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Optimal Hedging with a Regime Switching Gumbel-Clayton
Copula GARCH Model

Abstract

The article develops a regime switching Gumbel-Clayton copula GARCH model

(RSGC) for optimal futures hedging. There are three major contributions of RSGC. First,

the dependence of spot and futures return series in RSGC is modeled using switching

copula instead of assuming bivariate normality. Second, RSGC adopts an independent

switching GARCH process to avoid the path dependency problem. Third, based on the

assumption of independent switching in RSGC, a formula is derived for calculating the

minimum variance hedge ratio. RSGC exhibits good out-of-sample hedging effectiveness

based on corn and oats futures data traded in the Chicago Board of Trade.
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I. Introduction

It is widely known that the time-varying variance-minimizing futures hedge is

given by the ratio of the conditional covariance of the futures and spot returns to the

conditional variance of the futures return. A considerable amount of studies have applied

various Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models for

estimating the time-varying minimum variance hedge ratio. Baillie and Myers (1991)

estimate the time-varying minimum variance hedge ratio by using a GARCH model with

diagonal vech specification. Kroner and Sultan (1993) and Park and Switzer (1995)

apply the constant correlation GARCH (CC-GARCH) for estimating the optimal hedge

ratios. Gagnon and Lypny (1995), and Brooks et al. (2002) apply BEKK (Baba-Engle-

Kraft-Kroner) GARCH, and Byström (2003) applies orthogonal GARCH for estimating

the time-varying minimum variance hedge ratios.

Recent studies recognize that the relationship between spot and futures returns may

be characterized by regime shifts (Sarno and Valente, 2000, 2005a, 2005b) and adopt

regime switching models to generate state-dependent dynamic hedging strategies, which

are found to perform better than state-independent strategies (Alizadeh and Nomikos,

2004; Lee et al, 2006; and Lee and Yoder, 2007a, 2007b). Alizadeh and Nomikos (2004)

and Lee et al (2006) estimate the minimum variance hedge ratio by treating it as a time-

varying coefficient. Lee and Yoder (2007a and 2007b) estimate the minimum variance

hedge ratio by estimating the conditional second moments with regime switching

GARCH models.

Although these regime switching GARCH models have captured much of the

observed behavior in the spot and futures return series, they possess some drawbacks.
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First, previous regime switching GARCH hedging methods usually assume a joint

normality between spot and futures return series. This may be misleading in the presence

of non-normality in these returns series. Second, previous regime switching GARCH

hedging models use Gary’s recombining method for solving the dependency problem.

However, the interpretation of the variance process in Gray’s approach is problematical.

Third, in measuring the hedging performance, previous regime switching hedging models

derive the minimum variance hedge ratios by recombining the variances and covariance

in each state. If Gray’s recombining method is problematical, the minimum variance

hedge ratio derived is also problematical.

This article develops a regime switching Gumbel-Clayton copula GARCH model

(RSGC) for dealing these problems. Instead of assuming bivariate normality, RSGC

models the dependence structure of spot and futures return series with switching Gumbel-

Clayton copula. In additions, RSGC adopts an independent switching GARCH process to

avoid the path dependency problem. Finally, a formula is derived for calculating the

minimum variance hedge ratio for the hedging portfolio under independent switching

assumption. The proposed model is applied to the corn and oats futures data traded in the

Chicago Board of Trade. Results show that RSGC provides good out-of-sample hedging

performance.

The remainder of the article is organized as follows. The proposed regime

switching Gumbel-Clayton copula GARCH (RSGC) model is presented next. Section III

derives the formula of the minimum variance hedge ratio for hedging portfolio and

discusses the hedging performance measurements. This is followed by data description

and empirical results. A conclusion ends the article.
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II. Regime Switching Gumbel-Clayton Copula GARCH (RSGC)

