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Abstract 
 
 
Basel II adopting banks estimate and validate Long-Run Probability of Default (LRPD) for 
each of their Internal Risk Ratings (IRRs).  In this study, we examine alternative 
methodologies in estimating and validating LRPD.  We propose the maximum likelihood 
estimators incorporating both cross-sectional and serial asset correlations while being 
consistent with the economic model underlying the Basel II capital requirement 
formulation.  We first adopt Basel’s infinitely granular portfolio assumption and propose a 
LRPD estimation methodology for regulatory capital estimation.  We then relax this 
assumption to examine alternative estimation methodologies and their performances for 
finite number of borrowers. Simulation-based performance studies show that the proposed 
estimators outperform the alternatives in terms of their accuracies even under a number of 
small sample settings. Using the simple average of default rates as an estimator is found to 
be prone to underestimation of LRPD.  For the purpose of validating the assigned LRPDs, 
we also examine alternative ways of establishing confidence intervals (CIs). For most of 
the cases, the use of the CIs constructed based on the proposed maximum likelihood 
estimators results in fewer errors in hypothesis tests.  We show that the proposed method 
enables the use of external default rate data to supplement internal default rate data in 
attaining a more accurate and representative estimate of LRPD.   
 
 
 
 
 
 
 
 
 
 
 
Keywords: Basel II, Long-Run Probability of Default, Asset Correlation, Stress Condition, 
Validation, Confidence Interval, Hypothesis Test. 
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Basel II requires that those banks adopting the Internal Ratings-Based (IRB) 
approach estimate the Long-Run Probability of Default (LRPD) for each of their Internal 
Risk Ratings (IRRs) to be used in the computation of their regulatory capital requirements.  
It is critical to correctly estimate the LRPD to be assigned to each IRR as the under-(over-) 
estimation of the LRPD results in the under-(over-) estimation of the capital requirement.   
 

LRPD is a measure of the long-term average of the probability of default (PD) of 
the borrower over a one-year horizon and is typically estimated from historical default rates 
observed from portfolios of credit instruments.  Estimation of LRPD poses significant 
challenges in terms of both methodology and data availability. The former requires the 
distinction of the implicit PD of individual borrowers from the explicitly observable 
portfolio default rates.  Besides the level of the PD of individual borrowers, any pair-wise 
(cross-sectional) asset correlation may also affect the distribution of the default rates 
observed by tracking a uniform credit portfolio over time.  Specifically, the higher the asset 
correlation across the borrowers, the higher is the chance that a large number of (joint) 
defaults occur.  Moreover, PD is likely to be time-dependent and thus serially correlated 
through time.  As a result, both cross-sectional and serial correlations need to be accounted 
for in order to accurately estimate the LRPD.  A number of previous studies ignore these 
cross-sectional and time dependencies in the estimations of PD.  For example, in 
constructing the confidence sets of the default (and transition) probabilities through 
bootstrap experiments, Christensen et al. (2004) assume credit risk is time-homogenous 
over the time windows.  Nickell et al. (2000) also assume cross-sectional independence in 
computing the standard errors of their estimates of default (and transition) probabilities.  
Blochwitz et al. (2004) conduct a number of simulation exercises and conclude that the 
confidence intervals of the PD estimate established by ignoring the cross-sectional and time 
dependencies do not result in unacceptably high errors in the relevant hypothesis tests.  The 
highest asset correlation scenario examined is however only 9%, which is believed to be 
less than those of most of the practical situations. 
 

From the data availability standpoint, there are typically insufficient internal default 
rate data (especially for IRRs of low default risk) for banks to conduct their LRPD 
estimations.  Not to mention the ability to collect sufficient default rate data that spans 
more than one credit cycle.  On the other hand, default rate data collected and compiled by 
rating agencies (external default rate data) are richer and may dated back to the early 80s 
(e.g. S&P’s CreditPro® database), thus covering multiple credit cycles.  This makes a 
robust use of the external data in LRPD estimation invaluable. 
 

In this paper, we examine alternative methodologies in estimating and validating 
LRPD.   In Section 1, we first propose a maximum likelihood estimator (MLE) that is 
consistent with the economic model underlying the Basel II capital requirement 
formulation, which is essentially a single-factor structural model of infinitely-granular 
portfolio composition.  The proposed estimator, while being consistent with Basel II’s 
economic model, incorporates both cross-sectional and time dependent default event.1    

                                                           
1 In conducting simulation exercises on portfolios of realistic characteristics, Tarashev and Zhu (2007) 
conclude that the violation of the infinitely-granular single-factor model assumption has virtually 
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Consistency with the underlying economic model of Basel II ensures that the LRPDs 
estimated would be appropriate inputs to the capital requirement formula of Pillar 1.  The 
meaning of LRPD and thus its estimation methodologies can be very different according to 
the specifically assumed economic model used in the formulation of the capital 
requirement.  As a result, a robust LRPD estimator obtained under an economic framework 
which is different from that of Basel II is not readily suitable to serve as an appropriate 
input to the capital formula, even though the dependent structure of the default events is 
correctly modeled.   

 
In Section 2, by conducting a number of simulation exercises, we examine the 

performance of the proposed LRPD estimator and compare it with those of the alternative 
estimators.  We judge the performance not only based on the accuracy of the point estimate, 
but also on the potential errors in the hypothesis tests of the assigned PD.  The proposed 
MLE estimator is the best performer on both counts even under the typical small sample 
settings.  We found that simple averaging of the defaults rates as an estimator of LRPD is 
prone to underestimation of LRPD under the assumed economic model of Basel II.  
Besides looking for an accurate and efficient estimator, banks might need to answer a 
different question in their validation process.  Many banks have already assigned LRPDs to 
their IRRs using alternative methodologies and sometimes educated guesses.  Validation of 
these assigned LRPDs with respect to the observed default rates becomes critical in 
complying with Basel II.   For this validation task, we examine alternative ways of 
establishing the confidence intervals (CIs) of LRPD and compare their performances in 
conducting the relevant hypothesis tests. 
 
 In Section 3, we extend the methodology to enable multiple portfolio estimation so 
that we can use internal and external default rate data together.  The ability to jointly 
estimate the LRPDs of the internal and external portfolio allows us to supplement the 
insufficient internal data with the much richer external data to improve the accuracy and 
efficiency of the estimation, while controlling for the difference in the characteristics of the 
two portfolios.   
 

In Section 4, we relax the infinitely granular portfolio assumption and examine 
alternative MLE estimators and their performances for finite number of initial borrowers as 
seen in practice.  The application of the resulting LRPD estimator would arguably be more 
appropriate (especially when the sample size is small) for pricing credit risk, computation 
of risk adjusted return on capital (RAROC) and estimation of economic (credit) capital, in 
which the advanced simulation techniques already incorporate the reality of finite number 
of borrowers.2  We compare the performances of different estimators by conducting a 
number of simulation exercises.  The proposed MLE estimator is again the best performer 
even under the small sample settings considered.  Nevertheless, the estimator obtained 
from assuming infinitely granular portfolio performs almost equally well for portfolio of 
relatively high default risk.   

                                                                                                                                                                                
inconsequential implications on the measurement of portfolio credit risk, while any mis-specification in the 
asset correlation has a much larger impact. 
2 Most financial institutions prefer to use Point-in-Time (PIT) PDs for pricing and RAROC purposes.  PIT 
PDs can be thought of as LRPDs conditioned on observable information. 
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In Section 4, we also ask the same question we ask in Section 2: How to validate 

the LRPDs which have already been assigned to the IRRs using observed default rates? For 
this validation task, we examine alternative ways of establishing the CIs in a number of 
small sample settings when making statistical inference in the hypothesis tests on the 
assigned LRPDs. These hypothesis tests serve as the building blocks of the validation 
exercise for Basel II compliance.  Through a number of simulation exercises, we document 
which alternatives are best justified under different cases of portfolio sizes, lengths of 
historical time period and the degrees of the underlying default risk.  Finally, we conclude 
with a couple of remarks in Section 5. 
 
 
1.  Basel II Capital Formula and Long-Run Probability of Default (LRPD) 
 

In this section, we examine the Basel II capital formula in light of the underlying 
economic model.  We want to identify the parameter to be estimated, which can serve as 
the appropriate LRPD input to be used in computing the capital requirement consistent with 
the underlying assumptions.  To derive the Basel II capital formula, we start with a single-
factor model of the variations of asset values under Merton’s structural model.  This is the 
model used by Vasicek (1987) in generating the loss distribution of a credit portfolio.  
Gordy (2003) derives the conditions that ensure the portfolio-invariant property of the 
resulting Value-at-Risk (VaR), which underpins the validity of the Basel II risk-weight 
function.  We are not the first to utilize the Basel II framework.  For example, using the 
same framework, Balthazar (2004) establishes the confidence intervals of default rate given 
a certain value of LRPD.  In this study, we are interested in directly estimating LRPD and 
its statistical properties (e.g. confidence interval) given the observed default rates.  We also 
go one step further by incorporating serially-correlated systematic factor.  
 

Suppose borrowers are uniform in terms of their credit risks within a certain 
segment of the portfolio.  Under a single-factor model, individual borrower’s PD risk pt at 
time t is driven by both the systematic PD risk Pt and the borrower-specific PD risk et.  For 
example, for borrower i, 

          i
tt

i
t eRPRp ×−+×= 21     (1) 

 
We assume pt, Pt and et follow the standard normal distribution, where Pt and et are 
independent.  Under the Merton’s framework, we can interpret pt as a latent variable, which 
is a normalized function of the borrower’s asset value.  Borrower defaults when pt becomes 
less than a certain (constant) default point (DP).  The coefficient R is uniform across 
borrowers and measures the sensitivity of individual borrower’s risk to the systematic PD 
risk.  The parameter R2 is therefore the pair-wise correlation in asset values among 
borrowers as a result of the systematic risk factor.  It therefore governs the cross-sectional 
dependency of credit risk.  Credit risk may also be time dependent if the systematic factor 
Pt is serially correlated.  The time dependent property is explicitly modeled in the 
subsequent section.   
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Since pt is assumed to be normally distributed with mean zero and unit variance, the 
unconditional probability of default of any borrower is simply ( )DPΦ , where ( )•Φ  is the 
cumulative standard normal distribution function.  As shown subsequently, it is exactly the 
LRPD we need to estimate for Basel II risk-weight function in order to be consistent with 
the underlying economic model.   
 

