
 
Mean-Semivariance Optimization: 

A Heuristic Approach 
 

Javier Estrada ∗ 
 

IESE Business School, Avenida Pearson 21, 08034 Barcelona, Spain 
Tel: +34 93 253 4200, Fax: +34 93 253 4343, Email: jestrada@iese.edu 

 
 
 

Abstract 
 Academics and practitioners optimize portfolios using far more often the mean-variance approach than the 
mean-semivariance approach, and that despite the fact that semivariance is often considered a more plausible 
measure of risk than variance. The popularity of the mean-variance approach follows in part from the fact that 
mean-variance problems have well-known closed-form solutions, whereas mean-semivariance optimal portfolios 
cannot be determined without resorting to obscure numerical algorithms. This follows from the fact that, unlike the 
exogenous covariance matrix, the semicovariance matrix is endogenous. This article proposes a heuristic approach 
that yields a symmetric and exogenous semicovariance matrix, which enables the determination of mean-
semivariance optimal portfolios by using the well-known closed-form solutions of mean-variance problems. The 
heuristic proposed is shown to be both simple and accurate. 
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1. Introduction 
 As is well known, Harry Markowitz pioneered the issue of portfolio optimization with a 

seminal article (Markowitz, 1952) later expanded into a seminal book (Markowitz, 1959). And as 

is also well known, at the heart of the portfolio-optimization problem there is an investor whose 

utility depends on the expected return and risk of his portfolio, the later quantified by the 

variance of returns. 

 What may be less well known is that, from the very beginning, Markowitz favored 

another measure of risk, the semivariance of returns. In fact, Markowitz (1959) allocates the 

whole chapter IX to discuss semivariance, where he argues that “analyses based on S 

[semivariance] tend to produce better portfolios than those based on V [variance].” In the 

revised edition of his book (Markowitz, 1991), he goes further and claims that “semivariance is 

the more plausible measure of risk.” And later, in Markowitz et al (1993), he claims that because 

“an investor worries about underperformance rather than overperformance, semideviation is a 

more appropriate measure of investor’s risk than variance.” 

                                                 
∗ Gabriela Giannattasio provided valuable research assistance. The views expressed below and any errors that may 
remain are entirely my own. 
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 Why, then, have practitioners and academics been optimizing portfolios for over 50 years 

using variance as a measure of risk? Simply because, as Markowitz (1959) himself stated, variance 

has an edge over semivariance “with respect to cost, convenience, and familiarity.” He therefore 

focused his analysis on variance, practitioners and academics followed his lead, and the rest is 

history. 

 Familiarity, however, has become less of an issue over time. In fact, downside risk has 

been gaining increasing attention both in practice and in academia, and the many magnitudes 

that capture downside risk are by now well known and widely used, again both in practice and in 

academia. The focus of this article, then, is on the issues of cost and convenience. 

 The difference in cost, Markowitz (1959) argued, was given by the fact that efficient sets 

based on semivariance took, back then, two to four times as much computing time as those 

based on variance. The difference in convenience, in turn, is given by the fact that efficient sets 

based on variance require as inputs only means, variances, and covariances, whereas those based 

on semivariance require the entire joint distribution of returns. The ultimate goal of this article, 

then, is to propose a heuristic approach to the estimation of portfolio semivariance that renders 

the issues of cost and convenience irrelevant. 

 In a nutshell, this article proposes to estimate the semivariance of portfolio returns by 

using an expression similar to that used to estimate the variance of portfolio returns. The 

advantages of this approach are twofold. Estimating the semivariance of portfolio returns, first, 

is just as easy as estimating the variance of portfolio returns (and in both cases the same number 

of inputs is required); and second, it can be done with an expression well known by all 

practitioners and academics, without having to resort to any black-box numerical algorithm. In 

addition, as will be seen below, the heuristic proposed here yields a portfolio semivariance that is 

both very highly correlated and very close in value to the exact magnitude it intends to 

approximate. 

 The rest of this article is organized as follows. Section 2 introduces the issue, discusses 

the difficulties related to the optimization of portfolios on the basis of means and semivariances, 

and shows how they are overcome by the heuristic approach proposed in this article. Section 3, 

based on data on individual stocks, markets, and asset classes, provides empirical support for this 

heuristic. Finally, section 4 concludes with an assessment. 

 

2. The Issue 
 There is little doubt that practitioners rely much more on mean-variance optimization 

than on mean-semivariance optimization. This is largely because, unlike the neat closed-form 
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solutions of mean-variance problems known by most academics and practitioners, mean-

semivariance problems are usually solved with obscure numerical algorithms. This, in turn, is 

largely because, unlike the exogenous covariance matrix used in mean-variance problems, the 

semicovariance matrix of mean-semivariance problems is, as will be seen below, endogenous. 

 This section starts with some basic definitions and notation, and then introduces the 

definition of portfolio semivariance proposed in this article. A numerical example is then used to 

illustrate both the endogeneity of the usual definition of the semicovariance matrix and the 

exogeneity of the definition proposed here. 

 

2.1. The Basics 

 Consider an asset i with returns Rit where t indexes time. The variance of this asset’s 

returns (σi
2) is given by 
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where µi denotes the mean return of asset i and T the number of observations; and the 

covariance between two assets i and j (σij) is given by 

 
 )()()(1/)])(E[(

1 jjt
T

t iitjjiiij µRµRTµRµRσ −−⋅=−−= ∑ =
 .      (2) 

 
 The semivariance of asset i’s returns with respect to a benchmark B (ΣiB

2) is given by 
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where B is any benchmark return chosen by the investor. The square root of (3) is the 

semideviation of asset i with respect to benchmark B, a widely-used measure of downside risk. 

Estrada (2006) provides an introduction to the semideviation and discusses its several advantages 

over the standard deviation as a measure of risk; Nawrocki (1999) provides a brief history of 

downside risk and an overview of downside risk measures. 

 The semicovariance between assets i and j (Σij) is trickier to define. Hogan and Warren 

(1974) define it as 

 
 0)},Min()E{( fjfi
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where the superscript HW indicates that this is definition proposed by Hogan and Warren. This 

definition, however, has two drawbacks. First, the benchmark return is limited to the risk-free 

rate and cannot be tailored to any desired benchmark; and second, it is usually the case that 
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Σij
HW≠Σji

HW. This second characteristic is particularly limiting both formally (the semicovariance 

matrix is usually asymmetric) and intuitively (it is not clear how to interpret the contribution of 

assets i and j to the risk of a portfolio). 

