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Optimal Hedging with a Regime Switching Gumbel-Clayton
Copula GARCH M odel

Abstract

The article develops a regime switching Gumbel-Clayton copula GARCH model
(RSGC) for optimal futures hedging. There are three maor contributions of RSGC. First,
the dependence of spot and futures return series in RSGC is modeled using switching
copula instead of assuming bivariate normality. Second, RSGC adopts an independent
switching GARCH process to avoid the path dependency problem. Third, based on the
assumption of independent switching in RSGC, a formula is derived for calculating the
minimum variance hedge ratio. RSGC exhibits good out-of-sample hedging effectiveness

based on corn and oats futures data traded in the Chicago Board of Trade.



l. Introduction

It iswidely known that the time-varying variance-minimizing futures hedge is
given by the ratio of the conditional covariance of the futures and spot returns to the
conditional variance of the futures return. A considerable amount of studies have applied
various Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models for
estimating the time-varying minimum variance hedge ratio. Baillie and Myers (1991)
estimate the time-varying minimum variance hedge ratio by using a GARCH model with
diagonal vech specification. Kroner and Sultan (1993) and Park and Switzer (1995)
apply the constant correlation GARCH (CC-GARCH) for estimating the optimal hedge
ratios. Gagnon and Lypny (1995), and Brooks et al. (2002) apply BEKK (Baba-Engle-
Kraft-Kroner) GARCH, and Bystrom (2003) applies orthogonal GARCH for estimating
the time-varying minimum variance hedge ratios.

Recent studies recognize that the rel ationship between spot and futures returns may
be characterized by regime shifts (Sarno and Valente, 2000, 20053, 2005b) and adopt
regime switching models to generate state-dependent dynamic hedging strategies, which
are found to perform better than state-independent strategies (Alizadeh and Nomikos,
2004; Leeet a, 2006; and Lee and Y oder, 2007a, 2007b). Alizadeh and Nomikos (2004)
and Lee et a (2006) estimate the minimum variance hedge ratio by treating it as atime-
varying coefficient. Lee and Y oder (2007a and 2007b) estimate the minimum variance
hedge ratio by estimating the conditional second moments with regime switching
GARCH models.

Although these regime switching GARCH models have captured much of the

observed behavior in the spot and futures return series, they possess some drawbacks.



First, previous regime switching GARCH hedging methods usually assume a joint
normality between spot and futures return series. This may be misleading in the presence
of non-normality in these returns series. Second, previous regime switching GARCH
hedging models use Gary’s recombining method for solving the dependency problem.
However, the interpretation of the variance process in Gray’s approach is problematical .
Third, in measuring the hedging performance, previous regime switching hedging models
derive the minimum variance hedge ratios by recombining the variances and covariance
in each state. If Gray’s recombining method is problematical, the minimum variance
hedge ratio derived is aso problematical.

This article devel ops a regime switching Gumbel-Clayton copula GARCH model
(RSGC) for deding these problems. Instead of assuming bivariate normality, RSGC
model s the dependence structure of spot and futures return series with switching Gumbel-
Clayton copula. In additions, RSGC adopts an independent switching GARCH process to
avoid the path dependency problem. Finally, a formula is derived for calculating the
minimum variance hedge ratio for the hedging portfolio under independent switching
assumption. The proposed model is applied to the corn and oats futures data traded in the
Chicago Board of Trade. Results show that RSGC provides good out-of-sample hedging
performance.

The remainder of the article is organized as follows. The proposed regime
switching Gumbel-Clayton copula GARCH (RSGC) model is presented next. Section 11|
derives the formula of the minimum variance hedge ratio for hedging portfolio and
discusses the hedging performance measurements. This is followed by data description

and empirical results. A conclusion ends the article.