It can be shown (e.g. in Vasicek (1987)) that the probability of default of borrower i 
conditional on observing the systematic PD risk Pt can be expressed as: 
 

[ ]t
i
t PDPp <Pr ( )( )DPRPz t ,,Φ=    (2) 

where   

           ( ) ( )tt PRDP
R

DPRPz ⋅−
−

=
21

1,,  

Even if the systematic factor is independent through time, default rate is not time-
homogenous.  Conditional default probability (of equation (2)) varies randomly with Pt 
through time.  In this set up, it will only be time-homogenous if asset correlation is equal to 
zero. 
 

Since i
te  is assumed to be independent of j

te  for i ≠ j, the probability of observing kt 
defaults out of nt initial number of borrowers within a uniform portfolio given the 
realization of Pt is equal to: 

         ( ) ( )( ) ( )( )( ) ttt kn
t

k
t

t

t
ttt DPRPzDPRPz

k
n

DPRPnk −Φ−×Φ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω ,,(1,,(,,;,  (3) 

and thus the unconditional cumulative probability that the number of defaults does not 
exceed kt can be obtained by integrating over Pt, 

( ) t

k

j
tt

t

t
n dPDPRPnj

n
k

F
t

t
 ,,;,

0
∑ ∫
=

∞

∞−

Ω=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
   (4) 

 
Let’s use tθ  to denote the observed default rate at time t, that is ttt nk=θ .  As nt 

approaches infinity (i.e. in a portfolio of infinite granularity), it can be shown that ( )tF θ∞  
and its density function ( )tf θ∞  can be respectively expressed as:3   

          ( ) ( )( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Φ×−Φ= −

∞ DPR
R

F t
PD

t θθ 1211    (5) 

             ( ) ( )( ) ( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ+−Φ×−−×

−
= −−

∞

2 1
2 

12
2

2

2
11

2
1exp

1
ttt DPR

RR

R
f θθθ   (6) 

 
where ( )•Φ−1  is the inverse of the cumulative standard normal distribution function.  
Equation (5) shows that ( )tθ

1−Φ  is in fact normally distributed with mean and standard 

                                                           
3 Please refer to Vasicek (1987) for details. 
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deviation equal to 21 RDP −  and 21 RR − respectively.  The observed default rate tθ  
is actually a transformation of Pt. 

   ( ) ( )tt PRDP
R

⋅−
−

=Φ−

2

1

1

1θ    (7) 

 
Equation (5) can also be used to derive the portfolio VaR.  Let’s use %9.99θ  to 

denote the critical value of the default rate of which there will be 99.9% of not exceeding.  
We can then obtain an expression of  %9.99θ  by reverting equation (5). 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Φ

−
+

−
Φ= − 999.0

11
1 1

22%9.99
R

RDP
R

θ   (8) 

The VaR (at 99.9%) per dollar amount of portfolio exposure is therefore equal to: 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Φ

−
+

−
Φ×=×= − 999.0

11
1 1

22%9.99%9.99
R

RDP
R

LGDLGDVaR θ  (9) 

where LGD denotes the constant and uniform loss given default.  Capital requirement can 
therefore be obtained by subtracting the expected loss (EL) from the above VaR. 
 

ELVaRCap −= %9.99  

           ( ) ( )DPLGD
R

RDP
R

LGDCap Φ×−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Φ

−
+

−
Φ×=⇒ − 999.0

11
1 1

22
 (10) 

Equation (10) is exactly the Basel II Pillar I risk-weight function, in which 2R is the asset 
correlation factor “r” that is determined based on asset class as specified in Basel II.  
Moreover, comparing equation (10) with the risk-weight function suggests the appropriate 
LRPD to be used is in fact ( )DPΦ , which is also the unconditional probability of default.  
In the next section, we derive efficient estimators of this Basel II parameter using the linear 
representation of ( )tθ

1−Φ of equation (7). 
 
 
2.  Estimation of LRPD 
 

In this section, we consider different approaches to estimate LRPD of a sufficiently 
large and uniform portfolio when we observe its annual default rates over a period of time.  
We derive an estimator that is asymptotically most efficient under the assumptions of the 
economic model underlying Basel II capital formula described in the previous section.  Our 
purpose is therefore to estimate LRPDs especially as inputs to the Basel II regulatory 
(credit) capital formula.  Through a simulation exercise, we also compare the performances 
of the alternative estimators in small sample settings.  
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Based on the single-factor model described in the previous section, the 
transformation of the observed default rate tθ  is a linear function of the random variable 
(systematic factor) Pt via equation (7) as the number of borrowers approaches infinity.  We 
can therefore estimate the implicit DP (and thus LRPD) by estimating the intercept of the 
time-series regression equation (7) of ( )tθ

1−Φ .  If the systematic factor Pt is i.i.d., the 
Ordinary Least Squares (OLS) estimator is asymptotically most efficient.4  A number of 
studies (e.g. Carling et al. (2007) and Chava et al. (2006)) however suggest Pt covariates 
with macroeconomic variables.  It is also likely to be positively serially correlated, where 
next period credit risk is more likely to be above average if the credit risk of this period is 
above average.  We consider an autoregressive model of Pt with a single lag. 

 

ttt PP εββ ×−+×= −
2

1 1     (11) 
 
where tε  is the i.i.d. innovations which follow the standard normal distribution and β is the 
lag-one serial correlation.  If we assume both 2R and β are known, the Generalized Least 
Squares (GLS) estimator is in fact the MLE estimator.  It is also asymptotically most 
efficient.5  The GLS estimator of DP is given by:6 
 

        
( )

( ) ( ) ( ) ( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛
Φ+−⋅Φ+Φ

+−−−

−−
= ∑

−

=

−−−
1

2

11
1

1
2

2

1
122

11 T

t
TtMLE TTT

R
DP θβθθ

ββ

β
 (12) 

 
The corresponding LRPD estimator is therefore equal to: 
 
             ( )MLEMLE DPLRPD Φ=     (13a) 
 
A confidence interval for the LRPD may be constructed based on the sample variance of 
the GLS estimator. 

[ ]

( ) ( )

( ) ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−−−

−×
×−Φ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−−−

−×
×+Φ=

=

TTT

R
zDPL

TTT

R
zDPU

ULCI

CLMLEMLE

CLMLEMLE

MLEMLEMLE

ββ

β

ββ

β

122

1

122

1
,

2

2

2

2

 (14a) 

 
where zCL is the critical value corresponding to the pre-specified confidence level (CL) 
under the standard normal distribution (e.g. zCL = 1.96 if CL is 95%). 
 

 
                                                           
4 In this case, the OLS estimator is the same as the MLE estimator. 
5 We could have estimated both 2R and β together with LRPD by MLE. 
6 Please refer to Appendix A for more details. 
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If 0=β  (i.e. time-independent), we have 

                           ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
Φ

−
Φ= ∑

=

−
T

t
tMLE T

R
LRPD

1

1
21

θ   (13b) 
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( )
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⎞
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⎜

⎝

⎛
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⎞
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⎝
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−
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⎜
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⎛
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−
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∑

∑

=

−

=

−

T
Rz

T

R
L

T
Rz

T

R
U

CL

T

t
tMLE

CL

T

t
tMLE

1

1
2

1

1
2

1

1

θ

θ

  (14b) 

 
 Besides being consistent with the underlying model of Basel II capital formula, the 
MLE estimator of equation (13) is asymptotically most efficient in the sense that it attains 
the Cramér-Rao Lower Bound as T approaches infinity.  There is however no guarantee 
that the performance is equally superior in a small sample setting, which is typically the 
case in practice.7  Financial institutions rarely have internal historical default rates that go 
back to more than 10 years.  Sometimes they may be able to supplement their internal data 
with external default rate data compiled by the rating agencies, which may then go back to 
the early 80s.   
 

In the rest of this section, we would like to investigate the performance of the 
proposed MLE estimator of LRPD in a couple of small sample settings and compare with 
the performances of a number of alternative estimators commonly used in practice.  By 
choosing parametric values that represent typical credit portfolios encountered by banks, 
we conduct a simulation exercise by generating time-series of default rates based on the 
infinitely granular single-factor model of the Basel II capital formula.  We judge the 
performances based on the resulting distributions of the different estimators.  Specifically, 
we are looking for an estimator which is unbiased and at the same time with small standard 
deviation.  We also compare the sizes of the Type I Error (i.e. the probability of rejecting a 
true null) of alternative ways in establishing the confidence intervals around the point 
estimates.  We consider four different estimators of LRPD: 
1.  Simple average of observed default rates (LRPDave) 
2.  The LRPD that results in the average default rates attaining the mode which matches 

the simple average of the observed default rates (LRPDmod)  
3.  Proposed MLE estimator (LRPDMLE1 based on equations (12) and (13a)) 
4. Proposed MLE estimator, but naively assuming that credit risk is time-series 

independent, i.e. β  equals to zero (LRPDMLE2 based on equation (13b)) 
 

All four are believed to be consistent estimators, while LRPDave is also unbiased.  
LRPDMLE1 is however asymptotically most efficient.  LRPDmod is considered by the 
Canadian financial institutions regulator, the Office of the Superintendent of Financial 
Institutions (OSFI), to serve as a conservative estimator of LRPD which caters for the 

                                                           
7 The confidence intervals of equations (14a) and (14b) tighten up with increasing T.  The degree of accuracy 
therefore increases with the length of the default rate data. 
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difference between the mean and mode of the distribution of the average default rates.   
Detail information of computing this estimator is provided in Appendix B. 
 

