 to 63,038 and from 

68,589 to 64,190 respectively. Based on a Likelihood Ratio test, Krüger, Stötzel, and Trück 

(2005) clearly confirmed this results for a second-order Markov chain. However the hypothesis 

whether a third order Markov property leads to even better results were rejected. Keeping this in 

mind and since a third order Markov chain would generate a very sparse matrix, it would not 

make any sense to compare it with the other models. The second order MC also needs to 

estimate a huge number of state combinations and would additionally result in a sparse matrix. 

However, as described earlier, the MTD_2 model has significantly fewer parameters to estimate 

(42) compared to the MC_2 (128). Furthermore, this model confirms that it is not only the 

current rating that determines the future rating but also its history. The log likelihood reduces to 
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-32,837 compared to -34,063 from the MC_1, the AIC to 65,758 compared to 68,211 of the 

MC_1 and the BIC drops from 68,589 to 66,136. It is obvious that the solely lagged rating one 

period before definitely influences the future rating, but with less informative power than in 

combination with the current rating, as with the MC_2. 

At this point, it would be interesting to know whether the rating itself has the sole or 

most predictive power or whether other influencing factors (like the complete risk situation 

driven by several unobservable issues (e.g. the economy) in a non-stationary world) contribute 

significantly to explanatory power. In this sense, the class of higher order hidden Markov 

models provides another solution, as they do not make any assumptions as to what drives the 

output. In the case of the HMM (as expected from the independence assumption, which was 

already disproved through the results of the MC_2 and MTD), the HMM without any 

explanatory covariates is hardly a good model for the underlying data and application to credit 

rating migration data. The log likelihood as well as the AIC and BIC are closer to the 

Independence Model than to the MC_1. Interestingly, a HMM with three hidden states performs 

much better than a HMM with two states with an AIC of 141,216 and BIC of 141,639 compared 

to an AIC of 171,966 and BIC of 172,155. This can be seen as a further indication that a credit 

rating transition process is driven by three different unobservable drivers or situations. They 

may themselves be a combination of several risk dimensions, like the economic cycle, or even 

the previously described non-Markovian properties.  

In comparison the DCMM, it seems obvious that the MC_2 can only partly model the 

correlation structure, since the DCMM is much more able to fit the data. The DCMM with three 

hidden states in a second order dependence structure beats every other model. Compared to the 

MC_1, the BIC was reduced by about 8,772 (12.8%); the AIC and the log likelihood were also 

reduced by significant amounts (9,762 (14.3%) and 4,991 (14.6%), respectively) (see Table 1).  

In order to really know how many hidden states are driving the process, I also compute 

the DCMM with 1 up to 5 hidden states, but three hidden states clearly dominate every 
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combination of hidden states. Next, in order to have a closer look at the correlation structure 

itself, I compute several DCMM models with different order amounts of the hidden states. In 

this way, the estimation of the transition probabilities are conditioned on different combinations 

of successive risk and rating situations in order to find the best suitable memory history driving 

the transient process of an obligor’s rating history. I find that regarding the log likelihood, BIC 

and AIC, the DCMM with three hidden states in second order dependence structure clearly beats 

every other order combination. In order to facilitate comparison, I again drop the first l 

observations from each time series. If one increases the order amount to 3 and hence considers a 

risk situation of one additional period and one additional rating compared to the DCMM_3_2_1, 

the log likelihood increases from -29,066 to -29,132, whereas the AIC and BIC increase from 

58,436 and 59,776 up to 58,673 and 60,472, respectively.5 Even combinations of more than 

three hidden states with an order higher than two are beaten by the DCMM_3_2_1. Finally, as 

described above, the DCMM is capable of estimating the matrix of the hidden state as well as 

the matrices of the observations with the MTD. Even calculations with this approximation 

clearly support the finding that the DCMM_3_2_1 fits rating transition data best. 

In summary, simply taking two successive rating observations into account and allowing 

this combination to determine the next future rating is not the best way to assess the oft-

described rating drift. It is clearly one part of the memory and adds predictive power (as already 

indicated by the MC_2). Therefore, the best and most accurate way would be to consider two 

successive rating observations along with two successive complete risk situations, with 

individual risk intensities driving the process. By using this process, I also circumvent the 

resulting sparse matrix, which is clearly one of the MC_2’s shortcomings. This approach 

confirms and particularly extends the results of Crowder, Daris and Giampierin (2004) with 

respect to their postulation that the process is driven by just two states, a risky state and non-

risky state. 

