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Abstract

In an economy in which investors with different time preferences have heterogeneous
beliefs about a dividend’s mean growth rate, the volatility of the stock that claims
the dividend is stochastic in equilibrium. The prices of the vanilla European options
that are written on this stock admit closed-form solutions, hence their hedging deltas.
The Black-Scholes implied volatility surface exhibits the observed patterns that are
widely documented in various options markets and depends on the wealth distribu-
tion, investors’ beliefs, and subjective discount rates. In addition, the prices of barrier
options and hedging deltas can be approximated at any desired level of accuracy. In
some cases, barrier and one-touch option prices and their hedging deltas can be closely
bounded by closed-form formulae. In summary, the options pricing model that is de-
veloped in this paper not only offers a rationale for the observed implied volatility
patterns in an equilibrium setting but also is easy to use in practice.
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1 Introduction

It is well documented that the celebrated Black and Scholes (1973) model does not fit real-
world option prices, and in fact produces systematic biases. In general, the volatilities that
back out from the Black-Scholes formulae are downward sloping against the moneyness
and expirations. These biases are well known as implied volatility smiles or smirks. Since
the discovery of the volatility smile, researchers and practitioners alike have been trying to
build realistic option pricing models. One of the key reasons that the Black-Scholes model
fails is that stock (or index) volatility is stochastic.

Unlike the main approach in the literature that either directly models the dynamics
of volatility or makes volatility depend on price, this paper models an equilibrium stock
price that exhibits stochastic volatility. Although there is only one source of uncertainty,
the heterogeneities of investors make the volatility vary over time in a stochastic fashion.
Because of the single source of risk, options that are written on the stock are redundant, and
can be hedged by the underlying stock. The vanilla European options written on this stock
are priced by simple formulae that match some of the key features of the implied volatility
that is observed in options markets. Furthermore, the prices of certain exotic options, such
as barrier options, can be approximated by simple integrals that can be solved numerically
at any desired level of accuracy. This ability of the model seems to be unique in the current
literature, in which even evaluations of vanilla European options are quite involved. In
summary, the option pricing model that is developed in this paper not only explains the
main features of the implied volatility, but is also simple to implement as in the spirit of the
Black-Scholes model. The key assumption of the model is that investors are heterogeneous
in their preferences and beliefs

The base model is a simple version of the general equilibrium asset pricing model with
heterogeneous beliefs that is developed in Li (2007). In this economy, investors with a
logarithmic utility* have different time preferences (discount rate) and heterogeneous be-
liefs about the only economic fundamental, which is a dividend or an endowment stream.
Unlike the homogeneous or single representative agent setup of Lucas (1978), the trading
of stock is motivated not only by risk sharing among investors, but also by speculation.
Different trading strategies redistribute wealth among investors over time, and this redis-
tribution effect adds another layer of variation to that which is caused by the variation of
the fundamental, that is, the dividend with a constant volatility. The equilibrium price does
not follow a Markovian process in terms of the price itself; detailed wealth distribution is
needed to completely describe the equilibrium. The equilibrium stock volatility is stochas-
tic, even though the volatility of the dividend is constant. As a result, the implied volatility
surface is also changing over time due to the change in wealth distribution.

1This makes the model very tractable. See Li (2000) for the case of general power utility.



In a similar effort, Buraschi and Jiltsov (2006) employ a model, which is similar to
Detemple and Murthy (1994)to investigate option pricing with heterogeneous beliefs.
Without any derivatives the original markets are incomplete, hence one of the options is
not redundant. While, in their model, heterogeneous beliefs affect stock volatility through
agents’ learning and hedging, in this model, such volatility effects are directly caused by
agents’ different time preferences. Thus, without resorting to the learning effects, the model
yields simpler option pricing formulae for both vanilla and some exotic options and yet it
is capable of generating various kinds of implied volatility surfaces that are observed in
different options markets. In contrast to the case of options on stock indices in which nega-
tive smirks are more pronounced, the implied volatility for individual stocks and currencies
exhibits positive, negative, and symmetric smiles. Therefore, the model has potential to be
applied in different options markets.

There are several other studies that also try to explain implied volatility in equilibrium
settings in which investors face uncertainty about the structure of economic fundamentals.
However, in most of these models, prices can be only solved numerically, even for vanilla
options. David and Veronesi (2002) propose an equilibrium, continuous-time model in
which a dividend stream has two possible growth rates and investors have to make an in-
ference about the current rate that the dividend follows. They show that the options that
are written on the stock can generate an implied volatility smile. A similar idea is also in-
vestigated by Guidolin and Timmermann (2003) in a binomial tree setting. In Yan (2000),
investors also continuously update the estimate of the mean dividend growth rate, which
follows a mean reverting process. Liu, Pan, and Wang (2005) study an equilibrium model
in which jumps in asset price are due to jumps in the underlying dividend, and hence im-
plied volatility smiles due to the jumps in stock price. Garcia, Luger, and Renault (2003)
directly assume some structures for the processes of pricing kernel (aggregate consump-
tion) and dividend, the parameters of which follow a two-state Markov chain. Benzoni,
Collin-Dufresne, and Goldstein (2005) also take a similar approach but they assume re-
cursive preferences and that the expected growth rates of both aggregate consumption and
dividend follow a jump-diffusion process.

There are many studies that aim to generalize the Black-Scholes model without an
equilibrium setting. In the spirit of Black and Scholes (1973), such approaches are adopted
to derive flexible pricing formulae in applications. Relaxing the constant volatility of a
stock to a stochastic process seems to be an obvious step forward. Models that adopt this

2Zapatero (1998) and Basak (2000) further explore other implications of financial innovations and extra-
neous risk on asset pricing with heterogeneous beliefs in a similar setup, respectively.

3Although the model in this paper assumes frictionless and complete markets, the demand of options can
easily motivated by short-sale constraints or stringent margin requirements on trading stocks. See, e.g., Li
(2000).



approach are known as stochastic volatility models, and include those of Hull and White
(1987), Heston (1993), and others. Another way to make stock volatility vary over time
is to assume that volatility is a deterministic function of stock price, as Derman and Kani
(1994), Dupire (1994) and Rubinstein (1994) have done. Such models are also called
local volatility models. One more approach is to add a jump component to the stock price
dynamics as in the works of Merton (1976) and Bates (1991). There are also models that
mix stochastic volatility and jumps together. Although these models enjoy some successes
in terms of explaining the observed implied volatility surface, empirical studies, such as
those of Bakshi, Cao, and Chen (1997), Das and Sundaram (1999), and Jones (2003),
among others, show that such success is limited. In addition, these models also suffer
some hedging problems in practice. For local volatility models, options can be hedged by
the underlying stock only, but these models suffer from consistency problems and perform
poorly empirically, as is shown by Dumas, Fleming, and Whaley (1998). Obviously, these
models more or less aim to ascertain how to model stock dynamics such that the prices of
the options that are written on the stock can explain the real-world option prices with little
details on the economics.

From an economic viewpoint, equilibrium stock prices have stochastic volatility or
jump components due to their fundamentals, that is, their dividends or eafritmysever,
it is difficult to identify or verify the dynamics that the underlying fundamentals follow,
because we do not have the necessary data to carry out the empirical analysis. Usually,
information on economic fundamentals is difficult to quantify and subject to different in-
terpretations. An alternative is to assume that economic fundamentals follow a simple
structure but that investors do not have perfect knowledge of the structure. Therefore, un-
certainty about the structure of the fundamentals, through investors’ learnings, may induce
the stochastic volatility of stocks. This is the common approach that is adopted in several of
the recent studies that have been mentioned. Such studies do provide additional economic
insight, but, the pricing formulae in these models are quite complicated and inflexible, and
hence are quite limited in practice. In contrast to the existing models, the options prices in
the model that is proposed in this paper are not only derived from an equilibrium setting,
but also easy to use in practice. In fact the resulting option price formulae are simpler and
easier to use in practice than those in most of the reduced-form models.

4Indeed, this is the approach that is taken by Liu, Pan, and Wang (2005), but their main purpose is to show
that event risk (jumps in dividend) may cause high equity premium when investors have ambiguity aversion.
Presumably, we can also take the volatility of a stock’s dividend to be stochastic. Given the fact that dividend
or aggregate consumption is quite smooth, however, this approach may only produce what the reduced-form
models have achieved, and hence offers little additional economic insight into options pricing.

SKnight (1964) classifies outcomes that are related to such information as risk with uncertainty, and con-
trasts it to the outcome of a poker game, which comprises risk without uncertainty. The main formalization
of Knight's idea about risk with uncertainty is known as Knightian uncertainty in the literature.