We consider the four sets of parametric values (Case 1 to 4) presented in Table 1.  
They therefore represent the “true” parametric values which govern the data generating 
process in the subsequent simulation exercises.  Case 1 and 3 therefore represent portfolios 
of relatively good credit quality, with Case 3 having the luxury of observing annual default 
rates over 25 years.  Case 2 and 4 are respectively the counterparts of Case 1 and 3, but 
now of lower credit quality.  We choose the values of 2R  and β  which are believed to be 
reasonable given our experience.  For each of the four cases, we simulate 5,000 time-paths 
of default rates and compute the four estimators for each simulated time-path of default 
rates.  Summary statistics of the sample distributions of the estimators across the 5,000 
simulations are reported in Table 2. 
 

INSERT TABLE 1 AND 2 ABOUT HERE 
 

The benefit of using the more efficient MLE estimators can be illustrated by 
comparing the resulting sample standard deviations of the different estimators in Table 2.  
Even in these small sample settings, the distributions of the MLE are much tighter than 
those of the other estimators.  For example, in Case 3, the standard deviation of LRPDMLE1 
is only about 76% and 68% of that of LRPDave and LRPDmod respectively.  Moreover, 
judging from the smaller difference between the 97.5 and 2.5 percentiles, the chance of 
significantly over- or under-estimating the true LRPD is also much smaller when MLE is 
used.   
 

In Figure 1, we plot the ratio of the sample standard deviation of LRPDMLE1 to that 
of LRPDave against the length of the historical time-series (i.e. T) under the case where the 
true LRPD (i.e. ( )DPΦ ), 2R  and β are equal to 2.0%, 25% and 10% respectively.  As 
expected, the benefit of using MLE increases with T.  Even in the case where T is as short 
as 5 years, we can still reduce about 7% of the variation of the estimator by using MLE. 
 

In Figure 2, we plot the same ratio of the sample standard deviations but now 
against the true LRPD under the case where T is equal to 10 years, while 2R  and β are 
again equal to 25% and 10% respectively.  The comparative advantage of MLE is higher in 
the estimation of the probability of default of borrowers of higher credit quality.  The 
benefit becomes minimal when the true LRPD is 10% or higher. 
 

INSERT FIGURE 1 AND 2 ABOUT HERE 
 

It can be observed from Table 2 that there is a slight upward bias in terms of the 
sample means of the MLE.  As expected, the bias is much smaller for T equals to 25 years 
than 10 years.  In terms of the sample medians, there are always almost exactly equal 
chances that MLE over- or under-estimates the true LRPD.  On the other hand, there is 
always a higher chance that LRPDave will underestimate rather than overestimate the true 
LRPD, which therefore suggests simple average may not produce a conservative estimator 
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of LRPD.  The opposite is the case for LRPDmod.  The chance of overestimation is always 
larger than that of underestimation.  This is not surprising given that this estimator involves 
an upward adjustment from the mode to the mean of the positively-skewed distribution of 
average default rates.  LRPDmod may therefore be too conservative.  The chance of 
underestimation (overestimation) of LRPDave (LRPDmod) is the highest when the true 
LRPD is low and the historical data series is short.  Comparing the sample statistics of 
LRPDMLE1 and LRPDMLE2, the benefit of knowing and modeling for the serial correlation 
of the systematic factor is found to be minimal when T is large.  There is only marginal 
improvement of efficiency in using LRPDMLE1 rather than LRPDMLE2 when T is small. 
 

So far we focus on the estimation of LRPDs from historical default rates.  In the rest 
of this section, we would like to answer a different question.  Many banks have already 
assigned LRPDs to their IRRs using alternative methodologies and sometimes educated 
guesses.  Validation of these assigned LRPDs is critical and also required for Basel II 
compliance.  How can we validate these “pre-assigned” LRPDs given the observed default 
rates?  For this validation task, we examine alternative ways of establishing the CIs when 
making statistical inference in the relevant hypothesis tests on the assigned LRPD.   
Specifically, we would like to study the validity of the proposed CIs of equation (14) for 
hypothesis tests on LRPD in small sample settings.  The CIs are bound to be too narrow 
when T is small and thus resulting in a Type 1 error (i.e. the probability of incorrectly 
rejecting the true null) which is larger than the specified confidence level.  We conduct the 
same simulation exercises described above in obtaining Table 2.  For each simulated time-
path of default rates, we construct the 95% CI (based on equation (14)) of a two-tail test of 
LRPD and check if the true null (i.e. LRPD of either 0.5% or 2.0%) lies outside of the 
interval and thus being rejected.  We then count the percentage of simulations which lead 
to a rejection.   

 
Besides the above two-tail test, we also measure the Type 1 error of the following 

one-tail test.  In each simulation, we ask ourselves whether we would like to reject the (true) 
null because we think it is (statistically) too high.  This is the case where the true null turns 
out to be higher than the upper bound of the CI.  The consequence of this type of rejection 
may lead to the imprudent action of the financial institutions to wrongfully reduce the 
assigned probability of default which is in fact correct in the first place.  Specifically, we 
want to find out the Type 1 error of this one-tail test at the 97.5% confidence level. 
 

We measure the Type 1 errors of four different CIs each corresponding to one of the 
estimators considered above.  We construct a CI (CIMLE1) around LRPDMLE1 based on 
equation (14a).  The CI (CIMLE2) around LRPDMLE2 is constructed based on equation (14b), 
that is, by setting β  to zero.  This represents the case where we naively assume the 
systematic factor is time-independent.  The results of Table 2 suggest this assumption 
might not hinder the efficiency of the resulting estimator.  We then construct an interval 
around LRPDave by invoking the central limit theorem (CLT).  If the systematic factor is 
time-independent, CLT ensures LRPDave converges (as T approaches infinity) to a normal 
distribution with mean equals to the true LRPD and standard deviation equal to the sample 
standard deviation of the observed default rates over the sample period divided by the 
square root of T.  In a finite sample setting, the resulting CIave is again bound to be too 
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narrow, especially since the systematic factor is in fact not i.i.d.  Finally, we construct a CI 
(CImod) around LRPDmod by assuming its standard deviation is also equal to that of LRPDave 
described above.8  We report the simulated Type 1 errors in Table 3.  We again conduct the 
simulations for each of the four cases of Table 1. 
 

INSERT TABLE 3 ABOUT HERE 
 

From Table 3, using CIMLE1 results in Type I errors of the two- and one-tail tests 
that are very close to the theoretically correct values of 5% and 2.5% respectively even in 
these small sample settings.  As expected, CIave is too narrow, especially when LRPD is 
small and T is short.  More problematically, in comparing Panel A and B of Table 3, the 
majority of the rejection cases are those where we wrongfully reject the true LRPD because 
it is believed to be statistically too high.  As a result, in using CIave, there might be a high 
probability that it may result in the financial institution taking the imprudent action of 
wrongfully reducing the assigned probability of default which is correct in the first place.  
The performance of CImod is found to be better than that of CIave, even though the resulting 
Type 1 errors are still significant.  Unlike the findings in Table 2, there is now a payoff in 
correctly modeling for the serial correlation of the systematic factor.  Ignoring the serial 
correlation (i.e. CIMLE2) results in significantly larger errors, especially when T is short. 
 
 
3.  The Use of External Data together with Internal Data in Estimating LRPD 
 

Rarely is the case that banks have historical default rate data under the new internal 
risk rating system (of Basel II) which covers more than a full credit cycle.  How can the 
banks justify to the regulators that the sample period over which the above estimation is 
conducted is sufficiently stressed relative to the long-run?  Considering that the last few 
years coincided with the favourable part of the credit cycle, resulting in low default rates, 
the regulators’ concern that the LRPD estimated from those default rates may be 
understated is understandable. 
 

Due to the lack of a long enough time-series of internal default rate, some banks 
fully rely on the use of external default rate data collected by rating agencies (e.g. S&P’s 
and Moody’s) which easily goes back to the early 80’s.  The longer external data series 
therefore easily spans more than a couple of credit cycles and should serve as a more 
credible dataset in the estimation of LRPD.  The problem is it needs to be pre-adjusted to 
cater for the differences in the following characteristics between the bank’s credit portfolio 
and those of the overall credit market from which the external data are collected. 

o Regional (country) composition; 
o Industry composition; 
o General level of credit risk (i.e. LRPD); and 
o Asset (cross-sectional) correlation (i.e. 2R ), which is also a measure of the 

sensitivity to the systematic factor in the single-factor model described above. 
 

                                                           
8 We are not aware of a closed-form asymptotic standard deviation for LRPDmod. 
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In practice, the adjustments made are typically on an ad-hoc basis and may not be 
readily defendable scientifically.  Moreover, it is a waste to completely ignore the internal 
default rate data collected even though it is not considered to be long enough.  In this 
section, we extend the previous single-factor model in a bivariate setting to enable the joint 
estimation of the LRPDs of two different credit portfolios of which default rates are 
observed over time periods which are only partially overlapping.  It therefore allows us to 
use both the shorter but more relevant internal data series together with the longer but less 
relevant external data in the estimation of the LRPDs of banks’ internal default ratings, 
while at the same time control for the differences in the portfolio characteristics underlying 
the two datasets. 
 

Suppose borrowers making up the internal portfolio are uniform in terms of their 
credit risks and are governed by the single-factor model of equation (1), specifically 
 

          i
tt

i
t eRPRp ×−+×= 21     

 
where Pt is the systematic PD risk, while Pt and et are independent and follow the standard 
normal distribution.  We again interpret pt as the normalized asset value of the borrower.  
Borrower defaults when pt becomes less than the default point (DP), which dictates the 
LRPD that we want to estimate.  Parameter 2R  is the pair-wise correlation in asset values. 
 

We then assume borrowers making up the external portfolio are again governed by 
a single-factor model. 

          i
txxtxx

i
tx eRPRp ,

2
,, 1 ×−+×=     (15) 

 
where Px,t is the systematic PD risk specific to the external portfolio, while Px,t and ex,t are 
independent and follow the standard normal distribution.  Borrower defaults when px,t is 
less than the default point (DPx) specific to this external portfolio.  The external portfolio 
may also have a different pair-wise correlation ( 2

xR ).  We expect Pt and Px,t vary over time 
in a correlated fashion with correlation coefficient equal to ρ which is straightly less than 
one. 
 

