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Measuring Time-Varying Economic Fears with Consumption-Based Stochastic 

Discount Factors 

 

 

 

Abstract 

 

This paper shows that the volatility of sensible consumption-based stochastic discount 

factors predicts future economic and stock market cycles. More specifically, we report a 

striking change in this forecasting ability which coincides with the structural change in 

the macroeconomic conditions of the U.S. economy in 1984. Significant forecasting is 

found from 1985 to 2006, when the economy is characterized by a period of great 

macroeconomic moderation and increasing risk aversion in stock market investors 

simultaneously. In particular, the volatility of contemporaneous consumption growth 

specifications of recursive and durable preferences predict cycles at horizons of one, 

two and four quarters, while long run specifications better forecast at eight and twelve 

quarters. Moreover, the explanatory forecasting ability is stronger at recessions than at 

expansions.  
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1. Introduction 

It is well known that risk-neutral probabilities are adjusted upward (downward) 

relative to objective or physical probabilities if they are associated with states with high 

(low) marginal utility of consumption. The stochastic discount factor (SDF hereafter) 

plays a key role in such adjustment. The interaction of these two probability 

distributions with the volatility of stochastic discount factors, as a way of measuring 

time-varying aggregate economic fears, is the focus of this work. 

Several procedures have been proposed to obtain comparable risk-adjusted 

densities. Jackwerth (2000) allows for a changing risk-neutral probability density 

function while imposing a stationary objective density function. This is problematic and 

leads to the well known pricing kernel puzzle. To avoid this debatable assumption, Bliss 

and Panigirtzoglou (2004) assume risk-aversion function stationarity and estimate 

implied preference parameters from power and exponential utility functions. Finally, 

Benzoni, Dufresne and Goldstein (2005) argue that the pricing kernel puzzle and the 

volatility smirk can be rationalized if the agent has recursive preferences and if the 

aggregate dividend and consumption processes are driven by a persistent stochastic 

growth variable subject to jumps. In any case, this literature is still characterized by an 

active debate without a clear-cut solution. 

Contrary to this literature, this paper explores empirically the theoretical results 

underlying objective and risk-neutral probabilities without relying on option data. In a 

recent theoretical paper, Bakshi, Chen and Hjalmarsson (2004) define a distance 

between the risk-neutral and the objective probability measures, which can be related to 

the volatility of the defining stochastic discount factor (SDF). We argue that the 

distance between both probability measures captures economic fears. Hence, given the 

association between the distance and the volatility of the defining SDF, our paper 

analyzes empirically the ability of the volatility of sensible consumption-based SDFs to 

forecast macroeconomic and stock market cycles, and to measure investors´ implicit 

recession fears.  In other words, we analyze the empirical link between the ex-ante 

economic fears about macroeconomic and stock market fundamentals and the ex-post 

economic cycle in the financial market and the economy.  
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The empirical analysis is performed under five consumption-based SDF 

specifications: recursive preferences with non-durable consumption, recursive non-

separable preferences with non-durable and durable consumption, the long run versions 

of the two previous cases, and preferences with habit persistence. It should be noted that 

we do not pursue to compare SDFs from the traditional asset pricing point of view. We 

just want to study whether the volatility of reasonable SDFs is able to predict future 

economic cycles. Of course, the forecasting performance of the alternative 

specifications employed in the paper may be different. This is how the comparison of 

the proposed consumption-based SDFs should be understood. 

The paper shows that recursive and durable consumption-based SDFs with 

contemporaneous marginal rate of substitution are able to significantly predict 

macroeconomic and stock market cycles at relatively short horizons. On the other hand, 

their long run versions present a higher forecasting power at relatively longer horizons. 

Moreover, their predicting ability is stronger for recessions than for expansions. This 

suggests that we are actually capturing time-varying economic fears.  Surprisingly, 

these results are only observed after 1984, when a quite dramatic structural change in 

the macroeconomic conditions of the U.S. economy occurs. Since 1985, there has been 

a well known decline in the volatility of key macroeconomic time series. The significant 

forecasting capacity of the volatility of SDFs is precisely found from 1985 to 2006. 

Interestingly enough, we also report a significant increase in risk aversion in this period 

relative to the previous years.1 Therefore, the forecasting ability of the volatility of the 

SDFs is found when we have simultaneously a period of great macroeconomic 

moderation and increasing risk aversion in stock market investors.  

This paper is organized as follows. Section 2 discusses the theoretical 

framework that relates risk-neutral and objective probability distributions with the 

volatility of SDFs. Section 3 presents the stochastic discount factor specifications 

analyzed in the paper, while Section 4 contains a description of data and some initial 

empirical results using the Hansen-Jagannathan (1991) volatility bound. Section 5 

selects the appropriate parameters of the consumption-based stochastic discount factors, 

and Section 6 discusses how well these specifications capture future macroeconomic 
                                                 
1 Note that this sample period practically coincides with the period through which financial research has 
shown a significant negative slope of the volatility smile for equity options on stock market indices. See 
Jackwerth and Rubinstein (1996) for the first discussion on how the crash of October 1987 changes the 
slope of the smile. 
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and stock market cycles and recessions. Section 7 concludes with a summary of our 

findings. 