                                                     
5 Note that the figures of the DCMM in second order (Table 1) differ since one additional observation was dropped. 
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4.2 Estimation results: transient behaviour and transition matrices 

To obtain an idea of how the transient behaviour and the correlation structure really behave and 

interact between the hidden states, it is necessary to focus more closely on the results of the 

DCMM_3_2_1 (see Table 2-3). As shown by the first hidden state distribution ( )1π , the starting 

state in the process of credit rating migrations is, with a probability of 66.23%, the first hidden 

state and with a probability of nearly 30.27%, the third hidden state. With a probability of 

3.51%, the second hidden state is unlikely to be the starting hidden state. Conditional on the 

previous hidden states, the distribution of the next hidden state distribution ( )1,2π  clearly shows 

that if the first and second hidden states are the current states, it is very likely (95.33% and 

100%, respectively) that the process will return to the first hidden state. The situations looks 

different if the process is currently in the third hidden state. Since this was not unlikely 

(30.27%), one can see that there is a reasonably good chance that the third hidden state (30.71%) 

will prevail. Again, the first hidden state is likely to dominate the process again (69.29%) (see 

Table 2).  

The higher occurrence probability of the first hidden state indicates that the chance of 

being in a stationary world is very high, but that the probability of transitioning to the second or 

third hidden states, each with completely different risk intensities lies considerably in the future. 

In order to quantify how the hidden states depend on each other, a second order transition 

probability matrix of the three hidden states (Table 3) is computed. Again, as previously 

described, if in ( )0t  the first hidden state is currently the actual one, it is very likely that it will 

also be the active one in the future state ( )1+t  regardless from which hidden state in the previous 

period ( )1−t  it migrates. However, if in the previous period the second hidden state was the active 

one, there is a 22% chance of migrating to the third hidden state in ( )1+t  and an 8.4% chance of 

staying in the second one. The picture looks much different if the second or third hidden state is 

active in ( )0t . In this case, if either one migrated from the first hidden state, it is almost certain 

that the process will revert back to the first hidden state. What is interesting to note is that the 
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future transient behaviour of the second and third hidden states is almost identical conditional on 

the previous hidden state. In both cases, if the currently second or third hidden state migrated 

from the first hidden state, it is almost certain that the process will revert back to the first hidden 

state in ( )1+t . On the other hand, if the process migrated from the third hidden state, there is no 

uncertainty that the process will occupy the second hidden state in ( )1+t . Here one can clearly see 

that a rating history is not necessarily a stationary process, since the origin of the current hidden 

state -- and thus the corresponding previous risk situation -- definitely matters.  

A change of hidden states in a process would not be remarkable if their associated risk 

intensities were also to stay the same. As previously described in the model, an associated 

individual transition matrix will be estimated for each hidden state (Tables 4-6). A comparison 

between the matrix estimated by the MC_1 (Table 7) and the three matrices shows tremendous 

differences in the distribution of the probability mass (see Table 8). This also confirms the 

finding of Krüger, Stötzel, and Trück (2005), hence they found that the entire transition 

probability matrix vary over time. The transition probability matrix for the first hidden state 

(Table 4) looks quite similar to the transition probability matrix normally derived from the 

MC_1. In other words, being in the first hidden state would result in a nearly normal risk 

situation.  However, the risk situation in the first hidden state is more stable because more 

probability mass is located at the diagonal compared to the matrix estimated by the MC_1. On 

the other hand, the probability of defaulting increases slightly for every current rating. In 

contrast, the matrix of the second hidden state (Table 5) shows, with the exception of the default 

column, an absolute moving character (as proposed in Frydman and Schuermann’s Mover-

Stayer Model (2006)). The DCMM provides additional information about the direction in which 

the rating is likely to move. For the investment grade area down to rating grade A, one can 

clearly see that the trend has a downward slope, meaning that the better a rating is, the more 

likely it will be downgraded. By contrast, in the speculative grade area from rating BBB down to 

the rating CCC, it is significantly more likely that the rating will be upgraded next. In other 
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words, the second hidden state can be seen as a “mover state” with a “threshold” at rating BBB. 