In this bivariate model, we therefore assume the difference between the two 
portfolios can be fully captured by the differences in values of the respective default point 
and pair-wise correlation.  For example, in the subsequent numerical example, we consider 
the external default rates of speculative grade instruments together with the internal default 
rates of a commercial bank.  We expect DPx to be higher than DP, given that the 
probability of default of the speculative grade instruments is believed to be in general 
higher than that of the bank’s borrowers.  We however expect 2

xR  to be lower than 2R  
given that the bank’s portfolio is believed to be less diversified in terms of its industrial 
compositions. 
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By observing the time-series of default rates tθ and tx,θ of the internal and external 
portfolios, we can simultaneously solve for the MLEs of the LRPDs of both portfolios, i.e. 
( )DPΦ  and ( )xDPΦ .  Partial overlapping of the two samples is sufficient to allow for the 

joint estimation.  The time series of tθ  is typically shorter than that of tx,θ .  Suppose, we 
only observe tx,θ  from t = 1 to Tx-T, while we observe both tθ and tx,θ from t = Tx-T+1 to 
Tx. 9  The MLEs can therefore be obtained by maximizing the logarithmic of the joint 
likelihood. 
 

( ) ( )[ ] ( )( )( )
xxx TxxTTTxDPDP ,1,1 ,...,,,...,logmaxarg, θθθθ +−∞=ΦΦ F  (16) 

 
If the two systematic factors Pt and Px,t are i.i.d. through time, the log-likelihood can be 
expressed as the sum of a series of univariate unconditional and conditional log-density.10 
Please refer to the Appendix C for more details. 
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( ) DPRz tt −Φ×−= − θ121  
 

If 2R , 2
xR and ρ are known, we can then solve for the MLE of LRPD by maximizing 

the joint likelihood (i.e. equation (17)) of observing the two sets of default rates,11  
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9 The lengths of the internal and external time series are therefore T and Tx respectively. 
10 We could have modeled for the potential serial correlation of the systematic factors (e.g. similar to equation 
(11)). 
11 We could have estimated ( )DPΦ , ( )xDPΦ , 2R , 2

xR and ρ simultaneously.  Obtaining the respective 
MLEs will then involving the solving of a set of simultaneous equations.   
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where LRPDMLE and LRPDMLE,x are the MLEs of the LRPD of the internal and external 
portfolio respectively.  When comparing equation (21) with (13b), we can interpret the 
second term of equation (21) as the correction to be made to the sub-sample LRPD 
estimate of the internal portfolio given the benefit of observing the longer external dataset.  
If we could observe the internal default rates over the same period when we observe 
external default rates (i.e. T = Tx), the second term of equation (21) vanishes and we get 
back the same LRPDMLE of equation (13b) as if we have not observed the external default 
rates.   
 

The corresponding confidence intervals of the MLEs are: 
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where zCL is the critical value corresponding to the pre-specified confidence level (CL) 
under the standard normal distribution (e.g. zCL = 1.96 if CL is 95%).  As expected, in 
comparing equation (23) and (14b), we notice that the MLE obtained here is more efficient 
and the CI tighter than when no (partially) overlapping external default rate data are 
observed. 
 

In the rest of this section, we consider an example to illustrate the application of this 
joint estimation method.  Suppose a bank has collected annual internal default rate data of a 
particular risk rating over a nine-year period from 1996 to 2004.  Solely based on this 
information, it could estimate LRPD using equation (13).  However, it might need to 
answer this question: Can it justify to the regulator that using data over this nine-year 
period will produce a prudent estimator of LRPD?  Although this period covers the most 
recent credit downturn of 2001-02, it is still relatively short and barely covers a full 
business cycle.  If it can also obtain a longer time-series of external default rate data, the 
bank can better answer the above question by adopting the joint-estimation method 
proposed earlier in this section. 
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Suppose the bank obtains S&P’s speculative grade historical default rates from 
1981 to 2004.12  These external default rates together with its internal data are presented in 
Table 4.  We expect DPx to be higher than DP, given that the probability of default of 
speculative grades is believed to be in general higher than that of the bank’s customers.  
We however expect 2

xR  to be lower than 2R  given that the bank’s portfolio is believed to 
be less diversified in terms of its industrial composition.13   By assuming 166.02 =R , 

073.02 =xR  and 553.0=ρ , we compute the MLEs of the LRPDs and the corresponding CIs 
based on the above joint-estimation approach (i.e. using equations (20) to (23)).14  The 
results are reported in Table 5 together with those obtained when estimations are done 
separately (i.e. using equations (13b) and (14b)). 

 
INSERT TABLE 4 AND 5 ABOUT HERE 

 
From Table 5, the LRPD estimate of the bank’s borrowers is reduced from 0.841% 

to 0.765% once we take into consideration of the longer external data.  In other words, 
solely using the limited internal data over 1996 to 2004 actually results in a prudent 
estimation (0.841%) of the LRPD in the first place.  Besides obtaining a more appropriate 
point estimate of LRPD, the joint-estimation also improves the efficiency and thus allowing 
for a more precise estimate (i.e. tighter CI).  The power of any hypothesis test to be 
conducted on the LRPD is therefore enhanced. 
 

In Figure 3, we plot the most-likely systematic factor Pt and Px,t over the sample 
period, which can be easily computed as follows. 
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INSERT FIGURE 3 ABOUT HERE 

 
It should be noted that default rate is negatively related to the systematic factor 

presented in Figure 3.  The higher the systematic (asset) value, the lower is the probability 
of realizing a borrower-specific asset value that is below the default point DP.  The timing 
and severity of the last two credit downturns (in early 90s and then 2001-02) are visualized 
by tracking the variation of the systematic factor implicit in S&P’s speculative grades 
                                                           
12  The bank uses speculative grade rather than investment grade default rates because it believes the former is 
more sensitive to credit cycle and thus is a better proxy for market-wide stress level than that of the latter. 
13 Readers will find out these beliefs are indeed confirmed in the subsequent estimations. 
14 The values of 2R , 2

xR and ρ assumed here are the actual MLE estimates of these parameters if we estimate 

( )DPΦ , ( )xDPΦ , 2R , 2
xR and ρ simultaneously based on the proposed joint-estimation method.  To 

conserve space, we do not illustrate the details in this paper, which are however available from the authors 
upon request. 
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defaults.  Not surprisingly, the two systematic factors are found to be moving in a (highly) 
correlated fashion over time (MLE of the correlation coefficient ρ is in fact found to be 
equal to 0.553).  Moreover, the period from 1996 to 2004 may actually almost exactly span 
over one full credit cycle.  Over the sub-sample of 1996 to 2004, the systematic factor of 
S&P’s speculative grades ranges from +1.20 to -1.78, with a sample mean and standard 
deviation of -0.15 and 1.04 respectively.15  From the slightly negative sample mean, we can 
conclude the average level of default risk over this nine-year period was marginally higher 
than the average over the full sample.  That is why in Table 5 we should slightly reduce the 
estimated LRPD of the bank’s borrowers from 0.841% to 0.765% to adjust for the 
difference in average default risk between this sub-sample and the full sample. 
 
 
4.  Finite number of initial borrowers 
 

In Section 2, we derive the most efficient estimator of LRPD and its CI under the 
assumption of the single-factor infinitely-granular model underlying the Basel II capital 
formula.  By conducting the simulation exercises, we examine their performances in 
various small sample settings of finite sample periods.  In this section, we consider 
situations where the infinite-granularity assumption is violated.  In practice, we never 
observe the default rate of a portfolio which is made up of infinite number of borrowers.  Is 
the proposed estimator still appropriate in the estimation of LRPD using observed default 
rates from portfolios of finite number of borrowers?  Moreover, banks might be interested 
in LRPD obtained from relaxing the infinitely granular portfolio assumption so that the 
resulting LRPD would arguably be more appropriate for the estimation of economic credit 
capital.16 

 
We still maintain the previous assumption of a single systematic factor driving the 

asset values of borrowers of uniform credit risk.  We therefore still conform to equations (1) 
to (4).  However, the limiting representations of equations (5) to (7) become invalid.  
Nevertheless, we want to examine how the LRPD estimators (equations (13a) and (13b)) 
and the corresponding CIs (equations (14a) and (14b)) behave when the infinite-granularity 
assumption is violated. 
 

There is however a practical problem in using the MLE estimators of equation (13a) 
and (13b) when the number of borrowers is finite.  Specifically, they are undefined when 
any of the observed default rate tθ is zero.17  It can be resolved by replacing the zero default 
rates with a sufficiently small but finite default rateθ .  Rather than using the observed time 
series of default rates Tθθθ ,...,, 21 , we therefore operate on the transformed time-series of 
default rates Tψψψ ,...,, 21 , which are defined as 
                                                           
15 The population mean and standard deviation of the systematic factor is zero and one respectively.  A zero 
value of the systematic factor therefore represents a cycle-neutral level of default risk. 
16 Typically, the advance simulation techniques used in the estimation of economic credit capital are capable 
of modeling credit portfolios which are made up of finite numbers of borrowers. 
17 In practice, it is not uncommon to observe zero default rates for portfolios of relatively high credit ratings.  
On the other hand, regardless of the credit rating, there is zero probability of realizing θt = 0 in a portfolio of 
infinite number of borrowers. 
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The default rate θ  is computing by preserving the expected time-series variation of 

default rates.  Given the fact that: (i) ( )tθ
1−Φ  is a linear transformation of Pt according to 

equation (7); and (ii) Pt follows the autoregressive model of equation (11), it can be shown 
(in Appendix D) that:  
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We can therefore estimate θ  by minimizing the difference between the expected time-
series variance given by equation (27) and its sample counterpart.  That is, 
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We can of course relax the assumption of infinite number of borrowers and still 

obtain a MLE estimator for LRPD accordingly.  We therefore consider the case where nt is 
finite and it becomes essentially the probit-normal Bernoulli mixture model of Frey and 
McNeil (2003).  They conduct simulations and the results suggest that the simple average 
of default rates as a LRPD estimator performs almost as good as an estimator developed 
under the correctly-specified model.  Pluto and Tasche (2005) and Benjamin et al. (2006) 
also utilize the same approach, but they are more interested in using it to establish the upper 
confidence bounds of low default portfolios rather than estimating their LRPDs.  Moreover, 
they have not addressed the performances of their proposed confidence bounds.  Gordy and 
Heitfield (2002) also adopt a similar factor model but their interest is in the performances 
of the estimators of default correlations (i.e. factor loading).  Their Monte Carlo study 
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suggests that the failing to impose reasonable restrictions on the default correlation 
structure may lead to significant biases in the estimations given the limited length of the 
historical default data series.  In their study, they assume time-independent systematic 
factor and they do not concern themselves with establishing confidence intervals for their 
estimators. 

