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Abstract. This paper proposes a new approach to estimate time varying conditional 

variance and covariance matrices allowing for the impact of higher moments in the 

framework of the Autoregressive Conditional Density (ARCD) model. The proposed 

method is based on the estimation of only univariate ARCD models and is 

numerically feasible and easier to estimate than existing complicated multivariate 

volatility processes that often suffer from unrealistic a priori restrictions and 

convergence problems. An empirical application of the new model is provided to 

forecast the VaR of aggregate equity portfolios for the US and UK and foreign 

exchange portfolio for EUR and GBP against USD and is compared to GARCH and 

BEKK models. Our results, using both statistical and economic criteria, suggest that 

the simplified multivariate version of ARCD performs at least well as the other two 

models indicating the higher moments’ importance in volatility forecasting and VaR 

calculation. 
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Introduction 

Understanding and estimating time varying conditional variances and covariances is 

important for many issues in finance since there are many applications that rely on 

multivariate covariance models. It is essential, for optimal hedging, asset allocation, 

derivatives pricing and risk management, the accurate modelling and forecast of the 

assets returns co-movement. Bollerslev, Engle and Wooldridge (1988), Cecchetti 

(1988), Myers and Thompson (1989), Baillie and Myers (1991), Kroner and Sultan 

(1993), Ng and Kroner (1998), argue that financial prices are characterized by time 

varying variances and covariances, presenting a variety of multivariate GARCH 

models. Bollerslev, Engle and Wooldridge (1988) suggested the VEC model and the 

diagonal VEC (DVEC) model in which the variances depend only on their past 

squared errors and the covariances on their past cross-products of errors. Given the 

excessively large parameters needed to estimate the VEC model and the necessity to 

impose strong restrictions on the parameters Engle and Kroner (1995) proposed the 

BEKK parametrization avoiding unrealistic assumptions such as that the correlation 

between the conditional variances is constant (Constant correlation model by 

Bollerslev 1990), and guaranteeing that the time varying covariance matrix is positive 

definite. Additional models can be found in Engle, Ng and Rothschild (1990b) who 

proposed factor models (FGARCH), in Alexander and Chibumba (1997) who proposed 

the orthogonal GARCH models (O-GARCH), in Tse and Tsui (2002) and of Engle 

(2002) who suggested the Dynamic Conditional Correlation models (DCC). All the 

above models assume that asset returns are jointly normally distributed ignoring the 

fact of asymmetry in volatility and covariance, fat tailness and skewness. However, 

asymmetry and skewness in distribution, is found in many financial assets since their 

return distributions depart far away from normality. For instance, French, Schwert 

and Stambaugh (1987) rejected normality claiming significant conditional skewness 

in daily residuals of the   SP500 returns, Hong (1988) found abnormally high kurtosis 

in daily NYSE stock returns, Harvey (1995) observed deviations form normality in 



 
 
 

3

emerging stock markets indices, Harvey and Siddique (1999) showed that conditional 

skewness is important and consistent with asymmetric variance in daily, weekly and 

monthly returns of selected markets.  

Since there is well established stylized evidence that financial returns exhibit fat tails 

and skewness, a lot of studies focused on using of non normal distributions to better 

model this excess kurtosis and skewness. More specifically, in the univariate 

framework, a large variety of conditional densities has been employed to 

accommodate the asymmetry and fat tailness. Hansen (1994) was the first to 

propose a Skew-Student distribution which allows for conditional higher moments. 

Recently, Harvey and Siddique (2002a, 2002b), Jondeau and Rockinger (2006) and 

Yan (2005), Brooks, Burke and Persand (2005) among others, have discussed ways 

to jointly estimate time varying conditional variance and skewness, but their resulting 

formulation is difficult to be implemented, moreover in a multivariate extension.  

More precisely, none of the popular multivariate models are compatible with the 

skewness and kurtosis of asset returns since they assume multivariate normality. A 

few studies exist on the higher moments modelling in multivariate approaches.  

Harvey, Ruiz and Shepard (1994) and Fiorentini, Sentana and Galzolari (2003) 

replace multivariate Gaussian density with student density by letting conditional 

innovations to follow a Student-t distribution. Sahu, Dey, and Branco (2001), and 

Bawens and Laurent (2005) propose a multivariate skew Student density with 

support on the full Euclidian space. Their main finding is that this density improves 

the quality of out of sample VaR forecasts. More recently, Hafner and Rombouts 

(2004) and Rombouts and Verbeek (2005)  apply a multivariate semi parametric 

GARCH estimation technique to capture higher moments showing that in within 

sample portfolios’ VaR the model’s superiority and robustness is confirmed. Azzallini 

(1996) and De Luca, Genton and Loperfido (2006) propose the multivariate Skew-

GARCH model including a parameter to control skewness. Lee and Long (2005) 

introduce copula-based multivariate GARCH, the C-MGARCH with uncorrelated 

dependent errors, arguing that in terms of in sample model selection and out of 

sample multivariate density forecast, the choice of copula functions is more 

important than the volatility models. The main drawback of the above models is that 

are rather complex, and suffer from a large parameters estimation and convergence 

problems. 

In this paper, we propose an alternative, simplified multivariate model, the simplified  

Multivariate Autoregressive Conditional Density Model (S-ARCD) which is compatible 



with the skewness and kurtosis of the financial returns and is easy to be 

implemented increasing the computational efficiency. It is based on the 

Autoregressive Conditional Density Model (ARCD) proposed by Hansen (1994) and 

involves the estimation only of the univariate specification of the above model. The 

conditional variances are calculated by the simple univariate models, and the 

conditional covariance is then imputed from these variance estimates. We illustrate 

the S-ARCD to forecast the VaR of aggregate equity portfolios for the US and UK and 

foreign exchange portfolio for EUR and GBP against USD and is compared to the ad 

hoc multivariate version of GARCH (Wang, Yao, 2005) and BEKK models. Our results, 

using both statistical and economic criteria, suggest that the simplified multivariate 

version of ARCD performs at least well as the other two models indicating the higher 

moments’ importance in volatility forecasting and VaR calculation. 

The remainder of the paper is organized as follows: the next section introduces S-

ARCD and briefly describes BEKK and the ad hoc multivariate version of GARCH 

(Wang, Yao, 2005) models. The third section describes the data and the empirical 

results on the VaR estimation. The next section compares the VaR performance of 

the alternative models. The final section concludes the paper.  