This transient behaviour is absolutely comprehensible, since it demonstrates the common 

understanding of rating movements across the rating grades. However, with respect to the matrix 

of the third hidden state (Table 6), it can be seen as a very stable “stayer state” (as suggested by 

the second Markov model in the Mover-Stayer Model). Compared to this model, it also provides 

additional information about the risk intensities, the likelihood of occurrence of the hidden states 

and the “normal” most probable risk situation, represented by the first hidden state. A further 

important enhancement offered by the DCMM is that it does not assume that the probability of 

entering one state has to be the same for both chains; instead, these probabilities are determined 

by a separate transition probability matrix. The DCMM also covers the memory of a drift, which 

is not possible in this fashion with the mixture models. 

 

 

4.3 Time dependent occurrence of the hidden states 

As described earlier, the hidden states might be driven and influenced by several dimensions, 

such as the economic cycle and other exogenous effects. And for each sequence of observations, 

the most likely sequence of hidden states, known as the Viterbi path, can be estimated. In order 

to see the evolution of the hidden states in previous years, Picture 1 shows the hidden state 

distribution across the observation period. This distribution confirms that the most likely state 

will be the first hidden state. Interestingly, in 1997, credit rating transitions were as likely to be 

driven by the third hidden state as by the first hidden state in the underlying database. Starting in 

1998, the second and third hidden states began to alternate in terms of their influence on the 

process every two years; every two successive years were dominated by one or the other hidden 

state. In other words, the migration volatility might have been higher and influenced by the 

second hidden state in 1998, 1999, 2002 and 2003. Additionally, the speculative grade issuer 

was more likely to upgrade, whereas the investment grade issuer faced a rating deterioration. In 
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1997, 2000, 2001, 2004 and 2005, however, the third hidden state dominated the second hidden 

state. Particularly in combination with the normal first hidden state, the transient behaviours 

were more stable and less volatile during these years.  

 

 

4.4 Validation 

In order to prove that the second order transient behaviour of the hidden states is not caused by 

spurious correlation, I calculated Cramer’s V statistic (see Cramer 1999) for the hidden 

variables. It is a measure for the association between variables. The closer Cramer’s V is to zero, 

the smaller the association between the hidden variables is. Here the three hidden states (with a 

value of 0.1256) do not depend very strongly on each other, which deflate any suspicion of a 

spurious correlation between the transition matrices of the second and third hidden states 

stemming from the correlated hidden states themselves.  

Now that the inherent correlation structure and the transient property have been 

examined, it is important to investigate the estimation accuracy of the DCMM. To this end, 

Theil’s U, which is the quotient of the root mean squared error (RMSE) of the forecasting model 

and the RMSE of the naive model, will be calculated (see Theil 1961). Hence, the results are 

compared against the "naive" model, which consists of a forecast repeating the most recent 

value of the variable. The naive forecast is a random walk specified as: 

ttt yy ε+= −1     where  ( )2,0...~ σε Ndiit .                                                        (11) 

Behind this notion is the belief that if a forecasting model cannot outperform a naive forecast, 

then the model is not doing an adequate job. A naive model predicting no change will give a U 

value of 1, and the better the model, the closer Theil’s U will be to 0. It is computed for the 

hidden states, resulting in a value of 0.0327, as well as for the observable variable, where I 

obtain a value of 0.0093. Both values indicate that the DCMM fits the data set nearly perfectly 

regarding the observable variables and, even more importantly, the hidden states as well. This 
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should also be taken as evidence of the high explanatory power of the DCMM. In contrast, the 

single HMM with three hidden states performs much worse, with a value of 0.9021, which is 

nearly a completely naive guess. The value for the observed variables, 0.5551, is tremendously 

better but is still far less accurate than the one given by the DCMM. These differences clearly 

show that the DCMM’s property of allowing dependence structures between the observations 

should be considered in estimating transition probabilities. This is not surprising, since this fact 

was already shown by the MC_2.  

 

 

4.5 Out-of-sample performance 

In order to ensure that these relationships are not the result of spurious correlations, the 

calculations should be repeated with both an out-of-sample and an in–the-sample data set. As 

can be seen in Table 1, the number of parameters of the MC_2 and DCMM_3_2_1 is too high to 

obtain unbiased estimates on the resulting small sub-samples. 