 
The cost of relaxing the assumption of infinite number of borrowers in practice is 

the fact that it becomes computationally intensive since analytical formulas of the estimator 
and its standard error are not available.  It therefore also makes comparative static analysis 
difficult.  For example, with the assumption of infinite number of borrowers, we can easily 
measure the sensitivity of the LRPD estimator on the serial correlation parameter β by 
evaluating the partial derivative of equation (13a) analytically.  When the assumption is 
relaxed, we can only find out the sensitivity by conducting a numerical analysis.  Although 
the estimator obtained from relaxing the assumption is more efficient asymptotically than 
that obtained with the assumption, we want to document the conditions under which the 
improvement in efficiency is so insignificant that it is not worthwhile to incur the 
additional computational costs. 
 

In relaxing the assumption of infinite number of borrowers, the joint probability 
G of observing the time-series of default rates Tkkk ,...,, 21 out of the initial number of 
borrowers Tnnn ,...,, 21 in time 1, 2, …,T respectively can be expressed as: 

( ) ( ) t
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tttT dPDPRPnkkkk  ,,;,,...,,
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21 ∑ ∫

=

∞

∞−

Ω=G   (29) 

where ( )•Ω  is given in equation (3), which is the conditional probability of observing 

tk defaults out of nt borrowers given the realization of Pt.  The systematic factor Pt is 
assumed to be serial correlated according to the autoregressive model of equation (11).  We 
can therefore solve for the MLE estimate of LRPD by maximizingG . 
 

( )( )( )TMLEf kkkLRPD ,...,,logmaxarg 21G=    (30) 
 
Solving for LRPDMLEf involves the numerical integrations of equation (29) over the 
multivariate normal distribution of the vector [P1 P2 … PT].  Analytical asymptotic 
standard deviation of LRPDMLEf is unavailable, but it can be evaluated numerically based 
on the second derivative of the log-likelihood function. 
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In the rest of this section, similar simulation exercises as in Section 2 are conducted 

to examine the performances of various LRPD estimators in a number of small sample 
settings.  Unlike in Section 2, we now generate defaults based on pre-specified finite initial 
numbers of borrowers.  We consider six different estimators of LRPD.   
1.  Simple average of observed default rates (LRPDave) 
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2.  The LRPD that results in the average default rates attaining the mode which matches 
the simple average of the observed default rates (LRPDmod)  

3.  Proposed MLE estimator under infinite number of borrowers (LRPDMLE1 based on 
equations (12) and (13a)) 

4.  Proposed MLE estimator under infinite number of borrowers, but naively assuming that 
credit risk is time-series independent, i.e. β  equals to zero (LRPDMLE2 based on 
equation (13b)) 

5.  Proposed MLE estimator under (exact) finite number of borrowers (LRPDMLEf1 based 
on equation (30)) 

6.  Proposed MLE estimator under (exact) finite number of borrowers, but naively 
assuming that credit risk is time-series independent (LRPDMLEf2 based on equation (30), 
but setting β to zero) 

 
All six are believed to be consistent estimators, while LRPDMLEf1 is asymptotically 

most efficient.  Again, LRPDmod is the estimator considered by OSFI as a conservative 
estimator of LRPD, which is also examined in Section 2.  We again consider the four 
different combinations of parametric values presented in Table 1.  They therefore represent 
the “true” parametric values, which govern the data generating process in the simulation 
exercises.  For each set of parameters, we generate time-series of the number of defaults 
based on the serially-correlated single-factor model and under three different scenarios of 
constant initial number of borrowers (nt = 50, 100 and 500) over time.  In each case, we 
simulate 1,000 time-paths of the number of defaults and compute the six estimators for 
each simulated time-path.  Summary statistics of the sample distributions of the estimators 
across the 1,000 simulations are reported in Table 6.  We also report the percentage of 
simulations in which the true LRPD is underestimated by the respective estimator. 
 

INSERT TABLE 6 ABOUT HERE 
 
It can be observed from Table 6 that, even though simple averaging (LRPDave) is 

unbiased on average, there is always a higher chance of underestimating rather than 
overestimating the true LRPD.  The understatement is most significant when both T and the 
true LRPD are small.  For example, there can be as much as a 66% chance of 
underestimating the true LRPD of 0.5% when T is equal to 10.  Judging from the standard 
deviation of LRPDave, its performance improves with the initial number of borrowers n.   
 

As expected, the MLE estimator of LRPDMLE1 performs the best when both n and T 
are large.  Judging from the standard deviations, LRPDMLE1 is always a more efficient 
estimator than LRPDave when n is equal to 500.  Besides, regardless of the values of n and 
T, the underestimation of the true LRPD by LRPDMLE1 is always less than that of LRPDave 
when the true LRPD is 2.0%.  The use of LRPDMLE1 becomes inappropriate when both n 
and the true LRPD are small (e.g. when n = 50 and LRPD = 0.5%).  
 

Not surprisingly, based on the relative efficiency (i.e. the variability of the 
estimator), the performance of LRPDMLEf1 is the best among all the estimators over all the 
cases considered here.  Since it is an exact estimator in terms of finite values of n, its 
performance is essentially unaffected by the number of borrowers.  LRPDMLE1 however 
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performs almost equally well when the true LRPD is equal to 2.0% and when n is not too 
small (e.g. n is at least equal to 100).  
 

Similar to the findings in Section 2, LRPDmod is always a conservative but 
inefficient estimator.  Finally, judging from the similarity of the performances of 
LRPDMLE1 (LRPDMLEf1) and LRPDMLE2 (LRPDMLEf2), the modeling of the serial-
correlation of the systematic factor is found to be of secondary importance in the estimation 
of LRPD.  The barely noticeable differences are documented for the cases of T and n equal 
to 10 and 50 respectively.  Given the results reported in Table 6, we may conclude that 
LRPDMLEf1 (or LRPDMLEf2) should be used in the estimation of LRPD.  However, in the 
case of relatively high LRPD (e.g. 2.0%) and large number of borrowers (e.g. equal to or 
more than 100), the marginal benefit over the much more analytically tractable estimator of 
LRPDMLE1 (or LRPDMLE2) might not be worthwhile for the effort of conducting the 
required computationally intensive analysis.  
 

For the remainder of this section, we would like to ask the same validation question 
we ask in Section 2:  If the LRPDs have already been assigned, how can we validate them 
given the observed default rates?  The choice of an appropriate CI is important in making 
statistical inferences during the validation process of Basel II.  Through the simulation 
exercises, we judge their performances based on their Type I errors under both the one- and 
two-tail hypothesis tests similar to those examined in Section 2.  Besides, we also examine 
the resulting Type II errors (i.e. the probability of wrongfully accepting an alternative 
hypothesis) in a couple of cases.  Together with the CIs established from the proposed 
MLE estimators, we consider a total of eight different ways in constructing the interval.18 
 
1. Wald CI (CIW) 
2. Agresti-Coull CI (CIAC) 
3. Clopper-Pearson CI (CICP) 
4. CI from non-parametric bootstrap (CIB) 
5. CIMLE1 
6. CIMLE2 
7. CIMLEf1 
8. CIMLEf2 
 

Wald CI (CIW) is one of the most popular CI used for binomial distribution.  It is 
based on the normal distribution approximation under the central limit theorem when the 
occurrences of individual default events are i.i.d.  With the assumption of equal initial 
number of borrowers (i.e. nnnn T ≡=== ...21 ), it can be expressed as: 

( )
Tn

zCI CLW ×
−

×±=
θθθ 1     (32) 

where T
T

t
t∑

=

=
1

θθ  and zCL is the critical value corresponding to the pre-specified 

confidence level (CL) under the standard normal distribution (e.g. zCL = 1.96 if CL is 95%).  

                                                           
18 The first four CIs are proposed and examined by Hanson and Schuermann (2005). 
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The coverage of CIW is always too narrow under a finite value of Tn× .  Moreover, since 
default incidences are correlated both cross-sectionally (because of non-zero 2R ) and over 
time (because of non-zero β), the understatement of the coverage will even be more 
significant under the serially-correlated single-factor model considered here.  It may 
therefore lead to an unacceptable level of Type I error, especially when both n and T are 
small.  Furthermore, the erratic behaviours of CIW (e.g. those documented by Brown et al., 
2001) may further cast doubts on its validity as an appropriate CI.  
 

Brown et al. (2001) show that the Agresti-Coull CI (CIAC) proposed by Agresti 
and Coull (1998) produces a coverage which is more accurate than that of CIW in various 
small sample simulation exercises.  In terms of our notations, CIAC can be expressed as: 

( )
2

**
* 1

CL
CLAC zTn

zCI
+×
−

×±=
θθθ    (33) 

where 

2

2

1*
5.0

CL

CL

T

t
t

zTn

zk

+×

+
=
∑
=θ  

Comparing with CIW, CIAC is essentially obtained from an upward adjustment of the 
average observed default rate.  To make up for the deficiency of CIW mentioned above, the 
adjustment becomes more significant when both n and T are small.  CIAC should therefore 
perform better than CIW in small sample settings.  However, it is not sure if the adjustment 
is sufficient to cope with the lack of modeling of the default correlation.  Furthermore, the 
adjustment may increase the Type II error, especially when LRPD is small.  For example, 
when n = 50 and T = 10, the minimum of the upper bound of CIAC is about 92 bps at a CL 
of 95%.19  The probability of correctly rejecting a false null of “LRPD being higher than a 
value which is less than 92 bps” (i.e. in a one-tail test) is therefore zero.  In other words, the 
resulting Type II error is 100%.  It may therefore result in an overly-conservative 
conclusion in the validation process.  Specifically, regardless of the realized number of 
defaults, there is no way that the assigned PD can be further reduced if it is already set at a 
value lower than 92 bps. 
 