The rest of the paper is organized as follows. An equilibrium asset pricing model is
developed in the next section. Vanilla European options prices and the related hedging
deltas are derived in Section 3. The Black-Scholes implied volatility surface is also studied
in this section. Section 4 shows how the price of a barrier option can be approximated by
an integral, and a simulation method to compute this integral is proposed. It is also shown
that both barrier and one-touch options can be approximated by closed-form formulae in
some cases. Section 5 contains the conclusion and discussions on possible extensions of the
model. Appendix A provides all of the proofs that are omitted in the main text. Appendix
B provides a lemma, which is used in pricing barrier options, for the boundary crossing
probability of Brownian motion and some additional results on barrier and one-touch op-
tions.

2 A Model of Equilibrium Asset Prices

2.1 Setup

We consider a pure-exchange, continuous-time competitive economy over an infinite time
horizon. Our model is similar to the Lucas (1978) model, except that here investors have
different beliefs or models about the structure of a dividend process.

There is one risky security in the economy, which yields a nonnegative dividend process
. Investors believes that the dividend procé&s admits the following decomposition
form®

d(t) = 0o + /Ot ws(s)o(s)ds + /Ot o50(s)dZ(s), (1)

whereZ(s) is a one-dimensional Brownian motion anglis a constant. We assume that
both 15(¢), the mean growth rate, and areunobservable Although investors agree on

the form of the decomposition of the dividend process, they have different beliefs about
the model that the procegs follows due to the unobservability @f;(s) and Z(s). Thus
investors forecast the future mean growth rates differently. In geneyralould follow a

wide class of processésHowever, as the focus of this paper is on pricing derivatives in

an economy with heterogeneous beliefs, the most convenient assumption about beliefs is

5The number of possible decompositions is infinite even whgeis a constant iZ(s) is not observable.
This is an implication of the Girsanov theorem.

’Some of the possible setups are discussed in Li (2000) or Li (2007). Traditionally, heterogeneous beliefs
are modeled as investors share the same underlying model or structure that governs some fundamentals but
have different beliefs on the initial values or priors. Li (2007) extends the traditional view to include hetero-
geneous beliefs about the structure or underlying models. Hence investors might never agree with each other
or their posterior beliefs might not converge as the traditional view predicts. Of course, another way to get
this non-convergence is to introduce random periodic structure shocks.



the extreme case, in which investors believe the growth rate to be a constant and know it
perfectly. As we will see later, this assumption enables closed-form solutions for vanilla
European option prices and closed-form approximations for barrier ogtiSpecifically,

we assume that there are three investors, or three kinds of investors, that are indéxed by
n, andp. Each believes that; = p, whereyy, is a constant fok € {i, n, p}. Therefore,

the dividend process (1) under invesids belief effectively becomes

5(t) = 6o + /0 " d(s) ds + /O ' 30(s) dZ4(s). 2)

whereZ, is a Brownian motion under investais beliefs, it is also called innovation pro-
cess. An application of &tLemma shows

Zut) = - [m 5(t) — In 6(0) — (Mk - ;(;g) t} . @3)

s

Hence, observing the dividend is equivalent to observipgiven beliefu.,. The price of
the risky security satisfies theédlprocess

s+ [ " 5(s) ds = S(0) + / " 5(5)S(s) ds + / 0S(5)S(s)dZu(s)  (4)

from investork’s perspective.
There also is a risk-free asset (money market account), the price of which is

B(t) = exp (/Otr(s) ds> ,

wherer(s) is the instantaneous interest rate, which will be determined in equilibrium.
As has been mentioned, there are three classes of investors in the economy, and each
investor has the utility function

Uk(t,c) = Ey [/tT e P 1n(c(s))ds

fﬁ(t)] ,

whereF° denotes the information structure that is generated by the dividend prdgess,
is the expectation operator according to investsibelief, andp;, is investork’s subjective
discount rate. We assume that< p, < p, < p;, which means that investgris the
most patient and investarthe most impatient in the economy. Investos patience lies
somewhere in between. Furthermore, invegtas endowed withu, shares of the risky
security, where the total number of shares is normalized to gttt isw; +w,, +w, = 1.

8Most derivatives are short-term securities, thus ignoring the updating or learning effects of investors on
the equilibrium might not have a major impact on the pricing of derivatives, though several studies mentioned
in the introduction do show learning is important in pricing options.
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2.2 Stock Price Dynamics and State Price Densities

The uncertainty about the drift of the dividend process and the heterogeneity of beliefs
among investors lead to different stock price dynamics or forecasts. Namely, for investor
k, we have

S() + [ 5(s)ds = S0 + [ wi(9)S()ds+ [ o3()(s) dZi(s)

As the stock is a traded asset, in equilibrium fo£ {i, p}, we must have
t
/0 13 (s)S dS—I—/ 02 (5)S(s) dZy(s)

— /Otui(sSs ds+/0’ (s)S(s)dZ,(s)
_/Otug(s) )ds + — / — in(s d8+/ s) dZ(s)

for all t, where the last equation is obtained by using equation (3). This implies, by the fact
that two identical stochastic processes must have the same finite variation and martingale
parts, that
7 (s) = 0y (s) = 0°(s)
and
pp(8) = pn(s) _ e — fn 5)
a9(s) I
for all s. Based on this observation, the stock price from now on satisfies the stochastic
differential equation

/ s)ds = / 15 (5)S(s) ds + / s) dZu(s), (6)

whereps (s) for k € {i, n, p} satisfies equation (5).

Heterogeneous beliefs also lead to different state price densities for each investor. Let

ety — PEE) — (9

o°(s)
denote investok’s price of risk. Investok’s state price density is then
B t 1t t
£4(t) = exp [— /0 r(s)ds — 5 /0 62(s) ds — /0 Oi(s) de(s)} . )
By equation (5), we have
Ou(s) — O(s) = H2 = 3, 8)
s

for k € {p, i}, whereg, is the normalized difference of beliefs between investoasidn.
This relation regarding investors’ personal prices of risk must be satisfied in equilibrium.

6



2.3 Optimality and Equilibrium

Equipped with the results in the last section, we now turn to investigate how the investors
choose their consumption plans and portfolios to maximize their expected utilities.

A feasibleconsumption and trading strategy of investas a collection of(cy, ) =
{cx(t), me(t) }5° such that the following are satisfied.

1. c(t) is nonnegative angF’ (t)-adapted and satisfigg cy(t) dt < oo VT > 0.

2. m(t), which is the portion of investok’s wealth W, (¢) invested in the stock, is
JF(t)-adapted and satisfigqd” > 0,

[ Wt (e) + 50— W) e+ [ (W) (1) e < oo

3. ek (t) andmy(t) satisfy the following intertemporal budget constraint

Welt) = We(0) + [ Wils)r(s) + m(s)lnf(s) — r(s)] - en(s)} ds
+ /0 Wi(s)me(5)05 (5) dZa(s),

wherelV,(0) = w,.S(0) is the initial wealth.

The standard portfolio choice theory, thre martingale approacliCox and Huang,
1989), applies to each investor’s optimization problem in our model, which transforms a
dynamic problem into a static problem. Equivalently, invedtseeks to maximize

E, [ /O e In(ee (1)) dt]

subject to
E, [ / () en(t) dt} < Wi(0).

The following results are straightforward.

Lemma 1 The optimal trading strategy for investéris

mi(t) = BT
and the optimal consumption plan is

ci(t) = peWi(0)& (t)e™ . (9)
Furthermore, investok’s wealth at time is given by

Wi(t) = e & (t) Wi (0).

7



Due to the assumption that all investors have a logarithmic utility function, the individ-
ual investor’s optimization problem has a very simple solution. In particular, the feature that
the optimal consumption is deterministically proportional to an investor’'s wealth enables
us to compute the equilibrium explicitly.

An equilibriumis a pair of interest rate and stock price proce$ses) = {r(t), S(t)}°
such that giverir, S), all of the investors maximize their expected utilities based on their
own beliefs and information sets, and all of the markets—the perishable consumption good
and the securities markets—are cleared. These market clearing conditions lead to the fol-
lowing.

Define

Wi(t)  wr &' —(pr—pn)t

= — k=P 10
Wal®) w60 -
to be the ratio of wealth between investérs {p, i} andn. Note that by (9), we have

k(1)

®)

k(1)
n(t)
where)\, = z—’: is the ratio of propensity to consume between investors{i, p} andn.