2. Risk-Neutral and Objective Probability Densities, and the Volatility of the 

Stochastic Discount Factor 

There are well known economic episodes, like the stock market crash in 1987, 

the Asian currency crisis during the summer of 1997, the Russian default in the summer 

of 1998, or the terrorist attack on September 11th, 2001, in which the left-tail of the 

risk-neutral density becomes considerably fatter than the corresponding left-tail of the 

risk-adjusted counterpart. This points out that the former distribution overstates poor 

states of nature, especially during stress economic periods. Marginal utility is higher in 

those scenarios and this is precisely what is introduced into the estimated risk-neutral 

densities. Hence, and independently of the estimation method employed, if we calculate 

the difference between the probabilistic mass assigned to a given left tail percent from 

the risk-neutral and the power risk-adjusted density, we would observe how these 

differences are time-varying with a clear increasing pattern for every potentially 

damaging economic episode.  

Given this discussion, we may also argue that, in absolute values, these crash 

fears may cause a positive overall gap or distance between the risk-neutral and objective 

probability measures. For a given percentage of the tails of the density functions, the 

potential economic downturn increases more the probabilistic mass assigned to the left 

tail of the risk-neutral density over the risk-adjusted density than the probabilistic mass 

assigned to the right tail of the risk-adjusted density over and above the risk-neutral 

counterpart. This suggest that the overall distance taken in absolute value between the 

risk-neutral and objective probability measures may be well suited to proxy for 

economic fears of investors. Interestingly, Bakshi, Chen and Hjalmarsson (2004) 

propose a formal overall distance measure between the two probability sets.  

We consider an economy endowed with a probability space ( ), ,Ω Ρℑ  whereΩ  

denotes the state space and ℑ  is the tribe of subsets of Ω  that are events and can 

therefore be assigned a probability. We denote Ρ  and Q as the objective and risk-

neutral probability measures respectively.  
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Under no arbitrage opportunities, there exists a strictly positive SDF, M, such 

that the price of any financial asset between any two time periods t and t+1 is given by 

( )jt t jt 1 t 1p E X MΡ
+ += ,                             (1) 

where jtp  is the price of asset j at time t, jt 1X +  is the future payoff of asset j, and tEΡ  

is the conditional expectation with respect to the objective probability measure Ρ . 

 Alternatively, the price of the financial asset with respect to the risk-neutral 

probability Q is 

                                                 ( )Q
jt jt 1t

f

1p E X
R += ,                                                  (2) 

where Q
tE is the conditional expectation with respect to Q and fR  is the gross riskless-

rate of interest between t and t+1. 

Bakshi, Chen and Hjalmarsson (2004) define the distance between Ρ  and Q as 

                                         ( ) ( ) ( )0D ,Q  dQ X d X  
Ω

Ρ Ρ≡ −∫ .                                    (3) 

This distance will be zero if and only if Ρ  and Q assigns the same probability 

mass to every given event belonging to ℑ  in the state space Ω . Otherwise, D0 must be 

positive and, given our discussion above, 0D  may be time-varying and it may anticipate 

changes in the economic cycle because it might reasonable be higher just before 

economic recessions.  

We can always choose a particular equivalent probability measure Q such that 

the Radon-Nikodym derivative is f t 1
dQ R M
dΡ += .2 Given that ( )t t 1 fE M 1 RΡ

+ = , it 

must be true that                                         

                                      
( )Ρ

Ρ+

+
= t 1

t t 1

M
dQ d

E M
.                                                  (4)  

                                                 
2 One can check that, under no arbitrage, this random variable is strictly positive and has expectation 1. 
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Substituting the expression (4) into (3) we obtain 

                   ( )
( )

t 1
0 t f t t+1

ft t 1

M 1D ,Q E  1 R E  M  
RE M

Ρ Ρ
Ρ

Ρ +

+
= − = − .                      (5) 

In words, the absolute distance between both probability measures is completely 

determined by the expectation under the objective probability of the absolute difference 

between M and f1 R .3  

The idea is to obtain an approximation for the distance between both sets of 

probability measures without relying on option data. By applying Hölder´s inequality to 

the distance probability measures we obtain 

               ( ) ( ) ( )0 t 1 t 1 t t 1
f f

1 1D ,Q  M   M E M  M
R R

ΡΡ σ+ + +≤ − = − = ,                (6) 

where ( )Mσ  is the standard deviation of the stochastic discount factor M. Hence, the 

volatility of the stochastic discount factor provides an upper bound for the distance 

between the risk-neutral and objective probability distribution, up to a constant of 

proportionality which is equal to the risk-free rate. This does not imply that a higher 