The previous regime switching GARCH hedging methods (Lee and Yoder; 2007a

and 2007b) possess some drawbacks. In this section, these drawbacks will be discussed

and we will see how the proposed regime switching Gumbel-Clayton Copula GARCH

(RSGC) deals these problems. RSGC can be specified in the following way. Let tcr , and

tfr , be the returns on the spot and futures, respectively:

tt stcsctc er ,,,,  (1)

tt stfsftf er ,,,,  , (2)

where
tsc, and

tsf , are state-dependent mean returns to spot and futures returns, and

tstce ,, and
tstfe ,, are state-dependent disturbances. The state variable  2,1ts is assumed

to follow a first-order, two-state Markov process and state transition probabilities are

assumed to follow a logistic function such that

   
 0

0
1 exp1

exp
1|1Pr

p
p

Pss tt 
 

, (3)

   
 0

0
1 exp1

exp
2|2Pr

q
q

Qss tt 
 

, (4)

where 0p and 0q are unconstrained constants that can be estimated along with other

unknown parameters via maximum likelihood estimation. In the previous regime

switching GARCH hedging methods (Lee and Yoder; 2007a and 2007b), the conditional

variances at time t given ts for spot and futures returns denoted as
tstch ,, and

tstfh ,, are

assumed to follow a state-dependent GARCH(1,1) process

1,,
2

1,,,,,   tcsctcscscstc heh
tttt

 , (5)
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1,,
2

1,,,,,   tfsftfsfsfstf heh
tttt

 . (6)

When a recursive process is subject to regime switching, the recursive nature of

the process makes the model intractable due to the dependence of the conditional

variances on the entire past history of the data (Cai, 1994; Hamilton and Susmel, 1994;

Gray, 1995, 1996).

To solve this path-dependency problem, previous regime switching GARCH

hedging models use Gray’s (1996) recombining method to recombine the conditional

variances as given by

      22,11,1
2

2,,
2

2,1
2

1,,
2
1,1

2
, 11 itittiittiitti pphphph   , (8)

for  fci , , where tp1 is the probability of being in regime 1 at time t , defined as

 11 |1Pr  ttt sp 
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pf
P , (9)

and P and Q are transition probabilities defined in (3) and (4).

While the model of Gray is attractive in that it combines Markov switching and

GARCH effects and solves the estimation difficulties, its analytical intractability is a

serious drawback (Hass, et. al., 2004). Consider a state-dependent GARCH(1,1) process,

1
2

1   ttt heh  . (10)

If 1 , the variance th can be expressed as

  2

1

111 it
i

i
t eh 





   , (11)

where  reflects the magnitude of a unit shock’s immediate impact on the next period’s

variance, is a parameter of inertia and indicates the memory in the variance, and the
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total impact of a unit shock to future variance is  11  . In the regime switching

GARCH model, the relationship between the pattern with which th responds to shocks

and the parameters , , and is far from obvious if Gray’s recombining method is

used because the lagged variances is replaced with the recombined variances. Moreover,

in Gray’s model it is possible that the variance of one regime will still be affected by

shocks even if  in that regime is zero.

Hass, et. al. (2004) suggests an independent switching GARCH process to solve

these problems. The independent switching GARCH process is specified below:

1,11
2

1,1111,   ttt heh  , (12)

2,12
2

2,1222,   ttt heh  , (13)

where the subscripts 1 and 2 stands for regime 1 and regime 2. This specification

preserves the economic significant of the variance dynamics in each regime and admits

analytical analysis of the variance process.

Following the concept of Hass, et. al., this study also suggests an independent

switching variance dynamics for the RSGC hedging model. The volatility equations of

RSGC are modeled as

 
tt stcstc hNe ,,,, ,0~ , (14)

 
tt stfstf hNe ,,,, ,0~ , (15)

and the conditional variance vector is specified as

1
2

 tttttt hβeαγh , (16)

where
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Another problem of previously proposed regime switching GARCH hedging

methods (Lee and Yoder; 2007a and 2007b) is that they impose a joint-normality

restriction to the disturbance vector
tst ,e as bellows:

 
t

t

t

t stt
stf

stc
tst BN

e
e

,1
,,

,,
1, ,0~|| Ηe  








  , (18)

where 1t refers to the information available at time 1t , BN stands for

bivariate normal, and
tst ,Η is a time-varying, state-dependent, 22 positive definite

conditional covariance matrix.