 

1. Methodology 

This section describes the three models under consideration: the ad hoc multivariate 

version of GARCH, BEKK and S-ARCD. The first two models are presented briefly 

since there is extensive description in the academic literature.  

1.1 The ad hoc multivariate of GARCH 

Wang and Yao (2005) first proposed an ad hoc multivariate method using univariate 

GARCH models in order to allow the return covariance matrix to vary over time. More 

precisely, using the popular GARCH(1,1) specification, the conditional variances of 

two return series 1,ty , 2,ty ,can be modelled respectively as:  

ε β= + +2
1, 11 1 1, -1 1 1, -1   t th c a h t

t

                                                                       (1a) 

ε β= + +2
2, 22 1 2, -1 2 2, -1t th c a h                                                                          (1b) 
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where  and are the lagged squared residuals from the conditional 

mean equations for the spot and futures returns respectively. Then, to model the 

conditional covariance, the following steps are implemented. Firstly, a new series is 

constructed as:

ε −
2

1 ,t 1 ε −
2

2 ,t 1

+
= 1, 2,

12,

( )
2

t
t

y y
x t

t

. Secondly, the conditional variance of the new 

series is estimated from another univariate GARCH(1,1) as: 

                                                                    (1c) 

12,th

2
12, 12 12 12, -1 12 12, -1t th c a hε β= + +

Finally, the time varying conditional covariance of returns is given by the equation: 

σ
+

= − 1, 2,
12, 12,

( )
 2

2
t t

t t

h h
h                                                                                       (2) 

1.2 Multivariate GARCH 

Engle and Kroner (1995), among others, have relaxed this assumption by proposing 

a multivariate GARCH process. Using a BEKK representation, the conditional variance 

matrix is the following:  

1 1' 't tCC ε ε− −= + +′t t-1H A A BH ′B                                                                    (3) 

where C, Α, Β are   matrices, with C being upper triangular, symmetric and 

positive definite. The conditional variance matrix  is positive definite since the 

second and third terms in the above equation (5) are expressed in quadratic forms. 

This means that no other constraints for the matrices Α and Β are necessary. For the 

case of the bivariate GARCH(1,1), the BEKK model is estimated in a restricted form 

with C as a 2  lower triangular matrix, and, Α, Β being 

×n n

t-1H

2× 2 2×  diagonal matrices. 

This can be expressed by the following equations:  

ε ε ε

ε ε ε

β β
β β

− − −

− − −

− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

2
11, 12, 1, 1 1, 1 2, 111 11 22 1 1

2
22 12 12 2 221, 22, 1, 1 2, 1 2, 1

11, 1 12, 11 1

2 221, 1 22, 1

0 0
0 0 0

0 0
0 0

t t t t t

t t t t t

t t

t t

h h c c c a a
c c c a ah h

h h

h h

+
0

 

          (4a) 

or, 
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t

t

ε β

ε β

ε ε β β

− −

− −

− − −

= + +

= + + +

= + +

2 2 2 2
11, 11 1 1, 1 1 11, 1

2 2 2 2 2
22, 22 12 2 2, 1 2 22, 1

12, 11 22 1 2 1, 1 2, 1 1 2 12, 1

t t t

t t

t t t

h c a h

h c c a h

h c c a a h

                                                   (4b)                              

where , , , are constants and 11c 22c 12c ε −
2
1, 1t ε −

2
2, 1t are the lagged residuals from the 

conditional mean equation for the spot and futures returns respectively.  

1.3 The Simplified Multivariate Autoregressive Conditional Density Model  

Let y1,t and y2,t two univariate discrete time real-valued stochastic processes, (i.e. the 

rate of return of an asset or market portfolio) and It is the information set at time t, 

which encompasses yi,t and all the past realizations of the process yi,t where i=1,2. 

Then, the conditional mean returns are denoted as: )( ,. 111 −= ttt IyEµ , 

)( ,. 122 −= ttt IyEµ and the conditional covariance matrix of y1,t and y2,t is given by: 

−

⎡ ⎤
= = ⎢

⎢ ⎥⎣ ⎦
∑ , ,

, , ,

,  ,

   
( )

 
11 t 12 t

1 t 2 t t 1 t
21 t 22 t

h h
⎥Var y y I

h h
                                                      (5)                            

The goal is to model the elements of the conditional covariance matrix taking into 

consideration the time varying skewness and kurtosis. Our approach is based on 

Hansen (1994) Autoregressive Conditional Density Model (ARCD), who proposed a 

generalization of the Student-t distribution to capture asymmetry and fat tailness, 

involving only univariate modeling. Although alternative skewed Student-t 

distributions have been considered in the literature (eg., Jondeau and Rockinger, 

2003, 2006; Harvey and Siddique, 1999, 2002a, 2002b), we selected this 

specification because it has a clear computational advantage over competing models 

(e.g., see Harvey and Siddique, 1999; Brooks and Persand, 2005) and the variation 

in the shape parameters may be smaller and easier to manage numerically. Also, 

only few parameters are estimated in each model and, generally, it is easier to 

implement than other multivariate models such as BEKK, Vech or stochastic variance 

models. An alternative approach, the simplified multivariate GARCH, has been 

presented by Harris, Stoja and Tucker (2007) in order to estimate the minimum-

variance hedge ratio for the FTSE 100 index portfolio. In this paper, the proposed 

method involves two steps and is based on Wang and Yao (2005) method. Firstly, 



the conditional variances are estimated using the following univariate form of the 

ARCD model’s distribution density function: 

η

η λ
η λ

+⎧ +
= +⎨
⎩

-( 1)
2 21

( , ) (1  ( ( ) )
- 2 1 -

bz kf z bd        for <
-

 
kz
b

 

 
and                                                                                                             (6)        

η

η λ
η λ

+⎧ +
= +⎨ +⎩

-( 1)
2 21

( ,  ) (1  ( ( ) )
- 2 1

bz kf z bd      for f
-

 
kz
b

                                   

 

where  

2 η< < ∞ , -1 1λ< < , tη  are the degrees of freedom, tλ is the skewness, while k, 

b, d are constant parameters defined by the following equations: 

 

ηλ
η

=
- 2

4 ( )
- 1

k d , 1 3 - ,b k         λ= +2 2 2

η

ηπ η

+Γ
=

Γ

1)( )
2

( - 2) (
2)

d                            (7) 

More specifically, the degrees of freedom tη  and skewness tλ are specified as 

following: 