volatility of the defining SDF will be necessarily accompanied by a larger distance 

between the probability measures and, therefore, by increasing economic fears from 

investors. Then, the specific relationship between the volatility of any sensible SDF and 

the distance between probabilities becomes an empirical issue. However, we expect 

that, at the beginning of stressed economic periods, the volatility of reasonable SDFs 

should increase to reflect the overall larger absolute gap between the risk-neutral and 

objective probability measures. In fact, by employing the Hansen and Jagannathan 

(1991) volatility bound or the maximal Sharpe ratio, and assuming a mean-reverting 

process for the ratio, Brennan, Wang and Xia (2004) show a strong counter-cyclical 

behavior of the maximal ratio under the ICAPM framework of Merton (1973). Note that 

we are interested in studying whether the volatility of sensible SDFs predicts future 

economic and stock market cycles, rather than analyzing contemporaneous pricing 

relationships as in Brennan, Wang and Xia (2004).  
                                                 
3 This is the case since fR  is just a scaling factor. 
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3. Consumption-based Stochastic Discount Factors 

The well known SDF under power utility is given by 

                                            
( )
( )

t 1 t 1
t 1

t t

U C C
M

U C C

γ
β β

−
+ +

+
′ ⎛ ⎞

= = ⎜ ⎟′ ⎝ ⎠
,                                 (7) 

where tC  is aggregate per-capita non-durable consumption as calculated at time t, 

( )tU C′  is marginal utility, β  is the subjective discount factor or impatience parameter, 

and γ  is the coefficient of relative risk aversion. 

Despite the fact that nondurable consumption growth betas have repeatedly 

failed to explain the cross-sectional variation of average returns, the recent U.S. 

empirical evidence has shown that SDFs based on consumption data are able to explain 

reasonably well mean returns. For example, Parker (2001) and Parker and Julliard 

(2005) argue that consumption growth rates and stock returns do not covary 

contemporaneously as preferences in (7) indicate because agents’ consumption takes 

time to respond to changes in wealth. The cost of adjusting consumption to current 

circumstances is greater than the cost of adjusting investment in financial assets. 

Furthermore, marginal utility of consumption is related to other slow-adjusting factors 

such as changes in labour earnings or property investments. Hence, they suggest 

measuring asset risk as the covariance between returns and consumption growth rate not 

only in the period to which returns refer, but also in several periods forward.4 In 

particular, Parker and Julliard (2005) refer to this as ultimate consumption risk. They 

propose the following SDF 

                                      
( )

( )
ft 1,t 1 S t 1 SS S 1

t 1
t

R U C
M

U C
β + + + + ++

+
′

=
′

.                                 (8) 

Under the power specification, the SDF takes the form 

                                                 
4  Similarly, Bansal and Yaron (2004), Bansal, Dittmar and Lundblad (2005), and Hansen, Heaton and Li 
(2006) show that the covariance between long run cash flows and long run consumption growth can 
explain the cross-sectional variation of expected returns. For an excellent review of the main issues 
involved in this approach, see Bansal (2008). 
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                                     S S 1 t 1 S
t 1 ft 1,t 1 S

t

C
M R

C

γ
β

−
+ + +

+ + + +
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,                                 (9) 

where t 1 S tC C+ +  is the consumption growth rate between t and t+1+S, and 

ft 1,t 1 SR + + +  is the risk-free gross rate corresponding to the same horizon. 

At the same time, in a completely different setting, Yogo (2006) has shown that 

small and value firms are more pro-cyclical than large and growth firms with respect to 

the growth rate of durable consumption. This suggests that the ratio between durable 

and nondurable consumption growth rates is a pro-cyclical state variable that 

accentuates the counter-cyclical behaviour of marginal utility. Moreover, the inclusion 

of durable consumption can be done under recursive utility where the return of market 

equity wealth is part of the stochastic discount factor. Once again, this allows for a 

higher volatility of the stochastic discount factor relative to specifications where only 

consumption growth is employed.5 

Finally, the habit persistence model of Campbell and Cochrane (1999) has 

widely been used as a preference representation in asset pricing modelling. The reason 

is the extra volatility in marginal utility of consumption obtained throughout the 

behaviour of the so called surplus consumption ratio which is the percentage difference 

between consumption and the level of habits.  

With this ideas in mind, we now briefly discuss the five alternative SDFs 

employed in this paper.  

Assuming recursive preferences, the SDF has the advantage of separating 

relative risk aversion and the elasticity of intertemporal substitution. Moreover, this 

SDF not only incorporates consumption growth but also the return on the market 

portfolio. In particular, under recursive utility, the contemporaneous SDF is given by 

                                        
1

1t 1
t 1 mt 1

t

C
M R

C

κη
κβ

−
−+

+ +

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,                                       (10) 

                                                 
5 See Campbell (1996). 
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where η  is the elasticity of intertemporal substitution, 1
1 1

γκ
η

−
≡

−
, and mtR  is the 

gross return on the market portfolio at any time t. The set of parameters to be estimated 

is given by { }, ,θ β γ η= . 