 In order to overcome these two drawbacks, Estrada (2002, 2007) defines the 

semicovariance between assets i and j with respect to a benchmark B (ΣijB) as 
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This definition can by tailored to any desired B and generates a symmetric (ΣijB=ΣjiB) and, as will 

be seen below, exogenous semicovariance matrix. Both the symmetry and exogeneity of this 

matrix are critical for the implementation of the heuristic proposed here. 

 Finally, the expected return (Ep) and variance (σp
2) of a portfolio are given by 

 
 ∑ =

=
n

i iip ExE
1

 ,            (6) 

 ∑ ∑= =
=

n

i

n

j ijjip σxxσ
1 1

2  ,           (7) 
 
where xi denotes the proportion of the portfolio invested in asset i, Ei the expected return of 

asset i, and n the number of assets in the portfolio. 

 

2.2. The Problem 

 Portfolio-optimization problems can be specified in many ways depending on the goal 

and restrictions of the investor.1 The problem of minimizing the risk of a portfolio subject to a 

target return (ET) is given by 
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where risk is measured as the variance of portfolio returns. 

 This problem can be solved for a specific value of ET or, alternatively, for several values 

of ET thus generating the minimum-variance set. Either way, it is important to notice, first, that 

the risk of the portfolio can be expressed as a function of the risk of the individual assets in the 

portfolio; second, that all the variances, covariances, and expected returns of the individual assets 

are exogenous variables; and third, that this problem has a well-known closed-form solution. For 
                                                 
1 There are four standard portfolio optimization problems: 1) minimizing the risk of a portfolio; 2) minimizing the 
risk of a portfolio subject to a target return; 3) maximizing the return of a portfolio subject to a target level of risk; 
and 4) maximizing the risk-adjusted return of a portfolio. The heuristic proposed here applies to all four problems; 
only for concreteness most of the discussion is focused on the second problem. 
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this reason, although it is not important for the purposes of this article how the σij are estimated, 

it is important that, once the values of these parameters (exogenous variables) are determined, 

they become inputs (together with Ei and ET) in the closed-form solution of the problem, which 

in turn yields the optimal allocation to each of the n assets in the portfolio (the endogenous 

variables xi ). 

 But what if, instead of defining risk as the variance of portfolio returns, an investor 

wanted to define it as the semivariance of portfolio returns? What if, given a benchmark return B 

chosen by the investor, he wanted to 

 
 ∑ =

−⋅=
T

t ptpBxxx BRTΣ
n 1

22
,...,, 0)],[Min()(1/Min

21
      (10) 

 0and1toSubject
11

≥== ∑∑ == ix,, n

i i
n

i
T

ii xEEx  ,     (11) 
 
where Rpt denotes the returns of the portfolio and ΣpB

2 their semivariance. The main obstacle to 

the solution of this problem is that the semicovariance matrix is endogenous; that is, a change in 

weights affects the periods in which the portfolio underperforms the benchmark, which in turn 

affects the elements of the semicovariance matrix.2 (More on this below.) 

 In order to overcome this obstacle, many algorithms have been proposed to solve the 

problem in (10)-(11), some of which are discussed below. More importantly, this article proposes 

a heuristic approach to solve this problem without having to resort to any black-box numerical 

algorithm. In fact, as will be seen below, the heuristic proposed here makes it possible to solve 

not only the problem in (10)-(11) but also all mean-semivariance problems with the same well-

known closed-form solutions widely-used to solve mean-variance problems. 

 More precisely, this article argues that the semivariance of a portfolio with respect to a 

benchmark B can be approximated with the expression 
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where ΣijB is defined as in (5). This expression yields a symmetric and exogenous semicovariance 

matrix, which can then be used in the same way the (symmetric and exogenous) covariance 

matrix is used in the solution of mean-variance problems. (Again, more on this below.) 

 

 

 

                                                 
2 Note, also, that this formulation of the optimization problem ignores both the downside risk of individual assets 
and the downside covariance between individual assets; see Sing and Ong (2000). 
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2.3. An Example 

 Exhibit 1 displays the annual returns of the S&P-500 and the Nikkei-225 between 1997 

and 2006, as well as the return of two portfolios, one invested 80% in the S&P and 20% in the 

Nikkei, and the other invested 10% in the S&P and 90% in the Nikkei. Consider for now the 80-

20 portfolio. The standard deviation of this portfolio can be calculated by first estimating its 

returns over the sample period, and then calculating the standard deviation of those returns. The 

fourth column of Exhibit 1 shows the returns of the 80-20 portfolio, and the standard deviation 

of those returns, which can be straightforwardly calculated using the square root of (1), is 16.7%. 

 
Exhibit 1: The Endogenous Semicovariance Matrix 
This exhibit shows the returns over the 1997-2006 period of the S&P-500 (S&P), the Nikkei-225 (Nikkei), a 
portfolio invested 80% in the S&P and 20% in the Nikkei (80-20), and a portfolio invested 10% in the S&P and 
90% in the Nikkei (10-90). ‘Conditional returns’ are defined as 0% when the return of the portfolio is positive, and 
the return of the asset when the return of the portfolio is negative. All returns are in dollars and account for capital 
gains and dividends. All numbers in %. 
  ‘Conditional returns’  
  80-20 Portfolio   10-90 Portfolio  
 Year    S&P Nikkei  80-20  10-90  S&P  Nikkei Product S&P Nikkei Product 
 1997 31.0 −21.2 20.6 −16.0 0.0 0.0 0.0 31.0 −21.2 −6.6 
 1998 26.7 −9.3 19.5 −5.7 0.0 0.0 0.0 26.7 −9.3 −2.5 
 1999 19.5 36.8 23.0 35.1 0.0 0.0 0.0 0.0 0.0 0.0 
 2000 −10.1 −27.2 −13.5 −25.5 −10.1 −27.2 2.8 −10.1 −27.2 2.8 
 2001 −13.0 −23.5 −15.1 −22.5 −13.0 −23.5 3.1 −13.0 −23.5 3.1 
 2002 −23.4 −18.6 −22.4 −19.1 −23.4 −18.6 4.4 −23.4 −18.6 4.4 
 2003 26.4 24.5 26.0 24.6 0.0 0.0 0.0 0.0 0.0 0.0 
 2004 9.0 7.6 8.7 7.7 0.0 0.0 0.0 0.0 0.0 0.0 
 2005 3.0 40.2 10.4 36.5 0.0 0.0 0.0 0.0 0.0 0.0 
 2006 13.6 6.9 12.3 7.6 0.0 0.0 0.0 0.0 0.0 0.0 