The upper and lower bound of the Clopper-Pearson CI (CICP) of Clopper and 
Pearson (1934) are solutions to the following equations.20 

( )∑
××

=

−× −
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×Tn

i

iTn
CP

i
CP
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i
Tnθ

0 2
)1(1    (34a) 

( )∑
×

××=

−× −
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×Tn

Tni

iTn
CP

i
CP

CLLL
i
Tn

θ 2
)1(1    (34b) 

                                                           
19 The minimum is attained when we observe no default incidence. 
20 It can be shown that the upper bound is the 1-(1-CL)/2 quantile of the beta distribution 

( )[ ]θθ −××+×× 1,1 TnTnBeta , while the lower bound is the (1-CL)/2 quantile of the beta distribution 
( )[ ]11, +−×××× θθ TnTnBeta .  The beta distribution representations are easier to be implemented in 

practice. 
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Unlike CIW, the construction of CICP does not rely on the limiting condition of 
infinite Tn× and thus it should be robust in finite sample settings.  Moreover, it can be 
shown that the coverage of CICP is always equal to or above the corresponding CL under 
the assumption that individual default events are i.i.d.  However, it is not sure if the interval 
is wide enough to make up for the lack of modeling of default correlation.  Again, the cost 
of a wide interval might be a high Type II error, especially when LRPD is small.  For 
example, when n = 50 and T = 10, the minimum of the upper bound of CICP is about 74 
bps.21  The Type II error will therefore be 100% in a one-tail hypothesis test of “LRPD 
being higher than a value which is less than 74 bps”, potentially resulting in overly-
conservative conclusions in the validation process. 
 

We also examine the performance of CIB constructed by non-parametric 
bootstrap, which is similar to the one considered by Hanson and Schuermann (2005).  Out 
of the default rates observed over time T, we randomly draw with replacement 5,000 sets of 
T default rates and construct the empirical distribution of the time-average default rate.  At 
a CL of 95%, the upper and lower bounds of CIB therefore correspond respectively to the 
97.5 and 2.5 percentiles of the distribution.  Similar to CICP, it is robust in finite sample 
applications given that it does not rely on attaining any limiting condition.  However, 
although the cross-sectional default correlation structure can be preserved, the serial-
correlation of the systematic factor is destroyed in the sampling exercises.  The potential 
understatement of coverage due to the lack of modeling of the serial-correlation is believed 
to be more significant when the sample period is short (i.e. small T).   
 

We also construct four different CIs based on the proposed MLE estimators.  
CIMLE1 and CIMLE2 are the CIs considered in Section 2 based on infinite number of 
borrowers.  CIMLE1 is constructed based on equation (14a), while CIMLE2 is construct in a 
similar fashion but naively assuming that defaults are time independent (i.e. according to 
equation (14b) when β = 0).  The validity of these CIs relies on the asymptotic behaviour 
being attained when both n and T are sufficiently large.  They are likely to be too narrow 
when both n and T are small.  The question we would like to answer is: “Under what 
conditions of the values of n and T will the performances of these CIs become 
unacceptable and will require us to resort to more accurate but computationally more 
demanding methods in constructing the appropriate CI (e.g. CIMLEf1 and CIMLEf2 introduced 
subsequently)?” 
 

Finally, CIMLEf1 and CIMLEf2 are obtained from the MLE estimator of equation (30) 
and its asymptotic standard deviation of equation (31).  They are therefore the counterparts 
of CIMLE1 and CIMLE2 but relaxing the assumption of infinite number of borrowers.  They 
are therefore exact with respect to finite values of n.  Again, CIMLEf2 is obtained by 
assuming time-independent default rates.  CIMLEf1 and CIMLEf2 are however still 
approximations when T is not sufficiently large.  They however should be the best among 
the eight CIs considered here.  The only draw-back is it is computationally intensive.  
 

We conduct the same simulation exercise in obtaining Table 6.  We consider the 
four different combinations of parametric values presented in Table 1.  For each set of 
                                                           
21 This is again at a CL of 95% and the minimum is attained when we observe no default incidence. 
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parameters, we generate time-series of the number of defaults based on the serially-
correlated single-factor model and under three different scenarios of constant initial number 
of borrowers (nt = 50, 100 and 500) over time.  For each case, we simulate 1,000 time-
paths of the number of defaults.  For each simulation, we construct the eight CIs based on 
the generated time-series of numbers of defaults and check if the true LRPD (i.e. either 
0.5% or 2.0%) is rejected according to each CI in a two-tail hypothesis test at a CL of 95%.  
The proportion of rejections of each CI across the 1,000 simulations therefore represents 
the Type I error of that CI under the specific combination of parametric values.  Similar to 
the analysis performed in Section 2, we also measure the Type 1 error of a one-tail test.  
For each simulation, we check if we would like to reject the (true) null because we think it 
is (statistically) too high.  This is the case where the true null turns out to be higher than the 
upper bound of the CI.  The consequence of this type of rejection may lead to the 
imprudent action of the financial institutions to wrongfully reduce the assigned probability 
of default which is in fact correct in the first place.  Specifically, we want to find out the 
Type 1 error of this one-tail test at the 97.5% CL.  The results are reported in Table 7. 
 

INSERT TABLE 7 ABOUT HERE 
  

Our simulation results reported in Table 7 suggest that using CIW in hypothesis tests 
can easily result in unacceptable level of Type I error.  For example, when the true LRPD is 
2.0%, T is 10 and n is 500, the Type I errors of the two-tail and one-tail tests are 72.0% and 
44.5% respectively.  The errors being increasing functions of n may be due to the fact that 
the existence of default correlation hinders the rate of convergence of the distribution. 
 

Using CIAC always results in a smaller Type I error than by using CIW.  The benefit 
is particularly significant in low LRPD, and when both T and n are small.  It produces the 
smallest errors among all the eight CIs when the true LRPD is 0.5%, while T and n equal to 
10 and 50 respectively.  However, its errors are almost as bad as those of CIW for high 
LRPD, and when both T and n are relatively large.  Again, it might be attributed to the lack 
of modeling of the default correlation.  Furthermore, the use of such a wide CI is likely to 
come with the price of large Type II errors.  In the above case where the true LRPD is 0.5%, 
n = 50 and T = 10, further analysis (not reported here) suggests that using CIAC results in 
the probabilities of wrongfully accepting the false alternatives of LRPD equals to 25bps 
and 75bps being 82.8% and 95.9% respectively in a two-tail test.  The corresponding Type 
II errors are 73.7% and 55.4% when CIW is used. 
 

The performance of CICP is almost identical to that of CIAC with marginally smaller 
errors in the two-tail tests.  Although its coverage is always larger than the CL when default 
events are i.i.d., apparently it is not sufficient to cope with the widening of the CI due to 
default correlation, especially when the true LRPD is relatively high.       
 

In terms of the resulting Type I errors, the performance of CIB is quite uniform 
across all the cases considered in this simulation exercise.  Its performance is much better 
than the three CIs discussed previously when n is equal to or larger than 100.  It seems to 
be robust to the existence of default correlation given that the correlation structure is 
preserved in the bootstrapping.  The errors are slightly larger when T is equal to 10 rather 



 25

than 25.  It is likely due to the fact that the modeling of the serial correlation, which is 
ignored in the bootstrapping, is more important in short sample. 
 

Regardless of the number of borrowers, using CIMLE1 always results in a smaller 
error than CIW when LRPD is equal to 2.0%.  Its appropriateness however is questionable 
when LRPD is equal to 0.5%.  Unless we are working with a large number of borrowers 
(e.g. n = 500), we should not be using CIMLE1 for low default rate portfolio.  As expected, 
the asymptotically-exact but computationally-intensive CIMLEf1 produces consistently 
smaller errors than CIW and CIB across all the cases considered here.  Nevertheless, the 
errors are still higher than the theoretical values of 5.0% and 2.5% for the two- and one-tail 
tests respectively, especially when T is small and LRPD is low.  Moreover, the errors are 
almost as large as those produced by CIB when LRPD is equal to 0.5%, T is equal to 10 and 
n is equal to or smaller than 100.  On the other hand, the advantage over the analytically-
tractable CIMLE1 disappears when LRPD is equal to 2.0% and n is equal to 500.  Finally, in 
comparing CIMLEf1 (CIMLE1) and CIMLEf2 (CIMLE2), the marginal benefit of modeling for the 
serial correlation is hardly noticeable in terms of the resulting Type I errors. 
 

To further examine the impact of the default correlation on the performances of the 
different CIs, we repeat the simulation analysis under the case of LRPD = 2.0%, T = 10 and 
n = 100, but with 2R  taking on values of 10%, 20%, 25%, 30% and 40% respectively.  In 
Figure 4 and 5, we plot the resulting Type I errors of CIW, CIAC, CICP and CIB in excess of 
those of CIMLE1 in the two- and one-tail tests respectively.  As expected, the excess errors 
of CIW, CIAC and CICP increase with 2R .  Even at relatively low level of default correlation 
(e.g. 10%), the excess errors can be quite significant if the default correlation is ignored.  
On the contrary, the performance of CIB is quite robust to different values of default 
correlations. 
 

From the results reported in Table 7, we may conclude that: 
(i) When LRPD is relatively low, and T and n are both small, we might as well resort to 

bootstrapping rather than relying on the asymptotic CIs of CIMLE1 and CIMLEf1; 
(ii) When LRPD is relatively high and n is large, the use of the analytically-tractable 

CIMLE1 is recommended over CIMLEf1, given the ease of computation of the former and 
the almost identical performances; and 

(iii)In other situations, it might be worthwhile to invest in the extra efforts in using CIMLEf1. 
 

