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The main objective of this paper is to fill the gap in the literature by addressing, in a 

continuous-time context, the issue of using commodity futures as vehicles for hedging purposes when, 

in particular, the convenience yield as well as the market prices of risk evolve randomly over time. 

Following the martingale route and by operating a suitable constant relative risk aversion utility 

function (CRRA) specific change of numéraire, we derive optimal demands for commodity futures 

contracts by an unconstrained investor, who can freely trade on the underlying spot asset and on a 

discount bond. Although the optimal demand exhibits a classical structure in that it is composed of a 

speculative part and of a hedging term, our model has four main distinctive features and goes beyond 

the existing studies. First, the speculative and hedging components may be decomposed in a convenient 

way underlining, in particular, the effect of the stochastic behavior of both the market prices of risk and 

the convenience yield on optimal demands. As a consequence, the investor is able to exactly asses their 

impact on optimal demands. Second, the interaction between the prices of risk associated especially 

with the spot commodity and the convenience yield combined with their mean-reverting character 

determine the sign and the magnitude of the speculative and the hedging proportions. Third, the futures 

contract turns out to be the appropriate instrument to hedge the idiosyncratic source of risk of the 

convenience yield. Furthermore, in contrast to Breeden’s (1984) results, the primitive assets are 

effective in hedging the specific risk of the spot commodity and the interest rate. Finally, optimal 

demands can be computed in a recursive way, which greatly facilitates the use of our model for 

practical considerations.   
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1. Introduction 

 

Futures markets have experienced dramatic growth, worldwide, of both trading volume and contracts 

written on a wide range of underlying assets. These features make it easier to use futures contracts as 

hedging instruments against unfavorable changes in the opportunity set, i.e. changes in state variables 

or factors describing the economic/financial environment. The growing activity of these markets has 

been accompanied, since the original normal backwardation of Keynes (1930) and Hicks (1939), by a 

substantial body of literature devoted to pricing and hedging with futures contracts2. The main 

objective of this paper is to bridge the gap in the literature by addressing, in a continuous-time context, 

the issue of using commodity futures, by an unconstrained investor3, as vehicles for hedging purposes.  

In an intertemporal portfolio choice framework, Merton (1971, 1973) and Breeden (1979) 

derived optimal asset allocation for an unconstrained investor, who maximizes his (her) expected 

lifetime utility function of consumption under the budget constraint. This demand encompasses the 

commonly referred as Merton-Breeden hedging terms reflecting the investor’s wish to hedge against 

the random fluctuations of the investment opportunity set. As is well-known, the utility maximization 

approach implies, however, that the optimal demand includes an additional speculative position which 

depends on the investor’s risk aversion, as well as on the instantaneous expected excess return of the 

risky assets.  

 An abundant literature has been devoted to pricing commodity futures4. The models developed 

explain the evolution of the futures prices through the random evolution of several relevant state 

variables. The stochastic processes of these variables are specified exogenously. The convenience yield 

turns out to be the crucial variable, which constitutes one of the main differences between spot 

                                                   
2 Interested readers could refer to Lioui and Poncet (2005). 

3 The unconstrained investor is allowed to freely trade on the primitive assets, namely the underlying spot asset and, if need 

be, other risky assets. 

4 See, for instance, Gibson and Schwartz (1990), Schwartz (1997), Hilliard and Reis (1998), Miltersen and Schwartz (1998), 

Yan (2002), Nielsen and Schwartz (2004), Casassus and Collin-Dufresne (2005) and Sorensen (2002). 
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commodity prices and prices of financial assets5. The recent sharp increase in commodity prices has 

revived the interest in commodity risk management. Derivatives securities or contingent claims, futures 

contracts in particular, are major tools used by investors for hedging in order to mitigate their exposure 

to changes in commodity prices. Surprisingly, while there are a number of models dealing with futures 

hedging, to our best knowledge, the specific case of commodity futures contracts with a stochastic 

convenience yield has not yet been addressed in the literature. An exception is Hong (2001) whose 

economic environment and objective differ considerably from ours in that he examined, especially, the 

impact of a stochastic convenience yield on the term structure of open interest, i.e., the total number of 

contracts outstanding. Moreover, in the literature market prices of risk are usually assumed to be 

constant when studying optimal asset allocation. Few exceptions are, for example, Kim and Omberg 

(1996) and Wachter (2002). Lioui and Poncet (2001), in particular, examine the effect of stochastic 

prices of risk on futures hedging demands. In our environment to the extent that spot commodity prices, 

futures prices and inventory decisions are related (see, for instance, Brennan, 1958; Litzenberger, 

Rabinowitz 1995; Routledge et al., 2000), we would expect market prices of risk to be stochastic.  

 This paper provides a theoretical model of hedging that could better account for how both 

stochastic convenience yield and stochastic market prices of risk affect the optimal demand of an 

unconstrained investor6. In order to do so, in the same vein as Schwartz (1997) and Hilliard and Reis 

(1998) - the reference models in the literature - the economic framework retains the spot commodity 

price, the instantaneous interest rate and convenience yield as the relevant stochastic state variables 

associated with the dynamics of the futures price. Furthermore, it is assumed that the prices of risk are 

                                                   
5 Brennan (1991) defines the convenience yield as “the flow of services accruing to the owner of the physical inventory, but 

not to the owner of a contract for future delivery”. Indeed, physical inventory provides some services such as the possibility of 

avoiding shortages of the spot commodity and thus to maintain the production process or even to benefit from a (anticipated) 

future price increase.  

6 Other theoretical models examining dynamic asset allocation with futures contracts (see, among others, Ho, 1984; Stulz, 

1984; Adler and Detemple, 1988a, b; Duffie and Jackson, 1990; Briys et al., 1990; Duffie and Richardson, 1991; Lioui et al., 

1996) deal with a constraint utility maximizer investor. In a similar economic environment, the investor’s optimal futures 

demand consists of three terms: a mean-variance speculative term, a Merton-Breeden hedging component and a pure hedge 

element related to the non-traded position. 



 3 

affine functions of the state variables (see also Duffee, 2002; Casassus and Collin-Dufresne, 2005). The 

optimal demand for commodity futures contracts is derived for an investor who maximizes the 

expected constant relative risk aversion (CRRA) utility function of his (her) lifetime consumption and 

final wealth. By clarifying the work of Lioui and Poncet (2001), Rodriguez (2002) and Munk and 

Sorensen (2004), an appropriate change of probability measure, specific to the CRRA utility function, 

is shown to be of key importance not only because it makes easier the resolution to the maximization 

problem, but notably because it helps to gain an insight into the intuition behind both the allocation 

problem itself and the main results of this paper. The investor’s consumption-wealth problem reduces 

to the computation, under this measure, of an investor’s specific expectation involving the market 

prices of risk and the interest rates risk. In a complete market framework, this expectation is unique and 

reveals how essential the stochastic prices of risk are for the derivation of the investor’s optimal 

demand. Also, consistent with prior studies, the role played by the logarithmic utility separating the 

investors’ hedging position according to their risk aversion appears in a natural way.  

Although the optimal unconstrained investor’s demand exhibits a classical structure in the 

sense that it is composed of a speculative part and of a hedging term, a thorough study of these 

components reveals, however, some appealing and distinctive features of our model. This can be 

accomplished by introducing into the economic framework two synthetic assets replicating the 

idiosyncratic sources of risk of both the interest rate and the convenience yield. They allow to enrich 

the analysis of optimal demands by going beyond the existing studies. First, it is worth pointing out that 

stochastic prices of risk induce stochastic speculative components that can be decomposed, by using 

the synthetic assets, in three terms corresponding to the three assets. Thus, as the three factors vary 

randomly over time, the agent will consequently change his (her) speculative position. This is in sharp 

contrast to the majority of the models focusing on hedging with futures where the speculative element 

is only modified by the passage of time.  