Given the'optimal policies, the market clearing condition for the perishable consump-
tion good is

0

W)+t +ot)= D pWe0)& (e =d(t). (12)

ke{in,p}

This implies that the state price for investor

60(0) = [L+ Xan(8) + My (1) 225 Ve 13)

and that for investok € {i, p}

_ L+ Xim(t) + Apmp(t)  peWi(0) o Pit

t 14
&l N 310 4
Proposition 1 In equilibrium, the individual prices of risk of investors are
)\ini(t)ﬁi + )‘pnp(t)ﬁp
Qn t) = - ’
)= 0 = T xm® + A )
Bi + Aomp(Bi — By)
92' t) = y
() =05+ L+ Aimi(t) + Apmp(t)
0,(t) = 05+ By + Nini(Bp — Bs)

L4+ Ximi(t) + Apmp(t)’

8



respectively, wherg,, is the normalized difference of beliefs between invest@sdn as
defined by equation (8). The equilibrium interest rate is

T(t) _ Pn + )‘mi(t)pi + )‘pnp(t)pp fon )\mi(t),ui + )‘pnp(t),up o2
L+ Ami(t) + /\pnp(t) L+ Ximi(t) + Apnp(ﬂ o

Moreover, the price of the stocKis

1 L) + ()
S(t) = on T A () + A (D)

5(t). (15)

The equilibrium interest rate is a consumption weighted average of the subjective dis-
count rate of investors plus their estimate of the instantaneous growth rate of the dividend
minus the instantaneous variance of the dividend process. When investors share homoge-
neous beliefs or the same subjective discount rate, the stock price is independent of the
wealth ratiosy,. Recall that in our pure exchange economy, all securities markets are au-
tomatically cleared when the consumption good market is cleared. This implies that the
stock price is determined by the consumption behavior of investors. When investors with
logarithmic preferences share the same subjective discount rate, the ratio of consumption
to wealth is the same across all investors. Therefore, due to the fact that aggregate con-
sumption is exogenously given to equal the current dividend, the redistributing wealth has
no effect on the stock price.

One of the important observations from equation (15) is that the stock price itself does
not follow a Markovian process. Therefore, observation on price only is not enough to
describe the dynamics of stock price; one has to know the distribution of wealth among
investors. Because investors with heterogeneous beliefs employ different trading strategies,
wealth distribution varies stochastically over time, so as does stock volatility. This has
many implications for the behaviors of the stock price, but, the focus of this paper is the
implications for pricing options.

3 Vanilla Options and Implied Volatility

Bonds and options are redundant assets in this ecoHbtinys we can use the state prices
that are derived in the previous section to price derivatives. The assumption that investors
have constant beliefs enables the prices of many derivatives to have closed-form solutions.

9Although we assume investors have different fixed beliefs, the expression of stock price does not depend
on any particular learning models due to the logarithmic preferences. See Li (2007) for more details.

Introducing options might have impacts on the equilibrium of the economy if there are margins require-
ments to trade securities. Li (2005) studies the effects of margins on the stock volatility in a similar setup.



The definition of the wealth ratio (10), the relations among prices of risk (8), and the
innovation processes (3) imply that

) = me(t)exp [~ (b= pu+552) (T =0+ 5 (Zu(T) = Zue)] . @26)
We also know that
(1) = 8(0)exp [ (1 — 502) (T = 1) + 03(2,(T) = Z,(1)]. 17)
These two identities imply the following resullt.

Lemma 2 Suppose thap; < 0 and 3, > 0. Then,S(T") > K if and only if Z,,(T') —
Z,(t) > y, wherey is the solution to

L+ Aimi(t) + Apmp(?)
L+ mi(t) + mp(t)
L+ fi(r)ni(8)e™™ + f(T)ny(t)e’s? egéy_ﬁ
L+ X fi(T)ni(8)ePy + Ay fo () (8)ePr¥ S(t)’

g(7)

(18)

where

i =esp | (oo o+ L58) ]

o) = (1~ Lot) .

Given the state prices, we can price any securities with payg@ff using

for k € {i, p}, and

wherer =T — t.

E, { /  6(5)G(s) ds }"5(t)] ,

b
&i(t) t
for k € {n,i,p}. We will use&,(t) to price the options! In the case of a European call
option, we have

1

&n — KT F(t)],

ool Ey [&(T)[S(T) = K]*| P (t)]
whereK is the strike price and’ is the expiration time. Using the state price (13) and the
stock price (15), we can rewrite the call option price as

O(t) =

C(t) S(t)e 1) . [1 + Xini(T) + Apnp(T)

L Aai(t) + Aprp () o(T)

LAl investors have the same risk-neutral probability.

10



(1 1+ () + 1, (T)
Pn L+ Aini(T) + A (T)

§(t)ePn(T=1)
L+ Ximi(t) + Apmp(t)
<1 +0i(T) +np(T) 14 Xini(T) + App(T) K>+
Pn o(T)

A direct calculation yields the European call option price.

5(T) — K>+

F 5@)]

x F,

Proposition 2 Suppose that; < 0andj3, > 0. Letr =T — t. Define

=2 gh—__L
1 \/F’ 1 \/F + \/Fﬁka
anddy = d} — \/7os,d5 = d¥ — /705 for k € {i, p}, wherey is the solution to (18).
The price of a European call option with strike priéé and expiration timel” > t is
then

C(t’ S(t)a ni(t)’ np(t); T, K)
e PN (dy) + mi(t)e” "N (dh) + mp(t)e” "N (df)
L mi(t) + 7, (2)
e~ "N (dg) + Ami(t)e”" TN (dy) + Ay (t)e ™" N (d5)
L4+ Xni(t) + Apmp(t) ’
where N(-) is the cumulative distribution function of a normal random variable with a
mean of 0 and a variance of 1 and

= S(t)

- K

Tk = pi+ ik — 0

for k € {p, n, i} is the interest rate of an economy in which only invegtprevails.
In addition, the bond price is given by
e T+ A mi(t)e T 4+ A, (t)e T
L4+ Ani(t) + Apmp ()

B(t,mi(t),ny(t); T) =

The prices for the put options can be easily derived. Using the facttt¥at— P(7") =
S(T) — K and the state price, we have

1
—F,
&n(t)

which implies that

1

[T — PWOF 0] = ¢ B

[&(T)[S(T) - K]| (1)

e L (1)t + my(t)e

CO) =P = 1w+

S(t) = B(t, mi(t), np(t); T) K.

11



Rearranging the terms of the equation yields the put option price

P(t,S(t),ni(t),mp(t); T, K)
e TN (=db) + \ini(t)e " TN (—db) + A\pnp(t) e *T N (—db)
L4+ Xmi(t) + Apmp(t)
e P TN (=dt) + ni(t)e "N (=dy) + np(t)e " N(—dy)
1+ n:(t) + n,(t)

= K

—S(t)

3.1 Hedging Deltas

As has been mentioned, the dynamics of the stock does not follow a Markovian process
in terms of stock price itself, and is obvious that the options that are written on the stock
do not follow a simple monotone relationship with the underlying stock. This result is
consistent with the empirical findings of Bakshi, Cao, and Chen (2000) in the US options
markets.

Nonetheless, the options written on the stock can be hedged by using the stock only,
because the wealth ratios are locally perfectly correlated with the stock. Hence, the hedging
delta has two parts: one for the movements of the stock caused by the changes in dividend
and one for the stock price changes caused by the variations of the wealth ratios.

Corollary 1 The delta of the European call option that is specified in Proposition 2 is

At S(t),mi(t),mp(t); T, K) = EC(; (f)(;?g(z ?(t?p;?(t)T) & ’

where
Se(t, S@),ni(t),ny(t); T, K)
sy TN+ mi(t)e BN (dh) 4 mp(E)e "6 (N ()
L+ mi(t) + np(t)
K -7 % —rnT n
T Nm(t) + A (1)) [/\mi(t)ﬁi (6 N(dy) —e N(dz))
+ At (1) By (6_TPTN(d§) — e"””N(dS))

+ A (DA (0) (8, = 8:) (e N(dB) — e "N (d) )|

and

Us(tv ni(t)a np(t))

(1= 2)mi(8)B; + (1 — Ap)np(£) B + (N — Ap)mi () (8)(Bp — Bi)
[1+mi(t) + np(O][1 + A (t) + Apnp ()]

is the stock volatility, wheré,, is the state price of risk for investdras defined in Propo-

sition 1.