INSERT FIGURE 4 AND 5 ABOUT HERE 
 

 
5. Conclusions 
 

In this paper we examine alternative methodologies in estimating LRPD from time 
series of historical default rates, using efficient estimators that incorporate both the cross-
sectional and serial asset correlation exhibited in actual credit portfolio.  We first, adopting 
Basel’s infinitely granular portfolio assumption, propose a LRPD estimation methodology. 
Next we relax this assumption to examine alternative estimation methodologies and their 
performances for finite number of borrowers. The former would be appropriate for the 
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estimation of regulatory (credit) capital under Basel II given the consistency of the 
underlying economic model.  The latter is considered to be more appropriate for the 
estimation of economic (credit) capital, where the advance simulation techniques are 
capable of modeling credit portfolios which are made up of a specific number of borrowers.   

  
We examine the performances of the proposed estimators relative to alternative 

estimators via a number of simulation exercises.  In most of cases and for portfolios of both 
finite and infinite number of borrowers, the proposed estimators outperform the alternatives 
even in a number of small sample settings.  The simulation results also suggest that simple 
averaging of the default rates as an estimator of LRPD is prone to underestimate the true 
LRPD.  The proposed methodology also enables us to supplement internal data with 
external data which improves the accuracy and representation of the LRPD estimate.  We 
also consider alternative ways of establishing CIs for the validation of pre-assigned LRPDs. 
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Appendices 
 
Appendix A: Derivation of the GLS Estimator of DP and its CI presented in 
Equations (12) to (14) 
 
Rewriting equation (7), we have 

      ( ) tt P
R
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R
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22
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11 −
−

−
=Φ− θ     (A1) 

 
The GLS estimator of DP is asymptotically most efficient when Pt follows an AR(1) 
process of equation (11) with known serial-correlation coefficient β.  It is given in Greene 
(1997) pg. 507 that: 
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It can be shown (e.g. by Greene (1997) on pg. 589) that: 
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Therefore, 

( ) ( )
( ) ( ) TTT

RXX
+−−−

−
=Λ′

−−

ββ
β

122
1

2

22
11    (A4) 

 
( )
( ) ( ) ( ) ( ) ( )⎟

⎠

⎞
⎜
⎝

⎛
Φ+−⋅Φ+Φ

−
−−

=Λ′ ∑
−

=

−−−−
1

2

11
1

1
22

2
1 1

1
11 T

t
TtR

RyX θβθθ
β

β   (A5) 

 
Finally, substituting equations (A4) and (A5) into (A2), we have 
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The variance of the GLS estimator is: 
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Based on this variance, a confidence interval for the LRPD may therefore be constructed: 
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Appendix B: Description of the LRPD estimator: LPRDmod 
 

In this Appendix, we summarize the formulation of the estimator LPRDmod, which 
was examined by the Office of the Superintendent of Financial Institutions (OSFI) of 
Canada. For detail illustrations, please refer to OSFI document: “Risk Quantification of 
IRB Systems at IRB Banks: Appendix - A Conservative Estimate of a Long-Term Average 
PD by a Hypothetical Bank,” December 2004. 
 

The OSFI document outlines a method to estimate LRPD by observing the time-
series average default rate of a portfolio of uniform credit risk.  Essentially, it proposes to 
estimate the LRPD which results in the highest chance to generate the observed average 
default rate.  To achieve this objective, it suggests conducting simulations to obtain the 
distribution of average default rate.  The distribution of default rates implicit in Basel II 
capital formula is utilized in the simulation exercise.  Specifically, under the infinite-
granular single-factor model of Basel II, ( )tθ

1−Φ attains a normal distribution with mean 

and standard deviation equal to 21 RDP −  and 21 RR − respectively (see equation 

(5)).  Given a certain level of DP (i.e. LRPD) and 2R , we can therefore construct the time-
series of default rates over a certain period of time (from t = 1 to T) by simulating i.i.d. 
normally distributed random numbers.  The systematic factor is therefore assumed to be 
time-independent.  By repeating the simulations 10,000 times, we can therefore 
approximate the distribution of the time-series average default rate aveθ , which is contingent 
on the values of the assumed LRPD and 2R .  The OSFI document suggests we can solve for 
the LRPD by matching the mode (i.e. the realization with the highest chance of occurrence) 



 29

of the distribution of the simulated average default rate aveθ with the observed average 

default rate aveθ̂ .  That is, we solve for LRPDmod which satisfies equation (B1).22 
 

( )2
mod ,modˆ RLRPDave =θ     (B1) 

where ( )•mod  is the mode of the distribution of the average default rate given the 
arguments of the function.  Since there is no explicit analytical equation to relate the mode 
of the distribution with the underlying LRPD, this approach involves changing the assumed 
value of LRPD until we obtain a mode (through simulations), which is identical (or close 
enough) to the observed average default rate aveθ̂ . 
 

It should be noted that LRPDmod is not a maximum likelihood estimator.  According 
to the proposed methodology, it is most likely to observe the realized average default rate 
(among all the possible values of average default rates) given the solved long-run PD (i.e. 
LRPDmod).  There is however no guarantee that, among all the possible values of LRPD, 
LRPDmod results in the highest probability of realizing the observed average default rate.  
Another value of LRPD might as well result in an even higher probability of realizing the 
observed average default rate, while the mode of the resulting distribution happens to be 
different from the observed value. 
 
Appendix C: Derivations of Equations (18)-(23) 
 

The limiting unconditional distribution of tx,θ of equation (18) is identical to 

equation (6) of Section 1.  Under the infinitely-granular single-factor model, ( )tx,
1 θ−Φ  and 
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1−Φ  follow a bivariate normal distribution where the means are 21 xx RDP −  and 

21 RDP − respectively, and covariance matrix equals to: 
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The distribution of ( )tθ

1−Φ  conditional on ( )tx,
1 θ−Φ  is therefore also normal with mean and 

standard deviation equal to ( ) ⎟
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respectively.  That is, the conditional cumulative probability function is: 
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22 Here, we assume R is known. 
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where 
( ) DPRz tt −Φ×−= − θ121  

( ) xtxxtx DPRz −Φ×−= −
,

12
, 1 θ  

 
The conditional probability density function of tθ  is therefore equal to the derivative of 
equation (C2) with respect to tθ . 
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If 2R , 2

xR  and ρ are known, we can then solve for the MLE of LRPD by taking the 
first derivatives of the joint likelihood function of equation (17) with respect to ( )xDPΦ  
and ( )DPΦ , and setting them to zero.  The MLE estimators are respectively: 
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Finally, the asymptotic standard deviations of the MLEs are obtained by evaluating the 
second derivatives of the joint likelihood function at the MLE solutions. 
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Appendix D: Derivation of Equation (27) 
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Table 1: Parametric Values of Simulation Exercises 
 Case 1 Case 2 Case 3 Case 4 

True LRPD 0.5% 2.0% 0.5% 2.0% 
2R  25% 25% 25% 25% 

β  10% 10% 10% 10% 
T 10 yrs. 10 yrs. 25 yrs. 25 yrs. 
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Table 2: Summary Statistics of the Distribution of the Estimators of LRPD (in percents) 
 

Case 1: True LRPD =0.5%; T = 10 
 LRPDave LRPDmod LRPDMLE1 LRPDMLE2 

Mean 0.510 0.771 0.566 0.567 
Median 0.414 0.651 0.509 0.510 

% of times LRPD is 
underestimated 

62% 32% 49% 49% 

Std. deviation 0.370 0.475 0.292 0.293 
97.5 prctile 1.503 2.031 1.285 1.287 
2.5 prctile 0.106 0.225 0.178 0.180 

97.5-2.5 prctile 1.397 1.806 1.106 1.107 
 

Case 2: True LRPD =2.0%; T = 10 
 LRPDave LRPDmod LRPDMLE1 LRPDMLE2 

Mean 2.033 2.528 2.178 2.179 
Median 1.808 2.302 2.031 2.034 

% of times LRPD is 
underestimated 

58% 37% 49% 49% 

Std. deviation 1.075 1.152 0.923 0.926 
97.5 prctile 4.752 5.403 4.375 4.382 
2.5 prctile 0.616 0.962 0.838 0.844 

97.5-2.5 prctile 4.136 4.441 3.537 3.537 
 

Case 3: True LRPD =0.5%; T = 25 
 LRPDave LRPDmod LRPDMLE1 LRPDMLE2 

Mean 0.503 0.628 0.527 0.527 
Median 0.460 0.581 0.503 0.504 

% of times LRPD is 
underestimated 

58% 36% 49% 49% 

Std. deviation 0.226 0.252 0.171 0.171 
97.5 prctile 1.055 1.240 0.921 0.924 
2.5 prctile 0.192 0.274 0.258 0.259 

97.5-2.5 prctile 0.863 0.967 0.663 0.665 
 

Case 4: True LRPD =2.0%; T = 25 
 LRPDave LRPDmod LRPDMLE1 LRPDMLE2 

Mean 2.012 2.142 2.074 2.074 
Median 1.921 2.045 2.013 2.012 

% of times LRPD is 
underestimated 

55% 47% 49% 49% 

Std. deviation 0.663 0.670 0.559 0.559 
97.5 prctile 3.529 3.691 3.324 3.334 
2.5 prctile 0.970 1.102 1.146 1.151 

97.5-2.5 prctile 2.559 2.589 2.179 2.183 
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Table 3: Simulated Type 1 Errors 
 

Panel A: Two-Tail Test at 95% Confidence Level 
 CIave CImod CIMLE1 CIMLE2 

Case 1: True LRPD=0.5%; T = 10 27.7% 17.6% 5.2% 7.7% 
Case 2: True LRPD =2.0%; T = 10 22.2% 11.4% 5.2% 7.7% 
Case 3: True LRPD =0.5%; T = 25 19.4% 11.8% 5.4% 7.6% 
Case 4: True LRPD =2.0%; T = 25 14.8% 10.4% 5.4% 7.6% 