Second, the hedging term can be split into two parts. The first, due solely to the random 

fluctuation of the interest rate, involves the covariance of the discount bond with a bond with a maturity 

equal to the investor’s horizon (see Lioui and Poncet, 2001; Munk and Sorensen, 2004). More 

importantly, the presence of the second term results from the stochastic character of the prices of risk 
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and underscores that of the convenience yield. Making the most of the replicable assets, we show that 

random prices of risk result in three Merton-Breeden-like components for each and every state variable.  

Third, the effect of the prices of risk on the investor’s demand is more subtle than the one 

reported in the literature, which usually considers a unique mean-reverting stochastic price of risk. In 

this paper, by distinguishing the prices of risk related to the state variables, we explicitly account for 

their relations. These relations determine the investor’s position, short or long, which may be reversed 

as the level of the state variables is modified. A numerical illustration also shows, for instance, that the 

interaction between the prices of risk allows to derive a critical value of the sate variables at which 

speculative demands vanish whatever the investor’s risk preferences.   

Fourth, our analysis clarifies the role played by the primitive assets and the futures contract. 

Breeden (1984) studied the allocational role of futures markets and derived the demand for futures 

contracts by an unconstrained investor when the futures contracts are written on the state variables and 

have instantaneous maturity. As a consequence, the primitive assets are ineffective in hedging the risk 

of the state variables. Our analysis calls into question this result by assigning these assets a specific 

task: hedging the idiosyncratic risk of the spot commodity and the short rate. Besides, the idiosyncratic 

risk associated with the convenience yield is uniquely hedged by the futures contract. 

Fifth, despite their differences, the speculative and the hedging term related to the prices of risk 

have two common characteristics. On the one hand, they may be computed in a recursive way. The 

demand of futures contracts is first derived and then used to calculate that of bonds. In turn, both serve 

as ingredients to obtain the optimal proportion in spot commodities. On the other hand, given the 

additive structure of these components, the investor is able to precisely assess their influence on his 

(her) optimal demand. (S)he can therefore rule on the relevance of the investment opportunity set. 

Indeed, the formulas derived in this paper constitute a useful and alternative means in choosing the 

most important factors when the investor seeks to allocate his (her) wealth among traded assets 

including commodities. 

 The remainder of the paper is organized as follows. In section 2, the economic framework is 

described and the investor’s optimization problem is formulated. Section 3 is devoted to the derivation 

of the optimal asset allocation for the unconstrained investor. An illustration of the behavior of this 
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demand, via a numerical example, is given in section 4. Section 5 offers some concluding remarks and 

suggests some potential future extensions. All the proofs have been gathered in the Appendix.  

 

2. The general economic framework 

 

Consider a continuous-time frictionless economy. The uncertainty in the economy is represented by a 

complete probability space (Ω, F, P) with a standard filtration [ ]{ }TtFF t ,0: ∈= , a finite time period 

[0, T], the historical probability measure P and a 3-dimensional vector of correlated standard Wiener 

processes, ( ))( ),(),()( ' tztztztZ fS δ= , the correlated basis, defined on ( )F,Ω , where ′ stands for the 

transpose. Since these processes are correlated, as will become clear later, it is useful to operate on an 

orthogonal change of basis and to define a 3-dimensional vector of independent standard Brownian 

motions, ( ))( ),(),()( ' tztztztz vuS= , the orthogonal basis. These two vectors of Brownian motions are 

related through the following expression: )()( tdztdZ ρ= , where ρ is a correlation matrix that will be 

defined below7.  

 In this section, following Schwartz (1997), Hilliard and Reis (1998) and Casassus and Collin-

Dufresne (2005), three imperfectly correlated factors are assumed to be associated with the dynamics 

of the futures prices: the logarithm of spot commodity price, X(t) = Ln (S(t)), the instantaneous riskless 

interest rate, r(t), and the instantaneous convenience yield δ(t). In the sequel of the paper, 

jiijij σσρ=Σ , ji ≠with , represents the covariance, while ρij denotes the correlation coefficient. iσ , is 

the strictly positive instantaneous volatility of the state variables for )(),(),( ttrtXi δ= . 

[ ]'' )()()()( ttrtXtY δ=  stands for the vector of the state variables that describes the economy.  

Since the specification of the process followed by the state variables is now well-known, we 

will directly give the stochastic differential equation (SDE hereafter) satisfied by the vector Y(t), all the 

more so as in what follows we will use equations in a matrix form. However, for readers’ convenience 

and to shed light on the intuition underlying our main results, the stochastic evolution of Y(t) will be 

                                                   
7 The standard Cholevsky decomposition establishes the link between the correlated and the orthogonal basis. 
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expressed in terms of the correlated as well as of the independent Brownian motions. Y(t) follows the 

SDE: 

 [ ] )()()()( tdZdttYttdY YY σμμ +−=  (1) 

[ ] )()()()( tdzdttYttdY YY σμμ +−=  (1’) 

with the initial condition Y(0) = Y. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

δσ
σ

σ
σ

00
00
00

r

S

Y  and 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

δδδδδδ σρσρσρ
σρσρ

σ
σ

vuS

rurrSr

S

Y 0
00

 are 3-

dimensional diffusion matrices under the correlated and the orthogonal basis respectively. 

21 Srur ρρ −= , 
21 Sr

SSrr
u

ρ
ρρρρ δδ

δ
−

−
=  and 

2

222

1

21

Sr

rSSrrSSr
v

ρ

ρρρρρρ
ρ δδδδ

δ
−

+−−−
= . Moreover, let 

[ ]00'
SX σσ = , [ ]0'

rurrsrr σρσρσ =  and [ ]δδδδδδδ σρσρσρσ vuS='  denote the 3-dimensional 

diffusion vectors of the state variables under the orthogonal basis. Since the prices of risk are 

stochastic, the drift parameters )(tμ and Yμ  are defined below.  

In contrast to the majority of the models dealing with dynamic asset allocation and hedging, the 

market prices of risk associated with the state variables are not constant but stochastic and depend on 

the levels of the state variables. To allow for an analytical tractability of our model, we opt for an affine 

specification of these prices of risk. To characterise the dependence of the spot price on the level of 

inventories (see, for instance, Brennan, 1958; Dincerler et al. 2005), the price of risk associated with 

the (log) of the spot price process is an affine function of the level of both the (log) of the spot price 

and the convenience yield: ( ) )()()(),( 0 ttXttS XXXXX δλλλδλ δ++= . The prices of risk related to the 

interest rate and the convenience yield are also affine functions: ( ) )()( 0 trtr rrrr λλλ +=  and 

( ) )()( 0 tt δλλδλ δδδδ += . δδδδ λλλλλλλ  and ,,,,, 000 rrrXXXX  are constants. λ(t) is a stochastic vector of the 

market prices of risk under the orthogonal basis whose expression can be couched in terms of the 

stochastic prices of risk, Λ(t), associated with the correlated Wiener processes: 
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where Yλλ  and 0  are given in Appendix A. 

We are now able to give the expressions of the drift parameters of the SDEs (1) and (1’). 
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yield behave stochastically over time following mean-reverting processes. In particular, the drift in the 

stochastic process of the short rate is a deterministic function, )(tϑ , such that the model incorporates 

all the information present in the current term structure (see Hull and White, 1990; Heath et al., 1992). 
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+= , where f(0,t) describes the initial forward yield curve. 

In addition to the spot commodity, there are in the economy a locally riskless asset, the savings 

account, such that: 
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)(exp)(β , with initial condition 1)0( =β , and two risky traded assets. 