 
 Importantly, the standard deviation of the 80-20 portfolio can also be calculated by using 

the square root of (7). Taking into account that the standard deviations of the S&P and the 

Nikkei over the 1997-2006 period are 17.8% and 24.1%, and that the covariance between these 

two indices is 0.0163, it follows from (7) that 

 
 σp = {(0.82)(0.1782) + (0.22)(0.2412) + 2(0.8)(0.2)(0.0163)}1/2 = 16.7% , 
 
which is of course identical to the number obtained before from the portfolio returns. So far, no 

mystery here. 

 The problem arises if we think that the proper measure of risk is not the portfolio’s 

variance but its semivariance. One obvious way of calculating this magnitude would be by first 

calculating the returns of the portfolio and then using (3) to calculate the semivariance of its 

returns. Assume a benchmark return of 0% (B=0), and consider again the 80-20 portfolio. We 

could first calculate the returns of this portfolio (shown in the fourth column of Exhibit 1), and 
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then calculate the semivariance of its returns by using (3). And if we did that, we would obtain a 

portfolio semivariance with respect to 0% equal to 0.0092, and a portfolio semideviation equal to 

(0.0092)1/2=9.6%. 

 Thus, for any given portfolio, we can always calculate its semideviation as just explained. 

But here is the problem: If instead of the semideviation of one portfolio we wanted to calculate 

the portfolio with the lowest semideviation from a set of, say, 1,000 feasible portfolios, we would 

first need to calculate the returns of each portfolio; then from those returns we would need to 

calculate the semideviation of each portfolio; and finally from those semideviations we would 

need to select the one with the lowest value. Obviously, as the number of assets in the portfolio 

increases, and the number of feasible portfolios increases even more, choosing the optimal 

portfolio with this procedure becomes intractable. 

 Look at this from a different perspective. If the elements of the semicovariance matrix 

were exogenous, then we could formally solve the given optimization problem and obtain a 

closed-form solution. We could then input into this closed-form solution the values of the 

exogenous variables of the problem at hand, and obtain as a result the weights that satisfy our 

problem. This is exactly what investors routinely do when solving portfolio-optimization 

problems in the mean-variance world. But the problem in the mean-semivariance world is, 

precisely, that the elements of the semicovariance matrix are not exogenous. 

 

2.4. The Endogeneity of the Semicovariance Matrix 

 Markowitz (1959) suggests to estimate the semivariance of a portfolio with the 

expression 
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where periods 1 through K are those in which the portfolio underperforms the benchmark return B. 

 This definition of portfolio semivariance has one advantage and one drawback. The 

advantage is that it provides an exact estimation of the portfolio semivariance. The drawback is 

that the semicovariance matrix is endogenous; that is, a change in weights affects the periods in 

which the portfolio underperforms the benchmark, which in turn affects the elements of the 

semicovariance matrix. 
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 To see the advantage of this definition of portfolio semivariance, go back to Exhibit 1, 

the 80-20 portfolio, and consider again B=0. The sixth column of this exhibit shows the 

‘conditional returns’ of the S&P defined, following (14), as 0% when the return of the 80-20 

portfolio is positive (thus outperforming the benchmark), and the return of the S&P when the 

return of the 80-20 portfolio is negative (thus underperforming the benchmark). To illustrate, the 

‘conditional return’ of the S&P is 0% in 1997 because the 80-20 portfolio delivered a positive 

return, and –10.1% (the return of the S&P) in 2000 because the 80-20 portfolio delivered a 

negative return. The seventh column shows the ‘conditional returns’ for the Nikkei, and the 

eighth column is just the product of the sixth and the seventh columns. 

 The four terms of the semicovariance matrix that follow from (14) can be calculated as 

follows. Squaring the ‘conditional returns’ in the sixth column and taking their average we obtain 

SS&P,S&P,0=0.0082; doing the same with the ‘conditional returns’ in the seventh column we obtain 

SNikkei,Nikkei,0=0.0164; and taking the average of the numbers in the eighth column we obtain 

SS&P,Nikkei,0=0.0102. Then, it follows from (13) that the semivariance of the 80-20 portfolio is 

 
 {(0.82)(0.0082) + (0.22)(0.0164) + 2(0.8)(0.2)(0.0102)} = 0.0092 , 
 
and its semideviation is (0.0092)1/2=9.6%, which is exactly the same number we had obtained 

before. 

 Therefore, the expression proposed by Markowitz (1959) does indeed provide an exact 

estimation of the portfolio semivariance. But the problem is that, in order to estimate this 

semivariance, we need to know whether the portfolio underperforms the benchmark, and we then 

run into the problem mentioned above: The semicovariance matrix is endogenous because a 

change in weights affects when the portfolio underperforms the benchmark, which in turn 

affects the elements of the semicovariance matrix. 

 To see this more clearly, go back to Exhibit 1 and consider now the portfolio invested 

10% in the S&P and 90% in the Nikkei. The returns of this portfolio are shown in the fifth 

column, the ‘conditional returns’ (as defined above) of the S&P and the Nikkei in the ninth and 

tenth columns, and the product of these last two columns in the eleventh column. Importantly, 

note that the ‘conditional returns’ of the S&P and the Nikkei for the 10-90 portfolio that follow 

from (14) are different from those for the 80-20 portfolio that follow from the same expression. 

 The four terms of the semicovariance matrix that follows from (14) can be calculated as 

before. Squaring the numbers in the ninth column and then taking their average we obtain 

SS&P,S&P,0=0.0249; squaring the numbers in the tenth column and then taking their average we 

obtain SNikkei,Nikkei,0=0.0217; and taking the average of the numbers in the last column we obtain 
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SS&P,Nikkei,0=0.0011. And importantly, note that all these numbers are different from those calculated for the 

80-20 portfolio. This clearly illustrates that the semicovariance matrix is endogenous because its 

elements depend on the asset weights. 