. Regime Switching Gumbel-Clayton Copula GARCH (RSGC)

The previous regime switching GARCH hedging methods (Lee and Y oder; 2007a
and 2007b) possess some drawbacks. In this section, these drawbacks will be discussed
and we will see how the proposed regime switching Gumbel -Clayton Copula GARCH

(RSGC) deals these problems. RSGC can be specified in the following way. Let r_, and

r; . bethereturns on the spot and futures, respectively:
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where p. . and u, , are state-dependent mean returns to spot and futures returns, and

€. and e . are state-dependent disturbances. The state variable $= { 1 2} is assumed

LS
to follow a first-order, two-state Markov process and state transition probabilities are

assumed to follow alogistic function such that

Pr(sl=1|S171=1)=P:$(p(op)o)’ ?
H(St:2|st—1:2):Q:%’ (4)

where p, and q, are unconstrained constants that can be estimated aong with other

unknown parameters via maximum likelihood estimation. In the previous regime

switching GARCH hedging methods (Lee and Y oder; 2007a and 2007b), the conditional
variances at time t given s, for spot and futures returns denoted as h., . and h;  are

assumed to follow a state-dependent GARCH(1,1) process
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When a recursive process is subject to regime switching, the recursive nature of
the process makes the model intractable due to the dependence of the conditional
variances on the entire past history of the data (Cai, 1994; Hamilton and Susmel, 1994;
Gray, 1995, 1996).

To solve this path-dependency problem, previous regime switching GARCH
hedging models use Gray’s (1996) recombining method to recombine the conditional

variances as given by
hiz,t = Py (:uiz,l + hiz,t,l)+ (1_ P )(,uiz,z + hiz,t,z)_ [pltlui,l + (1_ Py ),ui,z]z’ )
for i = {c, f }, where p, isthe probability of beingin regime 1 at time t, defined as

P, =Pr (S[ :lll//t—l)
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and P and Q aretransition probabilities defined in (3) and (4).
While the model of Gray is attractive in that it combines Markov switching and
GARCH effects and solves the estimation difficulties, its analytical intractability is a

serious drawback (Hass, et. al., 2004). Consider a state-dependent GARCH(1,1) process,
h =y +aet2—1+ﬁ h,. (10)
If g <1,thevariance h can be expressed as
h =y(1-p)"+a Y B, (11
i=1

where a reflects the magnitude of a unit shock’s immediate impact on the next period’s

variance, 8 is a parameter of inertia and indicates the memory in the variance, and the



total impact of a unit shock to future variance is a(1- 8)™". In the regime switching
GARCH model, the relationship between the pattern with which h responds to shocks

and the parameters o, §, and y is far from obvious if Gray’s recombining method is

used because the lagged variances is replaced with the recombined variances. Moreover,
in Gray’s model it is possible that the variance of one regime will still be affected by
shockseven if o inthat regimeis zero.

Hass, et. a. (2004) suggests an independent switching GARCH process to solve

these problems. The independent switching GARCH process is specified below:
h,=y+ aletz—l,l +Bih g, (12)

h,=7,+0a,85,+ BN, (13
where the subscripts 1 and 2 stands for regime 1 and regime 2. This specification
preserves the economic significant of the variance dynamics in each regime and admits
analytical anaysis of the variance process.

Following the concept of Hass, et. d., this study also suggests an independent

switching variance dynamics for the RSGC hedging model. The volatility equations of

RSGC are modeled as
e.s ~ N0, ), (14)
ers ~ NN, ), (15)

and the conditional variance vector is specified as
ht =7t atetz + Btht—l’ (16)

where
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Another problem of previously proposed regime switching GARCH hedging

methods (Lee and Yoder; 2007a and 2007b) is that they impose a joint-normality

restriction to the disturbance vector e, as bellows:

ec,t,
s Vs { K } lv.,~ BN(, Htvsl), (18)

ef,t,s‘

where y , refers to the information available at time t-1, BN stands for
bivariate normal, and H, ¢ is a time-varying, state-dependent, 2x2 positive definite

conditional covariance matrix.

This restriction ignores the potential important dimension of the dynamic futures
hedging, the non-normal dependence. The proposed regime switching Gumbel-Clayton
(RSGC) copula GARCH model captures the regime shifts as previous regime switching
GARCH methods do and also captures non-normal dependence of spot and futures
returns. Copulas are functions that join or couple multivariate distribution functions to

their one-dimension marginal distribution functions. The most important result in copula



theory is Sklar’s theorem which says that it is possible to separate the univariate margins
from the dependence structure represented by copula (Rodriguez, 2007)*.