The first risky security is a discount bond with maturity BT , whose price, at time t, BTt ≤≤0 , is 

),(),,( BB TtBTtrB ≡ . The second additional risky asset is a futures contract written on a commodity 

with maturity HT , whose price, at date t, BH TTt ≤≤≤0 , is denoted ),(),),(( HH TtHTttYH ≡ . The 

Feynman-Kac representation allows us to find a closed form solution for the discount bond and the 

futures price: { }),(),()(exp),( BBB TtCTtDtrTtB +−= α  and  

{ }),(),()(),()()(exp),( HHHH TtKTtDtrTtDttXTtH ++−= ακδ  respectively8 with the terminal 

                                                   
8 There is no need to specify the expression of C(t,TB) and K(t,TH), since it will not be used in the rest of the paper; besides we 

are not interested in the pricing of bonds and of futures contracts.    
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Assuming that the risky securities price functions are twice continuously differentiable in the state 

variables, their price dynamics can be written, in the orthogonal basis, as follows:  
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 [ ])()()()( tdzdtttItdV V σμ +=  

with the initial condition V(0) = V. [ ]')()()()( tHtBtStV = , )(tIV  is a diagonal matrix, σ  is the 3-

dimensional volatility matrix, which is of full rank, hence the market is dynamically complete. 

),(),(),( HkSHSrSHHS TtDTtTt δδσρσρσσ −+= , ),(),(),( HkuHurHHu TtDTtTt δδσρσρσ −=  and 

),(),( HkvHHv TtDTt δδ ρσσ −= . ),( BTtσ , the volatility of the discount bond is supposed to be 

deterministic and is restricted to the exponential case: ),(),( BrB TtDTt ασσ = . 

[ ]0),(),(),( '
BurBsrBB TtTtTt σρσρσ =   and [ ]),(),(),(),( '

HHvHHuHHSHH TtTtTtTt σσσσ =  are the 

diffusion vectors of the discount bond and the futures price respectively.  

Since we are interested in futures contracts, the futures price changes are credited to or debited 

from a margin account with interest at the continuously compounded interest rate r(t). The futures 

contract is indeed assumed to be marked to market continuously rather than on a daily basis, and then 

to have always a zero current value. The current value of the margin account, M(t), is then equal to:
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),(),()(exp)( θ  

Applying Itô’s lemma to the above equation yields: 

 ),(),()()()( HHH TtdHTtdttMtrtdM θ+=  (4) 

where ),( HH Ttθ  represents the number of the futures contracts held at time t.  

 The unconstrained investor has an investment horizon TI, BHI TTTt ≤≤≤≤0 , and (s)he is 

supposed to have a utility function that exhibits constant relative risk aversion equal to γ , such that: 
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terminal wealth. The market described above is dynamically complete, since the number of sources of 
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where [ ] [ ].tt EF ≡⋅Ε  denotes the expectation, under P, conditional on the information, Ft, available at 
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numéraire or optimal growth portfolio such that the value of any admissible portfolio relative to this 

numéraire is a martingale under P (see Long, 1990; Merton, 1990; Bajeux-Besnainou and Portait, 

1997).  stands for the norm in R3 and )(tξ  is the Radon-Nikodym derivative of the so-called, 
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unique, risk-neutral probability measure Q equivalent to the historical probability P , such that the 

relative price (with respect to the savings account chosen as numéraire), of any risky security is a Q-

martingale (see Harrison and Pliska, 1981).  

 

3. Optimal dynamic strategies 

 

Having described the economic framework, we will examine the optimal consumption and portfolio 

strategy problem for our unconstrained investor when the financial market is dynamically complete. 

 Given the CRRA utility function and the numéraire portfolio )(tG , the solution to the static 

problem (6), which is a standard Lagrangian optimization problem, determines the investor’s optimal 

consumption and wealth at time t: 
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is the price of a discount bond of maturity TI and ( ) )(/,),( tGTtBTtR II = . 

The optimal wealth may be rewritten in the following convenient way:  
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 (9) 

The resolution of the expectation in expression (9) may be simplified by making an appropriate change 

of numéraire. As shown by Lioui and Poncet (2001) and by Munk and Sorensen (2004), a zero-coupon 

bond, ( )ITtB , , whose maturity, TI, coincides with that of the investor’s horizon, is a useful numéraire. 

We take a step forward by operating a change of probability measure that is specific to CRRA utility 

functions. To obtain optimal demands, Rodriguez (2002) uses a change of probability measure related 

to a CRRA utility function, but in this paper, we attempt to clarify this change of measure. ),( ITtR  is 

the relative price of this discount bond with respect to the numéraire G(t). Note that ),( ITtR  is a 

martingale under the probability measure P. In contrast, γ
11

),(
−

ITtR , for ∞<γ , is neither a financial 

asset nor a martingale under P. To see this, applying Ito’s lemma to γ
1

1
),(

−

ITtR  gives: 
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 (10’) 

Remark that both the instantaneous expected changes and the variance of γ
11

),(
−

ITtR  reflect the agent’s 

risk aversion, as well as the risk associated with both the optimal growth portfolio and the discount 

bond ( )ITtB , . However, these two moments are not equal - a feature that turns out to be important for 

the change of the probability measure and the derivation of the agent’s optimal demand.  

 Let us define: 
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with the initial condition 1),0( =Δ ITγ . A simple inspection of equation (10) reveals that minus ( )ITty ,γ  

is nothing other than the instantaneous expected return of γ
1

1
),(

−

ITtR . ),( ITtγΔ  is an adjustment factor 

arising from the fact that γ
1

1
),(

−

ITtR  is not a martingale. When ∞→γ , 1),( =Δ ITtγ , which is a special 

case of the CRRA utility functions. Now γ
γ

γ
11

11
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⎝

⎛
−−

Δ= IIII TtRTtTBTtR , which corresponds 

to the second exponential in the right hand side of equation (10’),  is a martingale under P. Since 

0),( >ITtR  and [ ] 1),( =II TTRE , ),( ITtR  is a potential candidate as the Radom-Nikodym derivative 

for a change of the probability measure in our specific case. The objective is to find a non-dividend-

paying financial asset as numéraire associated with this probability measure. We suggest the following 

numéraire )(),(),( tGTtRTtN II = , such that any financial asset divided ),( ITtN  is a martingale under 

this new probability. The dynamics of this numéraire are governed by: 
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Following Geman et al. (1995), the Radon-Nikodym derivative, defining the probability 

measure ( )ITP ,γ equivalent to P, is given by: 
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It follows that : 
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We can use Bayes’ rule to get: 
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The same procedure may be used to compute:  
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Inspired by the relevant literature of the term structure of interest rates (see Duffie and Kan, 

1996; Dai and Singleton, 2000; Ahn et al., 2002), as shown in appendix A, ( )ITty ,γ  is a quadratic 

function and ),( ITtBγ  may be viewed as an exponential quadratic function of the state variables: 

)(),,()(
2
1)(),,(),,(,       2

'
10 tYTtAtYtYTtATtA)T(ty IIIIγ γγγ ++=  

 
⎭
⎬
⎫

⎩
⎨
⎧ ++= )(),,()(

2
1)(),,(),,(exp),( 2

''
10 tYTtBtYtYTtBTtBTtB IIII γγγγ  

with the terminal condition ( ) ( ) ( ) 0,,,,,, 210 === IIIIII TTBTTBTTB γγγ . ( )ITtA ,0 , ( )ITtA ,1  

and ( )ITtA ,2  are given in Appendix A. 

By substituting (12) and (12’) in equation (9), the optimal wealth then becomes: 

 ( ) ),,()(
11

*
ITttGtW γζ γγ Φ=

−

 (13) 

 ),,( ITtγΦ  can be rewritten in the following way 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=Φ ∫ ),,(),,(),,( I

T

t
I TtdsstTt

I

γϕγϕγ , where 

( ) ( )III TtBTtBTt ,,),,(
11

γγγϕ −=  is like an investor’s specific zero-coupon bond. ),,( ITtγΦ  is then 
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analogous to a coupon bond that pays a coupon of one monetary unit and may be referred to as the 

investor’s specific coupon bond9. 