 Finally, for the sake of completeness, with the numbers just calculated we can use (13) to 

calculate the semivariance of the 10-90 portfolio, which is given by 

 
 {(0.12)(0.0249) + (0.92)(0.0217) + 2(0.1)(0.9)(0.0011)} = 0.0181 , 
 
thus implying a semideviation of (0.0181)1/2=13.4%. 

 

2.5. Some Possible Solutions 

 The endogeneity of the semicovariance matrix as defined in (14) has led many authors to 

propose different ways of tackling the problem in (10)-(11). Hogan and Warren (1972) propose 

to solve this problem using the Frank-Wolfe algorithm; they explain the two basic steps of this 

iterative method (the direction-finding problem and the step-size problem) and illustrate its 

application with a simple hypothetical example. Ang (1975) proposes to linearize the 

semivariance so that the optimization problem can be solved using linear (instead of quadratic) 

programming. 

 Nawrocki (1983) proposes a further simplification of the heuristic proposed by Elton, 

Gruber, and Padberg (1976). The latter focus on the mean-variance problem and impose the 

simplifying assumption that all pairwise correlations are the same; the former further imposes a 

value of 0 for all these correlations and extends the analysis to other measures of risk, including 

the semivariance. In this heuristic, assets are ranked according to the measure zi = (Ei–Rf)/RMi, 

where RMi is a risk measure for asset i, and assets with zi>0 are included in the portfolio 

according to the proportions wi = zi/Σizi. Nawrocki and Staples (1989) expand the scope of 

Nawrocki (1983) by considering the lower partial moment (LPM) as a risk measure. 

 Harlow (1991) also considers the problem in (10)-(11) and generates mean-semivariance 

efficient frontiers, which he compares to mean-variance efficient frontiers. However, he does not 

explain how these frontiers are obtained other than stating that the optimization process uses the 

entire distribution of returns. Similarly, Grootveld and Hallerbach (1999) generate mean-LPM 

efficient frontiers, state that the numerical optimization process they use for solving the problem 

in (10)-(11) is tedious and demanding, but do not provide details of such process. 

 Markowitz et al (1993) transform the mean-semivariance problem into a quadratic 

problem by adding fictitious securities. This modification enables them to apply to the modified 
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mean-semivariance problem the critical line algorithm originally developed to solve the mean-

variance problem. 

 More recently, de Athayde (2001) proposes a non-parametric approach to calculate the 

portfolio semivariance, as well as an algorithm (basically a series of standard minimization 

problems) to optimize it and generate the efficient frontier. Ballestero (2005), in turn, proposes a 

definition of portfolio semivariance (restricting the benchmark to the mean) that, when 

incorporated into optimization problems, these can be solved by applying parametric quadratic 

programming methods. 

 

2.6. A Heuristic Approach 

 As advanced above, the heuristic proposed in this article is based on estimating the 

portfolio semivariance using expression (12), which in turn is based on (5), which generates a 

symmetric and exogenous semicovariance matrix. Recall that with (14) we need to know whether 

the portfolio underperforms the benchmark B, which generates the endogeneity problem discussed 

above. With (5), in turn, we need to know whether the asset (not the portfolio) underperforms the 

benchmark B. Again, an example may help. 

 Exhibit 2 reproduces the returns over the 1997-2006 period of the S&P, the Nikkei, the 

80-20 portfolio, and the 10-90 portfolio, all taken from Exhibit 1. As we have already seen, the 

elements of the semicovariance matrix that follow from (14) for the 80-20 portfolio are different 

from those of the semicovariance matrix that follow from (14) for the 10-90 portfolio, which 

confirms the endogeneity of this definition of semicovariance. As we will see now, the elements 

of the semicovariance matrix that follow from (5) are invariant to the portfolio considered and 

therefore exogenous. 

 To see this, let’s calculate the four terms of the semicovariance matrix that follow from 

this expression by considering once again a benchmark return of 0%. First, we need to redefine 

‘conditional returns’ as 0% when the return of the asset is positive (thus outperforming the 

benchmark), and the return of the asset when the return of the asset is negative (thus 

underperforming the benchmark). To illustrate, the ‘conditional return’ of the S&P is 0% in 1997 

because the S&P delivered a positive return, and –10.1% (the return of the S&P) in 2000 because 

the S&P delivered a negative return. 

 These ‘conditional returns’ of the S&P and the Nikkei are shown in the sixth and seventh 

columns of Exhibit 2, and the eighth column is the product of the previous two. Note that 

because these ‘conditional returns’ depend on whether the asset, not the portfolio, underperforms 
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the benchmark, they are relevant not only to estimate the semicovariance matrix of the 80-20 

portfolio but also that of any other portfolio. 

 
Exhibit 2: The Exogenous Semicovariance Matrix 
This exhibit shows the returns over the 1997-2006 period of the S&P-500 (S&P), the Nikkei-225 (Nikkei), a 
portfolio invested 80% in the S&P and 20% in the Nikkei (80-20), and a portfolio invested 10% in the S&P and 
90% in the Nikkei (10-90). ‘Conditional returns’ are defined as 0% when the return of the asset is positive, and the 
return of the asset when the return of the asset is negative. All returns are in dollars and account for capital gains 
and dividends. All numbers in %. 
  Assets   Portfolios     ‘Conditional Returns’  
 Year    S&P  Nikkei  80-20  10-90  S&P    Nikkei Product 
 1997 31.0 −21.2 20.6 −16.0 0.0 −21.2 0.0 
 1998 26.7 −9.3 19.5 −5.7 0.0 −9.3 0.0 
 1999 19.5 36.8 23.0 35.1 0.0 0.0 0.0 
 2000 −10.1 −27.2 −13.5 −25.5 −10.1 −27.2 2.8 
 2001 −13.0 −23.5 −15.1 −22.5 −13.0 −23.5 3.1 
 2002 −23.4 −18.6 −22.4 −19.1 −23.4 −18.6 4.4 
 2003 26.4 24.5 26.0 24.6 0.0 0.0 0.0 
 2004 9.0 7.6 8.7 7.7 0.0 0.0 0.0 
 2005 3.0 40.2 10.4 36.5 0.0 0.0 0.0 
 2006 13.6 6.9 12.3 7.6 0.0 0.0 0.0 

 
 The four terms of the semicovariance matrix that follows from (5), then, can be 

calculated as follows. Squaring the ‘conditional returns’ in the sixth column and taking their 

average we obtain ΣS&P,S&P,0=0.0082; doing the same with the ‘conditional returns’ of the seventh 

column we obtain ΣNikkei,Nikkei,0=0.0217; and taking the average of the numbers in the eighth 

column we obtain ΣS&P,Nikkei,0=0.0102. Then, it follows from (12) that the semivariance of the 80-

20 portfolio is 

 
 {(0.82)(0.0082) + (0.22)(0.0217) + 2(0.8)(0.2)(0.0102)} = 0.0094 , 
 
and its semideviation is (0.0094)1/2=9.7%, very close to the exact 9.6% number we calculated 

above from the portfolio returns. 