A robustness check to prove the complex correlation structure itself is conducted with 

random numbers, once generated with serial correlation and once without. The serially 

correlated random numbers are calculated as 

( )( ) ( )tttt YYY ερ ⋅+⋅= −− 11                                                                                     (12) 

where ρ  denotes the correlation coefficient and is assumed to be 40%. The random numbers 

themselves are assumed to be normally distributed and are scaled into the same 8 state rating 

scale { }8,,2,1 K  used in the original rating data. In order to make it comparable to the real rating 

data, the number of components in the log likelihood needs to be the same. Therefore, for each 

company, a random start rating is simulated. Afterwards, each company is assigned a sequence 

of random numbers equal in length to the number of rating observations in the original data set. 

Thus, the sample structure remains the same as in the original data. In the case of uncorrelated 

random numbers, the MC_1 performs best in terms of the AIC and BIC. In contrast to serially 
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correlated random numbers, the MC_2 clearly beats the MC_1, which supports the idea that the 

MC_2 fits a simple serial correlated data set best, as supposed with the rating drift.6 Even the 

DCMM_3_2_1 supports this idea, since the AIC and BIC beat the MC_1 but interestingly not 

the MC_2. On the other hand, the calculation based on the real rating data looks different, i.e. 

favours the DCMM_3_2_1 and hence confirms that the correlation structure in real credit rating 

data is much more complex than assumed and that the memory is not best captured by simply 

taking the combination of the current and previous ratings into account. 

 
 

Deriving the final matrix 

As previously shown, the memory information and the transition probabilities of the hidden 

states are spread over three transition probability matrices. At this point, the optimal way to 

handle the information would be a tractable matrix in the standard 8x8 dimension with the 

inherent transient and serial correlation structure. To derive such a matrix, a weighting approach 

is introduced. This approach is then also feasible for the DCMM model information in other 

areas (e.g. it is well known that the rating drift in Structured Finance is also evident and even 

stronger; see Cantor and Hu (2003)). The resulting matrix should approximate the non-

stationary process and preserve its memory information. Since the rating migration process 

follows a non-homogeneous process, the new matrix will also be based on a non-homogeneous 

process. The new non-homogeneous transition probability matrix’s first column would contain 

not only the current state ( )tX  but also a functional relationship of the risk intensities in various 

possible risk situations. The following information is needed: the individual transition 

probability matrix { }nPPP ,,, 21 K  for each of the hidden states mhh ,,1 K  (see Tables 4-6), the 

second order transition probability matrix of the hidden states (see Table 3) and information 

about the relative occurrence of the hidden states across the rating classes (see Table 9). Since 

                                                     
6 In support of the idea that the MC_2 captures simple serial correlation structures, BIC and AIC significantly increase if the 
calculations were based solely on random numbers without any serial correlation.  
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the second order transition matrix of the hidden state is used, memory is added to the process by 

allowing the future state to depend on the current and previous period risk situations. After the 

inputs are defined, the weighting approach is initiated by multiplying the elements for each 

hidden state of the second order transition probability matrix 

( )110,, ,,
0

iHiHiHPph tlltiii ==== −− KK  by the corresponding relative occurrence frequency 

of the respective hidden state ( )110 iXiXPprf ttij === − . For m hidden states, it results in m 

column vectors (V) of size mm . The resulting m vectors (V) are then summed together 

as ∑=
m

i
iVVW , where each element in the row vector is denoted as { }mvvvv ,,,, 321 K . Again, the 

new vector has the size mm  and is next divided sequentially into m buckets of size m  starting 

from the first entry 1v . Now each bucket contains m entries, which are then summed together 

and denoted as iϖ . These will be the weighting factors for the transition probabilities of the 

respective hidden states, where 1ϖ  corresponds to the first hidden state, 2ϖ corresponds to the 

second hidden state and so on { }mϖϖϖ ,,, 21 K . Finally, the entries of the new matrix are 

calculated as the product of the weighting factors for the respective hidden state times the 

corresponding entries of the respective transition probability matrix { }nPPP ,,, 21 K  and are then 

summed together. 

ijijijijijijij nnn pppp ϖϖϖ +++=+ K22111                                                                   (13) 

This is done for every entry in the new matrix. Finally, to ensure a row sum equal to one (as 

prescribed by the property of a stochastic matrix), each of the matrix’s entries is divided by its 

respective row sum.  