2
0 1 -1 2t t -1tη γ γ ε γ ε= + +                                                                            (8a) 

2
0 1 -1 2  t t -1tλ λ λ ε λ ε= + +                                                                                          (8b) 

Jondeau and Rockinger (2003) have presented the exact formulas for the calculation 

of the kurtosis and skewness. The conditional log-likelihood of the full ARCD model is 

calculated as:  

max( , ) 1

1
  log ( ; ) - log

2

T

t t t
t p q

LLK f z hη
= +

⎧ ⎫= ⎨
⎩ ⎭

∑ ⎬                                                    (9) 

The ARCD shape parameters tη can be estimated by standard iterative methods by 

assuming arbitrary reasonable initial value 1η . It is advisable to compute robust 
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standard errors since they generate asymptotically valid confidence intervals for the 

pseudo–true parameter values which minimize the information distance between the 

true probability and the quasi-likelihood measure. In this manner, we can achieve 

the maximum possible accuracy in our results. Finally, the Nyblom L-statistic, for 

testing the constancy of the estimated parameters, takes the form:  

=

= ∑
2

1

1 n
it

t ii

G
Lk

n V
                                                                                    (10) 

where are the cumulative scores and itG iiV  is the ith diagonal element of the 

estimated variance. The L-statistic is used to test the stationarity of the parameters 

of the distribution function and can be considered as the LM test of the null 

hypothesis that the parameters are stable. Asymptotic critical values for the Nyblom 

test and an extensive analysis have been presented in Hansen (1990). The 

conditional variances are given by: 

1, 1 1, 1
2

1, 11 1 1, -1 1)(ε β−−= + +tt t h hh c a −t                                                  (11a)        

2 , 1 2 , 1
2

2 , 22 2 2 , -1 2)(ε β− −t−= + +tt t h hh c a                                                 (11b) 

Secondly, the conditional covariance σij,t is estimated following the method proposed 

by Wang and Yao (2005) constructing a new series with the general form of:  

+
ω = , ,

,

( )1 t 2 t
12 t

y y
2

  for the i<j elements of the equation (5) where i,j =1,2. The 

conditional variance of the above new series is estimated as −= ω, ,( )12 t 12 t t 1h Var I  

using the univariate version of the ARCD model described above using the following 

equation: 

12 , 1 12 , 1
2

12 , 12 12 12 , -1 12)(ε β− −−= + +tt t hh c a th                                                (11c) 

Then, for all 1 2ji ≤<≤  the conditional covariance is calculated using the following 

equation: 

+
σ = − , ,

, ,

( )1 t 2 t
12 t 12 t

h h
2h

2
.                                                                      (12)                      

The above identity has been proposed by Wang and Yao (2005) in order to derive 

estimators of the covariance matrix when there is no multivariate extension of the 

underlying univariate model. Overall, the simplified ARCD model involves the 
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estimation of only univariate ARCD models. Therefore it is easier and computationally 

simpler to be implemented than Vech and BEKK models avoiding overparametrization 

since only a few parameters are estimated in each model, and the maximum 

likelihood converges more efficiently. Also, there are no restrictions for the 

coefficients of the conditional covariance unlike diagonal Vech, BEKK and constant 

correlation models’ covariance matrix elements.  

However, the above flexible structure of the S-ARCD model comes with some 

disadvantage. The resulting estimate of the conditional correlation matrix is not 

necessarily positive semidefinite since there is no possibility to set any restrictions in 

the conditional covariance coefficients. There several procedures to encounter this 

problem. Harris, Stoja and Tucker (2007) propose three simple techniques to ensure 

the estimated correlation matrix positive semi –definiteness1.  

 

 

3. Data Description and Empirical Analysis 

 
The data used in the present study includes daily closing prices for the UK Financial 

Times Stock Exchange Index (FTSE), and the US Dow Jοnes Index (DJ) and daily 

spot prices of two exchange series, the EUR and the GBP against USD. The sample 

covers the period from 3 January 2000 until 30 June 2007 for all four data series, a 

total of 1952 observations for both the exchange rates and 1861 for the FTSE and 

Dow Jones indices respectively. The last 100 observations for each series are left for 

ex ante (out of sample) portfolio VaR estimation. Descriptive statistics of logarithmic 

returns of all series data under study are provided in Table 1.  

There is strong evidence that all series are non-normally distributed with high peaks 

and fat tails. For all series, there is negative asymmetry in the distribution. The 

Ljung-Box portmanteau test for all series except FTSE shows no significant 

autocorrelation while the ARCH-LM test for serial correlation in squared returns 

reveals volatility clustering in all series and more significantly in equity indices.  

Table 1. Descriptive Statistics of spot and futures index returns 

 Obs. Mean St. Dev. Skewness Κurtosis JB Q1(10) ARCH(4)

Equity Indices       

                                                 
1 A detailed analysis can be found in Harris, Stoya and Tucker paper: A simplified approach to 
modelling the co-movement of asset returns published in The Journal of Futures Markets (2007).  



FTSE 1,861 -0.003 1.123 -0.231 6.385 920.55 37.71 153.8 

DJ 1,861 0.009 1.075 -0.079 7.103 1321.95 12.99 77.51 

FX Spot against USD      

EUR 1,952 0.014 0.618 -0.027 3.776 49.22 8.66 38.84 

GBP 1,952 0.011 0.510 -0.021 3.564 26.08 2.93 9.40 

Jarque-Bera (JB) is asymptotically distributed as a Chi-squared with 2 degrees of freedom 

under the null hypothesis of normality. The Q1(k) rep esents the Ljung-Box portmanteau test 

of the return series. ARCH(4) statistic tests the null hypothesis that the first four par ial 

autocorrelation of squared returns are zero. 

r

t

For the empirical implementation of the simplified ARCD the conditional variances are 

estimated using the simple version of ARCD model applying equations 11a and 11b 

for each data series separately. We then construct the new series 
( )FTSE DJ

F D

r r
r

2+

+
=  

for the equity indicess FTSE and DJ so as to estimate the conditional covariance by 

equation 12. The conditional variance of the new series F Dr +  is estimated applying 

another univariate version of ARCD. 