 Importantly, if we use (12) to calculate the semivariance of the 10-90 portfolio, we get 

 
 {(0.12)(0.0082) + (0.92)(0.0217) + 2(0.1)(0.9)(0.0102)} = 0.0195 , 
 
thus implying a semideviation of (0.0195)1/2=14.0%. Note that this number is very close to the 

exact 13.4% figure we calculated for this portfolio in section 2.4. More importantly, note that the 

only difference between this calculation and that for the 80-20 portfolio is in the weights; the four 

elements of the semicovariance matrix are the same. 

 In short, if we define semicovariances as in (14) and portfolio semivariance as in (13), 

then we run into the endogeneity problem and we need to use black-box numerical algorithms to 

solve portfolio-optimization problems. If instead we define semicovariances as in (5) and 
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portfolio semivariance as in (12), then we obtain a symmetric and exogenous semicovariance 

matrix, and the well-known and widely-used closed-form solutions of mean-variance portfolio 

optimization problems can be applied.  

 

2.7. A First Look at the Accuracy of the Approximation 

 In order to take a preliminary look at the accuracy of the approximation proposed, and 

to round up the example discussed so far, Exhibit 3 shows the returns of eleven portfolios over 

the 1997-2006 period that differ only in the proportions invested in the S&P and the Nikkei. The 

third row from the bottom shows the exact semideviation of each portfolio calculated from the 

portfolio returns and based on expression (3), and the second row from the bottom shows the 

semideviation of each portfolio based on the approximation proposed in expression (12). In 

both cases the benchmark return B is 0%. The last row shows the difference between the exact 

and the approximate semideviations. 

 
Exhibit 3: A First Look at the Accuracy of the Approximation 
This exhibit shows the return of eleven portfolios over the 1997-2006 period, each with different proportions 
invested in the S&P-500 (S&P) and the Nikkei-225 (Nikkei). The returns of the S&P and the Nikkei are those in 
Exhibits 1 and 2. Σp0(3) and Σp0(12) denote the portfolio semideviations based on expressions (3) and (12), both with 
respect to a benchmark return of 0%. The last row show the differences Σp0(12)–Σp0(3). All returns are in dollars and 
account for capital gains and dividends. All numbers in %. 
  Proportion of the portfolio invested in the S&P (%)  
 Year  100   90   80   70   60 50 40 30 20 10 0 
 1997 31.0 25.8 20.6 15.3 10.1 4.9 −0.3 −5.5 −10.8 −16.0 −21.2 
 1998 26.7 23.1 19.5 15.9 12.3 8.7 5.1 1.5 −2.1 −5.7 −9.3 
 1999 19.5 21.3 23.0 24.7 26.4 28.2 29.9 31.6 33.3 35.1 36.8 
 2000 −10.1 −11.8 −13.5 −15.3 −17.0 −18.7 −20.4 −22.1 −23.8 −25.5 −27.2 
 2001 −13.0 −14.1 −15.1 −16.2 −17.2 −18.3 −19.3 −20.4 −21.4 −22.5 −23.5 
 2002 −23.4 −22.9 −22.4 −21.9 −21.5 −21.0 −20.5 −20.0 −19.6 −19.1 −18.6 
 2003 26.4 26.2 26.0 25.8 25.6 25.4 25.2 25.0 24.8 24.6 24.5 
 2004 9.0 8.9 8.7 8.6 8.4 8.3 8.2 8.0 7.9 7.7 7.6 
 2005 3.0 6.7 10.4 14.2 17.9 21.6 25.3 29.1 32.8 36.5 40.2 
 2006 13.6 12.9 12.3 11.6 10.9 10.3 9.6 8.9 8.3 7.6 6.9 
 Σp0(3) 9.05 9.29 9.57 9.88 10.23 10.60 11.00 11.56 12.36 13.44 14.75 
 Σp0(12) 9.05 9.32 9.68 10.12 10.64 11.21 11.84 12.52 13.23 13.98 14.75 
 Diff. 0.00 0.03 0.11 0.24 0.41 0.61 0.84 0.96 0.87 0.53 0.00 
 
 The correlation between the exact semideviations based on (3) and the approximate 

semideviations based on (12) is a whopping 0.98. Furthermore, the difference between the 

approximate and the exact semideviations is under 1% in all cases, with an average of 0.42%. 

Finally, the direction of the error is predictable; whenever there is a difference between the two, 

the approximate semideviation is larger than its exact counterpart. In other words, whenever the 

approximation errs, it does so on the side of caution, overestimating (by a small amount) the risk 

of the portfolio. 
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3. The Evidence 
 The heuristic proposed in this article yields a symmetric and exogenous semicovariance 

matrix which, as discussed above, makes it possible to solve mean-semivariance optimization 

problems using the well-known closed-form solutions widely-used for mean-variance 

optimization problems. However, as with any heuristic, its usefulness resides on its simplicity and 

accuracy. Its simplicity is hopefully evident from the discussion above; its accuracy is discussed 

below. 

 This section starts by considering portfolios of stocks, markets, and asset classes with the 

purpose of comparing their exact semideviations to the approximate semideviations based on the 

heuristic proposed here. It then considers mean-variance and mean-semivariance optimal 

portfolios, the latter based on the heuristic proposed here, with the goal of comparing the 

allocations generated by these two approaches. 

 

3.1. The Accuracy of the Approximation 

 In order to test the accuracy of the heuristic proposed in this article over a wide range of 

assets, exact and approximate semideviations were calculated for over 1,100 portfolios, some 

containing stocks, some markets, and some asset classes. The data is described in detail in the 

appendix. Exhibit 4 summarizes the results of all the estimations. 