Similarly, the specification under ultimate consumption risk and recursive utility 

becomes 

                               
1

S S 1 1t 1 S
t 1 mt 1 S ft 1 S

t

C
M R R

C

κη
κβ

−
+ −+ +

+ + + + +

⎡ ⎤⎛ ⎞⎢ ⎥= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
.                   (11)      

Yogo (2006) incorporates durable consumption to the marginal utility using a 

recursive preferences specification in which both types of consumption are not 

separable. The idea is, as usual, to increase the volatility of marginal consumption. The 

contemporaneous SDF is given by 

( )
( )

( ) ( )( 1 )1 ( 1)
1 1t 1 t 1t 1

t 1 mt 1( 1)t t t

1 D CC
M R

C 1 D C

κη ρ η ρη ρ ρ
κ

ρ ρ
α α

β
α α

− −− −
−+ ++

+ +−

⎡ ⎤⎛ ⎞− +⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ − +⎢ ⎥⎝ ⎠⎣ ⎦

, (12) 

where tD  is aggregate per-capita stock of durable consumption as calculated in time t, 

α  is the expenditure share of the durable consumption good, and ρ  is the elasticity of 

substitution between durable and non-durable consumption. Hence, the set of 

parameters is given by { }, , , ,θ β γ η α ρ= . 

As before, this paper analyzes the durable consumption-based asset pricing 

model under the perspective of ultimate consumption risk. In this case, the SDF 

becomes6 

                                                 
6 In the empirical specification of expressions (11) and (12), we employ a three-year frame (S is 11 
quarters) as the time lag for conciliating the consumption growth rate with current returns on equity 
assets, for both nondurable and durable consumption goods. Julliard and Parker (2005) also employs 11 
quarters, while Malloy, Moskowitz and Vissing-Jorgensen (2006) use 16 quarters, although their results 
are robust to other specifications of long run consumption. 
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( )
( )

( ) ( )( 1 )1 ( 1 )
t 1 S t 1 SS S 1 t 1 S

t 1 ( 1 )t t t

1
mt 1 S ft 1 S

1 D CC
M

C 1 D C

                                                          R R

κη ρ η ρη ρ ρ

ρ ρ

κ

α α
β

α α

− −− −
+ + + ++ + +

+ −

−
+ + + +

⎡ ⎤⎛ ⎞− +⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ − +⎢ ⎥⎝ ⎠⎣ ⎦

×

                                                                                                                                       (13) 

Finally, the SDF under the external habit persistence model of Campbell and 

Cochrane (1999) is given by 

                                               t 1 t 1
t 1

t t

SC C
M

SC C

γ
β

−
+ +

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 ,                                        (14)               

where tH  is the level of habits and t t
t

t

C H
SC

C
−

=  is a state variable known as “surplus 

consumption ratio” that allows to capture dependencies among states of nature. It is 

important to point out that tSC  is a recession indicator; it is low after several quarters of 

consumption declines and high in booms. It should be noted that the recognition of 

habits eliminates the need of including long-run consumption growth rates in the SDF; 

the nature of habits should be playing the equivalent role of ultimate consumption risk. 

Finally, under this specification, relative risk aversion presents a counter-cyclical 

behaviour. Hence, with recessions, as consumption falls toward habit, people become 

less willing to tolerate further falls in consumption and they become more risk averse. 

Next, we define the habit formation process. Level of habits can be written as a 

function of past consumption. We use consumption growth rates to ensure that the 

function is stationary7 

                                              t 1 t L
t t

t t

C C
H C g ,....,

C C
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

.                                          (15) 

A reasonable function that guarantees t tH C<  is the following: 

                                                      ( ) ( ) 1xg x h 1 e
−−= + ,                                              (16) 

                                                 
7 See Chen and Ludvigson (2004). 
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where h is the global habit persistence parameter,  

2 Lt 1 t 2 t L

t t t

C C C
x ....

C C C
δ δ δ− − −⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

, with 0 h 1≤ ≤ , and 0 1δ≤ ≤ . 

Therefore, the habit specification is given by 

                             

1C C Ct 1 t 2 t L2 L....
C C Ct t t

t tH C h 1 e
δ δ δ

−
⎛ ⎞− − −− + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟

= +⎜ ⎟
⎜ ⎟
⎝ ⎠

.                    (17) 

In the actual estimation of this model, and to be consistent with ultimate 

consumption risk, L will be 12 quarters. The set of parameters to be estimated is 

{ }, ,h,θ β γ δ= . 

4. Data and Some Preliminary Results 

4.1 Macroeconomic and Stock Market Data 

We employ quarterly seasonally adjusted aggregate real per capita consumption 

expenditure of nondurables and services (C) for the period 1947:I to 2006:IV from 

National Income and Product Accounts (NIPA) Table 7.1. The same source is used to 

obtain the quarterly real per capita durable consumption expenditures (E), and the real 

per capita Gross Domestic Product (GDP). All these figures use year 2000 prices. 