For purposes of illustration, let us consider our case with three hidden states and a 

situation in which it retains a rating of AAA. For the first hidden state, I start by multiplying each 

element of the first column ( )210 , −−== tttij HHiHPph  of the second order transition 

probability matrix for the hidden states by the relative frequency of the first hidden state for 

rating grade AAA (0.7318) and by the transition probability of the respective matrix P1 (0.8677), 

resulting in the vector =1V {0.5668492, 0.4402336, 0.610028, 0.6349829, 0, 0000635, 
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0.6349829, 0, 0}’. This is repeated for the remaining two hidden states in order to obtain two 

further weighted probability vectors, with =2V {0, 0, 0, 0, 0, 0, 0, 0, 0}’ and =3V {0.0212899, 

0.0443077, 0.0071099, 0, 0.1986, 0, 0, 0.1986, 0}’. In the next step, the three vectors are 

summed together, resulting in vector VW={0.5881391, 0.4845413, 0.6171379, 0.6349829, 

0.1986, 0.0000635, 0.1986, 0}’. Since we have 3 hidden states, the vector VW is split with its 9 

entries into three buckets containing three entries each. The entries of each bucket are then 

summed together and divided by the total vector sum of VW. Now we have three weighting 

factors for the respective hidden states: 436769.01 =ϖ , 02 =ϖ  and 248308.03 =ϖ . In the last 

step, the weighting factors are each multiplied by the respective transition probability of the 

corresponding transition probability matrix 31 PP −  and then finally summed together. The 

derived transition probability expresses the weighted probability of the final matrix, which is in 

our example equal to (=0.436769*0.8677 + 0*0 + 0.248308*1 = 0.68508).    

The final matrix (Table 10) exhibits the information of the transient behaviour of all three 

hidden states and the inherent serial correlation. Due to the second hidden state, the main 

diagonal shows lower probabilities than MC_1, the matrix for hidden state one (P1) and for 

hidden state three (P3). The probability mass is shifted by the second hidden state from rating 

state AAA to state A, towards a lower rating grade and from rating states BBB to CCC towards 

better rating states. This again is the idea of the mover characteristic.   

 

 

4.6 Economic impact 

After analyzing the transient behavior of credit rating migrations and their inherent correlation 

structure, it is important to obtain information about the economic impact. Since the class of 

reduced form models uses migration matrices as its main input, I conduct the analysis using the 

CreditMetrics model. Because the economic impact of transition probabilities with memory 

information from the successive risk situations is of major interest, a uniform correlation 
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structure is assumed. Regarding Gupton (1997), the correlation is set equal to 0.20, which 

should be a reasonable value. Furthermore, I conduct simulations with asset correlations of 10%, 

30% and 40%. The LGD is set equal to 45%. The value of the loan in one year for each rating is 

then computed as 

( )( )tCSr
tt

tteEADV +−•=                                                                                          (14) 

where t denotes the time and is set equal to one year, r denotes the riskless rate, which is 

assumed to be 3%, and the EAD denotes the commitment. The credit spread with PD as the 

probability of default s is denoted by CS and calculated as:  

( )( ) tPDCS ts −−= 1ln                                                                                        (15) 

I set up a hypothetical portfolio consisting out of 500 obligors with a total value of €500 

Mio. For simplicity’s sake, the single exposures are assumed to be uniformly distributed with a 

net commitment of €1 Mio, and each obligor has only one loan. In order to be as realistic as 

possible, I apply a hypothetic portfolio composition taken from a large German bank portfolio. 

It consists of 1.2% exposure in rating class AAA, 9.6% in AA, and 16.4% in A, 41.8% in BBB, 

27.2% in BB, 3.4% in B and 0.4% in CCC.  

To obtain information regarding the economic impact, the simulation is conducted once 

with the matrix estimated by the MC_1 and once with the finally derived matrix. The 

simulations clearly show that the MC_1 overestimates the risk compared to a simulation based 

upon the information provided by the DCMM. Based on a confidence level of 99.0% (99.9%), 

the simulation conducted with the matrix from the MC_1 allocates a CVaR of €18,915,573 

(€20,957,447), while the one generated by the finally derived matrix, including the inherent 

information of the DCMM, allocates a CVaR of €15,902,671 (€16,806,754). This result is in 

line with the observation that three different risk situations are obviously driving the transition. 