 The following important remarks are in order. First, ),( ITtBγ  is stochastic because of the 

stochastic character of the prices of risk. For a more risk-averse investor than the logarithmic utility 

agent (γ > 1), ( ) 0, >ITtyγ , and ),( ITtBγ  is like a discounting factor. Conversely, when (s)he is less 

risk-averse than the Bernoulli investor (γ <1), ( ) 0, <ITtyγ , and ),( ITtBγ  is comparable to a 

compounding factor. ( )ITty ,γ  may be considered as a state variable incorporating the risk generated by 

the prices of risk and the yield curve. Also, ),( ITtBγ , which results from the agent’s consumption-

investment problem solution, is investor specific, since it is a function of his (her) risk aversion 

coefficient and horizon. Second, the assumption that markets are complete implies the uniqueness of 

the probability measure ( )ITP ,γ , hence that of the first and second expectations on the right hand side of 

equation (12). It follows that ),( ITtBγ , ( )**  and )( tWtc  are also uniquely obtained. Finally, under 

( )ITP ,γ , the investor’s optimization problem consists in calculating ),( ITtBγ . For both the Bernoulli 

( 1=γ ) and the infinitely risk-averse ( ∞=γ ) investors, 1),( =ITtBγ , which leads, for these two special 

cases, to a direct derivation of the optimal consumption and wealth. In general, the solution of 

),( ITtBγ , as will be shown below, requires numerical methods.  

 At any date t, the wealth of the investor is composed of )(tSθ , )(tBθ  and )(tβθ  units of the 

spot commodity, the discount bonds and the riskless asset respectively, and the margin account:  

 )()()(),()()()()( tMttTtBttSttW BBS +++= βθθθ β   

Applying Itô’s lemma to the above expression, the dynamics of the unconstrained investor’s 

wealth may be written: 

 ( )
( ) [ ] )()()()'()( ' tdztdttttr
tW
tdW σπσλπ ++=  (14) 

                                                   
9 Obviously, ),,( ITtγΦ is not an asset, but as its expression is formally similar to that of a coupon bond, it will be qualified as 
the investor’s coupon bond, although it is a misuse of language.  
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with the initial condition W(0) and [ ])()()()( ' tttt HBS ππππ = . 
)(

)()()(
tW

tStt S
S

θπ ≡ , 

)(
),()()(

tW
TtBtt BB

B
θπ ≡  and 

)(
),()(),(

tW
TtHtTt HH

HH
θπ ≡  denote the proportions of the total wealth invested 

in the commodity, the discount bond and the futures contract respectively. In order to optimally 

determine these proportions, the unconstrained investor solves the Program Π. The result obtained is 

presented in the following proposition.   

 

Proposition 1. Given the economic framework described above, the optimal demand for risky assets by 

the unconstrained investor is given by: 
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The optimal asset allocation may be decomposed in: 

a) a traditional tangent component 
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b) a hedging component related to the stochastic fluctuations of the interest rate  
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c) a hedging component related to the random evolution of the (square) market prices of risk 
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where, ( )IBIBI TtTtTt ,),(11),,(
γ

σσ
γ

γσϕ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= , ( ) ( ) ( )[ ])(,,,,, 21

' tYTtBTtBTt IIYIB γγσσ
γ

+= , 'σσ=Σ  

and '
YYY σσ=Σ . ( )ITtB ,,1 γ  and ( )ITtB ,,2 γ  are solutions to the following ordinary differential 

equations (ODEs): 
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( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,,,,, 2222
'

22 =−Σ+−− IIYIIYYIIt TtATtBTtBTtBTtBTtB γγγγμμγγ γγ

( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,)(,,,, 1122
'

1
'

1 =−Σ++− IIYIIIYIt TtATtBTtBTtBtTtBTtB γγγγμγμγ γγ  

with the terminal condition ( ) ( ) 0,,,, 21 == IIII TTBTTB γγ . ( ) ( )ItIt TtBTtB ,, and ,, 21 γγ  are the first order 

derivatives with respect to t. The constant and deterministic functions γμY and )(tγμ are given in 

Appendix A. 

Proof. See Appendix A. 

 

As shown in Proposition 1, the optimal demand for risky assets (equation 15) can be 

decomposed into two parts. The first one is the traditional mean-variance speculative portfolio 

proportional to the investor’s risk tolerance (Proposition 2 below is dedicated to this term), whereas the 

second part is a hedge portfolio. The latter itself contains two components. The first one reveals how 

the investor should optimally hedge against unfavorable fluctuations of the interest rate. It depends on 

the covariances between the three traded assets and a discount bond. It is worth pointing out that the 

latter is not the traded bond with maturity TB, but a discount bond with an expiration date, TI, equal to 

that of the investor’s horizon. This should not come as a surprise since the investor’s objective is to 

hedge the fluctuations of his (her) opportunity set up to his (her) investment horizon (see also Lioui and 

Poncet, 2001; Munk and Sorensen, 2004).  

More significantly, the second term arises because the prices of risk are stochastic and serves as 

a hedge against the risk generated by these prices of risk. It involves the investor’s specific coupon 

bond as well as its standard error, and requires numerical methods to solve the ODEs10. The investor’s 

coupon bond turns out to be the suitable instrument to hedge the risk stemming from the prices of risk, 

since it gathers all the sources of risk in the economy and reflects the agent’s risk preferences. This 

component may be referred to as a Merton-Breeden hedging term in that the coupon bond depends on 

),( ITtBγ , hence on )(tyγ , which acts as a substitute for the state variables in the economy. As for the 

first hedging addend against shifts in interest rates, the risk is also measured by the standard error, but 

in this case, it is the standard error of the investor’s coupon bond which, as a function of ),( IB Tt
γ

σ , 

                                                   
10 Liu (2007) shown that the solution to the investor’s problem reduces to that of a set of ODEs. 
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encompasses the volatility of the state variables. Notice that if market prices of risk were assumed to be 

constant or deterministic, then only interest rate risk would be likely to be hedged by the investor. 

Thus, in accordance with the results of Merton (1973), investors will not hedge at all those variables of 

the opportunity set that will not evolve randomly over time. Moreover, expression (18) separates the 

Merton-Breeden hedging term stemming from the maximization of the investor’s utility function of 

consumption from that coming from the maximization of his (her) final wealth. However, a closer look 

reveals that these terms are related. Actually, the consumption part is the sum of the terminal wealth 

component over the agent’s investment horizon. Thus, at each date, the investor makes the optimal 

hedging decision about his (her) consumption relative to his (her) optimal wealth at the same date.    

  Two special cases are worth mentioning. When the investor has a logarithmic utility function, 

(s)he behaves myopically, which leads to two standard results: the speculative term is independent of 

the investor’s risk aversion and the hedging component disappears. Generally, the Bernoulli investor 

does not hedge stochastic variations in the investment opportunity set. In our case, (s)he is not 

concerned by the risk due to interest rate movements up to his (her) investment horizon, and nor is 

(s)he by that generated by the prices of risk as functions of the state variables. As expected, the demand 

of the infinitely risk-averse investor does not include any speculative element. However, the hedging 

part contains only the component related to interest rates changes, since the Merton-Breeden term 

vanishes. Then, in that sense, this last is not a “pure” hedging term.  

The next propositions and corollary are devoted to a thorough study of the speculative and 

hedging terms. They try to elucidate the consequences on these terms of the stochastic opportunity set, 

especially the stochastic convenience yield, to highlight the role played by the traded primitive assets 

and the futures contract as hedging instruments, and, for practical considerations, to implement these 

terms in such a way that they depend on the measurable moments of the opportunity set.  

To achieve these goals, two assets may be introduced into our analysis whose prices are 

denoted ),( Bu TtB  and ),( Hv TtH . These assets are assumed to be cash assets, i.e., they are not marked 

to market, and can be duplicated by a portfolio of four assets, namely the riskless asset, the discount 

bond with maturity TB, the spot commodity and the futures contracts. They reflect idiosyncratic risks. 
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The first asset is associated with the idiosyncratic risk of the interest rate, while the second one is 

linked to that of the convenience yield. Note that the existing spot commodity spans the risk of )(tzS .  

 )(),(),(
),(
),( ' tdzTtdtTt

TtB
TtdB

BBuBBu
Bu

Bu σμ −=  

 )(),(),(
),(
),( ' tdzTtdtTt

TtH
TtdH

HHvHHv
Hv

Hv σμ +=  

where [ ]0),(0),( '
BurBBu TtTt σρσ =  and [ ]),(00),( '

HHvHHv TtTt σσ = . Since the synthetic assets 

are cash assets, then )(),()(),( ' tTttrTt BBuBBu λσμ −=  and )(),()(),( ' tTttrTt HHvHHv λσμ += . 