The margina distributions are assumed to be mixture of normal distributions as
defined in equations (14) and (15) and the dependence structure is modeled with the

following switching Gumbel -Clayton copula
C(ut Ve ls !l//t—l) =Ty th (ut Vi 5& |Wt—1)+ (1_ Tes ) CtG (ut Vi 5t(,;sl | l//t—l)' (19)
where 7, <[01] isastate-dependent shifting parameter of the mixture Gumbel-Clayton

copulaand C° and C are state-dependent versions of Clayton (1978) and Gumbel
(1960) copulas, respectively. The Gumbel-Clayton copula describes situations of
asymmetric tail dependence and the nested Gumbel and Clayton copulas exhibit the
upper tail dependence and the lower tail dependence, respectively. Lower tail dependence
increases as 7. . goes from zero to one.

The state-dependent Clayton and Gumbel copula are defined as

-1-25°
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! Sklar’s Theorm: (Sklar, 1959): Let D be an n-dimensional distribution function with margins

F, -+ F,. Then there exists an n-copula C suchthat for al X in R",

D0, Xm0 %, ) = CF 04, Fo(x,)-
If F,---F, areall continuous, then C isuniquely determined on Ran F, x...x Ran F,. Conversely,

if C isann-copulaand F; --- F aredistribution functions, the function D defined aboveisan n-

dimensional distribution function with marginsF; --- F_ .

With this theorem he density of D can be expressed as the product of the copula density and the
univariate margina structure. Thisis can be seen by deriving both sides of the above equation to get the
density of D

8”D(x1,x2,---,xn) — anC(Fl(Xl)” Fn(xn)) % f (Xl)><>< f (X )
DX, OX X, OX, ! e
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where A = [(— In(u, ) +(=In(v, ))5‘6] U =F(r 1s.v) and v, =F (r, |8, ,) are
respectively the state-dependent conditional cumulative distribution functions of the spot
and futuresreturns at time t, and 5° and 5° are parameters of Gumbel and Clayton
copulas, respectively.

Patton (2006a and 2006b) introduced the concept of conditional copulato capture

the time shifts in the dependence structure. This study also allows 6 and 5° to be time-

,and 5° = I 1 (Nelsen, 1999), where 7, isthetime-

2r,

varying by definings,” = 1

varying scaled invariant dependence measure Kendall’s = which is given by

T, = (fjsinl(pt) (Lindskog et. a., 2001; and Lai et. a., 2007). The dependence process

can be specified as

p,=(1-6,-0,)p+0,p, ,+0,0 ., (22)
where parameters 6, and 0, are assumed nonnegative and 6, + 6, <1 (Tse and Tsui,
2002). Thedisturbanceterm ¢, isgiven by

2
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where g, , = —== and ¢, , =—— are standardized residuals of spot and futures
\[ hc,t \[ hf t

returns.

The unknown parameters in RSGC are® = {p, , q,, Hess Hiso Yess Vi Qs

Uros Boss Bras Tas 0y, 05, p | for s, = 1,2}, which can be estimated by

maximizing the following log-likelihood function?

L©)= Y loglalr,. 1y 1)l (24)

where

2

q(rc,t’rf,t |y/t—l)zzq(rc,t’rf,t’st =i |l//171)

i1
2 - - - -
:ZC(ut’Vt Is :|7l//t—l)x f(rc,t Is :|7l//t—l)x g(rf,t |s =|7‘//t71)xp(si =1 |Wt—1)’
i1

with C the copuladensity and f and g the marginal densities of spot and futures

returns, respectively.