 Panel A shows the results for two-asset portfolios selected from three asset classes, US 

stocks, emerging markets stocks, and (US) real estate, all of which exhibit statistically-significant 

negative skewness over the sample period. Consider first the combination of US stocks and 

emerging markets stocks (first line of panel A). Portfolios were formed with weights varying 

between 0% and 100% in the US market (the rest being allocated to emerging markets), in 

increments of 1%. Monthly returns over the Jan/1997-Dec/2006 period were then calculated for 

these 101 portfolios. Using these returns, the exact semideviation with respect to a 0% 

benchmark return was calculated for all these portfolios according to (3) and subsequently 

annualized. The second column of the exhibit shows the minimum (10.21%) and maximum 

(17.29%) values across the 101 annualized semideviations, and the third column shows the 

average (13.15%). 

 Approximate semideviations according to (12), with respect to a 0% benchmark return, 

were then calculated and subsequently annualized for the 101 portfolios. The average among all 

these annualized approximate semideviations (13.24%) is reported in the fourth column of the 

exhibit. The difference between the average exact semideviation and the average approximate 

semideviation is reported in the fifth column, and at 0.09% in annual terms is basically negligible. 
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Furthermore, the correlation between the 101 exact and approximate semideviations, reported in 

the last column, is a perfect 1.00. These results obviously support the heuristic proposed here. 

 
Exhibit 4: Exact and Approximate Portfolio Semideviations 
This exhibit shows the annualized semideviations of portfolios with respect to a benchmark return of 0% over the 
Jan/1997-Dec/2006 period. For the assets in each line of panel A, 101 portfolios were generated, with weights 
varying between 0% and 100% in each asset (in increments of 1%), and their semideviation calculated. ‘Avg Σp0(3)’ 
and ‘Avg Σp0(12)’ denote the average portfolio semideviations across the 101 portfolios based on expressions (3) and 
(12). ‘Σp0(3) Range’ denotes the range between the minimum and the maximum values of Σp0(3) across the 101 
portfolios. ‘Diff’ denotes the difference between ‘Avg Σp0(12)’ and ‘Avg Σp0(3)’ and ‘Rho’ the correlation between 
Σp0(3) and Σp0(12), both across the 101 portfolios. For the assets in each line of panels B, C, and D, 100 random 
portfolios were generated and the process outlined for panel A was repeated. All returns are monthly, in dollars, and 
account for capital gains and dividends. All numbers but correlations in %. Full data description in the Appendix. 
    Σp0(3) Range  Avg Σp0(3)  Avg Σp0(12)   Diff      Rho 
 Panel A: Asset Classes 
 USA-EMI 10.21–17.29 13.15 13.24 0.09 1.00 
 USA-NAREIT 7.37–10.21 8.16 8.48 0.32 0.99
 EMI-NAREIT 8.48–17.29 11.66 11.96 0.30 1.00 
 Panel B: Emerging Markets 
 Group 1 (5 markets) 14.75–19.70 16.80 18.90 2.10 0.97 
 Group 2 (5 markets) 15.24–17.51 16.06 16.74 0.68 0.98 
 Group 3 (10 markets) 13.92–16.38 15.11 16.91 1.80 0.93 
 Panel C: DJIA Stocks 
 Group 1 (10 stocks) 9.99–13.16 11.26 13.33 2.07 0.90 
 Group 2 (10 stocks) 9.12–14.87 12.31 14.76 2.45 0.99 
 Group 3 (10 stocks) 9.34–12.37 10.59 12.92 2.34 0.95 
 Group 4 (30 stocks) 9.39–11.16 10.23 12.90 2.67 0.91 
 Panel D: Asset Classes 
 5 Asset Classes 4.32–11.66 7.43 8.30 0.87 1.00 
 
 The results are equally encouraging for portfolios of the other two-asset combinations in 

panel A, generated with the methodology already described. The average difference between 

exact and approximate semideviations is 0.32% for the 101 portfolios of US stocks and real 

estate, and 0.30% for the 101 portfolios of emerging markets and real estate, both in annual 

terms. The correlations between the 101 exact and approximate semideviations are 0.99 in the 

first case and 1.00 in the second. Again, these results are clearly encouraging. 

 Panel B shows portfolios of emerging markets. Group 1 consists of 5 emerging markets 

(China, Egypt, Korea, Malaysia, and Venezuela) that over the sample period displayed 

statistically-significant positive skewness. Portfolios were formed by generating 100 random 

weights for each of these indices, subsequently standardized to ensure that for each portfolio 

their sum added to 1. As before, returns for these 100 portfolios were calculated over the 

Jan/1997-Dec/2006 period. Then, exact and approximate semideviations with respect to a 0% 

benchmark return were calculated for all portfolios and subsequently annualized. The correlation 

between the 100 exact and approximate semideviations is 0.97 and the difference between the 

averages is in this case higher, 2.1% in annual terms. 
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 Group 2 consists of five emerging markets (Chile, Hungary, Mexico, Peru, and South 

Africa) that over the sample period displayed statistically-significant negative skewness. 

Portfolios combining these five markets were generated with the same methodology described 

for the markets in group 1. As the exhibit shows, the correlation between the 100 exact and 

approximate semideviations is 0.98, and the difference between the averages is substantially 

lower than in group 1, 0.68% in annual terms. 

 Combining the five emerging markets from group 1 and the five from group 2 into a 10-

market portfolio (group 3), the methodology described was applied once again. The correlation 

between the 100 exact and approximate semideviations is 0.93, and the average difference 

between them is 1.80% in annual terms. For portfolios of emerging markets, then, the heuristic 

proposed here yields almost perfect correlations between exact and approximate semideviations, 

and the average differences between them are somewhat higher than for the asset classes 

discussed above. In all cases, when the approximation errs it does so on the side of caution, 

overestimating the risk of the portfolio in the magnitudes already discussed. 