The first, most dominant hidden state shows a risk situation similar to the one proposed by the 

MC_1. The second hidden state is clearly moving, which results in a higher migration risk, but 

since the portfolio composition consists of 72.8% ratings below A and the second hidden state 
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shows an upgrade trend, the result is very reasonable. In other words, within this portfolio 

composition, the second hidden state reduces the risk by moving to upgrade rating qualities. The 

third and even more likely state reduces the migration risk, since it is an absolute stayer state. 

Overall, it results in a lower risk situation as shown by the lower CVaR. Even if I assume that 

the exposures are equivalently distributed across the rating states, the MC_1 still overestimates 

the risk. In this case, for a portfolio with the same face value and the simulation based on the 

MC_1 matrix, I obtain a considerably higher CVaR (€38,796,557) compared to the one based on 

the information from the DCMM (€33,864,380).  

In order to see what impact these transition probabilities might have under different 

correlation assumptions, I simulate the CVaR with the different correlations 0.1, 0.3 and 0.4 

again. Even with these different correlation assumptions, the MC_1 clearly overestimates the 

risk based upon the rating observations within the time period between 1994 and 2005.  

 

 

5 Conclusions 

Credit rating transition probabilities are commonly estimated by a discrete time time-

homogenous Markov chain. A large set of non-Markovian behaviors has already been 

discovered and unequivocally acknowledged in the literature. One very popular behavior is the 

so-called rating drift.  

The goal of this paper is to overcome these non-Markovian behaviors, to account especially for 

the truth serial correlation and try to find out what really influences the transition probability. I 

introduce two new models, the Mixture Transition Distribution model (MTD) and the Double 

Chain Markov Model (DCMM), into the credit rating transition estimation area. I analyse these 

along with the most commonly used models in order to ascertain which model best fits the 

transient behaviour of a representative credit rating data set. The two new models perform best. 

In terms of AIC and BIC the MTD clearly outperforms the standard Markov chain (MC_1) but 
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not the second-order Markov chain (MC_2). On the other hand, in light of the resulting sparse 

matrix from the MC_2 and the high number of parameters it requires, the Mixture Transition 

Distribution model is preferable. The DCMM beats every other model setting and furthermore 

discovers and emphasizes the true character of credit rating transitions. It is thereby obvious that 

the transition probability from one observation period to the next is not well captured by merely 

looking at a certain point in time and considering the frequencies of transitions one period later, 

as is done in the standard discrete time Markov chain. The underlying process is actually driven 

by three completely different risk situations determined by three hidden states instead of an 

average over the whole observation period. Each risk situation is determined by its individual 

risk intensity as given by a complete transition probability matrix. In this sense, the commonly 

assumed time-homogeneous assumption can also be rejected.  The first and most probable 

hidden state can be summarised as a normal risk state with transition probabilities similar to the 

ones already known. However, the second hidden state can be seen as a “mover state” with a 

complete reversal trend depending on whether the obligor is rated in an investment grade area or 

in the speculative grade area. However, if an obligor is rated with a speculative grade rating, an 

upgrade trend is to be expected, whereas in the speculative area, the corporation would face a 

downgrade of its rating. The third hidden state is a very stable “stayer state” in which no 

migration risk seems likely. The serial correlation assumed by the well-known rating drift is 

clearly confirmed. I show that the correlation structure is not best captured by two successive 

rating observations, as is commonly assumed by the rating drift, but by the addition of two 

successive hidden risk situations. Therefore the memory of a credit rating transition process is 

determined by two successive risk situations with possible different risk intensities along with 

two successive rating observations. To combine the information of the process with three risk 

situations into one transition probability matrix, a weighting algorithm is introduced to 

incorporate the information from the DCMM output. The resulting matrix should be much more 

able to capture the true transient behaviour of credit rating transitions. Furthermore, several 
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CVaR simulations based on this weighted matrix are compared to simulations based on rating 

transition matrices calculated with the standard time-homogeneous discrete Markov model. 

These simulations show that in light of risk capital depending only on the current observation 

period, credit risk is, on average, clearly overestimated.  As a result, not only the current rating 

and risk situation should be considered but also the previous one.  
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Table 1: Qualitative performance of the models 
The performance and the fit of the different models to the data is determined by the accuracy measures log 
likelihood, AIC and BIC. Here MC_# denotes the standard Markov Chain with order of # and HMM_#_# as the 
hidden Markov Model with # number of hidden states in a # order dependency. The Double Chain Markov model is 
denoted by DCMM with # hidden states in # order dependency with an output in a # dimension.  
 