 Equation (16) may further be manipulated to obtain more insightful expressions by introducing 

the two synthetic assets into our analysis. This leads to the following proposition.  

 

Proposition 2. The optimal mean-variance proportions can be couched in a recursive way: 
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Proof. See Appendix B. 

 

 This formulation is useful for computational purposes since speculative demands are expressed 

in terms of excess returns, volatilities and covariances, and they are calculated in a recursive way: the 

speculative demand of futures contracts is first derived, which allows one then to determine that of the 

discount bond and finally the proportion of the spot commodity can be obtained as a function of the 

other two demands. It follows that the speculative proportions will not only be modified as time passes, 

but also as the state variables fluctuate stochastically over time. The investor will actively adjust his 

(her) speculative position as a function of the level of the state variables.     
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 The investor’s speculative demand consists of a fund including an element specific to the 

futures contract and a component proper to the two primitive risky assets. This decomposition sheds 

light on the crucial role played by the idiosyncratic risks captured by the two replicable assets and the 

spot commodity. The speculative demand for the futures contract depends on the excess return and the 

variance of the synthetic asset, ),( Hv TtH . It reflects the investor’s anticipations about the specific 

source of uncertainty of the convenience yield. The futures contract is thus the sole asset that will be 

used by the investor to form his (her) anticipations about the future evolution of the convenience yield. 

It follows that the mean-variance portfolio for futures contracts will be the only demand depending 

uniquely on the price risk of the convenience yield. The speculative demand for the discount bond is a 

function of the excess return and the variance of the synthetic asset, ),( Bu TtB , which spans the 

idiosyncratic risk of the interest rate. Because of the correlation of the futures contract with the short 

rate, )(tMV
Bπ  is, however, modified by a second term. This additional term involves the mean-variance 

portfolio for futures contracts weighted by the usual covariance/variance ratio 
),(),(

),,(
'

BBuBBu

BHHB

TtTt
TTt

u

σσ
Σ

. A 

similar argument applies to the speculative demand for commodities. The excess return of the spot 

commodity divided by its variance, spanning the idiosyncratic risk of the commodity, is now adjusted 

by two terms since the spot commodity is correlated with both the futures contract and the discount 

bond. If the convenience yield were non-stochastic, 0)( =tMV
Hπ , and then the speculative demand 

contains only the proportions of the two primitive assets.  

The interaction between the three components of the investor’s speculative demand can be 

examined through the covariances between the assets. On the one hand, since ),,( BHHB TTt
u

Σ  is 

supposed to take low real values, it has a weak impact on the investor’s speculative position on the spot 

commodity. As expected, unlike )(tSπ , the proportion invested in the discount bond is strongly 

influenced by ),,( BHHB TTt
u

Σ , and therefore by the speculative demand of the futures contracts. On the 

other hand, as the spot commodity and the futures contract are highly positively correlated, the 

speculative proportion of the commodity will be largely driven by that of the futures contract.   
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Proposition 3. a) The optimal hedging proportions spawned by the interest rate are only carried by the 

discount bond and write: 
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b) The optimal hedging proportions generated by the (square) market prices of risk can be expressed in 

a recursive way: 
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c) The optimal hedging proportions generated by the (square) market prices of risk can be decomposed 

in the following manner: 
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where { })(),(),( ttrtXi δ∈ , I is a 3-dimensional identity matrix and Il, l = 1, 2, 3, represent its columns. 
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i
,γ stands for the first 

order derivative of ( )ITtB ,γ  with respect to each state variable.  

Proof. See Appendix C. 
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According to Proposition 3, the hedging demand for the discount bond (equation 23) is the only 

one including a term that hedges the risk due to the stochastic nature of the interest rate. This 

component is proportional to the ratio of the volatilities of the bonds with maturities respectively equal 

to TI and TB. When the two maturities coincide, this ratio is equal to one, and the hedging demand is 

merely a function of the investor’s risk aversion. This is also the sole ingredient in the agent’s optimal 

demand evolving deterministically over time. This feature is quite general, in the sense that it is not 

related to the Gaussian character of the short rate. Insofar as the variance of the interest rate is 

proportional to its level this characteristic remains valid. This would be the case, for instance, if the 

short-rate followed a square-root process.   

Parts b) and c) of Proposition 1 indicate that the hedging term that stems from the stochastic 

character of the market prices of risk may admit two different decompositions pursuing two different 

objectives. The first, inspired by the speculative components (Proposition 2), expresses the hedging 

terms in a recursive way and establishes a relation between them. The second decomposition, given in 

expression (24), separates the hedging addend into three Merton-Breeden-like components; one for 

each and every state variable. In particular, introducing a stochastic convenience yield into the 

economy results in the presence of a hedging demand, )(_ tHMPR δπ , specific to this yield studied in the 

next corollary. This equation makes it possible to disentangle the hedging element related to each state 

variable from those associated with the other variables. As a consequence, our model has the ability to 

exactly measure the impact of these hedging terms on the investor’s optimal demand.  

In the light of expression (25’), this decomposition appears in a natural way and admits an 

economic interpretation. The investor wishes to hedge the random shifts in the prices of risk. As 

discussed above, ( )ITtB ,γ  incorporates these prices through ( )tyγ , which involves the state variables. 

The hedging demands )(_ tiHMPRπ  depend on the ratios ( ) ( )
( )I

I
I TtB

TtB
Tt i

i ,
,

,
γ

γ
γ =Ψ , which determine the 

sensitivity of ( )ITtB ,γ  on the three state variables (see also Wachter, 2002). In other words, each 

( )ITt
i

,γΨ  assesses the sensitivity of the hedging demands to changes in ( )ITtB ,γ  resulting from a 

change in the state variables.  
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Corollary 1. Each of the Merton-Breeden-like component can also be decomposed in a recursive way: 
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Proof. See Appendix D. 

 

 A parallel can be drawn between expressions (26) to (33) and equations (24) to (25’). Indeed, 

the Merton-Breeden hedging components, like the mean-variance proportions, may be computed in a 

recursive way requiring only the calculation of variances, covariances and of ( )ITtB ,γ . Furthermore, 

the covariances between the state variables and the assets which, in conjunction with the partial 

derivatives of ( )ITtB ,γ , determine the sign of the Merton-Breeden hedging demands, appear in a simple 

way facilitating the use of the above expressions.  
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By virtue of Corollary 1, the stochastic prices of risk will be hedged by both the primitive 

assets and the futures contract. It states that when the state variables are correlated with the risky 

securities, a portfolio of the latter will be manufactured to hedge the risk generated from the former. 

The proportions obtained in Corollary 1 differ markedly from those of Breeden (1984), who, in his 

study, considers futures contracts with an instantaneous maturity perfectly correlated with the state 

variables. This particular definition of futures contracts implies that the demand for the primitive assets 

that serve to hedge state variables vanishes. In contrast, our investor elaborates his (her) strategy by 

including the primitive assets in order to hedge against the risk of the state variables. 

The price risk associated with the spot commodity price will be hedged exclusively by this 

asset, because it is not correlated with the synthetic assets ( 0)()( __ == tt XHMPR
B

XHMPR
H ππ ). In sharp 

contrast, from (27) and (30), it is obvious that two and three risky securities are needed to hedge the 

risk price of the interest rate and the convenience yield respectively. These two state variables are 

indeed imperfectly correlated with the spot commodity and ),( Bu TtB . Moreover, the convenience yield 

is imperfectly correlated with ),( Hv TtH . The risk of the convenience is entirely hedged by the futures 

contract. The discount bond is employed to hedge the idiosyncratic risk of the short rate, while the spot 

commodity is used to hedge its own risk. The proportions given by (29), (32) and (33) are modified by 

adjustments terms in the same manner as for the speculative demands.  