 Panel C considers portfolios of individual stocks, in particular the 30 stocks from the 

Dow Jones Industrial Average. The 30 stocks were ordered alphabetically and split into three 

groups of 10 stocks. For each of these three groups, portfolios were formed following the same 

methodology described above: 100 random weights were generated for each of the 10 stocks, 

which were subsequently standardized to ensure that for each portfolio their sum added to 1; 

returns for each portfolio were generated over the Jan/1997-Dec/2006 period; and their exact 

and approximate semideviations were calculated and subsequently annualized. As the exhibit 

shows, the correlations between the exact and approximate semideviations are still very high in 

all three groups (0.90, 0.99, and 0.95), and the average differences between these magnitudes are 

2.07%, 2.45%, and 2.34% (in annual terms) for groups 1, 2, and 3, again higher than for asset 

classes. 

 Portfolios of the 30 Dow stocks altogether, calculated with the same methodology 

already described, show similar results. The correlation between exact and approximate 

semideviations across the 100 portfolios remains very high (0.91); and the average difference 

between these two magnitudes is 2.67% in annual terms, again higher than for asset classes. As 

before, when the approximation errs it does so on the side of caution, overestimating the risk of 

the portfolio in the magnitudes already discussed. 

 Finally, panel D considers portfolios of five asset classes, namely, US stocks, 

international (EAFE) stocks, emerging markets stocks, (US) bonds, and (US) real estate. 

Portfolios of these five asset classes were formed with the methodology already described. The 



 16

correlation between the 100 exact and approximate semideviations is a perfect 1.00; the average 

difference between these magnitudes, in turn, is a low 0.87% in annual terms. Again, when the 

approximation errs it does so on the side of caution; and again, the heuristic shows very 

encouraging results for asset classes. 

 In short, the evidence for a wide range of portfolios shows that the heuristic proposed in 

this article yields portfolio semivariances that are very highly correlated, as well as close in value, 

to the exact portfolio semivariances they intend to approximate. Importantly, as argued by 

Nawrocki (1999), and as is also well known, portfolio optimization is nowadays used much more 

for allocating funds across asset classes than across individual stocks. And it is in the former 

case, precisely, where the heuristic approach proposed in this article is particularly accurate. 

 

3.2. Optimal Portfolios 

 Having shown that the definition of portfolio semivariance proposed here is both simple 

and accurate, we can finally use it to compare the optimal portfolios that stem from mean-

variance and mean-semivariance optimizations, the latter based on the heuristic approach 

proposed. Given that optimizers are largely used to allocate funds across asset classes, the assets 

considered in the optimizations are the five asset classes in panel D of Exhibit 4; that is, US 

stocks, international (EAFE) stocks, emerging markets, (US) bonds, and (US) real estate. 

 There are several portfolio-optimization problems, and which one is more relevant 

simply depends on the goals and restrictions of different investors. Some may want to minimize 

risk; others may want to minimize risk subject to a target return; others may want to maximize 

return subject to a target level of risk; and others may want to maximize risk-adjusted returns. 

The focus of this section is on this last problem. 

 More precisely, the two problems considered are 
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for the optimization of mean-variance (MV) portfolios, and 

 

 ( )1/2

1 1 0

1

0
,...,, 21

Max
∑ ∑
∑
= =

=
−

=
−

n

i

n

j ijji

fi
n

i i

p

fp
xxx

Σxx

REx
Σ

RE
n

     (17) 

 0and1toSubject
1

≥=∑ = i
n

i i xx  ,       (18) 



 17

for the optimization of mean-semivariance (MS) portfolios, where Σp0 is defined as in (12), and 

the benchmark return for the semideviation is, as before, 0%. 

 It is important to notice that, with the heuristic proposed here, the problem in (17)-(18) 

can be solved with the same techniques widely used to solve the problem in (15)-(16); these 

include professional optimization packages, simple optimization packages available with 

investment textbooks, and even Excel’s solver. It is also important to notice that in terms of the 

required inputs, the only difference between these two problems is that (15)-(16) requires a 

(symmetric and exogenous) covariance matrix and (17)-(18) requires a (symmetric and 

exogenous) semicovariance matrix, which can be calculated using (5). 

 Expected returns, required as inputs in both optimization problems, were estimated with 

the (arithmetic) mean return of each asset class over the whole Jan/1988-Dec/2006 sample 

period. Variances, covariances, semivariances, and semicovariances were calculated over the 

same sample period, the last two with respect to a 0% benchmark return and according to (5). 

Optimizations were performed for combinations of three, four, and five asset classes; the results 

of all estimations are shown in Exhibit 5. 

 
Exhibit 5: Optimal Portfolios – Asset Classes 
This exhibit shows mean-variance (MV) and mean-semivariance (MS) optimal portfolios. ‘Risk’ is defined as the 
standard deviation in MV optimizations and as the semideviation in MS optimizations. RAR denotes risk-adjusted 
returns defined as (Return–Rf)/Risk, where Rf denotes the risk-free rate. Return and risk expressed in monthly terms. 
Monthly Rf assumed at 0.41%. All returns are monthly, over the Jan/1988-Dec/2006 period, in dollars, and account 
for capital gains and dividends. All numbers but RAR in %. Full data description in the Appendix. 
    Weights   Performance  
   USA   EAFE   EMI  Bonds NAREIT Return Risk RAR 
 Panel A: 3 Assets 
 MV 67.0 0.0 33.0   1.17 4.30 0.18 
 MS 78.4 0.0 21.6   1.13 2.66 0.27 
 Panel B: 4 Assets 
 MV 17.5 0.0 18.8 63.7  0.87 2.11 0.22 
 MS 26.4 0.0 10.2 63.4  0.84 1.38 0.31 
 Panel C: 5 Assets 
 MV 10.4 0.0 13.2 49.1 27.2 0.91 2.07 0.24 
 MS 17.1 0.0 3.0 41.4 38.5 0.90 1.41 0.35 
 
 When optimizing a three-asset portfolio consisting of US stocks, international stocks, 

and emerging markets, neither the MV optimizer nor the MS optimizer give a positive weight to 

international stocks. Perhaps unsurprisingly, the MS optimizer gives a lower weight to emerging 

markets and a higher weight to the US market. The expected monthly return of the optimal MV 

and MS portfolios is similar, 1.17% and 1.13%. And although the risk-adjusted return of the MS 

optimal portfolio is higher than that of the MV optimal portfolio, it would be deceiving to 
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conclude that the MS optimizer outperforms the MV optimizer; this is simply a consequence of 

the fact that the semideviation is a one-sided measure of risk.3 

 The four-asset optimization involves the previous three asset classes plus (US) bonds. 