This restriction ignores the potential important dimension of the dynamic futures

hedging, the non-normal dependence. The proposed regime switching Gumbel-Clayton

(RSGC) copula GARCH model captures the regime shifts as previous regime switching

GARCH methods do and also captures non-normal dependence of spot and futures

returns. Copulas are functions that join or couple multivariate distribution functions to

their one-dimension marginal distribution functions. The most important result in copula
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theory is Sklar’s theorem which says that it is possible to separate the univariate margins

from the dependence structure represented by copula (Rodriguez, 2007)1.

The marginal distributions are assumed to be mixture of normal distributions as

defined in equations (14) and (15) and the dependence structure is modeled with the

following switching Gumbel-Clayton copula

      1,,1,,1 |;,1|;,,|,   t
G
sttt

G
tsct

C
sttt

C
tsctttt tttt

vuCvuCsvuC  , (19)

where  1,0, 
tsc is a state-dependent shifting parameter of the mixture Gumbel-Clayton

copula and C
tC and G

tC are state-dependent versions of Clayton (1978) and Gumbel

(1960) copulas, respectively. The Gumbel-Clayton copula describes situations of

asymmetric tail dependence and the nested Gumbel and Clayton copulas exhibit the

upper tail dependence and the lower tail dependence, respectively. Lower tail dependence

increases as
tsc, goes from zero to one.

The state-dependent Clayton and Gumbel copula are defined as

       C
t

C
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C
t

tttt
C
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C
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21
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1 11|;,
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  , (20)

1 Sklar’s Theorm: (Sklar, 1959):  Let D be an n-dimensional distribution function with margins

nFF 1 . Then there exists an n-copula C such that for all x in nR ,

     nnn xFxFCxxxD ,,,,, 1121   .

If nFF 1 are all continuous, then C is uniquely determined on .FRanFRan n1  Conversely,

if C is an n-copula and nFF 1 are distribution functions, the function D defined above is an n-

dimensional distribution function with margins nFF 1 .

With this theorem he density of D can be expressed as the product of the copula density and the
univariate marginal structure. This is can be seen by deriving both sides of the above equation to get the
density of D
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where     G
t

G
t

tt vu  lnln  ,  1, ,|  tttcct srFu  and  1, ,|  tttfft srFv  are

respectively the state-dependent conditional cumulative distribution functions of the spot

and futures returns at time t , and C
t and G

t are parameters of Gumbel and Clayton

copulas, respectively.

Patton (2006a and 2006b) introduced the concept of conditional copula to capture

the time shifts in the dependence structure. This study also allows C
t and G

t to be time-

varying by defining







1
2 tC

t , and
t

G
t 





1

1
(Nelsen, 1999), where t is the time-

varying scaled invariant dependence measure Kendall’s which is given by

 tt 


 1sin
2 





 (Lindskog et. al., 2001; and Lai et. al., 2007). The dependence process

can be specified as

  1211211   ttt  , (22)

where parameters 1 and 2 are assumed nonnegative and 121  (Tse and Tsui,

2002). The disturbance term t is given by
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where
tc

tc
tc

h

e

,

1,
1,


  and

tf

tf
tf

h

e

,

1,
1,


  are standardized residuals of spot and futures

returns.

The unknown parameters in RSGC are 0pΘ , 0q ,
tsc, ,

tsf , ,
tsc, ,

tsf , ,
tsc, ,

tsf , ,
tsc, ,

tsf , ,
ts, , 1, 2 ,  for  2,1ts , which can be estimated by

maximizing the following log-likelihood function2

   



T

t
ttftc rrqL

1
1,, |,log  , (24)

where

   


 
2

1
1,,1,, |,,|,

i
tttftcttftc isrrqrrq 

       1

2

1
1,1,1 |,|,|,|, 


  tt

i
tttftttctttt ispisrgisrfisvuC  ,

with C the copula density and f and g the marginal densities of spot and futures

returns, respectively.

III. Measuring Hedging Performance

Hedging performance is evaluated from both a risk-minimization and a utility

standpoint. Let t be the estimated optimal hedge ratios derived from various hedging

strategies. The estimated time-varying minimum variance hedge ratio denoted as t is

given by

2 When the copula and marginal parameters change simultaneously according to a Markov
Switching process, the two-step approach cannot be used. All parameters must be estimated simultaneously
(Rodriguez, 2007).
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 
 1,

1,,

|

|,




ttf

ttftc
t rVar

rrCov




 . (25)

If the hedge ratio is subjected to regime shifts, the recombined covariance and

variance are found first and the optimal hedge ratio is then calculated with equation (25).