  Parameter Log Likelihood AIC BIC 
Independence model 7 -105,948 211,911 211,974 
MC_1 42 -34,063 68,211 68,589 
MC_2 128 -31,391 63,038 64,190 
HMM_2_1 17 -79,643 159,322 159,475 
HMM_3_1 29 -73,244 146,547 146,808 

HMM_3_2 47 -70,560 141,216 141,639 

MTD_2 42 -32,837 65,758 66,136 

DCMM_2_2_1 91 -32,676 65,535 66,354 
DCMM_3_2_1 152 -29,072 58,449 59,817 
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Table 2: First hidden state distribution 1π  and the conditional distribution 2,1π  of the second 
hidden state 
 
This table shows the probability of which of the three hidden states might be the starting state 1π  in the rating 
sequence of each obligor and the conditional distribution 2,1π  of the further hidden states in the process given the 
first hidden state. 
 

state distribution States 1 2 3 

1π  1 0.6623 0.0351 0.3027 

1 0.9533 0.006 0.0407 

2 1 0 0 2,1π  

3 0.6929 0 0.3071 
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Table 3: Second order transition matrix of the hidden states                                                     
This table shows the transition probabilities of the hidden states in a second order dependency structure indicating 
how likely one of the three hidden states will be given the current one and the previous one. 
 

  t+1 t+1 t+1 

t-1        t0 1. hidden state 2. hidden state 3. hidden state 
1           1 0.8927 0.0001 0.1072 
2           1 0.6933 0.0837 0.2231 
3           1 0.9607 0.0035 0.0358 
1           2 1 0 0 
2           2 0 0 1 
3           2 0.0001 0.9999 0 
1           3 1 0 0 
2           3 0 0 1 
3           3 0 1 0 
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Table 4: DCMM_3_2_1   Transition Probability Matrix for hidden state 1 

This table shows transition probabilities calculated by the DCMM for the first hidden state based on a S&P issuer 
rating history for 1994 to 2005.  
 

  AAA  AA A BBB BB B CCC Default 

AAA 0.8677 0.1249 0.0057 0.0016 0.0000 0.0000 0.0000 0.0000 
AA 0.0040 0.8988 0.0897 0.0053 0.0005 0.0015 0.0000 0.0002 
A 0.0009 0.0212 0.9076 0.0649 0.0028 0.0009 0.0007 0.0009 
BBB 0.0002 0.0021 0.0378 0.9031 0.0437 0.0074 0.0029 0.0029 
BB 0.0002 0.0015 0.0023 0.0468 0.8570 0.0697 0.0096 0.0128 
B 0.0000 0.0007 0.0033 0.0037 0.0538 0.8435 0.0426 0.0524 
CCC 0.0000 0.0000 0.0024 0.0000 0.0071 0.0737 0.6813 0.2355 
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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Table 5: DCMM_3_2_1   Transition Probability Matrix for hidden state 2 

This table shows transition probabilities calculated by the DCMM for the second (“mover”) hidden state 
based on a S&P issuer rating history for 1994 to 2005.  
 
  AAA  AA A BBB BB B CCC Default 

AAA 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
AA 0.2121 0.0023 0.782 0.0036 0.0000 0.0000 0.0000 0.0000 
A 0.0000 0.3664 0.0000 0.6336 0.0000 0.0000 0.0000 0.0000 
BBB 0.0000 0.0000 0.6566 0.0004 0.3428 0.0000 0.0000 0.0002 
BB 0.0000 0.0000 0.0023 0.7208 0.0000 0.2769 0.0000 0.0000 
B 0.0000 0.0000 0.0000 0.0000 0.5348 0.0000 0.4539 0.0113 
CCC 0.0000 0.0000 0.0000 0.0000 0.0106 0.8199 0.0952 0.0743 
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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Table 6: DCMM_3_2_1   Transition Probability Matrix for hidden state 3 

This table shows transition probabilities calculated by the DCMM for the third (“stayer”) hidden state based on a 
S&P issuer rating history for 1994 to 2005.  
 