1. Measuring Hedging Perfor mance
Hedging performance is evaluated from both a risk-minimization and a utility

standpoint. Let y, be the estimated optimal hedge ratios derived from various hedging
strategies. The estimated time-varying minimum variance hedge ratio denoted as y, is

given by

2 When the copulaand margina parameters change simultaneously according to a Markov

Switching process, the two-step approach cannot be used. All parameters must be estimated simultaneously
(Rodriguez, 2007).
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COV(rCt’rfl Il//l—l)
= ARBAE (25)
“ Var (rf,l |‘//1-1)

If the hedge ratio is subjected to regime shifts, the recombined covariance and
variance are found first and the optimal hedge ratio is then calculated with equation (25).
In the proposed regime switching Gumbel -Clayton GARCH model, recombining process

is not required and the time-varying minimum variance hedger ratio is given by

_ p:LZtCOV(rc,l,t7rf,l,l)+(1_ P )ZCOV(rc,Z,t’rf,Z,t) 3

_ (26)
' p2Var (rf y )+ (1- py )*Var (rf N )

The return from the hedged portfolio can be expressed as r,, = ..., — X f¢ 11 -

From arisk-minimization standpoint, a hedger chooses a hedging strategy to minimize
the variance of the hedged portfolio return or equivalently to maximize the variance
reduction of a hedging strategy compared to the unhedged position. To better understand
the economic significance of portfolio variance reduction, the utility-based criterionis
also used to investigate the hedging effectiveness of RSGC model. Consider a hedger

with a mean-variance expected utility function:

3 This can be easily proved as follows. Let r be the hedging portfolio return which is given by
r, = p,(portfolio return in state 1)+ (1 p, J(portfolio return in state 2)
= pl(rc,l —X rf,1)+(1_ pl)(rc,Z A rf,Z)’
where I';; and I ; arethereturns spot and futures would havein the state i , respectively. We would like

to choose ¥ such that the variance of the portfolio return is minimized.
p? b/ar (r..)- 2;5Cov(rcyl, r ,1)+ x*Var (rf 1)]
rrLinVar(rp): min +(1- p, PVar(r,, ) - 24Covlr .1, )+ 2 Var(r, )
+2p,1-p,) Cor, =7 Tir Teo—2 11 s)

Deriving the above equation with respect to ¥ and using the assumption of independent switching
gives equation (26).
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Eu(r, ) lwea] =Elr v -2 varlr, v), (25)
where ¢ isthe degree of risk aversion and E stands for expectation operator. A dynamic

hedging strategy is considered to be superior to a static ordinary least square (OLYS)

method if it has higher expected utility net of transaction costs.

IV. DataDescription and Empirical Results

Corn and Oats nearby futures contract traded in the Chicago Board of Trade
(CBOT) areinvestigated in this study. Both spot and futures rates were collected from
Datastream from January 1991 to December 2007. The spot and futures data are
Wednesday’s closing price. Estimation of all models was conducted using data from
January 1991 to December 2006; the data of the most recent year are used for out-of -
sample analysis. Summary statistics corn and oats data are shown in table | and parameter
estimates from al alternative models are presented in table I1. The parameters are
estimated by maximizing the log-likelihood functions using GAUSS.

For Corn data, the g sare 0.865 and 0.914 for spot and return seriesin low
volatility state (state one) and 0.778 and 0.731 for spot and return seriesin high volatility
state (state two). This shows that volatility in the low volatility state has higher shock
persistence than in the high volatility state. The weighting parameters 7, and 7, equal to
0.235 and 0.385 in low and high volatility states, respectively. Thisimplies that the lower
tail dependence increases in the high volatility state. For oats data, the volatility in the
low volatility state also has higher shock persistence than in the high volatility state but

the lower tail dependence decreasesin the high volatility state.
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Table Il presents summary statistics regarding the effects of static and dynamic
hedging strategies on out-of-sample hedging effectiveness. This study investigates the
out-of-sample hedging effectiveness of futures hedging. For the hedger, what matters
most is the hedging performance in the future not in the past. The performance of RSGC
is compared with performances of OLS, the ordinary least square, CC, the constant
correlation GARCH (Bollerdev, 1990), VC, the varying correlation GARCH (Tse and
Tsui , 2002), and GC, the state-independent Gumbel-Clayton GARCH. Results show that
RSGC hedging method exhibits good hedging performance for both corn and oats datain
terms of variance reduction. For corn data, RSGC has the lowest variance which is equa
to 2.727. The variance of the hedged portfolio with RSGC hedging is reduced by 2.22%,
0.65%, 0.6%, and 0.14% compared to OLS, CC, VC, and GC hedging. Oats data provide
similar results. RSGC has the lowest variance which is equal to 10.472. The variance of
the hedged portfolio with RSGC hedging is reduced by 3.83%, 1.28%, 5.65%, and 3.18%
compared to OLS, CC, VC, and GC hedging. In general, time-varying hedging methods
improve the hedging effectiveness compared to static OL S hedging expect VC model for
the oats data. Allowing the dependence structure to be non-normal does not always
improve the hedging performance. GC has better performance than CC in corn but worse
performance than CC in oats. Allowing both non-normality and regime shiftsin the
RSGC, however, improves the effectiveness for both corn and oats data.