Durable consumption consists of items such as clothing and shoes, motor vehicles, 

furniture, appliances, jewelry and watches. Following Yogo (2006), the investor´s stock 

of the durable good (D) is related to its expenditure by the law of motion 

                                            ( )t t 1 tD 1 dep D E−= − + ,                                              (18) 

where dep is the depreciation rate of 6 percent per quarter. We employ data from the 

previous 44 quarters to calculate the first data point of the stock of durable 

consumption. This implies that our estimations finally use quarterly real per capita data 

from nondurables and services, durables and GDP from 1958:I to 2006:IV. Quarterly 
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data of the Industrial Production Index (IPI) in real terms from 1958:I to 2006:IV is 

obtained from the Federal Reserve Data Base.8 

We also obtain monthly aggregate nominal consumption expenditures for the 

period 1959:1 to 2006:12 from NIPA Table 2.8.5. Moreover, population numbers are 

taken from NIPA Table 2.6, and price deflator series from NIPA Table 2.8.4. All this 

information is used to construct monthly seasonally adjusted real per capita 

consumption expenditures on nondurable goods and services, and durable expenditures. 

Each type of consumption is deflated by its corresponding price deflator. As before, we 

employ year 2000 prices. The law of motion to calculate the stock of durable 

consumption is also given by expression (18) with a depreciation rate of 2 percent per 

month, and the previous 60 months are employed to obtain the first data point. Hence, 

our final monthly data of alternative consumption categories goes from 1964:1 to 

2006:12. 

Stock market data is taken from Kenneth French´s web page. We have 

quarterly and monthly data on real value-weighted stock market portfolio returns, the 

corresponding real risk-free rate and excess returns of ten size-sorted equally-weighted 

portfolio returns. The price deflator from NIPA Table 2.8.4 is used to calculate real 

rates of returns. The final quarterly (monthly) data employed goes from 1958:I to 

2006:IV (1964:1 to 2006:12). 

4.2 Some Preliminary Results 

As discussed before, our hypothesis is that the volatility of the SDFs described 

in Section 3 is time-varying, and particularly high just before recessions. Before 

analyzing this issue, we now discuss how the volatility of the model-free SDF behaves 

along economic cycles.  

The Hansen and Jagannathan (1991) bound shows that the volatility of the 

stochastic discount factor satisfies the following relationship: 

        ( ) ( ) ( )( ) ( ) ( )( )
1 2

1
N NM 1 E M E R 1 E M E Rσ Σ −⎡ ⎤′≥ − −⎢ ⎥⎣ ⎦

,                  (19) 

                                                 
8 In particular, the Industrial Production Index is taken from the descriptor 6/7 IP Major Industry. 
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where N1  and E(R) are the N-vector of ones and expected returns respectively, and Σ  

is the variance-covariance matrix of returns. Any sensible SDF should satisfy this 

bound.9  

The Hansen-Jagannathan volatility bound is estimated from 1958 to 2006 with 

quarterly and monthly data using realized returns of our ten equity portfolios and for a 

range of different values for E( M ) . The minimum standard deviation of the SDF 

associated with the realized risk-free interest rate for the period is about 0.399 for 

quarterly data (0.263 for monthly data), corresponding to a mean SDF of about 0.987 

(0.996).  

Figure 1 display the volatility bound of the SDF using expression (19) but now 

calculated with overlapping sub-periods of 5 years of monthly data from the ten size-

sorted portfolios. Each point shown in Figure 1 is the volatility bound for the given 

average level of the risk-free interest rate for each of the sub-periods. As long as this 

volatility is associated with the distance between the risk-neutral and objective 

probabilities, as suggested in Section 2, we may identify these changes in volatility with 

time-varying economic fears. The shaded regions of Figure 1 are U.S. macroeconomic 

recessions from peak to trough as defined by the National Bureau of Economic 

Research (NBER).  

Figure 1 shows substantial differences over time in the volatility of the SDF 

which satisfies the Hansen-Jagannathan bound. The relevant issue is whether these 

changes are associated with changing recession fears reflecting the distance between the 

probability measures. Indeed, the time-varying behaviour of the volatility of the SDF 

seems to reflect increases before or during economic recessions. It is interesting to point 

out that the volatility of the SDF experienced a continuous increase from 0.276 on 

December 1986 to a peak of 0.427 on September 1987, just before the crash of October 

1987. Moreover, Figure 1 displays a higher unconditional mean of the volatility of the 

SDF for the second half of our sample period. In other words, since the previous months 

of the crash of October 1987, the volatility of the model-free SDF does not seem to 

                                                 
9  Thus, next section employs this expression to select feasible consumption-based SDFs using the vector 
of our ten size-sorted equity portfolios.  
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revert to the average levels characterizing the sub-period from the beginning of the 

sixties to the mid eighties.  