In the proposed regime switching Gumbel-Clayton GARCH model, recombining process

is not required and the time-varying minimum variance hedger ratio is given by

    
    tfttft

tftcttftct
t

rVarprVarp

rrCovprrCovp

,2,
2

1,1,
2
1

,2,,2,
2

1,1,,1,
2
1

1

,1,




 .3 (26)

The return from the hedged portfolio can be expressed as 1,1,1,   tfttctp rrr  .

From a risk-minimization standpoint, a hedger chooses a hedging strategy to minimize

the variance of the hedged portfolio return or equivalently to maximize the variance

reduction of a hedging strategy compared to the unhedged position. To better understand

the economic significance of portfolio variance reduction, the utility-based criterion is

also used to investigate the hedging effectiveness of RSGC model. Consider a hedger

with a mean-variance expected utility function:

3 This can be easily proved as follows. Let pr be the hedging portfolio return which is given by

   211 11 stateinreturnportfoliopstateinreturnportfolioprp 

   2,2,11,1,1 1 fcfc rrprrp   ,

where icr , and ifr , are the returns spot and futures would have in the state i , respectively. We would like

to choose  such that the variance of the portfolio return is minimized.


      

        
    


























2,2,1,1,11

1,
2

1,1,1,
2

1

1,
2

1,1,1,
2
1

,12

,21

,2

minmin

fcfc

ffcc

ffcc

p

rrrrCovpp

rVarrrCovrVarp

rVarrrCovrVarp

rVar









Deriving the above equation with respect to  and using the assumption of independent switching

gives equation (26).
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      1,1,1, |||   ttpttpttp rVarrErUE  , (25)

where is the degree of risk aversion and E stands for expectation operator. A dynamic

hedging strategy is considered to be superior to a static ordinary least square (OLS)

method if it has higher expected utility net of transaction costs.

IV. Data Description and Empirical Results

Corn and Oats nearby futures contract traded in the Chicago Board of Trade

(CBOT) are investigated in this study. Both spot and futures rates were collected from

Datastream from January 1991 to December 2007. The spot and futures data are

Wednesday’s closing price.  Estimation of all models was conducted using data from

January 1991 to December 2006; the data of the most recent year are used for out-of-

sample analysis. Summary statistics corn and oats data are shown in table I and parameter

estimates from all alternative models are presented in table II. The parameters are

estimated by maximizing the log-likelihood functions using GAUSS.

For Corn data, the s are 0.865 and 0.914 for spot and return series in low

volatility state (state one) and 0.778 and 0.731 for spot and return series in high volatility

state (state two). This shows that volatility in the low volatility state has higher shock

persistence than in the high volatility state. The weighting parameters 1 and 2 equal to

0.235 and 0.385 in low and high volatility states, respectively. This implies that the lower

tail dependence increases in the high volatility state. For oats data, the volatility in the

low volatility state also has higher shock persistence than in the high volatility state but

the lower tail dependence decreases in the high volatility state.
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Table III presents summary statistics regarding the effects of static and dynamic

hedging strategies on out-of-sample hedging effectiveness. This study investigates the

out-of-sample hedging effectiveness of futures hedging. For the hedger, what matters

most is the hedging performance in the future not in the past. The performance of RSGC

is compared with performances of OLS, the ordinary least square, CC, the constant

correlation GARCH (Bollerslev, 1990), VC, the varying correlation GARCH (Tse and

Tsui , 2002), and GC, the state-independent Gumbel-Clayton GARCH. Results show that

RSGC hedging method exhibits good hedging performance for both corn and oats data in

terms of variance reduction. For corn data, RSGC has the lowest variance which is equal

to 2.727. The variance of the hedged portfolio with RSGC hedging is reduced by 2.22%,

0.65%, 0.6%, and 0.14% compared to OLS, CC, VC, and GC hedging. Oats data provide

similar results. RSGC has the lowest variance which is equal to 10.472. The variance of

the hedged portfolio with RSGC hedging is reduced by 3.83%, 1.28%, 5.65%, and 3.18%

compared to OLS, CC, VC, and GC hedging. In general, time-varying hedging methods

improve the hedging effectiveness compared to static OLS hedging expect VC model for

the oats data. Allowing the dependence structure to be non-normal does not always

improve the hedging performance. GC has better performance than CC in corn but worse

performance than CC in oats. Allowing both non-normality and regime shifts in the

RSGC, however, improves the effectiveness for both corn and oats data.