The refinement achieved by the expressions provided in Corollary 1 presents another major 

advantage. It allows one to assess the weight of each state variable in the Merton-Breeden hedging 

terms and therefore to assess the relevance as well as the importance of the state variables included in 

the investment opportunity set when the investor’s objective is to implement hedging strategies. 

Actually, given the nature of the underlying commodity, some factors may have a strong or a negligible 

effect on these hedging elements implying that these factors may have or have not to be included in the 

opportunity set. Thus, this last may varied according to the nature of the spot commodity to be hedged. 

Since the speculative and the Merton-Breeden components are both affine functions, the investor has, 

in addition, the possibility to separate the impact of the state variables on these components and to 

better understand the overall behavior of his (her) optimal demand.   
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4. An illustrative example 

 

To get more insights on the impact of the parameters on the model, various simulations are represented 

in figures 1 to 18. We simulate the reaction of the speculative and the hedging demands to the 

investor’s horizon as well as to the state variables evolution. Table 1 summarizes the values of the 

parameters used in our simulations. 

[INSERT TABLE 1 ABOUT HERE] 

 The parameter values are partly inspired from Schwartz’s (1997) and Casassus and Collin-

Dufresne’s (2005) models. They are chosen in order to account for some features characterizing 

commodities. Commodity futures prices are frequently below the current spot price exhibiting 

backwardation (see Litzenberger and Rabinowitz, 1995), which is equivalent to a positive risk premium 

and implies a positive convenience yield. Commodity spot prices and convenience yields follow mean-

reverting processes (e.g. Bessembinder et al., 1995), as well as the short rate, so that 0 and 0 >> kα . 

The constant components of the prices of risk are supposed to be positive, while 

0 and ,0 ,0 <<< rrXXX λ λλ δ  inducing also mean-reversion in prices of risk and strengthening that of the 

state variables (see Cassasus and Collin-Dufresne, 2005). The convenience yield and the spot price are 

related through inventory decisions (e.g. Routledge et al., 2000). During periods of low inventories, the 

probability that shortages will occur is greater, and hence the spot price as well as the convenience 

yield should be high. Conversely, when inventories are abundant, the spot price and the convenience 

yield tend to be low. It follows that a positive correlation between the convenience yield and the spot 

price may be predicted. Frankel and Hardouvelis (1985) and Frankel (1986) argued that high real 

interest rates reduce commodity prices, and vice-versa. This should imply a negative correlation 

between, on the one hand, interest rates and, on the other hand, spot prices and convenience yields. 

To analyze the impact of risk aversion, optimal demands are depicted for four degrees of 

relative risk aversion (RRA). The first one is that of the investor who is less risk-averse than the 

Bernoulli one. As pointed out by Kim and Omberg (1996), the indirect utility function may explode for 

too low values when 1<γ . To avoid a such a problem, we put 0.7. The second risk aversion parameter 
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is the traditional logarithmic function, 1=γ , that separates bounded from unbounded utility functions. 

For a more risk-averse investor than the log-utility investor, we retain a value of 3=γ  for our 

simulations. Finally, according to Mehra and Prescott (1985) risk aversion should be much higher than 

one. To take into account this feature, we choose 6=γ . 

When studying the optimal proportions as a function of the investment horizon, we let this 

horizon vary in the interval [ ]2 ,0∈IT , and we set the maturity of the futures contract and the bond such 

as 12/1+= IH TT  and 5+= IB TT  respectively. That is the futures contract and the discount bond expire 

one month and five years respectively after the end of the investor’s horizon.  

The simulations show that the components of the optimal demand have, despite their 

differences, some common characteristics confirming the financial intuition and our main theoretical 

results. First, as a function of the investor’s horizon, the mean variance and hedging demands of the 

spot commodity behave in an opposite way than that of the futures contract. A short (long) position in 

the spot commodity is partially offset by a long (short) position in the futures contract. Also, opposite 

patterns are followed by the speculative and hedging terms. Second, the lower the investor’s degree of 

risk-aversion, the higher, in absolute values, the speculative proportions. Third, the Bernoulli investor 

appears as the dividing line between hedging and “reverse hedging” positions. Moreover, the Merton-

Breeden hedging terms vanishe for an investor behaving myopically.   

[INSERT FIGURES 1, 2, 3, 4, 5, 6 ABOUT HERE] 

Figures 1 trough 6 picture the reaction to the investor’s horizon of the optimal demands. To 

avoid any confusion, a preliminary remark is in order. The speculative demands are independent from 

the investor’s horizon. However, as we let HT  and BT  vary with the investor’s horizon, these 

proportions changes as IT  is modified. A clear distinction can be operated between the mean-variance 

elements related to the interest rate from those associated with the spot commodity and the futures 

contract. The latter are non-linear and sharply increase or decrease for a short horizon but they rapidly 

reach an asymptote for a longer term. This is due to the pattern of the synthetic assets price volatility, 
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),( HHv Ttσ : it flattens for a long horizon but is highly non-linear when the horizon shrinks. In contrast, 

the terms relative to the short rate are almost linear. Indeed, as the correlation between the interest rate 

and both the convenience yield and the commodity is low, these terms are essentially driven by the 

volatility of the bond. This last slowly varies with the horizon, and, as a consequence, the demand for 

the bond. The evolution of the Merton-Breeden terms as time passes is more intriguing. In fact, the 

hedging components stemming from the prices of risk associated with the futures contract and the spot 

commodity, in particular, are not monotonic in IT . They attain an optimum for a short horizon.  For a 

longer horizon, they may evolve in a counter-intuitive way. For instance, for a less (more) risk-averse 

investor, )(tHMPR
Hπ  slightly increases (decreases).  

[INSERT FIGURES 7, 8, 9, 10, 11, 12 ABOUT HERE] 

 We turn now to the study of the impact of the changes of the state variables on the speculative 

demand and of the γ parameter, which are displayed in figures 7 to 13. We set the investor’s horizon 

1=IT , while the other parameters values remain unchanged. As expected the mean variance 

components are inversely related to γ and tend to zero as γ goes to infinity. Our numerical simulations 

show that the interest rate has a weak impact on the investor’s demand, except for the proportions 

specific to this variable. We will then omit the majority of the figures related to the short rate and will 

mainly focus our analysis on the influence of the spot commodity price and the convenience yield, first, 

on the speculative demands, and, second, on the hedging terms. To examine the role of the spot 

commodity, its price ranges from 80 dollars to 120 dollars. For low values of the spot price, the 

speculative component of the futures contract is positive and decreasing, while for high values it is 

negative and decreasing. This result may essentially be explained by the prices of risk of both the spot 

commodity and the convenience yield. On the one hand, as indicated below Proposition 2, this 

component captures the idiosyncratic risk of the convenience yield and is a function of the price of risk 

associated with this source of uncertainty. Formally, we have 

⎥
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ρρρρσλ . This price in turn depends, for the 

values used in these simulations, negatively on the price of risk related to the (log)spot price 
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( )0<− urSuSr ρρρρ δδ  and positively to that of the convenience yield ( )0>δρv . On the other hand, 

mean-reversion in the price of risk of the (log)spot price implies that as the latter raises the former 

declines. Moreover, since the convenience yield and the futures price are negatively correlated, this 

component is multiplied by minus. In overall, for low values of the spot price, its price of risk 

outweighs that of the convenience yield so that the mean-variance term is positive, while for high 

values of the spot price the inverse holds. An inspection of Figure 7 shows that there exists a critical 

value of the spot price at which 0)( =tvλ , separating positive from negative speculative demands for 

futures contracts11. In other words, the interaction between the prices of risk in conjunction with their 

mean-reverting behavior determines whether the speculator goes short or long. The speculative 

proportion of the discount bond evolves contrary to that of the futures contracts (see Figure 9). A 

critical value of the spot price can be derived at which the expected return of the synthetic bond exactly 

compensates the speculative position in the futures contracts. Figure 13 performs a similar analysis 

when the speculative element of the discount bond varies as a function of the interest rate. A critical 

value of the short rate can also be determined distinguishing long from short positions. 