=05 + (20)
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Figure 1: TheAs for a European call option against wealth ratios. The dotted planes are
(a) the zero level; and (b) th&ss of Black-Scholes using the implied volatility. The strike
price and time to expiration are (&) = 0.85 andr = 0.1; and (b)K = 1.1S andt = 1.
The parameters are as follows: beligfs = 1%, p;, = —50%, i, = 30%; discount rates
pn = 3%, pi = 10%, p, = 1%; volatility of dividendos = 7.5%.

13



Although options can be hedged by the underlying stock, the deltas for call options
can be negative or greater thandepending on the level of the wealth ratios. Figure
1(a) is a numerical example that illustrates this point. The key difference to the Black-
Scholes model is the randomness of the wealth ratios. Although the wealth ratios are
locally perfectly correlated with the stock return, neither the stock nor the options that are
written on it can be a Markov system of the stock price itself. Thus the wealth ratios are
needed to describe the dynamics of the stock and options.

It is not surprising that the hedging deltas as calculated by the Black-Scholes formula
using the implied volatility are different from those that are given in Corollary 1, as shown
in Figure 1(b). The poor approximation of the hedging deltas indicates that the Black-
Scholes implied volatility cannot account for the full dynamics of the underlying stock in
the Black-Scholes model. In general, matching price levels does not automatically entail
the matching of the derivatives of the different pricing formulae.

3.2 Implied Volatility Surface

We now turn to investigate the properties of the implied volatility surface in this model. Let
p be the current dividend yield, which is defined by

0(t) _ 14 Ximi(t) + Apnmp(t) _ pn + ni(E)pi + 1p(t) pp
= Pn = y

S(t) L+ ni(t) + np(t) L+ mi(t) + np(t)

where we obtain the last equality by the definition\ofGiven the current interest rate in

Proposition 1 and the volatility, the call option under the Black-Scholes model is priced
as

p(t) = (21)

Cps(t,S(t);T,K;0) =e POS(t)N(dy) — e "W K N(dy),

where
log (%) + (r(t) —p(t) + %02) T
= o\/T ’

The implied volatility for vanilla call optionsg, (; 7, K ), is the solution t&

dzzdl—a\/;.

Cps(t, S(t); T, K; om(t; 7, K)) = C(£,5(8), mi(t), mp(£); T, ). (22)

The implied volatility for put options can be defined in a similar fashion.

2In practice or empirical studies, implied volatility is sometimes calculated using the slightly different
formula
Cps(t,S(t); T, K;0) = e POTS()N(dy) — B(t, T)K N (dz),

whereB(t,T) is the price of the bond mature &t Of course, this is not a strict interpretation of the Black-
Scholes formula when the interest rate is stochastic.
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Figure 2: Implied volatility surface against moneyness and expiration. The parameters
are as follows: beliefg,, = 1%, p;, = —50%, p, = 30%; discount ratep, = 3%,
pi = 10%, p, = 1%; volatility of dividendos = 5%; initial wealth ratios (a);; = 0.008,
np = 0.000002; (b) n; = 0.002, 7, = 0.008.
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Figure 3: Implied volatility surface against moneyness and expiration. The parameters are
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Figure 2 is a plot of the implied volatility surface,, (¢; 7, K'), for call options. It shows
that the model that is presented here can generate some of the key features that are well
documented in the empirical literature on real-world options markets. When the patient
investor, who is also optimistic, holds a relatively small portion of wealth, the implied
volatility smile is pronouncedly downward sloping and becomes a smirk. When the patient
investor holds a relatively large portion of wealth, the implied volatility smile becomes
more symmetric. Figure 3 shows a similar plot, but with a low relative wealth holding
by the impatient (or pessimistic) investor. In this case, we have a flat volatility smile near
the money, and a strong positively skewed volatility smile when the patient (or optimistic)
investor has a higher relative wealth. These plots indicate that the shape of the volatility
surface is determined by the relative distribution of wealth among investors.

These properties of the volatility smile seem to fit some casual empirical observations
well. In the stock market, the fear of a crash seems to be a dominant factor, and thus
the pessimistic (impatient) investor dominates the optimistic investor. This means that the
negative skewness of the volatility smile occurs more often. However, in a currency market,
both optimistic and pessimistic investors are present, and thus the U- or V-shaped volatility
smile dominates.

The term structures of the implied volatility in Figures 2 and 3 are downward sloping
in general. However, as shown in Figure 4, the term structures that are generated by the
model can also be upward sloping or hump shaped. In this case, the time preferences of
investors are quite close or the same, and the slope of the term structures can be quite high
when the wealth ratios of the pessimistic and optimistic are relatively high.

In summary, the shape of the implied volatility surface depends on the time preferences,
beliefs, and relative wealth of investors. The numerical examples show that the model can
generate quite a variety of implied volatility surfaces that are consistent with empirical
observations, such as those shown by Das and Sundaram (1999) and Derman (1999).

Another interesting observation from these plots is that the beliefs of both the pes-
simistic and optimistic investors are quite extrethbut the wealth ratios are quite small.

This means that it is not necessary for the extremely pessimistic and optimistic investors to
hold significant portions of the aggregate wealth to replicate the observed patterns of the
implied volatility surface. Indeed, the wealth of the extreme investors is very small in the
numerical example. This makes the model more plausible.

The instantaneous stock volatility; that is given by equation (20) varies with wealth
ratios but lacks of any dramatic characteristics, and almost represents a plane when both
wealth ratios are in the range @f, 0.1). Options significantly “amplify” the future varia-

BIn Garcia, Luger, and Renault (2003) (page 69), the estimated mean growth for the “crash” state is
extremely negative (-32%) with a relatively high probability (11%) in the empirical estimation of their model
using S&P 500 option price data.
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tions of stock volatility through changes in the wealth ratibs.

In a comparative static sense, the implied volatility surface is dependent on the dif-
ference in beliefs and time preferences of investors. Dynamically, the wealth ratios are
stochastic processes, and change over time, and so does the implied volatility surface.
Hence, any shocks to the fundamental will result in changes to the implied volatility sur-
face.

4 Barrier Options

It is usually difficult to obtain a closed-form solution to barrier options except with the
Black-Scholes model. This is also true for the model in this paper, but as shown in the
following, our model yields tight closed-form bounds for barrier options under certain con-
ditions, and in general, the pricing bounds can be made to converge to the price using
simple numerical methods. The reason for the ease of pricing barrier options in this model
is the occurrence of deterministic barriers of Brownian motion, which are equivalent to
constant stock barriers.

Let b(s) be the solution to equation (18) fa@r = ¢t + s and K = S,, whereS, is the
barrier that is based on the stock price. Théf) is the equivalent barrier that is based on
the innovation process,, (t + s) — Z,(t) according to investot’s belief. The slope of(s)
has constant upper and lower bounds that are shown by the following lemma.

Lemma 3 For a constant barrier that is based on the stock price, the equivalent barrier
that is based on the innovation processgs b(s), is a deterministic function of time and
satisfies

max{h,l;,l,} > =

Ob(s) _ ash + %i(s,b(s))li + ¥p(s, b(s))lp min{h, l;,1,}
b [l )Yy VP Sy

0s o5+ 2i(s,0(s)) + 2,(s,0b(s))
where
Bi (1= X + (A = M) fo()mp () fi(is)ms ()P0
7ile,bls)) = <1+zke{Zp}Akfk<> PN (1 S oy fe(S) e ()PH)
= (o.b0s)) — (1= A+ i = M) Fil)m(D)e ) fo(s)m ()Pt
P (1+ Sheop) Mfe(s)me(E) PPN (T + Sieipy fuls)m(t)eP )’
d
" Y el L A el b s
o5 " Br ’

for k € {i, p}, whereb(s) is the solution to (18) by setting = ¢ + s and K = S,.

14Future volatility does not feed back to the current volatility due to the assumption of logarithmic prefer-
ences. For general preferences, we should expect some feedback effects through investors hedging demands.
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The fact thab(s) is a deterministic function of time makes the pricing of barrier options
much easier. Several numerical techniques are available to approximate the prices of barrier
options, such as the hazard rate approximation that is proposed by Roberts and Shortland
(1997) and the piece-wise linear approximations of Wang and Potzelberger {298/&).
use the latter method to approximate the prices of barrier options in this paper.

Let0 = sy < 51 <,... < s,, = T —t and bothb® (s) and®! (s) be linear functions
on each of the intervalg;_1, s;] such that!, (s) < b(s) < b (s) forall s € [0,7 — ¢].