To better understand the economic significance of portfolio variance reduction,

the utility based criterion is also used in comparing the performances of alternative

models. Table III gives the utility gains of RSGC over other hedging strategies.

Following other empirical studies in the literature (Switzer, 1995; Alizadeh and Nomikos,
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2004, and Lee et al, 2006), the hedger is assumed to have an expected utility function

given by equation (25) with a degree of risk aversionequal to 4. As shown in table III,

RSGC has the best hedging performance in terms of utility gain. RSGC provides utility

gain of 2.419, 0.668, 0.613, and 0.169 compared to OLS, CC, VC, and GC hedging for

corn data and provides utility gain of 3.045, 10.41, 4.360, and 2.449 compared to OLS,

CC, VC, and GC hedging for oats data. Thehedger’s net benefit from using RSGC

hedging over OLS hedging is 2.419 (241.9%) in corn and 3.045 (304.5) in oats net of

transaction cost from dynamic rebalancing. Since the typical round trip transaction cost is

around 0.02% to 0.04%, a mean-variance expected utility-maximizing hedger will benefit

from hedging with RSGC even after taking account of these transaction costs.

To show the robustness of the superiority of the proposed RSGC hedging method,

in addition to the most recent year hedging period, the most recent two year hedging

period is also examined and the results are shown in table IV. Again, RSGC provides the

highest variance reduction and utility gain compared to other hedging strategies

investigated in this study.

Figures 1 to 4 show the hedge ratios, state-dependent volatility process, and

regime probabilities for corn data. Figure 1 compares the hedge ratios of GC and RSGC.

All these hedge ratios are time-varying and fluctuate around the static OLS hedge ratio

which is equal to 0.88. Figure 2 shows the RSGC estimates of the state-dependent time-

varying volatilities. The spot return series has an average volatility equals to 4.81 in the

high volatility state and an average volatility equals to 2.50 in the low volatility state.

The futures return series has average volatilities equal to 4.64 and 2.23 in the high and

low volatility states, respectively. The state probabilities of being in the low volatility
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state estimated from RSGC are shown in figure 4. The state probability fluctuates

between 0 and 1.

Analogous graphs for the oats data are shown in figures 5 to 8. Figure 5 compares

the hedge ratios of GC and RSGC and Figure 6 shows the RSGC estimates of the state-

dependent time-varying volatilities. The spot return series has an average volatility equals

to 6.52 in the high volatility state and an average volatility equals to 2.41 in the low

volatility state. The volatility of the volatility is lower in the low volatility state than that

in the high volatility state. The volatility of the volatility for low volatility state is equal to

15.11% and the volatility of the volatility for high volatility state is 38.01%. The futures

return series has average volatilities equal to 7.07 and 2.66 in the high and low volatility

states, respectively. Again, the volatility of the volatility (13.77%) is lower in the low

volatility state than the volatility of the volatility (31.69%) in the high volatility state. The

state probabilities of being in the low volatility state estimated from RSGC are shown in

figure 8.