Contrary to the other two mean-variance terms, that of the spot commodity is positive and 

monotonic increasing in the spot price (see Figure 8). When this last is low, a high, due to mean-

reversion, instantaneous expected return of the spot commodity is negatively adjusted by both the 

speculative position in the futures contract ( )0),( >Σ HHS Tt  and in the bond ( )0),( <Σ BSB Tt . This results 

in a low speculative demand of the spot commodity. Conversely, although a high spot price reduces the 

expected return, a positive mean-variance component of the futures contract and of the bond offset this 

fall inducing a high speculative demand of the spot commodity.  

To underscore the importance of the convenience yield we let it vary between –5% and +15%. 

The speculative demand of the futures contract is an increasing function of the convenience yield and 

takes negative values (see Figure 10). Following the same reasoning as for the spot price, notice that 

                                                   
11 Kim and Omberg (1996) determine a value of the risk premium at which the position in the risky assets is zero (i.e. the 

speculative term perfectly counterbalances the hedging one), but in a different context: there are not futures contracts in their 

economy and the risk premium does not explicitly depend on the asset price. 
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the effect of the price of risk associated with the convenience yield dominates that of the spot 

commodity and the speculative demand is negative. However, as the convenience yield approaches to 

zero and becomes positive the difference between the two prices of risk lessens and tends to zero. For 

sufficiently high values of a positive convenience yield the speculative demand may be positive. The 

speculative proportion of the spot commodity is positive and decreasing in the convenience yield. 

Indeed, the joint effect of mean-reversion in the expected return of the spot commodity and the 

behavior of the speculative demand of the futures contract lead to this result.  

Figures 14 to 18 depict the reaction of the Merton-Breeden hedging addends to the changes of 

the state variables for different values of the γ parameter. As can be seen in Figure 15, a less risk-averse 

investor (solid line) than the logarithmic one (dashed-dotted line) holds a negative increasing 

proportion of the spot commodity, while a more risk-averse agent (dotted and dashed lines) holds a 

positive decreasing proportion. The intuition behind this result may be explained as follows. More risk-

averse agents wish to hedge against uncertainty and prefer a higher risk premium than a less risk-averse 

individual. Thanks to mean-reversion, low spot prices imply a high positive risk premium associated 

with the spot price and vice versa. Thus, a more risk-averse investor will hold more of the spot 

commodity than the myopic proportion (an increasing proportion), while a less risk-averse investor will 

hold less. This is in essence the explanation given by Kim and Omberg (1996), Wachter (2002) and 

Chacko and Viceira (2005)12. In our case, however, this analysis must be qualified. Indeed, unlike these 

papers, the investor has the possibility to use the discount bond and the futures contract as hedging 

instruments. )(tHMPR
Sπ  is thus affected by the hedging terms of the futures contracts and of the bond. 

This causes )(tHMPR
Sπ  to decrease when γ > 1 and to increase otherwise. The convenience yield affects 

)(tHMPR
Sπ  in a similar but more moderate way than the spot commodity, since it acts on both the prices 

of risk associated with the spot commodity and the convenience yield. For those agents who are 

                                                   
12 Wachter (2002) and Campbell and Viceira (2005) invoke the income and the substitution effects to explain the behavior of 

the hedging terms. Due to the income effect, an improvement of the investment opportunities (a higher risk premium) results 

in a higher consumption. It is compensated by the substitution effect which implies that the greater the investment 

opportunities the higher the savings. For investors with a γ > 1, the income effect dominates. 
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committed to a long (short) hedging position in the spot commodity, the position in the futures contract 

is short (long).  

 

4. Concluding remarks 

 

In this paper, optimal hedging decisions involving commodity futures contracts have been 

studied in a continuous-time environment (i) for an unconstrained investor with a constant relative risk 

aversion utility function (CRRA), (ii) when spot prices, interest rates and, especially, the convenience 

yield evolve randomly over time, and (iii) market prices of risk are stochastic and affine functions of 

the state variables. In this setting, by using a suitable CRRA specific change of probability measure, we 

derive the investor’s optimal demand, which consists of a speculative component affine in the state 

variables and two so called hedging terms. The first hedging component is associated with interest rates 

uncertainty. This term, which vanishes in the case of constant interest rates, involves a discount bond 

with a maturity equal to the investor’s investment horizon. The second one deserves a great attention 

because it has some interesting properties, partly shared with the speculative element, distinguishing 

our results from those of other papers. It is composed of affine in the state variables Merton-Breeden 

hedging terms resulting from the (square) market prices of risk. They underline the role played by the 

primitive assets and the futures contracts as hedging instruments against the idiosyncratic risk of the 

state variable, the convenience yield in particular. Both the speculative component and the Merton-

Breeden hedging terms can be couched in a recursive way depending on the first two moments of the 

state variables and on correlation coefficients. The main implication of these properties is that the 

investor may measure the effect of each state variable on his (her) optimal demand and decide on 

which of those variables are effectively important when s(he) pursues a hedging objective.   

  The economic framework of this paper can be extended in several directions. First, the 

general setting may usefully be adapted to the investor’s allocation problem in the case of stocks 

paying a dividend. Second, a natural extension of this paper is to derive optimal demands for a 

constrained investor. Third, commodities markets are highly volatile and spot assets exhibit jumps (see, 

for instance, Hilliard and Reis, 1998; Yan, 2002). The effect of jumps on the optimal asset allocation 
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with commodities remains an open question. Fourth, another observed characteristic distinguishing 

commodities from financial assets is that commodity prices exhibit seasonal patterns (see Richter and 

Sorensen, 2006). It would be of great interest to examine how seasonality modifies the investor’s 

hedging behavior. Finally, it is now acknowledged in the relevant literature that the convenience yield 

is not observable: indeed, in a partially observable economy (see, for instance, Dothan and Feldman 

1986; Detemple 1986; Gennotte 1986; Xia 2001) an agent can estimate one or more unobserved state 

variable(s) given information conveyed by past observations spawned by observable state variables via 

the continuous-time Kalman-Bucy filter. One important extension would therefore be to study how the 

incomplete information affects optimal asset allocation. 

 

Appendix. Proofs 

Appendix A. Proof of Proposition 1.  

 By using expression (2) and by operating the appropriate calculations )(tyγ  can be expressed 

as a quadratic function of the state variables. 
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The dynamics of the state variables under the probability ( )ITP ,γ  are given by:  

[ ] ( ) )()()()( ,'
, tdzdttYttdY IT

YY
γ

γγ σμμ +−=   



 31 
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The Feynman-Kac formula for quadratic processes under the probability ( )ITP ,γ implies that 

equation (12) is solved by the partial differential equation (PDE): 
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with the terminal condition ( ) 1, =II TTBγ . tr[.] denotes the trace of a matrix, and 

( ) ( ) ( )III TtBTtBTtB
YYYt

, and , ,, γγγ  represent the first and second order partial derivatives with respect to t 

and Y(t) respectively. 

We use the standard separation of variables method and consider a discount bond price 

function of the form:  
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where ( ) ( ) ( )III TtBTtBTtB ,, and ,,,,, 210 γγγ  are functions of time to maturity that are assumed to be 

continuously differentiable. These functions satisfy the terminal condition: 
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Substituting these partial derivatives into the PDE (A.1), collecting terms in Y(t), Y(t)2, and terms 

independent of the state variables gives the following ordinary differential equations (ODEs) subject to 

the terminal conditions:  

 ( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,,,,, 2222
'
,,22 =−Σ+−− IIYIIYYIIt TtATtBTtBTtBTtBTtB γγγγμμγγ γγ

( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,)(,,,, 1122
'

1
'
,1 =−Σ++− IIYIIIYIt TtATtBTtBTtBtTtBTtB γγγγμγμγ γγ

( ) ( ) ( ) ( ) ( )[ ] ( ) 0,,,,
2
1,,,,

2
1,,)(,, 021

'
11

'
0 =−Σ+Σ++ IIYIYIIIt TtATtBtrTtBTtBTtBtTtB γγγγγμγ γ  

By using Itô lemma, ),( ITtBγ  and ),,( ITtγϕ  follow respectively the SDEs: 
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Note that ),( ITtγμ and ),( ITtφμ are irrelevant for our allocation problem and will not be specified. By 

using Leibniz type rule for stochastic integrals (see Munk and Sorensen, 2004), ),,( ITtγΦ  obeys the 

following equation: 
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 By using Itô’s lemma, the instantaneous return of the optimal wealth (13) may be written:  
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Identifying the diffusion terms of the admissible wealth (14) and the optimum wealth (A.4) 

yields: 
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which leads to equation (15).  