The pricing bounds are accessed by piece-wise linear bounds that either have closed-form
solutions or can be easily calculated by numerical methods. Consider a special case of
“barriers” that depend directly on the Brownian motigp. For example, the payoff of

the European “barrier” call option i§5(7)) — K)* or 0, depending on whethef (s) =

Zn(t+ s) — Z,(t) hits a piece-wise linear barriéy, (s). The pricing equation (19) implies

that the price for an up-and-out call option is given by

d(t)e rnT
L+ Aimi(t) + ApTlp

% <1 + 10:(T) + np(T) 1+ Aini(T) + Aptip(T) K>+
Pn o(T)

C7(t, S(8),mi(t), np(); T, K bm) =

En 1 S 8),8ST
) l {Z(s)<bm(s),s<7}

F 5(t)] : (23)

wherer = T — ¢. As shown by Lemma B.1, the probability density function{&f(s) =
Zn(t + ) — Z,(t) < bn(s),s <71 =T — t} depends only on the joint distribution of the
Brownian motionZ atm turning points(sy, ..., s,,). This observation yields the following
proposition.

Proposition 3 Given a piece-wise linear barriér,, (s) as previously defined, thenpjf, (0)
is positive, the price of a European up-and-out call option with a strike picend a
barrier b,,(s) such thatZ,,(t + s) — Z,,(t) < b,,,(s) is

C7 (@t 5@), mi(t),mp(t); T, K byn)
_ opaT 1+ ni(t) fi(7)em 4 my(t) fo(7)elrmm
= e / 1{xm>y} ( 1 n 771(15) n T]p(t) S(t)
1 + A () fil(T eﬁﬂm + Apmp(t )fp(T)eﬂpxm
[1 4 Aimi(t) + Apmp ()] g () €07

wherep(z,b,,) is as defined in Lemma B.%,andb,, = (b,,(s1), ..., bi(sm))" are m-
dimensional vectorg; is determined by equation (18), arfdfor & € {i,p} andg are as
defined in Lemma 2.

K) dz, (24)

5potzelberger and Wang (2001) also develop a similar linear approximation for double deterministic
Brownian barriers, which can be used to price double barrier options.
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The formula given by equation (24) is quite easy to calculate either by numerical in-
tegration whenn is small or by simulation. It turns out that the simulation is easier to
implement by using a slightly different density functipf, b,,). That is, by changing
variablex = b,, — Z, p(x,b,,) = p(Z,b,), Wwherep is as defined in Lemma B.1 and
is anm-dimensional normal random variable with a mear,pfand a variance matrix of
Y = Mdiag(s; — Sg, .., Sm — Sm_1)M ", @and M is lower triangular matrix with nonzero
elements that is equal to The price of a European call barrier option can then be approx-
imated by averaging

r 2% 1%
Alx) = lg,<omm-u 1] L0 <1 —exp [_MD

7=1 Sj = Sj-1
—pnT ( +771( )fz( )6/81 ~Zm) + M (Zf)fp( )eﬁp (b (T)—Zm)
L+ 772( )+ 1p(?)
LA A0
[+ ) + Ay (]g(7)ersn =2

over a sample of draws, wheig = b,,(0) and all other relevant variables and functions
are as defined in Proposition 3. When using simulation to estimate integral (24)-by

>, A(2?)/N, the standard error of this estimator is given by (see Wang and Potzelberger
(1997))

Xe

S(t)

(25)

$zwmﬂ—m2 26)

(N-1)N ~
wherez’ is the jth sample ofr and NV is the sample size. This enables the assessment of
accuracy when using the simulation to approximate barrier options prices.

As for the case of vanilla options, this pricing formula also enables the implementation
of a simple formula for the hedging delta of barrier options.

Corollary 2 The hedging delta for the special barrier options that are described in Propo-
sition 3 is given by

Y, S(#),mi(t),np(t); T, K; by
S(t)oS(t,mi(t), ny(t)) ’

where

N7, S@),mi(t),np(t); T, K b)) =
oy - [+ Yeqipy M (t) fiuo(7) e m=Em)] 55
7 f sttt | L (0) + ()
> ke{ip} [fie(7)ePrbm T =Em) — X, 1 () B
[T+ mi(t) + np(t)] (14 Ximi(t) + )‘pnp(t)]
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+

(X fp (1) ePrbmT)=Em) — X £ (7) B =20 (1), () (6, — @)) S(t)
[L+n:(t) + np(O][1 + Ximi(t) + Apmp(2)]
B (Zke{i,p} Nl fi ()P CmT)=Em) — ], (£) 5,
[L+ Xini(t) + Apmp ()] g () €8 bm () =Tm)
A dp[ S (7)epOm)=Em) — ()i (bm (T)=Em) ]y, (t)n (t)(Bp — @')) ] =
’ [+ At (0) + Aty (DPg ()l e

ando® (t,n;(t),n,(t)) is as defined in Corollary 1.

Figure 6 plots the upper bounds of the prices and hedging deltas of a barrier option
under different wealth distributions. The numerical calculations are carried out by setting a
relative tolerance of.1% between the true barrier and the approximated piece-wise linear
barrier. The sample size of the simulation is half a million. The lower bounds are very
similar. The relative differences between the upper and lower bounds are very small, with a
mean 0f0.1%, but the standard errors that are caused by the simulation are relatively large,
with a mean 0f).8%. This indicates, roughly, that the simulation size has to be increased
by 64 times, that is, t&2 million, to make the standard error that is caused by the simula-
tion match the error that is caused by the piece-wise linear approximation of the nonlinear
barrier. Keep in mind that the relative tolerance for the piece-wise linear approximation is
very easy to achieve, and that the main obstacle to gaining price accuracy is the simula-
tion size. However, this will not cause a serious problem, because the simulation is for a
multivariate normal random variable.

For the case ofn = 1, the pricing formula in Proposition 3 admits a closed-form
expression, which is able to provide tight price bounds for barrier options under certain
conditions. This closed-form formula can also be used to calculate the hedging bounds.

Proposition 4 The price of an up-and-out European call option with a strikeand a
special barrierb, (s) = « + s such that, (1) > g is given by
Cy (8, 5(@), ni(t),mp(t); T, K v, pu)
= C@,S(t),m(t),np(t); T, K) — C(t, S(t), mi(t), mp(t); T, K5 v + 7, 0)
—eT MM [Cy(t, S( )i (1), mp(t); T, K 9, )
— O, 5(), m(t), mp(t); T, K o + pr, a)]

where

5t S0 OO Ki) = o0 ey (2222

S =)
ke{ip) VT
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Figure 6: Up-and-out European call option price and delta upper bounds against wealth
ratios. The parameters are as follows: beljgfs= 1%, 1, = —50%, p, = 30%; discount
ratesp, = 3%, p; = 10%, p, = 1%, volatility of dividend o; = 5%. Strike price:

K = 1.1, expiration:T = 1; barrierS, = 1.25. Plot (a): price, (b) delta.
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Ke™209s [ a7 <20z—057'—y>
— e n i
L+ imi(t) + Apmp(t) VT

+ ) Aemi(t)e ETTRP N <2a + (O — o5)7 = y)] ,
ke{ip} \/F

wherey andr;, for k = ¢, p is as defined in Proposition 2.

This special barrier option provides lower and upper bounds for the barrier option prices
with a constant barrier on stock price.

Similar to the barrier options, we can also find the bounds for an American type one-
touch option price.

Proposition 5 For a linear touch barrierb;(s) = « + us, the price of a call option that
pays$l at the moment when the barrier is reachedAyis

CY(t,mi(t), mp(t); T o, )
e*(“+”5)a*|a‘\/m]v (\/(M +05)2 + 21,7 — |a|)

L4 Aimi(t) + Apnp(t) VT
o (w+os)atlaly/(u+as)>+2r, N ( \/ (1 +05)% + 2r,7 + !a!)

+

L4+ Ami(t) + Apmp(2) NG

)\knk(t)e*(Wras*ﬁk)a*IalmN (\/A_/cT _ |Oz|>
L+ Aimi(t) 4 Apmp(2) VT

)\kT]k(t)e—(qua(;—ﬁk)aJr\aI\/ﬁN (_ VAT + ]a|>
1+ )\1'77@'<t) + /\p77p(t) \/F

if both (u + 05)? + 2r,, and Ay = (u + o5 — B)? + 2y, for k € {i,p}, are positive.

+ 2

ke{ip}

2

ke{ip}

This closed-form formula can be used to approximate the prices for one-touch options
if the touch barrieb(s) that is based on a constant strike has tight linear bounds.

Figure 7 plots the linear barrier bounds that are calculated by the formula in Proposition
4 for several examples in which the stock barti@t) is either concave or convex. In light
of Proposition 5, one-touch options prices can also be bounded by the prices under the
linear barriers.