The above procedure is implemented, also, for the foreign exchange series 

currencies EUR and GBP. The new series, from the currencies EUR and GBP against 

USD, 
( )EUR GBP

E G

r r
r

2+

+
=  is constructed and used for the conditional covariance 

calculation. The estimated parameters of the simplified multivariate ARCD S-ARCD 

model for the DJ and FTSE indices and the EUR and GBP currencies are presented in 

Table 2. The simplified ARCD model estimation results are presented in Table 2. We 

report the conditional variance, degrees of freedom, skewness and Nyblom test 

values. For the conditional variances, the conditional degrees of freedom and the 

conditional skewness, the Nyblom L test indicates that the parameters are all stable 

since the test statistic is less that the 1% level critical value of 0.75. This is also 

confirmed by the joint Nyblom test which is smaller than the 1% critical value of 2.8. 

Overall, the coefficients for the conditional degrees of freedom and the conditional 

skewness seem to be highly significant implying that the simplified ARCD model is 

well specified and fits the data capturing the higher moments’ time variation.  

A log likelihood ratio ratio (LR) statistic is applied to test the null hypothesis that the 

series follow the normal distribution against the alternative of time varying higher 

moments. Since the normal distribution (of GARCH model) is nested to the skewed 
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Student-t distribution of the simplified ARCD model, the LR statistic is calculated by 

the following formula: LR= -2[ ׀LGARCH׀ – ׀LARCD׀) where LGARCH and LARCD are 

the absolute values of the maximum values of the log likelihood functions under the 

normal distribution and the skewed Student-t distribution respectively. As shown in 

Table 2, all LR values are greater than their critical value of 9.21 at 1% significance 

level, strongly rejecting the null hypothesis of time invariant shape parameters which 

GARCH assumes, implying that the empirical distribution of data returns do not 

follow a normal distribution. 

Overall, the simplified ARCD model seems to fit the data better compared to the ad 

hoc GARCH(1,1) model since the Nyblom Joint test statistic for the stability of the 

parameters of GARCH(1,1) model is rejected at 1% significance level, evidence that 

a further dynamic specification is needed. 

Table 2. S-ARCD estimates for FTSE, DJ, (F+D), EUR, GBP, (E+G) 
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 S-ARCD FTSE DJ (F+D) EUR GBP (E+G)

Conditional Variance       

11  c , ,  22  c 12  c 0.0125 

(0.0033) 

0.0065 

(0.0033) 

0.0084 

(0.0032) 

0.0010 

(0.014) 

0.0021 

(0.0014) 

0.0030 

(0.0008) 

2
1 1 1 1ε , - , --t th , 2

2 1 2 1ε , - , --t th 2
12 1 12ε, 1, - , --t th  0.1110 

(0.0137) 

0.0809 

(0.0137) 

0.1004 

(0.0176) 

0.0248 

(0.0061) 

0.0330 

(0.0061) 

0.0274 

(0.0073) 

1 1, -th , 2 1, -th , 12 1, -th  0.9934 

(0.0056) 

1.0018 

(0.0055) 

0.9970 

(0.0073) 

1.0002 

(0.0416) 

0.9924 

(0.0416) 

0.9992 

(0.0032) 

Nyblom Lσ test       

11  c , ,  22  c 12  c 0.1922 0.2446 0.2682 0.2827 0.1935 0.3552 

2
1 1 1 1ε , - , --t th 2

2 1 2ε, 1, - ,-t th 2
12 1 12 1ε- , , - , --t th  0.0275 0.0294 0.0329 0.0314 0.0845 0.1479 

1 1, -th , 2 1, -th , 12 1, -th  0.4510 0.4646 0.5500 0.1588 0.1202 0.1669 

Conditional 
Degrees of Freedom 

      

γ0 1.1540 

(0.3926) 

-1.0340 

(0.3926) 

0.5543 

(0.6614) 

1.5386 

(1.3801) 

-0.5457 

(0.3801) 

32.4942 

(0.8161) 

εt-1(γ1) -2.3983 

(0.5764) 

-2.2531 

(1.0053) 

-2.1126 

(0.8126) 

6.0572 

(2.2752) 

-0.6676 

(0.4100) 

11.4998 

(0.5764) 

ε2
t-1 (γ2) 0.3063 

(0.1538) 

0.4199 

(0.0358) 

0.2927 

(0.0206) 

1.9576 

(0.9169) 

0.3059 

(0.0537) 

-9.5452 

(0.1538) 

Nyblom Lσ test       

γ0 0.2278 0.9729 0.8485 0.1806 0.4026 0.3000 

εt-1(γ1) 0.0482 0.5098 0.2242 0.0781 0.0762 0.4246 

ε2
t-1 (γ2) 0.0580 0.1986 0.2162 0.0304 0.0527 1.1531 

Conditional Skewness        



λ0 -0.3660 

(0.0797) 

-0.1161 

(0.0754) 

-0.1904 

(0.0830) 

-0.0811 

(0.0424) 

-0.0685 

(0.0424) 

-0.0257 

(0.0033) 

εt-1(λ1) 0.0122 

(0.0067) 

0.2370 

(0.0682) 

-0.1904 

(0.0521) 

0.2693 

(0.1025) 

0.1239 

(0.0125) 

0.2142 

(0.0154) 

ε2
t-1 (λ2) 0.0287 

(0.0041) 

-0.0565 

(0.0409) 

0.0352 

(0.0031) 

-0.1376 

(0.0809) 

0.2513 

(0.0809) 

0.3062 

(0.0661) 

Nyblom Lσ test       

λ0 0.1361 0.4993 0.1172 0.1195 0.2403 0.2250 

εt-1(λ1) 0.0676 0.4063 0.1393 0.0514 0.0622 0.0731 

ε2
t-1 (λ2) 0.0267 0.0798 0.0567 0.1275 0.1376 0.1602 

Log Likelihood 2486.19 2498.18 2215.48 1782.38 1489.80 1461.46 

LR test 25.72 18.82 46.78 72.84 83.72 27.38 

Nyblom Joint Test 1.68 2.46 1.94 1.75 1.61 1.87 

Numbers in brackets under the parameter estimates give the standard errors values. Nyblom 
L statistic has been introduced by Nyblom (1989) and modified by Hansen (1990) for testing 
the constancy of the estimated parameters. It takes the form: Li =1/n*(Σ(Git

2/
 

 
t .