V. CONCLUSIONS

This article investigates the effects of non-normal dependence structure and

regime shifts on the hedging effectiveness by proposing a regime switching Gumbel-

Clayton copula GARCH model (RSGC). RSGC solves problems of recently developed

regime switching models. It specifies a non-normal dependence structure with a Gumbel-

Clyton copula to avoid the restrictive joint normal assumption and adopts an independent

switching GARCH process to avoid using Gray’s recombining method which is

problematical in interpreting and analyzing the variance process. Besides, the assumption
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of the independent switching allows us to derive a modified formula for calculating the

minimum variance hedge ratio. Empirical results suggest that allowing a hedging strategy

to possess both properties of regime shift and non-normal dependence structure improves

the hedging effectiveness for both corn and oats data traded in the Chicago Board of

Trade in terms of both criterion of variance reduction and utility gain.
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Table I

Summary Statistics for Spot and Futures Returns of Corn and Oats Data

 CORN
 In-Sample  Out-of-Sample
 Spot Futures  Spot Futures
Mean 0.0005 0.0006  0.0040 0.0039
SD 0.0337 0.0327  0.0526 0.0478
Min -0.1483 -0.1531  -0.1465 -0.1371
Max 0.1598 0.1380  0.1265 0.1245
Skewness -0.1021 0.2628  -0.3462 -0.3720
Kurtosis 2.1380 1.5364  0.4410 0.7341

 OATS
 In-Sample  Out-of-Sample
 Spot Futures  Spot Futures
Mean 0.0011 0.0011  0.0023 0.0032
SD 0.0424 0.0446  0.0443 0.0390
Min -0.2287 -0.1489  -0.1146 -0.0797
Max 0.2058 0.1612  0.1475 0.0938
Skewness -0.0908 0.1656  0.4654 0.0853
Kurtosis 3.7877 1.2624  1.7071 -0.4141

Note: Returns are calculated as the differences in the logarithm of price multiplied by 100. The in-
sample data period is from January 1991 to December 2006 and the out-of-sample data period is
from January 2007 to December 2007.
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Table II
Estimates of Unknown Parameters of Alternative Models for Corn and Oats Data

Data period is from January 1991 to December 2006
CORN OATS

CC VC GC RSGC CC VC GC RSGC
0p 0.751 1.219

(0.285)** (0.428)**
0q -1.200 0.046

(0.440)** (0.300)

1c 0.279 -0.020 0.037 -0.215 0.124 0.449 0.451 0.004
(0.100)** (0.039) (0.035) (0.125)* (0.137) (0.004)** (0.010)** (0.025)

2c 0.845 0.056
(0.334) ** (0.186)

1f 0.286 -0.104 -0.104 -0.538 0.151 0.446 0.448 -0.053
(0.102)** (0.000)** (0.000)** (0.123)** (0.110) (0.066)** (0.019)** (0.060)

2f 1.542 0.323
(0.453)** (0.211)

1c 0.837 1.086 1.093 0.106 16.340 16.343 10.607 0.318
(0.194)** (0.252)** (0.310)** (0.143) (0.934)** (1.296)** (2.782)** (0.048)**

2c 2.553 40.251
(1.461)* (5.962)**

1f 0.786 0.950 1.229 0.106 6.977 6.818 11.465 0.318
(0.233)** (0.271)** (0.378)** (0.123) (1.777)** (1.951)** (4.872)** (0.060)**

2f 3.732 16.409
(2.060)* (25.817)

1c 0.130 0.134 0.077 0.044 0.089 0.101 0.061 0.002
(0.022)** (0.024)** (0.018)** (0.012)** (0.027)** (0.033)** (0.024)** (0.001 )

2c 0.222 0.134
(0.063)** (0.132)

1f 0.075 0.075 0.053 0.029 0.117 0.105 0.094 0.005
(0.015)** (0.016)** (0.017)** (0.009)** (0.036)** (0.034)** (0.050)* (0.003)

2f 0.160 0.093
(0.072)* (0.171)

1c 0.801 0.774 0.834 0.865 0.000 0.026 0.339 0.986
(0.030)** (0.038)** (0.036)** (0.025)** (0.021) (0.049) (0.164)** (0.004)**

2c 0.778 0.000
(0.065)** (0.084)

1f 0.852 0.836 0.833 0.914 0.533 0.578 0.368 0.940
(0.031)** (0.035)** (0.045)** (0.020)** (0.106)** (0.108)** (0.259) (0.051)**

2f 0.731 0.636
(0.096)** (0.515)

1 0.000 0.187 0.345 0.731 0.728 0.674
(0.004) (0.366) (0.287) (0.030)** (0.041)** (0.097)**