We also use these price bounds to evaluate a common practice in pricing barrier options.
Because the price for an up-and-out barrier option does not have a monotone relation to its
underlying stock volatility in the Black-Scholes model, some practitioners use two implied
volatilities to price up-and-out options: the implied volatility for a vanilla call with the
same strike price and the implied volatility for a liquid one-touch option with the same
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Figure 7: Up-and-out European call option price bounds against wealthiratidhe pa-
rameters are as follows: beligfs = 1%, u; = —50%, 1, = 30%; discount rategp,, = 3%,

pi = 10%, p, = 1%; volatility of dividendos = 5%. “Barrier bounds” are the linear barri-
ers; “relative errors” are the relative differences of the linear bounds; “implied bounds” are
calculated by the implied volatility bounds of one-touch options.

stock barrier. As the price for an up-and-out option equals a vanilla call price minus the
price for an up-and-in barrier option, the call price is valuated by using the first implied
volatility, and the “in” option is valuated by the one-touch implied volatility in the Black-
Scholes model. For our numerical examples, there are two implied volatility bounds that
are based on the two price bounds for the one-touch options. Such bounds for up-and-out
prices are labeled “implied bounds” in Figure 7.

Figure 7 shows that the price bounds for barrier options are quite tight. Any other
barrier option with an expiration that is shorter than those in the examples has even tighter
bounds. Therefore, the closed-form formulae given in Propositions 4 and 5 can be used to
price such barrier and one-touch options. In addition, the bounds for hedging deltas can
also be bounded by closed-form formulae, which are given in Appendix B.

The practice of using two implied volatilities to price up-and-out options does not seem
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to work well, especially for in-the-money options. This is another indication that the im-
plied volatility does not fully account the details of stock dynamics.

5 Conclusion

This paper studies option pricing by deriving the underlying asset price in an equilibrium
model. Although options are redundant assets and can be hedged by the underlying asset
only, the equilibrium asset price dynamics do not admit any existing reduced-form option
pricing models. However, option pricing for both vanilla and certain exotic options in this
model is straightforward, and simpler than it is in most reduced-from models, such as the
stochastic volatility model. The hedging strategies are also straightforward in our model.
However, the option prices in this model are not trivial, and share the major characteristics
that are observed in various options markets.

Although option pricing is presented in the context of the stock market, the model can
also be applied in other options markets, such as the currency options market, because of
the ability of the model to generate various smiles of implied volatility — both symmetric
and asymmetric — and different term structures of implied volatility.

There are several ways to extend the current model. Adding more classes of investors
appears to be straightforward if richer price dynamics are needed. The pricing of other
exotic options is also plausible and interesting. A more challenging vein of future research
might be to study the implications of margin requirements for both the underlying stock and
options. Of course, the ultimate test of an options pricing model is to examine its empirical
performance. We leave this task to future research.
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Appendix A: Proofs

Proof of Lemma 1

These are standard results. O

Proof of Proposition 1
The definition of state price (7) and optimal consumption plan (9) imply that
dei(t) = ci(t) (—pn+7(t) + 03(t)) dt + ch(t)0k(t) dZx(t)
= Gi(0) (—pu+7(6) +62(0) = Bibu(1)) dt + i (D)0(t) dZn(1).
Using this, an application of thedt_emma to (12) shows that

e deit)  ds(r)
S kefnin} Ch(t) 4(t)

Notice that the expression for consumption ratios (11) &net 1, n, = 1 leads to

Ske(nigt Mk (t) (—pr +1(t) + 07(t) — Brbi(t))
D kefniky MMk (t)

n

and
D ke fniky MMk (1) 0k () _

Y kefniky Mk (t)
Using (8), we can first solvé,(t), thenr(t).
For the stock price, it is trivial by the recognition that

St)= Y Wit

ke{n,i,p}

by the clearing conditions in the securities markets. Using the clearing condition for the
good market (12), we have

S(t) _ Sken,ipr We(t)

0(t)  Lreqnipy Chlt)
Finally, using the definitions of wealth ratio (10) and consumption ratio (11), we have

S(t) W, (t) ZkG{n,i,p} Mk (t) . i Zke{n,i,p} Mk (t)

5(t) B C;kz(t) Zke{n,i,p} )‘knk(t) B Pn Zke{n,i,p} )‘knk(t)

This is the stock price that is stated in the proposition. O

28



Proof of Lemma 2

Lety = Z,(T) — Z,(t) andT = T — t. Substituting equations (16) and (17) into stock
price expression (15) then yields

1T RO £ gD
P LA ML () ()59 + Ny o (7)1, (E) e

From this, we have
OSI) _ 1 L OO+ e
dy  pn TEMNS(W( eﬁy+Apfp( Ynp(t)edrv?
x (05 L Zketin (1~ M) fie(T)me(0) e By, + (N = Xp)mi(0)mp(£) (B, — @'))
[1 + Yketipy M Sr(T)nn(t )eﬂw] {1 + S hetip) fk(T)nk(t)eﬂky} ’

which is positive for aly € R whens; < 0andg, > 0, becausé —\; < 0and1—\, > 0.
Thatis,S(T) > K ifand only ify = Z,(T') — Z;(t) > y, which solves

1 L @ + fy(r)n o%yg
P L4+ XNfi(T)n:()eby + N, fo(7)n,(t)ePry

Using stock price expression (15) again shows that the foregoing equation is equivalent to
equation (18) in the lemma. O

S(T) = g(T)d(t)e.

(7)8(t)e" (27)

~ |

(F)8(t)e = K.

Proof of Proposition 2

Rewrite equations (16) and (17) as
me(T) = nk(t)fk(T)@B’“(Z"(T)_Z”(t)), §(T) = 5(t)g(7->605(Zn(T)—Zn(t))‘

Substituting these identities into pricing equation (19) and using the fact &l — 7, (¢)
follows a normal distribution with a mean 6fand a variance of = T — ¢ means that
Lemma 2 implies that

§(t)e=Pn(T=1) " 1 / (1 + Ykegipy () fr(7)e"
L+ Ami(t) + Apmp(t) — V2r7 Uy Pn

L Skepim ) fu(r)e? N2
S(alr)er K| e 7dzx. (28)

o) =

Using the identity

L% e -2 VT y—T
2k 2T —= _— —
\/%/y ee 2 dr exp<2>N< \/?>, (29)
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we have

1 /oo (1 + Yrefipy M) fr(T)e"
7 Pn

DN
?‘
N

_ 1+ Zke{i,p} Aknk(tﬁk(ﬂeﬁkx[{ eféda:
d(t)g(T)ess®

A S M)
st oo () ()
! ke%:p} i () fr(T) exp <W> N ( - w\k/; 05)T>]
() g1
&)

B oy (U 00T
o(t)

+ Z /\knk(t)e(ﬁ?n—ﬂk—,uk-&-og)TN (_y - (ﬁk - 05)7_)] :
ke{i,p} \/?

where the equality is obtained by the definitionsfpfg, andg,. This shows that

1 i(t) _ - k
cit) = — e TN (dY) + t)e P*"N(d
(t) on L+ Sre o M (0 [ (d7) k%p}nk<> (d7)

[—WN @)+ Y Ane N @)
ke{ip}

K
L+ Ypeqipy Me(t)

Using the expression of the stock price then yields the call option price that is stated in the
proposition.
Finally, the bond price is a direct calculation ot E,[&,.(T)| 7 (t)]. O

Proof of Corollary 1

It seems to be messy to work directly with the option price. Instead, it is quite simple to
work with the formula that is given in the proof of Proposition 2. Rearrange equation (28)
as

ct) = o(t)

e PnT oo (1 + D ke fip) Uk(t)fk(T)eﬁkx
V2T Jy Pull + Xpegipr Mk (t)]
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1+ Yhein Atk () fo (7)€ K) .
(1 + Ykeqipy Aenk(t)]g(T)eos®

Note that the partial derivative @f'(¢) with respect toy equals O, thougly depends on
ni(t), ny(t), andd(t). Using I©D’s Lemma and ignoring the drift term, the diffusion term of
the option is then

So(t, S(t),ni(t), ny(t); T, K)
e T 1 + Zke{Z oy () [ (T )eﬂkza
[ v ( L+ > kefip) /\knk( )] ()
Zke{zp}[fk( )eﬁk - /\k] ( )ﬁk
MRS SR A ER
ifp(T)e™® = N filT )65 "”]m(t) ( )(Bp = Bi)
 Skeqipy Mlfu(T)eF — 1ni(t )ﬁk
1+ Xreqipr Mnk(t)]2g(T)es”