5. The Estimation of Parameters for Alternative Consumption-based SDF 

Specifications 

This section selects appropriate parametric SDFs using consumption data and 

stock returns from the U.S. economy. The idea is to study the behaviour of the volatility 

of alternative specifications of consumption-based SDFs. The five specifications 

discussed in Section 3 are analyzed here. In particular, we explore the recursive utility 

specification of expression (10), the long-run version of recursive utility (recursive 

long) given by (11), the durable SDF suggested by Yogo (2006) as in equation (12), its 

long-run version (Yogo long) given by (13), and the habit persistence model described 

in equations (14) and (17).  

Specifically, for each SDF, we try a large grid of feasible preference parameters. 

We then select sets of combinations of those parameters that generate a volatility of the 

SDF which lies above the Hansen-Jagannathan bound of 0.399 with quarterly data and 

0.263 with monthly data. Given the selected SDFs, we compute the pricing error at 

every quarter of each of these SDF in valuating the ten size-sorted portfolios returns as 

                                        ( )ftjttjt RRM̂ê −= ,                                                (20) 

where jR  is the rate of return of each of the ten size-sorted equity portfolios. 

Then, we calculate the mean-squared pricing error over time and across 

portfolios as 

                                         
NT

ê

MSE

10

1j

T

1t

2
jt∑∑

= == .                                                  (21) 

Finally, for each SDF specification, we choose the preference parameters that 

simultaneously make the SDF to enter inside the feasible mean-volatility space and 

have the lowest error in pricing the ten portfolios according to expression (21). 



 16

Figure 2 displays the location of each of the five SDFs employed in the paper 

with the lowest mean-squared pricing error on the mean-volatility space for both 

quarterly and monthly data. Interestingly, they all exactly lie on the frontier. Note that 

the corresponding locations do not depend on the historical risk-free rate for the period. 

However, one of the SDF specifications has a mean-volatility pair closer to the 

historical pair estimated with equity portfolios and expression (19). In particular, this is 

the case for the recursive utility with contemporaneous growth.    

Table 1 contains the actual parameter estimates, the volatility of M, the mean of 

M, and the mean-squared pricing error for each of the five SDFs chosen throughout the 

empirical exercise. Panel A contains the results with quarterly data. The lowest mean-

squared pricing errors are obtained for the long run specifications. On the other hand, 

the higher volatilities are associated with habit persistence and the long run version of 

Yogo´s durable SDF. All estimated elasticities of intertemporal substitution are less 

than one independently of the specification employed. Moreover, the two long-run 

versions of recursive and Yogo´s preferences are able to generate very reasonable levels 

of risk aversion. It seems that the combination of long-run consumption growth and the 

inclusion of the market portfolio return with either nondurable or durable consumption 

goods are key properties to obtain low pricing errors and reasonable risk aversion 

coefficients. Panel B reports similar results with monthly data. In this case, however, 

reasonable levels of risk aversion are also estimated with the contemporaneous growth 

versions of recursive and Yogo´s SDF specifications which also display larger estimates 

of the elasticities of intertemporal substitution relative to Panel A. 

Figure 3 represents, over time and across recessions, the volatilities of the five 

SDFs described in Table 1. They are calculated with quarterly data from the previous 

five years. In Panel A, the volatility of contemporaneous recursive and Yogo´s SDFs 

tends to follow a very similar patter, while the volatility of the habit persistence case 

presents more pronounced peaks. Panel B shows again a similar general pattern for the 

volatilities of long run SDFs with the exception of a higher peak shown by Yogo´s 

specification around the crash of October 1987.  

6. Macroeconomic and Stock Market Cycles, Recessions, and the Volatility of 

Consumption-based Stochastic Discount Factors 
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6.1 Forecasting Macroeconomic and Stock Market Cycles with the Volatility of 

Consumption-based Stochastic Discount Factors 

The volatility of the SDF may reflect the distance between the risk-neutral and 

objective probability distributions, which contains economic fears implicit in the 

investment behaviour of investors. If correct, the volatility of the SDF not only should 

contain information about economic uncertainty, but it may also be able to predict 

future macroeconomic and stock market cycles. This empirical issue is analyzed in this 

section.    