  AAA  AA A BBB BB B CCC Default 

AAA 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
AA 0.0016 0.9984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
A 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
BBB 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 
BB 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 
B 0.0015 0.0000 0.0000 0.0000 0.0022 0.9961 0.0000 0.0002 
CCC 0.0000 0.0000 0.0000 0.0245 0.0000 0.0470 0.9285 0.0000 
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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Table 7: MC_1    Transition Probability Matrix 

This table shows transition probabilities calculated as usually by a discrete homogeneous time Markov chain based 
on a S&P issuer rating history for 1994 to 2005.  
 

  AAA  AA A BBB BB B CCC Default 

AAA 0.8402 0.1543 0.0043 0.0012 0.0000 0.0000 0.0000 0.0000 
AA 0.0161 0.8617 0.1163 0.0043 0.0004 0.0011 0.0000 0.0001 
A 0.0007 0.0399 0.864 0.0912 0.0022 0.0007 0.0005 0.0007 
BBB 0.0002 0.0017 0.0705 0.8599 0.0568 0.0061 0.0024 0.0024 
BB 0.0002 0.0013 0.0021 0.0736 0.8304 0.0730 0.0083 0.0111 
B 0.0001 0.0006 0.0029 0.0033 0.0622 0.8339 0.0500 0.0469 
CCC 0.0000 0.0000 0.0020 0.0020 0.0068 0.1191 0.6644 0.2057 
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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Table 8: Deviation in percentage from the corresponding future rating grade calculated with 

MC_1 
This table provides an overview regarding to the overall trend to migrate from a given rating to a certain rating class 
for the three matrices from the hidden states and the finally derived matrix. Hereby each column probability mass 
from each of the four matrices is compared to the respective one estimated by the MC_1. 
 
  AAA  AA A BBB BB B CCC D

DCMM  hidden state 1 1.81 -0.97 -1.25 -0.98 0.64 -3.60 1.58 2.98
DCMM  hidden state 2 -75.27 29.18 35.67 31.18 -7.36 6.08 -24.32 -14.29
DCMM  hidden state 3 16.98 -5.77 -5.85 -1.06 4.53 0.89 27.96 -21.05
final matrix -9.85 10.54 13.98 14.45 2.66 1.85 5.99 -6.10
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Table 9: Relative Frequency table rating distribution across the 3 hidden states  

The table shows the relative occurrence frequencies of the hidden states for each rating during the observation 
period from 1994 to 2005. 
 

 1. hidden state 2. hidden state 3. hidden state 
AAA 0.7318 0.0697 0.1986 
AA 0.7934 0.065 0.1416 
A 0.8118 0.0679 0.1204 
BBB 0.872 0.0645 0.0636 
BB 0.9126 0.0473 0.0401 
B 0.9338 0.0274 0.0387 
CCC 0.874 0.0963 0.0297 
Default 0.9941 0.0059 0.0000 
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Table 10: Final Matrix derived from the three hidden states 

The transition probability matrix is derived through a weighting approach to keep as many information of the serial 
correlation and the transient characteristic of credit rating histories from the DCMM as possible. The transition 
probabilities are derived out of the second order transition probabilities of the hidden states, the respective relative 
frequencies of each hidden state for each rating grade, and the corresponding transition probabilities from the 
respective hidden state transition probability matrix. 
 
  AAA  AA A BBB BB B CCC Default 
AAA 0.6690 0.3270 0.0031 0.0009 0.0000 0.0000 0.0000 0.0000 
AA 0.0816 0.6675 0.2463 0.0035 0.0003 0.0008 0.0000 0.0001 
A 0.0005 0.1192 0.6796 0.1978 0.0015 0.0005 0.0004 0.0005 
BBB 0.0001 0.0011 0.2122 0.6760 0.1037 0.0039 0.0015 0.0016 
BB 0.0001 0.0008 0.0017 0.2283 0.6606 0.0966 0.0051 0.0068 
B 0.0006 0.0004 0.0017 0.0020 0.1613 0.6543 0.1495 0.0303 
CCC 0.0000 0.0000 0.0013 0.0101 0.0061 0.2506 0.5878 0.1441 
Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 
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Figure 1: hidden state distribution across the years 
This picture shows the hidden state distribution in percent over the observation period 1994-2005. The frequencies 
of the hidden states are derived for each obligors rating history through the Viterbi algorithms.  
 

 

 
 
 
 