.
t

 

Ṽii) where Git
2 

are the cumulative scores, Ṽii is the ith diagonal element of the estimate variance Ṽ and can be 
considered as the LM test of the null hypothesis that all parameters are stable. The 
asymptotic critical values for the Nyblom test have been presented in Hansen (1990). For the
Nyblom test, the 1% cri ical value is equal to 0 75, and for the Nyblom Joint test, the 1% 
critical value is equal to 2 8. LR statistic is the likelihood ratio test of the null hypothesis of 
normal distribution against the alternative that the data returns follow a skewed student  
distribution. The LR statistic is asymptotically distributed as a Chi-squared with 2 degrees of 
freedom and its critical value at 1% significance level is 9.21. 

Also, the ad hoc multivariate version of GARCH (Wang, Yao, 2005) and BEKK models 

are estimated for all data. Tables 3 and 4 present the parameters for the ad hoc 

multivariate version of GARCH and BEKK models respectively. For both GARCH(1,1) 

and Bivariate GARCH(1,1) models, all coefficients are positive and statistically 

significant. Especially, for the simple univariate GARCH(1,1), the near-unity sum of 

the coefficients suggests very high persistence in the conditional variances.  

 

Table 3. Ad-Hoc GARCH(1,1) estimates for DJ, FTSE, (F+D), EUR, GBP, (E+G) 

Ad Hoc GARCH(1,1) FTSE DJ (F+D) EUR GBP (E+G) 

11,   tc , ,  22  c 12  c 0.0132 

(0.0038) 

0.0114 

(0.0021) 

0.0098 

(0.0021) 

-0.0001 

(0.0005) 

0.5073 

(0.0187) 

0.0011 

(0.0008) 

2
1 1, -tε , 2

2 1, -tε , 2
12 1, -tε  

0.1010 

(0.0132) 

0.0758 

(0.0087) 

0.0839 

(0.0096) 

0.0216 

(0.0043) 

-0.0505 

(0.0042) 

0.0297 

(0.0058) 

1 1, -th 2 1, -th , 12 1, -th

 

0.8872 

(0.0138) 

0.9141 

(0.0103) 

0.9035 

(0.0110) 

0.9786 

(0.0045) 

-0.9615 

(0.0440) 

0.9665 

(0.0073) 

LL -2473.33 -2488.77 -2192.09 -1745.96 -1447.94 -1447.77 

Nyblom Joint Test 4.15 3.21 3.98 3.83 3.65 3.76 
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Standard errors appear in brackets. For the Nyblom Joint test, the 1% critical value is equal 
to 2.8

Table 4. BEKK(1,1) estimates for (FTSE, DJ), (EUR, GBP) 

BEKK(1,1) (FTSE, DJ) (EUR,GBP)

11c  0.0398 
(0.0194) 

0.0161 
(0.0120) 

1β  0.9733 
(0.0030) 

0.9875 
(0.0017) 

1a
 

0.0.2135 
(0.0117) 

0.1501 
(0.0103) 

12c  0.0357 
(0.0188) 

0.0200 
(0.0105) 

22c  0.0647 
(0.0151) 

0.0393 
(0.0120) 

2β  0.9477 
(0.0062) 

0.9828 
(0.0029) 

2a  0.2988 
(0.0177) 

0.1638 
(0.0117) 

LL -4801.50 -2456.70 
Standard errors appear in brackets.  

In the following figures 1a, 1b, 1c the fitted conditional covariance is plotted for the 

three multivariate models. From a first view, for both portfolios, the EUR-GBP 

currencies portfolio and the Dow-FTSE indices portfolio, the magnitudes and patterns 

of the time varying conditional covariance obtained from S-ARCD are similar to these 

captured from the other two multivariate models ad hoc GARCH(1,1) and BEKK(1,1). 

As a result, a more sophisticated evaluation approach must be developed in order to 

examine the performance of the three multivariate models. 

 

 

Figure 1a: Time varying Conditional Covariances for S-ARCD model. 

 

 

 

 

 

 

 



 

 

 

Figure 1b: Time varying Conditional Covariances for ad hoc GARCH(1,1) model. 

 

Figure 1c: Time varying Conditional Covariances for BEKK(1,1) model. 

 
 

4. Evaluation  

Two approaches are employed in order to evaluate the performance of the S-ARCD 

model against the other two multivariate models ad-hoc GARCH(1,1) and BEKK(1,1) 

models. Firstly, a statistical method is implemented using a regression model and 

secondly an economic approach is used to estimate the volatility for the VaR 

calculation of the aggregate equity portfolios and the foreign exchange portfolios.  

 
 
 

14
t

For the statistical evaluation, the Harris, Stoja and Tucker (2007) proposed a 

regression so as to test the conditional unbiasedness of the estimated conditional 

covariance matrix. We compare the estimated conditional variances and covariance 

1, , 2, , 1,2,t th h σ versus to the realized conditional variances and covariance which are 
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the squares and the cross products of the residuals estimated by the relative 

multivariate model for each series 1, 2,ˆ ˆ, ,t tε ε respectively, using the following Ordinary 

Least Squares (OLS) regressions: 
2 2
1, 1,0 1,1 1, 1,ε̂ θ θ σ= + +t t tv
2 2
2, 2,0 2,1 2, 2,

1, 2, 12,0 12,1 12, 12,

ˆ

ˆ ˆ

ε θ θ σ

ε ε θ θ σ

= + +

= + +
t t t

t t t t

v

v

                                                             (13)                           

The above regressions are tested F-statistic. When the null hypothesis of a 

 one day period VaR forecasts 
2

              

using an 

zero intercept and a slope coefficient equal to one is not rejected then the 

multivariate model under testing is well specified and correctly defined (Andersen 

and Bollerslev 1998, Harris, Stoja and Tucker, 2007).   

For the economic approach, we compute out of sample

using the variance covariance approach  (VCV) for both equities and foreign 

exchange portfolios, since the VCV approach considers and reveals directly the 

volatility and correlation effect in the Value at risk (VaR) estimation. The volatility is 

updated as in Hull and White (1988) procedure in order to capture the volatility 

clustering. The more accurate and efficient variance covariance estimation (VCV) is 

the one which gives the lower level of capital to cover against unexpected portfolio’s 

losses and also the smaller average deviation between the estimated VaR and the 

actual return. Brooks and Persand (2003) showed that the forecasted portfolio’s VaR 

based on the VCV approach is calculated as: 

−

+ + +
⎛ ⎞⎡ ⎤= ⎜ ⎟⎣ ⎦ ⎝ ⎠

1i i i
p ,t 1 t 1 ,T p ,t 1 ,T

aVaR (T ,a ) F h
100

                                                 (14)                           

where i=S-ARCD, BEKK, ad-hoc GARCH(1,1), T is the forecast horizon, here equal to 