2 0.200 0.076 0.085 0.195 0.167 0.125
(0.048)** (0.029)** (0.035)** (0.026)** (0.036)** (0.048)**

 0.859 0.931 0.943 0.695 0.950 1.000
(0.011)** (0.006)** (0.012)** (0.058)** (0.015)** (0.058)**

1 0.445 0.235 0.507 0.597
(0.043)** (0.077)** (0.046)** (0.075)**

2 0.385 0.354
   (0.106)**    (0.090)**

LL -3755.01 -3731.19 -3597.75 -3515.73 -4577.20 -4504.44 -4372.24 -4238.79
Note. Figures in parentheses are standard errors and LL stands for log-likelihood.

*Significant at the 5% level; **Significant at the 1% level.
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Table III
Out-of-Sample Hedging Effectiveness for Corn and Oats Data

Hedging period is from January 2007 to December 2007

CORN
Variance of

Hedged Portfolio
Return

Improvement of RSGC
Over Other Hedging

Strategies1
Expected

Weekly Utility2

Utility Gain of RSGC
Over Other Hedging

Strategies3

Unhedged 27.653    
OLS 2.886 2.22% -11.51 2.419
CC 2.452 0.65% -9.76 0.668
VC 2.440 0.60% -9.70 0.613
GC 2.312 0.14% -9.26 0.169
RSGC 2.272  -9.09  

OATS
Variance of

Hedged Portfolio
Return

Improvement of RSGC
Over Other Hedging

Strategies
Expected

Weekly Utility

Utility Gain of RSGC
Over Other Hedging

Strategies
Unhedged 19.766    
OLS 11.229 3.83% -44.92 3.045
CC 10.725 1.28% -42.92 1.041
VC 11.590 5.65% -46.24 4.360
GC 11.101 3.18% -44.32 2.449
RSGC 10.472  -41.88  

Note. 1. Improvement of RSGC over other hedging strategies is defined as the difference of the
percentage variance reduction of RSGC and the percentage variance reduction of
alternative hedging strategies

2. Expected weekly utility is calculated based on equation (25)
3. Utility gains of RSGC over other hedging strategies are defined as the differences of

the expected utilities of RSGC and the expected utility of alternative dynamic models.
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Table IV
Out-of-Sample Hedging Effectiveness for Corn and Oats Data

Hedging period is from January 2006 to December 2007

CORN
Variance of

Hedged Portfolio
Return

Improvement of RSGC
Over Other Hedging

Strategies1
Expected

Weekly Utility2

Utility Gain of RSGC
Over Other Hedging

Strategies3

Unhedged 23.628    
OLS 3.094 1.57% -12.27 1.424
CC 2.774 0.22% -10.97 0.131
VC 2.864 0.60% -11.33 0.486
GC 2.759 0.16% -11.02 0.179
RSGC 2.722  -10.84  

OATS
Variance of

Hedged Portfolio
Return

Improvement of RSGC
Over Other Hedging

Strategies
Expected

Weekly Utility

Utility Gain of RSGC
Over Other Hedging

Strategies
Unhedged 15.409    
OLS 7.645 2.09% -30.52 1.218
CC 7.439 0.75% -29.71 0.414
VC 8.054 4.74% -32.20 2.899
GC 7.873 3.57% -31.50 2.202
RSGC 7.323  -29.30  

Note. 1. Improvement of RSGC over other hedging strategies is defined as the difference of the
percentage variance reduction of RSGC and the percentage variance reduction of
alternative hedging strategies

2. Expected weekly utility is calculated based on equation (25)
3. Utility gains of RSGC over other hedging strategies are defined as the differences of

the expected utilities of RSGC and the expected utility of alternative dynamic models.
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Figure 1
GC and RSGC Hedge Ratios of Corn
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Figure 2
Time-Varying Volatilities of Spot Return of Corn
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Figure 3
Time-Varying Volatilities of Futures Return of Corn
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Figure 4
Probability of Low Volatility State for Corn
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Figure 5
GC and RSGC Hedge Ratios of Oats
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Figure 6
Time-Varying Volatilities of Spot Return of Oats
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Figure 7
Time-Varying Volatilities of Futures Return of Oats
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Probability of Low Volatility State for Oats
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