To better understand the economic significance of portfolio variance reduction,
the utility based criterion is also used in comparing the performances of aternative
models. Table Il givesthe utility gains of RSGC over other hedging strategies.

Following other empirical studiesin the literature (Switzer, 1995; Alizadeh and Nomikos,
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2004, and Lee et d, 2006), the hedger is assumed to have an expected utility function
given by equation (25) with a degree of risk aversioné equal to 4. Asshown intablelll,
RSGC has the best hedging performancein terms of utility gain. RSGC provides utility
gain of 2.419, 0.668, 0.613, and 0.169 compared to OLS, CC, VC, and GC hedging for
corn data and provides utility gain of 3.045, 10.41, 4.360, and 2.449 compared to OLS,
CC, VC, and GC hedging for oats data. The hedger’s net benefit from using RSGC
hedging over OLS hedging is 2.419 (241.9%) in corn and 3.045 (304.5) in oats net of
transaction cost from dynamic reba ancing. Since the typical round trip transaction cost is
around 0.02% to 0.04%, a mean-variance expected utility-maximizing hedger will benefit
from hedging with RSGC even after taking account of these transaction costs.

To show the robustness of the superiority of the proposed RSGC hedging method,
in addition to the most recent year hedging period, the most recent two year hedging
period is also examined and the results are shown in table V. Again, RSGC provides the
highest variance reduction and utility gain compared to other hedging strategies
investigated in this study.

Figures 1 to 4 show the hedge ratios, state-dependent volatility process, and
regime probabilities for corn data. Figure 1 compares the hedge ratios of GC and RSGC.
All these hedge ratios are time-varying and fluctuate around the static OL S hedge ratio
which is equal to 0.88. Figure 2 shows the RSGC estimates of the state-dependent time-
varying volatilities. The spot return series has an average volatility equalsto 4.81 in the
high volatility state and an average volatility equalsto 2.50 in the low volatility state.
The futures return series has average volatilities equal to 4.64 and 2.23 in the high and

low volatility states, respectively. The state probabilities of being in the low volatility
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state estimated from RSGC are shown in figure 4. The state probability fluctuates
between 0 and 1.

Analogous graphs for the oats data are shown in figures 5 to 8. Figure 5 compares
the hedge ratios of GC and RSGC and Figure 6 shows the RSGC estimates of the state-
dependent time-varying volatilities. The spot return series has an average volatility equals
to 6.52 in the high voldtility state and an average volatility equalsto 2.41 in the low
volatility state. The volatility of the volatility islower in the low volatility state than that
in the high volatility state. The volatility of the volatility for low volatility stateis equal to
15.11% and the volatility of the volatility for high volatility state is 38.01%. The futures
return series has average volatilities equal to 7.07 and 2.66 in the high and low volatility
states, respectively. Again, the volatility of the volatility (13.77%) is lower in the low
volatility state than the volatility of the volatility (31.69%) in the high volatility state. The
state probabilities of being in the low volatility state estimated from RSGC are shown in

figure 8.