1 day period, α is the desired confidence level, 
−

⎡ ⎤⎣ ⎦
1i

t ,TF is the inverse of the 

cumulative distribution function and i
p ,t ,Th is the po forecasted conditional 

variance which is given by the following : 

σ+ + + += + +2 2

rtfolio’s 

 type

p ,t 1 1 ,t 1 2 ,t 1 12 ,t 1h a h b h 2ab                                                        

(14a)                         

                                                 
2 We restrict our attention to the variance covariance approach but also and other 
methodologies such as historical simulation or parametric Riskmetrics approach could 
be applied as well. 



where ,+1 ,t 1h +2 ,t 1h are the forecasted conditional variances estimated form the three 

models for the indices and foreign currencies respectively and σ +12 ,t 1  is the 

forecasted conditional covariance of the two indices or the currencies estimated form 

the respective model, with a and b being the proportion invested in each asset. In 

this study the weights a and b are each equal to 0.5, while the cumulative 

distribution function is the normal distribution and the significance confidence level is 

chosen as 5% and 1% which corresponds to a value of δ equal to 1.65 and 2.33 for 

the normal distribution respectively. In order to compare the VaR forecasts accuracy 

estimated by the three models the following measures for VaR evaluation are 

performed:  

 Unconditional Coverage 

⎤⎦

t

Kupiec (1995) proposed an unconditional test (LRun) so as to test the proportion of 

times VaR is exceeded in a given sample and under the correct VaR model with the 

null hypothesis that expected violation frequency is equal to the desired significance 

level. The LRun follows an asymptotic chi-square distribution with one degree of 

freedom χ2(1) and computes the appropriate likelihood ratio statistic as:  

2ln (1 ) 2ln (1 / ) ( / )un T N N T N NLR p p N T N T− −⎡ ⎤ ⎡= − − + −⎣ ⎦ ⎣                                   

(15)   

where T is the sample size, N is the number of failures or violations, and p is the 

desired significance.  

 Condi ional Coverage 

Christofferson (1998) developed a test statistic (LRind) to account for unconditional 

coverage and also for serial independence of VaR estimates. This is very useful since 

we can conclude if a model rejection is due the unconditional coverage failure or 

clustering of the exceptions or both. For testing the independence of the VaR 

violations, the statistic is asymptotically χ2 distributed with one degree of freedom 

and is derived as: 

[ ]00 00 01 00 10 10 11 102 ln( /(1 )) ln((1 )/ ) ln( /(1 )) ln(1 )/ )indLR v v v vπ π π π π π π= − + − + − + − π    (16)                                   

where vij is the number of observations of It with value i followed by j, 

00 00 00 01/( ),v v vπ = + 10 10 10 11/( ),v v vπ = + 01 11 00 01 10 11( ) /(v v ).π ν ν ν ν= + + + + Τhe indicator 

It is constructed as: .  =
⎧ ⎫
⎨ ⎬
⎩ ⎭

1,  if exceedence occurs

0,  if no exceedence occurstI
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The joint test for conditional coverage capturing both unconditional coverage and the 

independence is simply given by the sum of the above individual tests and follows a 

χ2 distribution with two degrees of freedom:  

= +cc un indLR LR LR                                                                                   (16a). 

 Root Mean Square Error (RMSE) 

In VaR models evaluation, the root mean square error is a frequently used measure 

of the difference between the VaR estimated values and the actually observed 

portfolios’ returns. The model with the smaller RMSE is considered as the most 

accurate VaR forecasting model. It is defined as: 

+
=

= −∑
T

i
t p t

t

RMSE r VaR
T

2
1 ,

0

1
( +1)

r

                                                                (17)

 Standa d Deviation of Capital Employed 

The Economic Capital or Capital Employed is considered as the amount to be set 

aside in order to cover most of the potential losses at a predetermined level. Its 

standard deviation is calculated as: 

+
=

= −∑
T

i
p t p

t

SD VaR VaR VaR
T

2
, 1

0

1
( ) ( )i                                                           (18) 

where i
pVaR is the average estimated portfolio VaR given by the following type: 

+
=

= ∑
T

i
p

t

i
p tVaR VaR

T , 1
0

1
. The lower the standard deviation of the capital employed, the 

most accurate is the model used for the VaR calculation since the uncertainty of the 

compulsory capital used to cover the unexpected portfolio’s losses is reduced.  

 

 

5. Results 

Summary statistics for the estimated covariances , ,ˆF D tσ , , ,ˆE G tσ from the three models 

are reported in Tables 5a and 5b, where , ,ˆF D tσ is the estimated covariance  for the 

FTSE and Dow equity indices portfolio and , ,ˆE G tσ is the estimated covariance  for the 

EUR and GBP currencies portfolio. For the equity indices, the S-ARCD model has the 

highest standard deviation, while for the exchange rate series the BEKK(1,1) model 

is the one which gives the lowest level of volatility.   

Table 5a. Descriptive Statistics of the estimated covariance , ,ˆF D tσ  
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, ,ˆF D tσ  Mean St. Dev. Skewness Κurtosis Min Max 

S-ARCD 0.594 0.577 3.089 11.407 -0.402 5.859 

Ad-Hoc GARCH(1,1) 0.534 0.651 2.956 10.542 -0.480 5.145 

BEKK(1,1) 0.527 0.615 2.629 7.797 -0.442 4.007 

Table 5b. Descriptive Statistics of the estimated covariance , ,ˆE G tσ  

, ,ˆE G tσ  Mean St. Dev. Skewness Κurtosis Min Max 

S-ARCD 0.218 0.090 0.939 1.876 0.000 0.582 

Ad-Hoc GARCH(1,1) 0.220 0.126 1.072 2.644 -0.251 0.752 

BEKK(1,1) 0.219 0.073 1.126 3.089 0.080 0.526 

In Tables 6a, 6b the descriptive statistics of the conditional correlations, estimated 

by the three multivariate models, are presented. The BEKK(1,1) model estimates 

correlation with the lowest variability, while the S-ARCD follows. The Ad-Hoc 

GARCH(1,1) model gives the most variable multivariate correlation for both data 

series since the estimated standard deviations are the highest. Obviously, the fitted 

correlation process for all the three models remains between -1< <1 and 

1< <1, meaning that the resulting estimated correlation matrix satisfies the 

condition for positive semi-definiteness for both equity indices and foreign currency 

data.  