B >\z‘)‘p[fp<7-)eﬂpx - fi(T)eﬁﬂ]ni@)np(t) (ﬁp — ) K> e_gidx]

(1 + Ykegip Mne(t)]2g(T)es®

27TT

+

o(t)

— e PnT 5@) P n % k
- {pn[ @ [ 5 (N(d1)+ > () fu(r)e= TN (dy ))

L+ Zke{i,p} AwTe (t kef{i,p}

. ! S Benel) (f (e FTN (@) -\ N(d">)
I Zke{z I )\knk(t) W kT k 1 k 1

ni(O)np()(Bp — Bi) [ e
L+ Y hetip) )\kﬂk( ) (AJP( )

2

N (@) - asmF N <d%>)]

+

(By—05)>
2

> Aeik(t) B (fk( Je "N (ds)

K
[]- + Zke{i,p} )‘knk (t)]Qg(T> [ke{z p}

(ﬁp o5)2

= AN, 8 () SN @) — e TN @) )
_ S() . [ <05_ Lcti) AuTelE) )N(d’f)

T4 2 kegipy Mt L+ Y pegipy Mk (t)
Bi + )‘pnp(t) (Bi — 61))) N(d
L+ Ykeqipy Mk(t) ()
6]) + /\ini(ﬂp - ﬁl)) N(dP ]
L4+ Aemw(t) ()

+ e P, (t) (05 +

+e PP, (t) (05 +
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K
B > Nne(t)Br (e TN (dS) — e TN (dy
[ +Zke{z‘,p} e (8)]2 el w1 () k( (d3) ( 2))

+ MmO\ (D)(8, = i) (€77 N (dB) — e N(dy))]

where we use identity (29) in the proof of Proposition 2 to obtain the second equality
and use the definitions gf,, g, and the stock price to obtain the third equality. Then, by
the definition of the delta of the option (the ratio of diffusions between the option and its
underlying stock), the result follows. O

Proof of Lemma 3

Taking the derivatives of both sides of equation (18) with respegt/telds

ob(s)
7 ( ds h)
+ B (81)(8) _ l~> (1 =X+ (A — )‘i)fpnpeﬁpb) fimieB®
\ Os ) (1 Creipy M Lumee? ) (14 Cpegipy frme?)

o <8b(s) N ) (1= 2+ (A = A) fmie?) fymye®®
P\ 0s ") (1 + Sheqip Mefenee® ) (1 + Ciegipy fenee )

=0.

Rearranging terms gives

db(s)  osh 4 Xi(s,b(s))l; + X, (s, b(s))lp.

Js o5 + 2i(s,0(s)) + 2,(s,0(s))

As bothos andXy, for k € {i, p} are positive, the lemma follows. O

Proof of Proposition 3

After noting that)(7"), n.(T') for k € {i, p} can be rewritten as time to expiratierandz,,,,
the result is straightforward by applying Lemma B.1 to the expectation in pricing equation

(23).
Proof of Corollary 2
Following a similar method as for the case of vanilla call options, we have

Z%O(tv S(t)a 771‘@)7 np(t)§ T, K;by) =

i 5( L+ Yeip) () fi(7) el O Em)
€ /1{5’7m§bm(7')—37}p(x7bm) 1 )\
pull + Chegipy M (t)]

0'55(t)
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Zke{zp}[fk< 7)ePkOmT=Em) — X Ik (t) Br
Pull + Cketipy Mk (t)]?
n Ni fo (1) Om O =Em) — N i () ePiom D=2 (), (8) (B, — i)
pnll + Zke{z ot ATk (t)]2
 Dkefip Melfe(T )€k Om=Em) — ] () B,
(14 Skeqip Aunw(t)]?g(1)ecsbm () =2m)
AN (1) Om M mEm) — () @B om T =Em ) g (), (£) (B, — ﬁz) )d:ﬁ
[1+ Ckeqip M (t)]2g(1)eosm)=Em) '

Rearranging the terms and using the expression for the stock price in Proposition 1 yields
the result. O

o(t)

5(t)

K

Proof of Proposition 4

From equation (23), the pricing of the option means the calculation of
L+ Ykeqipr m(T)
I = E, [1{Z(s)<b1(s),0§s§7} ( ke; 2}

L Ykegip Aene(T) K *
§(T)

Fo (t)] .

Since bothn,(T) andé(T") are functions of time and’,,(T") — Z,(¢), the calculation of
the foregoing expectation is straightforward if the distribution density functiof,6t’) —
Z,(t) is known. By Lemma B.1 or equation (36) in Appendix B, the probability density
function of Z(s) = Z,,(t + s) — Z,(t) is p(z, b;), and we then have

, T o Aee(T) )\ T
[:/< +Zk€{z,p}nk( )_ +Zke{z,p} w1k )K> p(z, br)dz

Pn 6(T)
_ 1 /O‘Jﬂ” 1+ Zke{i,p} 77k<T) B 1+ Zke{i,p} /\knk(T) K e_édx
\ 2T Jy Pn 5(T)
e 2ot rotnt (143 ket (1) 14 Sgeqipy Mew(T) _(a=2)?
_ _ Kle 2 dx
vV 27TT Y Pn 5(T)
1(7,0) — I(a+ pr,0) — e 2 [I(g, ) — I(a + pr, )],
where
I(y, ) (30)
1 /OO L+ Y eqipy me(T) B 1+ ke iy A (1) K e—(EEiQ)Q dx
2nT Jy Pn 5(T)
- [+ Snetiny W™ 1+ Dietipy Milefre | a2
2rT Jy Pn 5(25)9(7_)6051*
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Integrall(y, 0) is calculated in the proof of Lemma 2, and the other integrals can be calcu-
lated by using the following identity for any constanandy.

z—20a)2 2 4 2 —
* e e (Wy)N(W)

V2T 2 NG
Then, for any constantanda
@) = Vot
1+ Zke{z p} M fie(T) " L Y ketim )\kﬁkfk(T)eﬁsz - aze) 20)° dx
6(t)g(r)ess®
1 20 — 6m+4aﬁk 20+ BT —y
) )

K ojr—dacs 200 — 05T — Y
- e 2 —_— E A T
o(t)g(T) [ N < NG > i ke{ip} w0 (7)

(Bg—05)>r+4a (B —o5) 20+ (B, — 05)T —y
P N
JT

1 2a 200+ BT — vy
= — |N + 77k Pn Pk T+2aﬁkN < )
Pn [ ( \/F ) ke%p} \/F

— ﬁ [6_(M7L_U§)T_2a05N <2a — 08T — y)

X e

5(t) NG
+ Z )"f”k(t)e(pn_p’“_“’“J"’?)T“a(ﬁk—oa)N <2a + (B — 0s)T — y)] ;
ke{i,p} \/F

where the last equality is the direct implication of the definitiong0fy, and,.
Let

Cy (8, S(), mi(t), mp(1); T, Ky, )

d(t)e T
= I 31

S(t) l —pnT N (204 - y)
T Sreqip () | NG

+ Y m(t)e Ty <2a+ﬁk7 _ y)]

ke{ip} VT

Ke= 207 [ s <2a — 05T — y)
— e n N N
L4+ Yheqipy Me(t) VT
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+ Z )\knk(t)e—rkT-‘r&xﬁkN (20{ + (ﬁk - Ué)T - y>:| 7
ke{i,p} a

wherer;, for k = n, i, p is defined as in Proposition 2.
Given the results, we have

Cy(t, S(t), mit), mp(t); T, K5 cx, pa)
= Oy, S(t),mi(t),n,(t); T, K;9,0)
= Oz, S@),ni(t),ny(t); T, K; e + i, 0)

_6_2au [Cg(t,S( )7 Z( )77717( )7T7Kay7a)
— O3, S(8),mi(t), mp(t); T, K a + pr, )]

Combining this with the fact that

leads to the conclusion. O

Proof of Proposition 5
Let Z(s) = Z,(t +s) — Z,(t). Then,
inf{s > 0|Z(s) = a+ ps} = inf{s > 0|Z(s) — us = a}.