V. CONCLUSIONS

This article investigates the effects of non-norma dependence structure and
regime shifts on the hedging effectiveness by proposing a regime switching Gumbel-
Clayton copula GARCH model (RSGC). RSGC solves problems of recently developed
regime switching models. It specifies a non-normal dependence structure with a Gumbel -
Clyton copulato avoid the restrictive joint normal assumption and adopts an independent
switching GARCH process to avoid using Gray’s recombining method which is

problematical in interpreting and anayzing the variance process. Besides, the assumption
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of the independent switching allows us to derive a modified formula for calculating the
minimum variance hedge ratio. Empirical results suggest that allowing a hedging strategy
to possess both properties of regime shift and non-normal dependence structure improves
the hedging effectiveness for both corn and oats data traded in the Chicago Board of

Trade in terms of both criterion of variance reduction and utility gain.
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Tablel

Summary Statistics for Spot and Futures Returns of Corn and Oats Data

CORN
In-Sample Out-of-Sample
Spot Futures Spot Futures
Mean 0.0005 0.0006 0.0040 0.0039
SD 0.0337 0.0327 0.0526 0.0478
Min -0.1483 -0.1531 -0.1465 -0.1371
Max 0.1598 0.1380 0.1265 0.1245
Skewness -0.1021 0.2628 -0.3462 -0.3720
Kurtosis 2.1380 1.5364 0.4410 0.7341
OATS
In-Sample Out-of-Sample
Spot Futures Spot Futures
Mean 0.0011 0.0011 0.0023 0.0032
SD 0.0424 0.0446 0.0443 0.0390
Min -0.2287 -0.1489 -0.1146 -0.0797
Max 0.2058 0.1612 0.1475 0.0938
Skewness -0.0908 0.1656 0.4654 0.0853
Kurtosis 3.7877 1.2624 1.7071 -0.4141

Note  Returns are calculated as the differences in the logarithm of price multiplied by 100. Thein-
sample data period is from January 1991 to December 2006 and the out-of-sample data period is
from January 2007 to December 2007.
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Tablell
Estimates of Unknown Parameters of Alternative M odels for Corn and Oats Data
Data period isfrom January 1991 to December 2006

CORN OATS

cC vC GC RSGC cC vC GC RSGC

P, 0.751 1.219
(0.285)** (0.428)**

% -1.200 0.046
(0.440)** (0.300)

™ 0.279 -0.020 0.037 -0.215 0.124 0.449 0.451 0.004
(0.100)**  (0.039) (0.035)  (0.125)*  (0.137)  (0.004)**  (0.010)**  (0.025)

Heo 0.845 0.056
(0.334) ** (0.186)

Hi 0.286 -0.104 -0.104 -0.538 0.151 0.446 0.448 -0.053
(0.102)**  (0.000)**  (0.000)**  (0.123)**  (0.110)  (0.066)**  (0.019)**  (0.060)

Mo 1.542 0.323
(0.453)** (0.211)

Ya 0.837 1.086 1.093 0.106 16.340 16.343 10.607 0.318
(0.194)**  (0.252)**  (0.310)**  (0.143)  (0.934)**  (1.206)**  (2.782)**  (0.048)**

Yeo 2,553 40.251
(L.461)* (5.962)**

Yo 0.786 0.950 1.229 0.106 6.977 6.818 11.465 0.318
(0233)**  (0.271)**  (0.378)**  (0.123)  (L777)** (LO51)**  (4.872)**  (0.060)**

- 3.732 16.409
(2.060)* (25.817)

ay 0.130 0.134 0.077 0.044 0.089 0.101 0.061 0.002
(0.022)**  (0.024)**  (0.018)**  (0.012)**  (0.027)**  (0.033)**  (0.024)**  (0.001)

o 0.222 0.134
(0.063)** (0.132)

o 0.075 0.075 0.053 0.029 0.117 0.105 0.094 0.005
(0.015)**  (0.016)**  (0.017)**  (0.009)**  (0.036)**  (0.034)**  (0.050)*  (0.003)

o, 0.160 0.093
(0.072)* (0.172)

B 0.801 0.774 0.834 0.865 0.000 0.026 0.339 0.986
(0.030)**  (0.038)**  (0.036)**  (0.025)**  (0.021) (0.049)  (0.164)**  (0.004)**

Bex 0.778 0.000
(0.065)** (0.084)

B 0.852 0.836 0.833 0.914 0.533 0.578 0.368 0.940
(0.031)**  (0.035)**  (0.045)**  (0.020)**  (0.106)**  (0.108)**  (0.259)  (0.051)**

B 0.731 0.636
(0.096)** (0.515)