, ,ˆF D tρ

, ,ˆE G tρ

Table 6a. Descriptive Statistics of the estimated correlation , ,ˆF D tρ  

, ,ˆF D tρ  Mean St. Dev. Skewness Κurtosis Min Max 

S-ARCD 0.459 0.161 -0.589 0.541 -0.301 0.960 

Ad-Hoc GARCH(1,1) 0.456 0.177 0.109 3.969 -0.497 0.999 

BEKK(1,1) 0.439 0.155 -0.962 2.264 -0.226 0.813 

 

Table 6b. Descriptive Statistics of the estimated correlation , ,ˆE G tρ  

, ,ˆE G tρ  Mean St. Dev. Skewness Κurtosis Min Max 
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S-ARCD 0.697 0.134 -0.963 1.387 -0.098 0.915 

Ad-Hoc GARCH(1,1) 0.691 0.242 -0.767 1.815 -0.976 0.999 

BEKK(1,1) 0.705 0.104 -1.005 1.177 0.245 0.886 

In Tables 7a, 7b the correlation matrix between the three models is presented. More 

precisely, for the equity indices data the models S-ARCD and Ad-hoc GARCH(1,1) 

have the highest correlation reflecting the fact that are based on the same theory 

framework, but the S-ARCD has higher correlation with BEKK(1,1) than the Ad-hoc 

model. Indeed, for the currency series, the highest correlation is between S-ARCD 

and BEKK(1,1) imposing that time varying higher moments such as skewness and 

kurtosis play important role in the estimation of multivariate variance covariance 

matrix and must not ignoring them such as in  the case of Ad-hoc GARCH(1,1) model 

which has the lowest correlation with BEKK(1,1) model  for both cases.  

Table 7a. Correlation matrix for the estimated correlation , ,ˆF D tρ  

, ,ˆF D tρ  S-ARCD Ad-Hoc GARCH(1,1) BEKK(1,1) 

S-ARCD 1.000  
 

 

Ad-Hoc GARCH(1,1) 0.902 1.000  

BEKK(1,1) 0.643 0.583 1.000 

Table 7b. Correlation matrix for the estimated correlation , ,ˆE G tρ  

, ,ˆE G tρ  S-ARCD Ad-Hoc GARCH(1,1) BEKK(1,1) 

S-ARCD 1.000   

Ad-Hoc GARCH(1,1) 0.587 1.000  

BEKK(1,1) 0.926 0.432 1.000 

The results of the regressions for the statistical evaluation are presented in the 

following Tables 8a and 8b. The null hypothesis of the unconditional unbiasedness 

for all the covariance matrix elements is examined by the regressions (13) using an 

F-statistic in order to confirm if a multivariate model is well and correctly specified. 

For the equity indices, and their estimated variances 2
,F tσ , 2

,D tσ , the null hypothesis of 

unconditional unbiasedness is accepted for all multivariate models, while for their 

estimated covariance, all the multivariate models reject the unconditional 
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unbiasedness, with the BEKK(1,1) model to have the weakest rejection.  For the 

currency data, both S-ARCD and BEKK(1,1) models  accept the unconditional 

unbiasedness for all the three elements of the conditional variance covariance 

matrix, while the ad-hoc GARCH(1,1) model reject again the null hypothesis. Overall, 

the BEKK(1,1) and the S-ARCD models are the ones with the best statistical 

evaluation performance since the unconditional unbiasedness condition is rejected 

only in one from the six cases.   

Table 8a. Unconditional Unbiasedness testing Regressions for the equity indices 
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,
2 2

, ,0 ,1 ,ˆ = + +F t F F F t F tvε θ θ σ  S-ARCD Ad-Hoc GARCH(1,1) BEKK(1,1) 

,0F̂θ  0.083 0.065 0.147 

,1F̂θ  0.953 0.960 0.891 

F-statistic 2.839 0.520 1.368 

2 2
, ,0 ,1 ,ˆ = + + ,D t D D D t Dvε θ θ σ t     

,0
ˆ
Dθ  0.121           0.119 0.099 

,1
ˆ
Dθ  0.885 0.898 0.937 

F-statistic 2.610 1.588 1.067 

, , ,0 ,1 , ,ˆ ˆ = + +F t D t FD FD FD t FD tvε ε θ θ σ     

,0F̂Dθ  0.166 0.172 0.133 

,1F̂Dθ  0.640 0.698 0.762 

F-statistic 7.388 8.498 4.014 

The F statistic tests the null hypothesis that i ,0θ̂ =0 and i ,1θ̂ =1 where i=F, D  FD and has an 
F(2,1861) distribution with critical value 3.00 at the 5% significance level.  

,  

,

Table 8b. Unconditional Unbiasedness testing Regressions for the currency series 

2 2
, ,0 ,1 ,ˆ = + +E t E E E t E tvε θ θ σ  S-ARCD Ad-Hoc GARCH(1,1) BEKK(1,1) 

,0Êθ  0.083  
0.081 

0.028 



,1Êθ  0.782 0.794 0.933 

F-statistic 2.916 2.674 0.248 

2 2
, ,0 ,1 ,ˆ = + +G t G G G t G tvε θ θ σ ,

    

,0Ĝθ  0.046 0.172 0.015 

,1Ĝθ  0.816 0.331 0.926 

F-statistic 1.512 1.072 0.307 

, , ,0 ,1 , ,ˆ ˆ = + +E t G t EG EG EG t EG tvε ε θ θ σ     

,0ÊGθ  -0.047 0.107 0.034 

,1ÊGθ  1.213 0.490 0.834 

F-statistic 2.200 23.644 0.848 

The F statistic tests the null hypothesis that i ,0θ̂ =0 and i ,1θ̂ =1 where i=E, G, EG and has an 
F(2,1952) distribution with critical value 3.00 at the 5% significance level.  
 

A rolling window of 100 observations is used for the out of sample estimation of each 

model. The model which has the greater percentage of VaR exceedences in the out 

of sample period the highest RMSE and the highest standard deviation of the capital 

employed is ranked as the worst model, while the most accurate is the one with the 

lower percentage of exceedences and also with the lowest RMSE and standard 

deviation of the capital employed. Tables 9a and 9b and tables 10a and 10b report 

the estimated five measures for the out of sample VaR evaluation of both equity and 

currency portfolios at the 95% and 99% levels respectively.  

 

 

 

Table 9a. Out of sample VaR evaluation measures for the equity indices portfolio at 

95% confidence level. 