The analysis consists on determining whether the overlapping standard deviation 

of our five SDF specifications incorporates information about the future of three 

selected state variables: the growth rate of the industrial production index, the growth 

rate of GDP and the stock market returns. We therefore perform the following OLS 

autocorrelation-robust-standard-error regressions for our five alternative SDF 

specifications: 

              ( ) 12,8,4,2,1 ;  M
IPI

IPIIPI
tt

t

tt =++=
−

+
+ τεβσα τ
τ                       (22) 

                       ( )t t
t t

t

GDP GDP
M   ;  1,2,4,8,12

GDP
τ

τα βσ ε τ+
+

−
= + + =                    (23) 

                                  ( ) 12,8,4,2,1 ;  MR ttmt =++= ++ τεβσα ττ                               (24) 

where tIPI  , tGDP  and mtR  are the Industrial Production Index, the Gross Domestic 

Product, and the stock market portfolio return for quarter t respectively, and ( )tMσ  

represents the volatility of each SDF specification described in Section 5 estimated with 

either quarterly or monthly data. The corresponding volatility is always calculated with 

data from each SDF up to quarter t (or last month of quarter t). Note that the forecasting 

regressions always use quarterly data, while the volatility of the SDFs used as the 

explanatory variable can be estimated with either quarterly or monthly data. 

A large number of empirical macroeconomic papers provide evidence of a 

striking decline in the volatility of U.S. macroeconomic time series after 1984. It is 

known as the “Great Moderation”. Although the reasons of this extraordinary break are 
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debatable, a recent paper by Galí and Gambetti (2007) shows quite convincingly that 

this evidence can be attributed to changes in the economy´s structure and/or in the way 

policy has been conducted rather than to luck. Their paper shows that the Great 

Moderation can be largely explained by a very significant fall in the contribution of 

non-technological shocks to the volatility of output (with a simultaneous slightly 

increase in the contribution of technological shocks), and to the impact of monetary 

policy given a larger weight to inflation stabilization objectives.  

Given this evidence, we perform the forecasting regression of expressions (22) 

to (24) separating the sample into two non-overlapping sub-periods from 1965:II to 

1984:IV and from 1985:I to 2006:IV.10   

Table 2 provides descriptive statistics over the two sub-periods which clearly 

reflect the U.S. structural break due to the Great Moderation. For example, the 

annualized volatility of the GDP growth rate changes from 2.216 percent between 1965 

and 1984 to 0.996 percent between 1985 and 2006. Similar results are obtained for all 

macroeconomic series shown in Table 2, and for the risk-free interest rate. On the other 

hand, the volatility of the stock market portfolio is practically the same, while the 

Sharpe ratio (relative to the market return and not relative to the ex-post tangency 

portfolio) increases from 0.142 to 0.524. Moreover, the volatilities of the recursive-

based SDF either with contemporaneous or long run growth also show an increasing 

pattern from 0.4 to 0.6 approximately.11 The same result is obtained for the Hansen-

Jagannathan volatility bound associated with the average risk-free rate for each sub-

period.12  

Table 3 contains the forecasting results for the first sub-period. Panels A, B 

and C report the regression results for IPI, GDP and the stock market return, 

respectively. We do not find any significant evidence of a negative relationship between 

the volatility of SDFs and future macroeconomic and stock market cycles. No relevant 

forecasting ability is found whatsoever. If any, there are few positive and significant 

                                                 
10 Although we estimate the parameter preferences from 1958:I to 2006:IV, we need five years of data to 
estimate the first volatility of the SDFs. Moreover, the maximum forecasting horizon imposed in the 
regression is twelve quarters. This implies that the first data point to be used in the prediction exercise 
must be the second quarter of 1965 
11 The estimation procedure for the selected SDFs described in Section 5 is repeated using data separately 
from each sub-period. Therefore, these are not unconditional means of the volatilities of each SDF for 
each sub-period calculated under the parameters estimated for the full sample period. 
12 This is consistent with the pattern displayed in Figure 1. 
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signs in all three cases, and a significant economically sensible predicting capacity of 

the stock market return at long horizons by Yogo´s long run specification.  

Table 4 reports the regression forecasting results for the second sub-period. 

This table is also organized in three panels following the structure of the previous table. 

Overall, the empirical results of the second sub-period are strikingly different from the 

first sub-period. In panel A, and with the exception of habit-based preferences, the 

volatilities of all SDF specifications systematically predict the future growth rate of IPI. 

All estimated slopes have the expected negative sign; increases in the volatility of SDFs 

seem to be significantly associated with future declines in the growth rate of IPI. 

The 2R for the recursive-based preferences with contemporaneous growth goes from 

approximately 16 percent to 24 percent at horizons of one and four quarters 

respectively. Interestingly, the explanatory power of the forecasting regressions 

becomes lower at long run horizons. A similar pattern is reported for Yogo´s 

contemporaneous case. The long run specifications of both recursive and Yogo´s 

durable SDFs seem to be able to forecast better at long horizons than at short horizons. 