 
 

Panel B: One-Tail Test at 97.5% Confidence Level 
 CIave CImod CIMLE1 CIMLE2 

Case 1: True LRPD =0.5%; T = 10 27.5% 12.4% 2.5% 3.7% 
Case 2: True LRPD =2.0%; T = 10 21.5% 10.2% 2.5% 3.7% 
Case 3: True LRPD =0.5%; T = 25 19.2% 8.9% 2.8% 3.9% 
Case 4: True LRPD =2.0%; T = 25 14.1% 9.2% 2.8% 3.9% 
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Table 4: Internal and External Annual Default Rate Data 

 
 Internal Risk 

Rating 
S&P’s Speculative 

Grade 
1981 - 0.62% 
1982 - 4.41% 
1983 - 2.96% 
1984 - 3.29% 
1985 - 4.37% 
1986 - 5.71% 
1987 - 2.80% 
1988 - 3.99% 
1989 - 4.16% 
1990 - 7.87% 
1991 - 10.67% 
1992 - 5.85% 
1993 - 2.20% 
1994 - 2.19% 
1995 - 3.62% 
1996 0.79% 1.83% 
1997 0.21% 2.15% 
1998 0.62% 3.22% 
1999 0.95% 5.16% 
2000 1.17% 7.00% 
2001 1.17% 10.51% 
2002 0.95% 7.12% 
2003 0.23% 5.55% 
2004 0.01% 2.30% 
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Table 5: Estimated LRPD of Internal and External Portfolio 

Bank’s Internal Risk 
Rating 

S&P’s Speculative 
Grade 

 

Jointly Separately Jointly Separately 
LRPDMLE 0.765% 0.841% 4.585% 4.585% 
95% CI 

Upper 1.378% 1.682% 5.633% 5.724% 
Lower 0.406% 0.395% 3.699% 3.635% 
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Table 6: Summary Statistics (in percents) of Sample Distributions of LRPD Estimators under Finite Initial Number of Borrowers 
 
n = 50 

T = 10 T = 25 
True LRPD = 0.5% True LRPD = 2.0% True LRPD = 0.5% True LRPD = 2.0% 

 

mean Med %under std mean med %under std mean med %under std mean med %under std 
LRPDave 0.497 0.400 63% 0.495 1.967 1.800 62% 1.206 0.527 0.480 58% 0.298 1.987 1.920 58% 0.763 
LRPDmod 0.745 0.633 43% 0.622 2.474 2.332 41% 1.319 0.666 0.618 33% 0.305 2.146 2.079 50% 0.776 

LRPDMLE1 0.428 0.292 69% 0.532 2.103 1.874 54% 1.324 0.350 0.289 76% 0.286 1.973 1.882 55% 0.799 
LRPDMLE2 0.417 0.281 72% 0.523 2.073 1.830 56% 1.316 0.345 0.286 76% 0.283 1.960 1.870 56% 0.796 
LRPDMLEf1 0.534 0.491 51% 0.489 2.074 1.866 54% 1.162 0.538 0.501 49% 0.277 2.024 1.945 53% 0.712 
LRPDMLEf2 0.534 0.490 51% 0.489 2.073 1.864 54% 1.162 0.538 0.502 49% 0.277 2.023 1.946 53% 0.711 
 
n = 100 

T = 10 T = 25 
True LRPD = 0.5% True LRPD = 2.0% True LRPD = 0.5% True LRPD = 2.0% 

 

mean Med %under std mean med %under std mean med %under std mean med %under std 
LRPDave 0.502 0.400 66% 0.417 2.005 1.800 60% 1.143 0.513 0.480 55% 0.269 2.005 1.920 56% 0.740 
LRPDmod 0.756 0.633 29% 0.526 2.521 2.332 41% 1.248 0.652 0.618 34% 0.276 2.164 2.079 46% 0.753 

LRPDMLE1 0.479 0.399 62% 0.448 2.160 2.013 50% 1.169 0.411 0.374 69% 0.261 2.023 1.954 53% 0.729 
LRPDMLE2 0.469 0.398 65% 0.443 2.135 1.973 51% 1.164 0.407 0.368 69% 0.259 2.013 1.939 54% 0.727 
LRPDMLEf1 0.553 0.478 51% 0.418 2.129 1.949 51% 1.096 0.527 0.500 50% 0.239 2.051 1.976 52% 0.676 
LRPDMLEf2 0.553 0.479 51% 0.418 2.127 1.951 51% 1.095 0.526 0.500 50% 0.238 2.049 1.975 52% 0.676 
 
n = 500 

T = 10 T = 25 
True LRPD = 0.5% True LRPD = 2.0% True LRPD = 0.5% True LRPD = 2.0% 

 

mean Med %under std mean med %under std mean med %under std mean med %under std 
LRPDave 0.499 0.400 63% 0.361 1.998 1.800 58% 1.050 0.504 0.456 58% 0.247 1.998 1.912 56% 0.683 
LRPDmod 0.755 0.633 32% 0.458 2.520 2.332 37% 1.149 0.643 0.594 31% 0.253 2.158 2.071 45% 0.695 

LRPDMLE1 0.541 0.462 54% 0.350 2.167 2.052 48% 0.955 0.493 0.463 58% 0.216 2.031 1.985 51% 0.585 
LRPDMLE2 0.534 0.459 54% 0.348 2.158 2.034 48% 0.959 0.490 0.458 58% 0.216 2.026 1.981 51% 0.586 
LRPDMLEf1 0.548 0.480 53% 0.323 2.159 1.990 50% 0.983 0.521 0.497 50% 0.200 2.052 2.000 50% 0.585 
LRPDMLEf2 0.548 0.480 53% 0.322 2.163 2.010 49% 0.986 0.521 0.498 50% 0.200 2.050 1.998 50% 0.583 
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Table 7- Simulated Type 1 Errors of Different CIs 
 
n = 50 

T = 10 T = 25 
Φ(DP) = 0.5% Φ(DP) = 2.0% Φ(DP) = 0.5% Φ(DP) = 2.0% 

 

Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail 
CIW 23.0% 18.9% 33.6% 25.0% 15.2% 9.3% 30.9% 19.2% 
CIAC 7.4% 0% 25.4% 12.0% 12.0% 1.6% 30.6% 15.6% 
CICP 7.4% 0% 23.0% 12.0% 9.6% 1.6% 28.5% 15.6% 
CIB 19.4% 18.9% 20.1% 19.6% 14.6% 14.3% 13.4% 12.3% 

CIMLE1 56.2% 47.6% 23.7% 17.3% 51.3% 46.2% 21.6% 15.1% 
CIMLE2 58.6% 48.7% 26.3% 18.6% 54.6% 48.6% 26.0% 18.1% 
CIMLEf1 18.9% 18.9% 14.1% 14.0% 9.5% 9.3% 8.2% 7.6% 
CIMLEf2 18.9% 18.9% 13.9% 13.8% 9.5% 9.3% 8.3% 7.7% 

 
n = 100 

T = 10 T = 25 
Φ(DP) = 0.5% Φ(DP) = 2.0% Φ(DP) = 0.5% Φ(DP) = 2.0% 

 

Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail 
CIW 35.9% 28.7% 45.0% 28.4% 32.4% 22.8% 48.5% 29.0% 
CIAC 17.8% 6.1% 44.7% 24.5% 23.6% 9.9% 47.5% 24.9% 
CICP 15.2% 6.1% 42.8% 24.5% 21.8% 9.9% 46.0% 24.9% 
CIB 18.4% 17.8% 20.3% 19.0% 15.4% 14.4% 14.9% 13.3% 

CIMLE1 37.7% 30.9% 15.0% 10.0% 38.1% 33.5% 15.0% 10.6% 
CIMLE2 38.6% 31.0% 19.3% 13.0% 41.7% 35.9% 18.9% 12.5% 
CIMLEf1 18.0% 17.8% 12.0% 11.6% 7.7% 7.3% 9.9% 8.7% 
CIMLEf2 18.0% 17.8% 12.0% 11.6% 7.8% 7.4% 10.2% 9.1% 

 
n = 500 

T = 10 T = 25 
Φ(DP) = 0.5% Φ(DP) = 2.0% Φ(DP) = 0.5% Φ(DP) = 2.0% 

 

Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail Two-Tail One-Tail 
CIW 59.6% 38.3% 72.0% 44.5% 58.7% 35.9% 70.1% 40.1% 
CIAC 59.1% 35.4% 71.0% 42.1% 56.2% 32.5% 70.1% 39.2% 
CICP 58.4% 35.4% 70.5% 42.1% 58.1% 34.4% 69.9% 39.2% 
CIB 26.2% 25.7% 22.5% 21.1% 18.6% 17.6% 16.3% 15.0% 

CIMLE1 15.4% 11.7% 7.8% 5.0% 16.1% 11.8% 7.5% 5.0% 
CIMLE2 19.4% 13.8% 11.7% 6.8% 20.0% 14.5% 10.4% 6.7% 
CIMLEf1 13.0% 12.4% 13.1% 10.5% 9.5% 8.3% 11.2% 9.1% 
CIMLEf2 13.6% 12.9% 13.0% 10.2% 10.1% 8.7% 12.1% 9.4% 
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Figure 1: Plot of the Ratio of the Sample Standard Deviation of LRPDMLE1 to that of 
LRPDave against T 
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Figure 2: Plot of the Ratio of the Sample Standard Deviation of LRPDMLE1 to that of 
LRPDave against the True LRPD 
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Figure 3: Time-Series Plots of Systematic Factor based on Joint Estimation with Both 
Internal and External Default Rates 
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Figure 4: Excess Type I Errors of Two-Tail Test 

Excess Type I Error (Two-Tail Test)

0%

10%

20%

30%

40%

10% 15% 20% 25% 30% 35% 40%

R2

W
AC
CP
B

 
 



 45

Figure 5: Excess Type I Errors of One-Tail Test 
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