FTSE-DJ Portfolio 
95% conf. level 

unLR  indLR  ccLR  RMSE SD(VaR) 
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S-ARCD 0.0000 0.2526 0.2526 2.3234 0.5817 

Ad-Hoc GARCH(1,1) 0.1984 0.3832 0.5816 2.4596 0.6613 

BEKK(1,1) 1.6158 1.1981 2.8139 2.4080 0.5967 

The statistic ests the null hypothesis that the proportion of VaR exceedences is equal to 
the nominal significance level and has an chi squa ed distribution with cri ical value 3.84 at 
the 5% significance level. The tests the null hypothesis that the VaR exceedences are 
serially uncorrelated and has an chi squared distribution with cri ical value 3.84 at the 5% 
significance level. The  tests the null hypothesis of both unconditional coverage and that 
the VaR exceedences are serially uncorrelated and has an chi squared distribution with critical 
value 5.99 at the 5%. 

unLR t
r t

t

 

indLR

ccLR

Table 9b. Out of sample VaR evaluation measures for the equity indices portfolio at 

99% confidence level. 

FTSE-DJ Portfolio 
99% conf. level 

unLR  indLR  ccLR  RMSE SD(VaR) 

S-ARCD 0.7827 0.1216 0.9043 
 

3.0523 1.0295 

Ad-Hoc GARCH(1,1) 0.7827 0.1216 0.9043 
 

4.3285 4.0149 

BEKK(1,1) 0.7827 0.1216 0.9043 3.1134 2.7171 

The statistic ests the null hypothesis that the proportion of VaR exceedences is equal to 
the nominal significance level and has an chi squa ed distribution with cri ical value 6.63 at 
the 1% significance level. The tests the null hypothesis that the VaR exceedences are 
serially uncorrelated and has an chi squared distribution with cri ical value 6.63 at the 1% 
significance level. The  tests the null hypothesis of both unconditional coverage and that 
the VaR exceedences are serially uncorrelated and has an chi squared distribution with critical 
value 9.21 at the 1%. 

unLR t
r t

t

 

indLR

ccLR

Table 10a. Out of sample VaR evaluation measures for the foreign currencies 

portfolio at 95% confidence level. 

EUR-GBP Portfolio 
95% conf. level 

unLR  indLR  ccLR  RMSE SD(VaR) 

S-ARCD 0.7530 0.2584 1.0114 1.0051 0.1442 

Ad-Hoc GARCH(1,1) 2.4286 3.55E-15 2.4286 1.4887 0.2144 

BEKK(1,1) 0.2253 0.1251 0.3504 1.1385 0.1961 
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The statistic ests the null hypothesis that the proportion of VaR exceedences is equal to 
the nominal significance level and has an chi squa ed distribution with cri ical value 3.84 at 
the 5% significance level. The tests the null hypothesis that the VaR exceedences are 
serially uncorrelated and has an chi squared distribution with cri ical value 3.84 at the 5% 
significance level. The  tests the null hypothesis of both unconditional coverage and that 
the VaR exceedences are serially uncorrelated and has an chi squared distribution with critical 
value 5.99 at the 5%. 

unLR t
r t

t

indLR

ccLR



Table 10b. Out of sample VaR evaluation measures for the foreign currencies 

portfolio at 99% confidence level. 

EUR-GBP Portfolio 
99% conf. level 

unLR  indLR  ccLR  RMSE SD(VaR) 

S-ARCD 5.1821 -4.44E-15 5.1821 
 

1.2762 0.2036 

Ad-Hoc GARCH(1,1) 0.0000 1.77E-15 0.0000 
 

1.9994 0.3027 

BEKK(1,1) 0.7827 3.55E-15 0.7827 1.4809 0.2769 

The statistic ests the null hypothesis that the proportion of VaR exceedences is equal to 
the nominal significance level and has an chi squa ed distribution with cri ical value 6.63 at 
the 1% significance level. The tests the null hypothesis that the VaR exceedences are 
serially uncorrelated and has an chi squared distribution with cri ical value 6.63 at the 1% 
significance level. The  tests the null hypothesis of both unconditional coverage and that 
the VaR exceedences are serially uncorrelated and has an chi squared distribution with critical 
value 9.21 at the 1%. 

unLR t
r t

t

indLR

ccLR

All models provide correct unconditional and conditional coverage close to the 

significance levels since their , , and  values do not violate both the 

5% and 1% tolerance levels, and therefore their VaR forecasts are adequate. More 

precisely, the S-ARCD model in the equity indices portfolio achieves the required 

coverage in the out of sample period, meaning that there is no waste capital, while 

the ad-hoc GARCH(1,1) model is the one in the foreign currency portfolio. 

Summarizing the results for the unconditional and conditional coverage, the VaR 

predictions obtained from the three models are all within the percentage 

exceedences threshold. Since, all models have a good unconditional and conditional 

coverage performance, the examination of the root mean square deviation and the 

standard deviation of the capital employed is required.  For both equity and foreign 

currency portfolios, the S-ARCD model provides the lower RMSE at 5% and 1% 

levels reflecting its enhanced efficiency in the presence of leptokurtosis since it 

captures time varying skewness and kurtosis, while the BEKK follows. Considering 

the capital employed, the S-ARCD model produces again the lowest standard 

deviation of the capital employed allowing the uncertainty, over the required capital 

reserved to cover against unexpected adverse price movements, to be highly 

reduced. This is very important for risk managers and investors since their capital 

can be allocated in other more profitable assets.  

unLR indLR ccLR

 
 
5. Conclusions 
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This paper proposes a simple and effective multivariate version of ARCD model the 

S-ARCD to model conditional covariance processes which allows for time variation in 

higher moments and is consistent with both asymmetries and fat-tails that are 

typically observed in financial data. Empirical results using the equity indices FTSE, 

DJ and the foreign currencies EUR and GBP against USD suggest that a significant 

ARCD model can be estimated for all series. Moreover, VaR estimates via the S-ARCD 

offer superior out-of-sample performance compared to the BEKK and ad-hoc 

GARCH(1,1) models respectively implying that a practical and computationally easier 

estimation of the conditional covariance approach can be obtained considering also 

the time variation of the higher moments.   

To the best of our knowledge that for the first time ARCD model is used for 

conditional covariance estimation. On the basis of our results and the flexibility that 

the S-ARCD offers, we believe that further empirical research is justified.  
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