 Parts a), b) and c) of proposition 1 can directly be obtained from this equation. 

 

Appendix B. Proof of Proposition 2. 

The following matrix products give: 
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By using equation (16) and by rearranging terms, we obtain: 
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By replacing the first two moments and the appropriate covariances of the synthetic assets into (B.3) 

and (B.4), equations (19), (20) and (21), in the main text, are obtained. 

 

Appendix C. Proof of Proposition 3. 

a) Expression (22) can easily be derived by operating the computation of ),(1
BB Ttσσ−Σ .  

b) ( )IB Tt,
γ

σ  may be written, in the orthogonal basis, in the following manner:  
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Equation (18) may thus be expressed as: 
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Using (B.1) leads to equations (23). 

c) Let I be a 3-dimensional identity matrix and 321 , , III be its columns. Then, we have 
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Plugging the above expression into equation (18) and rearranging terms leads to equations (24) and 

(25). 

 The first order derivative of ( )ITtB ,γ  with respect to the state variables can be written:  
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Expressions (C.2) and (25) allow to establish equation (25’). 

 

Appendix D. Proof of Corollary 1. 

By using (B.1), computing the matrix product iσσ
1−Σ , { })(),(),( ttrtXi δ∈  and substituting the result 

into equation (25) for each state variable. By calculating the appropriate covariances between the state 

variables and, on the one hand, the traded assets and, on the other hand, the synthetic assets, and by 

rearranging terms allow one to derive expressions (26) to (31).  
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Table 1 

Numerical values of the parameters used in the model 

r  δ  X  α  κ  δ  Sσ  rσ  δσ  f(0,t) 

0.04 0.07 4.6 0.25 1.5 0.05 0.35 0.01 0.25 0.04 

0Xλ  0rλ  0δλ  XXλ  δλX  rrλ  δδλ  Srρ  δρS  δρr  

12 0.15 0.5 -2.5 -1.5 -6 -2 -0.15 0.7 -0.1 

 



 41 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-12

-10

-8

-6

-4

-2

0

Investor's horizon (years)

S
pe

cu
la

tiv
e 

fu
tu

re
s 

co
nt

ra
ct

 p
ro

po
rti

on

γ=0.7

γ=1
γ=3
γ=6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

Investor's horizon (years)

S
pe

cu
la

tiv
e 

co
m

m
od

ity
 p

ro
po

rti
on

γ=0.7
γ=1

γ=3
γ=6

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Investor's horizon (years)

S
pe

cu
la

tiv
e 

di
sc

ou
nt

 b
on

d 
pr

op
or

tio
n

γ=0.7

γ=1

γ=3

γ=6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Investor's horizon (years)

P
ric

e 
of

 ri
sk

 h
ed

gi
ng

 fu
tu

re
s 

co
nt

ra
ct

 p
ro

po
rti

on

γ=0.7
γ=1
γ=3

γ=6

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Investor's horizon (years)

P
ric

e 
of

 ri
sk

 h
ed

gi
ng

 c
om

m
od

ity
 p

ro
po

rti
on

γ=0.7
γ=1
γ=3

γ=6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Investor's horizon (years)

In
te

re
st

 ra
te

 h
ed

gi
ng

 d
is

co
un

t b
on

d 
pr

op
or

tio
n

γ=0.7
γ=1
γ=3

γ=6

 

Fig. 1. Speculative futures proportion varying with the 
investor’s horizon. This figure plots )(tMV

Hπ as a function 
of the investor horizon ranging from 0 to 2 years 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 2. Speculative commodity proportion varying with 
the investor’s horizon. This figure plots )(tMV

Sπ as a 
function of the investor horizon ranging from 0 to 2 years 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 3. Speculative bond proportion varying with the 
investor’s horizon. This figure plots )(tMV

Bπ as a function 
of the investor horizon ranging from 0 to 2 years 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 4. Price of risk hedging futures proportion varying 
with the investor’s horizon. This figure plots )(tHMPR

Hπ as 
a function of the investor horizon ranging from 0 to 2 
years for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 5. Price of risk hedging commodity proportion 
varying with the investor’s horizon. This figure 
plots )(tHMPR

Sπ as a function of the investor horizon 
ranging from 0 to 2 years for 7.0=γ (solid 
line), 1=γ (dashed-dotted line), 3=γ (dotted line), 

6=γ (dashed line). The other parameters are given in 
Table 1. 

Fig. 6. Interest rate hedging bond proportion varying 
with the investor’s horizon. This figure plots )(tHMPR

Bπ as 
a function of the investor horizon ranging from 0 to 2 
years for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 
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Fig. 7. Speculative futures proportion varying with the 
commodity price. This figure plots )(tMV

Hπ as a function 
of the (logarithm) commodity price ranging from $80 to 
$120 for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 8. Speculative commodity proportion varying with 
the commodity price. This figure plots )(tMV

Sπ as a 
function of the (logarithm) commodity price ranging from 
$80 to $120 for 7.0=γ (solid line), 1=γ (dashed-dotted 
line), 3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 9. Speculative bond proportion varying with the 
commodity price. This figure plots )(tMV

Bπ as a function 
of the (logarithm) commodity price ranging from $80 to 
$120 for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 10. Speculative futures proportion varying with the 
convenience yield. This figure plots )(tMV

Hπ as a function 
of the convenience yield ranging from -5% to 15% 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 11. Speculative commodity proportion varying with 
the convenience yield. This figure plots )(tMV

Sπ as a 
function of the convenience yield ranging from -5% to 
15% for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 12. Speculative bond proportion varying with the 
convenience yield. This figure plots )(tMV

Bπ as a function 
of the convenience yield ranging from -5% to 15% 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 
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Fig. 13. Speculative bond proportion varying with the 
interest rate. This figure plots )(tMV

Bπ as a function of the 
interest rate ranging from 1% to 8% for 7.0=γ (solid 
line), 1=γ (dashed-dotted line), 3=γ (dotted line), 

6=γ (dashed line). The other parameters are given in 
Table 1. 

Fig. 14. Price of risk hedging futures proportion varying 
with the commodity price. This figure plots )(tHMPR

Hπ  as 
a function of the (logarithm) commodity price ranging 
from $80 to $120 for 7.0=γ (solid line), 1=γ (dashed-
dotted line), 3=γ (dotted line), 6=γ (dashed line). The 
other parameters are given in Table 1. 

Fig. 15. Price of risk hedging commodity proportion 
varying with the commodity price. This figure 
plots )(tHMPR

Sπ  as a function of the (logarithm) 
commodity price ranging from $80 to $120 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 16. Price of risk hedging futures proportion varying 
with the convenience yield. This figure plots )(tHMPR

Hπ  as 
a function of the convenience yield ranging from -5% to 
15% for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 17. Price of risk hedging commodity proportion 
varying with the convenience yield. This figure 
plots )(tHMPR

Sπ  as a function of the convenience yield 
ranging from -5% to 15% for 7.0=γ (solid 
line), 1=γ (dashed-dotted line), 3=γ (dotted line), 

6=γ (dashed line). The other parameters are given in 
Table 1. 

Fig. 18. Price of risk hedging bond proportion varying 
with the convenience yield. This figure plots )(tHMPR

Bπ  as 
a function of the convenience yield ranging from -5% to 
15% for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 