From Karatzas and Shreve (1991) (see page 196-197), the probability density function of
the first touch times is

o]

w<t) = \/ﬁ €xXp [_ 95

The one-touch digital price is then

Cy(t, m(t) p(1); T u)

- t / é'n t + S
= o(t) 1+ Xhegipy Mnn(t + s)]em®
T + Zke{iJJ} Aknk( ) / 5(t + S) @D(S) ds

—O§5Q
e é

: e

1+ Ek‘E{’L D} )\knk

T/ /T (et 3 (05=B)*+(05= )
! e b3l P00y (5) s, (32)
ke%;p} L+ Dnetin Aenin(t) ()
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where we us&,,(t + s) — Z,(t) = o + us whenZ(s) hits the barrier.
Since, for anyy > —/ﬁ/2, we have

/ (ot ps)? s
\/27r33 2s
_ man [T _lof l o + (1 + 27)82] s
\/27rs3 2s
2
—— \MM/ Lol +vViF+2ys exp [_(Ial — V2 1 2ys) 1 s
V27s3 2s
2
L+ gontloly/m 2+2'7/ Lla] = V2 +2vs exp [_(Ial + V2 4 2ys) 1 J
V2ms? 2s
_ e—cxu—\ah/uQ—i—Q'yN Vv lu + 277— — |Oé|
JT
—opetlaly/m 2y (_YEEE 2T+ o 33
+e NG ) (33)
Substituting
1
Y=tk 3od o
and .
vY="rr+ 5(05 — B)* + (05 — B
into (33) yields the result. O

Appendix B: Auxiliary Lemmas and Further Results for the
Pricing of Barrier Options

Appendix B.1 Crossing Probability of a Brownian Motion for a Piece-
Wise Linear Barrier

LemmaB.1 Let0 = sp < $1...8m-1 < S = 7 @andb,,(s) be linear functions of on each
of the intervalgs;_,, s;] for j = 1, ..., m. The probability density function that a Brownian
motionZ(s) does not cross barrieh,,(s) forall 0 < s < 7 is then

p(z, b, H (20650} Ly <50} T Lo 00} Lz b1 )

where

Ol by) = ﬁ (1 exp [_2[%(5;’—1) — 2] [bin(s5) — l’j]D

j=1 Sj — Sj-1
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o )2
X ! exp [(% 1) ] : (34)
27T(Sj — ijl) )
whereby = b,,(0), by, = (b (51), oo, b (8)) Ty w0 = 0, 2 = (21, ..., ) T
Letz = b,, —z. The probability density function that(s) does not cross the piece-wise
linear barrier b,,(s) for 0 < s < ris then

m

P(E, b)) = (3, bm) [[ (1{bm(0)>0}1{£j>0} + 1{bm(0)<0}1{g~cj<0}) ,

J=1

where

T 1 m Qi 105
¢(£E, bm) = T 1 i (1 — exp [_H‘|>
Jastans) L1 Po—

(T — b)) 'S T — by)
2

X exp [— , (35)

wherez, = b,,(0), ¥ = M diag(s; — so, ..., Sm — Sm_1)M ", @and M is the lower triangular
matrix with all nonzero elements equal to 1.

Proof: See Wang and Potzelberger (1997). O

Inthe case ofn = 1, letb;(s) = a+us. Thenb;(0) = aandb; = a+pr. Substituting
these into equation (34) yields

p($7 bl) = (1{a>0}1{z<a+u‘r} + 1{a<0} 1{x>a+u‘r}) ¢(5E, bl)a

where

x? T —2a)?
o e (2) s (552)] n

where we have used the fact that z; for the case ofn = 1.

Appendix B.2 Pricing Other Barrier Options

There are basically four kinds of barrier options with a single barrier: down-and-in, down-
and-out, up-and-in, and up-and-out. The payoff for an “out” option is

1p>rG(S(T), K) ifthe barrieris NOT crossed
0 if the barrier is crossed,

C(S(T), K) = {

whereG(S(T), K) is a vanilla European option with a strike prié& The “in” option is
defined in the opposite way. The immediate implication of these definitions is that

Gu(S(T), K) + G(S(T), K) = G(S(T), K).

37



This means that
Vz () +Vz'(t) = V(1) 37)
This shows that the “in” options can be priced by the relevant “out” options and vanilla

European options. The prices for up-and-out options are given in the text, and those of
down-and-out options are given by the following lemma.

Lemma B.2 The price of a down-and-out call option with a constant barrier based on the
innovation process; (s) = « + us is given by

CE(t,S(t), mi(t), mp(1); T, K v, pu)
Cu(t, (), 1a(t), my(): T, I s v + ur, 0)

—e 2 HCY(t, S(t),n(t), p(t); T, K;a 4 pr,a) § < a4 pr
Cy(t, S(t),ni(t), np(t); T, K;,0)

—e 2 CY(t, S(t), mi(t), mp(t); T, K 7, ) U > o+ urt,

whereC%(t, S(t),n:(t), n,(t); T, Ky, «) is defined as in Proposition 4.

Proof. Since the distribution o¥(s) = Z,(T) — Z,(t) conditional on the barrier not
having been hit up to timé& is p(z,b1) = Llsarun (2, b1), Wherey is as defined by
equation (36), we have

1
C%O(t> = 6 (t) El [fn( )ng\tﬂ/n(s( ) K)l{Z(s)>b1(s),s§T} F(s(t)}
o(t)e " /°° <1+Z77k(T) L+ A (1) >+
T TS v - K x,by)dx
L+ A Jatpr On 5(T) ¥(z,b1)
M 12 <l+z;:l7k(T) _ 1+ZESE\7]2;MT) K) b(a,b)de §<atur
L+ 37 Nem Iy <1+§:k B 1+25(A;;7k (T) K) Y(z,by)de  y>a+pur

S(t)e ™ [ I(a+ur,0) —e * [(a+ur,a) §<a+pr
L+ N | 1(5,0) — eI(g, ) > ot
where the last equality is obtained by using the identity (30) in the proof of Proposition 4.

The application of (31) as defined in the proof of Proposition 4 yields the prices that are
stated in the lemma. O

Appendix B.3 Hedging Delta for the Special Linear Barrier

Similar to the case of vanilla European options, we calculate the diffusion terms for the
barrier and one-touch options. The hedging deltas then follow by taking the ratios between
the diffusion terms and the diffusion term of the stock.
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Appendix B.3.1 Delta for Barrier Options

Substitutingz = b;(7) — = into the expression far’ in Corollary 2 yields
X5, S(8),mi(t), mp(t); T, K b)
ot 1+ Ykegipy me(t) fr(T)e? )05
= [aupte) (SR
> ke{ip} [fk(T)eﬁkm — k] (t) Br
(L4 mi(t) + mp(O)][L + Nimi(t) + Apnp(1)]
i fp(T)e™ — Xy fi(T) e ]mi ()0, (8) (B, — @)) S(t)
[L+n:(t) + mp(O][L + Aimi(t) + Apmp ()]
B (Zke{i,p} Nl fi (7)) — 1. (t) By
[1+ Aimi(t) + Apmp()]2g(7) e
Nidp [ fo (7)€" — fi(T)eP " |ni (1), (1) (6, — @)) K] da
[1+ Ximi(t) + Apmp()]2g(7) €5
B (e‘p”J(O) + e PTJ(B) + e PP I(6y)
B L+ mi(t) + mp(t)
Skefipyle T I (Br) — Awe T J(0)]nk(t) Bx
(14 n0:(t) + mp(O][L + Ains(2) + Apmp ()]
(Nie™Prm J(By) — Ape P J(B:) i (8)mp(8) (Bp — 5@)) S(t)
(1 +n:(t) + mp(O][1 + Aimi(t) + Apmp ()]
B <Zk€{i,p} Arle™* T (By, — 05) — e J (—05)|nk(t) Bk
[1 4+ Aami(t) + Apmp(2)]?
n Aidple™"P I (B, — 05) — e "I (B — 06)|mi(t)np(8) (B — ﬁi)) i
[1+ Aami(t) + Apmp(2)]? ’

where we use the following identity
a+put 27
[ @b de = €T (), (38)
]

where

- )]
e ) )]
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Appendix B.3.2 Delta for One-Touch Options

Let
H(y) = e onlalVizs2y (¥ Wt 27 = |of
NG
4 emontlaly/ 2y (_ VI* + 297 + |af
NG .

Using this and equation (32) then yields

~—~

E?(tv 77i<t)7 Np t>7 bl) =
—aog

1
_[1 + )\,77‘ t) + A\ n (t)]g [(/\znz(t)ﬁz + /\pﬁp(t)ﬁp) H (Tn + §O'§ —f-d(gu)

—é@&m@ﬂ@+AwAwwrw%»H(n+iws—@f+0w—@ﬂ0

—e (1) (5 + Au(0)(By — 5) H (1 + 505 = B+ (05 = By .

™

—~

whereb; (s) = a + us.
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