0, 0.000 0.187 0.345 0.731 0.728 0.674
(0.004) (0.366) (0.287) (0.030)**  (0.041)**  (0.097)**

0, 0.200 0.076 0.085 0.195 0.167 0.125
(0.048)**  (0.020)**  (0.035)** (0.026)**  (0.036)**  (0.048)**

p 0.859 0.931 0.943 0.695 0.950 1.000
(0.011)**  (0.006)**  (0.012)** (0.058)**  (0.015)**  (0.058)**

7 0.445 0.235 0.507 0.597
(0.043)**  (0.077)** (0.046)**  (0.075)**

7 0.385 0.354
(0.106)** (0.000)**
LL 375501  -3731.19  -3597.75  -3515.73  -4577.20 -4504.44 -4372.24  -4238.79

Note.  Figuresin parentheses are standard errors and LL stands for log-likelihood.
*Significant at the 5% level; ** Significant a the 1% level.
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Tablelll
Out-of-Sample Hedging Effectivenessfor Corn and Oats Data
Hedging period isfrom January 2007 to December 2007

CORN
Variance of Improvement of RSGC Utility Gain of RSGC
Hedged Portfolio Over Other Hedging Expected Over Other Hedging
Return Strategies' Weekly Utility? Strategies’
Unhedged 27.653
OoLS 2.886 2.22% -11.51 2419
CcC 2452 0.65% -9.76 0.668
VC 2.440 0.60% -9.70 0.613
GC 2312 0.14% -9.26 0.169
RSGC 2272 -9.09
OATS
Variance of Improvement of RSGC Utility Gain of RSGC
Hedged Portfolio Over Other Hedging Expected Over Other Hedging
Return Strategies Weekly Utility Strategies

Unhedged 19.766
OoLS 11.229 3.83% -44.92 3.045
CcC 10.725 1.28% -42.92 1.041
VC 11.590 5.65% -46.24 4.360
GC 11.101 3.18% -44.32 2.449
RSGC 10.472 -41.88

Note. 1. Improvement of RSGC over other hedging strategiesis defined as the difference of the
percentage variance reduction of RSGC and the percentage variance reduction of
aternative hedging strategies

2. Expected weekly utility is calculated based on equation (25)
3. Utility gains of RSGC over other hedging strategies are defined as the differences of
the expected utilities of RSGC and the expected utility of alternative dynamic models.

20



TablelV
Out-of-Sample Hedging Effectivenessfor Corn and Oats Data
Hedging period isfrom January 2006 to December 2007

CORN
Variance of Improvement of RSGC Utility Gain of RSGC
Hedged Portfolio Over Other Hedging Expected Over Other Hedging
Return Strategies' Weekly Utility? Strategies’
Unhedged 23.628
OoLS 3.094 1.57% -12.27 1.424
CcC 2774 0.22% -10.97 0.131
VC 2.864 0.60% -11.33 0.486
GC 2.759 0.16% -11.02 0.179
RSGC 2.722 -10.84
OATS
Variance of Improvement of RSGC Utility Gain of RSGC
Hedged Portfolio Over Other Hedging Expected Over Other Hedging
Return Strategies Weekly Utility Strategies

Unhedged 15.409
OoLS 7.645 2.09% -30.52 1.218
CcC 7.439 0.75% -29.71 0.414
vC 8.054 4.74% -32.20 2.899
GC 7.873 3.57% -31.50 2.202
RSGC 7.323 -29.30

Note. 1. Improvement of RSGC over other hedging strategiesis defined as the difference of the
percentage variance reduction of RSGC and the percentage variance reduction of
aternative hedging strategies

2. Expected weekly utility is calculated based on equation (25)
3. Utility gains of RSGC over other hedging strategies are defined as the differences of
the expected utilities of RSGC and the expected utility of alternative dynamic models.
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Figures

Figurel
GC and RSGC Hedge Ratios of Corn
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Time-Varying Volatilities of Spot Return of Corn
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Time-Varying Volatilities of Futures Returns
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Time-Varying Volatilities of Futures Return of Corn
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Time-Varying Volatilities of Spot Return of Oats
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