Again both optimizers assign a 0 weight to international stocks, and again the MS optimizer 

allocates less to emerging markets and more to the US market than the MV optimizer. 

Interestingly, both optimizers allocate a substantial proportion (nearly two thirds) of the 

portfolio to bonds. As was the case with three assets, the expected monthly return of both 

optimal portfolios is very similar, 0.87% and 0.84%. 

 Finally, the five-asset optimization involves the previous four asset classes plus (US) real 

estate. Once again both optimizers give a 0 weight to international stocks, and once again the MS 

optimizer allocates less to emerging markets and more to the US market than the MV optimizer. 

Both optimizers allocate over 40% of the portfolio to bonds and no less than 25% of the 

portfolio to real estate. And once again, the expected monthly return of both portfolios is very 

similar, 0.91% and 0.90%. 

 It is tempting to draw a conclusion regarding which optimizer performs better, but it is 

also largely meaningless. By definition, the MV optimizer will maximize the excess returns per 

unit of volatility, whereas the MS optimizer will maximize excess returns per unit of volatility 

below the chosen benchmark. In the end, it all comes down to what any given investor perceives 

as the more appropriate measure of risk. 

 

4. An Assessment 
 There is little question that mean-variance optimization is far more pervasive than mean-

semivariance optimization. And this is, at least in part, due to the fact that mean-variance 

problems have well-defined, well-known closed-form solutions, which implies that users know 

what the optimization package is doing and what characteristics the solution obtained has. When 

optimizing portfolios on the basis of means and semivariances, in turn, little is usually known 

about the algorithms used to obtain optimal portfolios and the characteristics of the solution 

obtained. 

 This article proposes a heuristic approach for the calculation of portfolio semivariance, 

which essentially puts mean-semivariance problems at the same level of mean-variance problems. 

By replacing the symmetric and exogenous covariance matrix by a symmetric and exogenous 

                                                 
3 Comparing the risk-adjusted returns of MV and MS optimizers is non-informative at best and deceiving at worst. 
Similarly, comparing the efficient sets generated by these two approaches, as done by Harlow (1991) and others, 
yields little insight, if any. By definition, MV efficient sets will “outperform” MS efficient sets when plotted on a 
mean-variance graph, and the opposite will be the case when plotted on a mean-semivariance graph. 



 19

semicovariance matrix, the well-defined, well-known closed-form solutions of mean-variance 

problems can be applied to mean-semivariance problems. This takes mean-semivariance 

optimization away from the realm of black boxes and into the realm of standard portfolio theory. 

 The heuristic proposed is both simple and accurate. Estimating semicovariances is just as 

easy as estimating covariances, and aggregating them into a portfolio semivariance is, with the 

heuristic proposed, just as easy as aggregating covariances into a portfolio variance. Similarly, 

finding optimal portfolios (regardless of whether that means minimizing risk, minimizing risk 

subject to a target return, maximizing return subject to a target level of risk, or maximizing risk-

adjusted returns) when risk is thought of as semivariance can be done with the same methods 

used as when risk is thought of as variance. 

 In terms of accuracy, the proposed definition of portfolio semivariance was evaluated 

using portfolios of stocks, markets, and asset classes. The evidence discussed shows that the 

portfolio semivariances generated by the heuristic proposed are very highly correlated, as well as 

close in value, to the exact portfolio semivariances they aim to approximate. This heuristic is 

particularly accurate when optimizing across asset classes, which nowadays is the main use given 

to optimizers. 

 There is a growing literature on downside risk and an increasing acceptance of this idea 

among both academics and practitioners. Semivariance is a more plausible measure of risk than 

variance, as Markowitz himself suggested, and the heuristic proposed here makes mean-

semivariance optimization just as easy to implement as mean-variance optimization. For this 

reason, this article not only provides another tool that can be added to the financial toolbox, but 

also hopefully contributes toward increasing the acceptance and use of mean-semivariance 

optimization. 

 



 20

 Appendix 
 
 This appendix describes the data used in section 3 (The Evidence). All series are 
monthly, in dollars, and account for capital gains and dividends. Exhibit 3 is based on data over 
the Jan/1997–Dec/2006 period; Exhibit 4 on data over the Jan/1988–Dec/2006 period. 
 
 
▪ USA: MSCI USA. 
▪ EMI: MSCI EMI. 
▪ NAREIT: FTSE NAREIT – All REITs. 
▪ Emerging Markets: MSCI indices. 
▪ Emerging Markets – Group 1: Five emerging markets (China, Egypt, Korea, Malaysia, Venezuela) with 

significant positive skewness. 
▪ Emerging Markets – Group 2: Five emerging markets (Chile, Hungary, Mexico, Peru, South Africa) with 

significant negative skewness. 
▪ Emerging Markets – Group 3: Ten markets, the five from Group 1 plus the five from Group 2. 
▪ DJIA Stocks: Individual stocks from the Dow Jones Industrial Average index. 
▪ DJIA Stocks – Group 1: The first ten stocks from an alphabetical ordering of the Dow (3M, Alcoa, 

Altria, Amex, AIG, AT&T, Boeing, Caterpillar, Citigroup, Coca-Cola). 
▪ DJIA Stocks – Group 2: The second ten stocks from an alphabetical ordering of the Dow (DuPont, 

ExxonMobil, GE, GM, HP, HomeDepot, Honeywell, Intel, IBM, J&J). 
▪ DJIA Stocks – Group 3: The third ten stocks from an alphabetical ordering of the Dow (JPM-Chase, 

McDonald's, Merck, Microsoft, Pfizer, P&G, United Tech, Verizon, WalMart, WaltDisney). 
▪ DJIA Stocks – Group 4: All thirty stocks in the Dow. 
▪ Asset Classes: US stocks (MSCI USA), international stocks (MSCI EAFE), emerging markets stocks 

(MSCI EMI), US bonds (10-year Government bonds – Global Financial Data), and US real estate 
(FTSE NAREIT – All REITs). 

 MSCI: Morgan Stanley Capital Indices; EMI: Emerging Markets Index; FTSE: Financial Times Stock 
Exchange; NAREIT: National Association of Real Estate Investment Trusts; DJIA: Dow Jones Industrial Average; 
EAFE: Europe, Australia, and the Far East.  
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