This is consistent with theoretical nature of these two SDFs.13 At horizons of one and 

twelve quarters, the 2R goes from approximately 5 percent to 21 percent for the 

recursive case, and from 6 percent to 46 percent for the Yogo´s specification. Although 

these long run specifications use forward growth rates of both consumption and stock 

market returns, it should be pointed out that we never use known information of the 

forecasting period to construct these SDFs.  Panel B contains a very similar although 

somewhat weaker evidence of the forecasting ability of the volatilities of SDFs relative 

to GDP. Contemporaneous specifications of recursive and durable-based SDFs 

significantly predict with the correct sign at short horizons, while long run versions 

significantly forecast at long horizons. Panel C contains the forecasting exercise for the 

stock market return. The empirical results are very similar. They confirm the significant 

predicting capacity of the volatilities of SDFs. Again, the contemporaneous cases being 

strong predictors at short run horizons while long run specifications showing a 

significant ability at long horizons.14 Finally, independently of the forecasting horizon, 

                                                 
13 This result supports the argument of Campbell and Thompson (2007) and Cambpell (2007) who 
convincingly argue that weak theoretical restrictions on the valuation models and on the signs of the 
coefficients help predicting stock market returns better than historical average returns.   
14 Cambpell and Thompson (2007) discuss whether the usual R-squares reported in the forecasting 
literature are economically meaningful. For tractability, they assume mean-variance preferences, and 
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we find higher slope coefficients (in absolute values) when forecasting the stock market 

than when predicting macroeconomic cycles. On the other hand, the sR2  are higher for 

macroeconomic variables than for the stock market return.15  

Because the volatility of the discount factor is very persistent, we also 

calculate the bias-corrected estimator and the corresponding bias-corrected t-statistic 

proposed by Amihud and Hurvich (2004).16 These authors suggest a regression method 

for hypothesis testing in predictive regressions with either one or multiple 

autoregressive predictor variables. Their simulations show that their adjustment 

outperforms other bias-correction methods such as those suggested by Stambaugh 

(1999) or Lewellen (2004). In particular, we assume the following two equations 

                                   ( )t ttV M ττ∆ α βσ ε ++ = + +                                     (25) 

                                ( ) ( )t ttM M ττσ θ ρσ η ++ = + +  ,                                (26) 

where tV τ∆ +  is the growth rate of IPI, GDP or directly the market return. The basic 

idea is to partly eliminate noise by running the following regression 

                            ( ) ( ) ( )t t t ttV M M M eτ ττ∆ α βσ δ σ ρσ+ ++
′ ⎡ ⎤= + + − +⎣ ⎦ ,             (27) 

where the additional regressor, in brackets, is uncorrelated with the initial regressor 

( )tMσ  but correlated with tV τ∆ + . Thus the OLS estimation of (27) still obtains a 

consistent estimate of the original coefficientβ , but it does so with larger efficiency. 

We therefore replicate the forecasting regressions with this procedure. 

Interestingly, the results are qualitative the same, and the coefficients tend to be even 

higher in absolute values. It should be recalled that the results from Table 4 are already 

                                                                                                                                               
show that the gain of observing the predictor variable depends on the observed R-square, the Sharpe ratio 
and risk aversion. If we replicate their exercise for the recursive contemporaneous specification and four 
quarters as the forecasting horizon, we get that the absolute increase in portfolio return is about 5.8 
percent per year for an investor with a risk aversion coefficient of 8.5. As discussed later, this is the risk 
aversion coefficient obtained for the second sub-period under recursive preferences with long run 
consumption growth. 
15 As for the case of IPI, the habit-based specification does not deliver reasonable results for either GDP 
or the stock market return. 
16 Note that persistence leads to biased coefficients in predictive regressions if innovations in the predictor 
variable are correlated with the dependent variable. 
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based on autocorrelation-robust-standard error regressions. Indeed, the regression (27) 

has a significant impact on coefficients when we run the standard OLS predictive 

regressions. However, these effects turn out to be negligible once OLS autocorrelation-

robust-standard errors regressions are used.  

We may therefore conclude that the volatility of consumption-based SDFs 

seems to be a powerful indicator of both future economic and stock market cycles, at 

least from 1985 to 2006. This sub-period is characterized by a macroeconomic policy 

succeeding in stabilizing the economy. At the same time, this sub-period practically 

coincides with the years in which we know there is a changing behaviour of the slope of 

the volatility smile in equity options. We next further investigate this coincidence.  

6.2 Recessions, Expansions, Risk Aversion and the Volatility of Consumption-based 

Stochastic Discount Factors 

A natural concern motivated by the empirical results reported above is how we 

can explain the ultimate reasons behind this evidence. We argue at the beginning of this 

paper that increasing fears, reflected in the higher distance between the risk-neutral and 

risk-adjusted densities estimated by forward looking (at expiration) assets, may be 

captured by the volatility of SDFs. We should therefore investigate whether the 

resulting forecasting capacity during the second sub-period is especially stronger in 

recessions relative to expansions. If this is actually the case, then fears from the 

investors´ perspectives would indeed be the key component reflected in the volatility of 

consumption-based SDFs.  

We repeat the regressions of equations (22) to (24) from 1985:I to 2006:IV but 

now separating recession and expansion periods. The definition of the recession variable 

is based on the recession dates as identified by NBER. This formal identification of 

recession dates gives only seven quarters during the second sub-period. We therefore 

introduce a variant which allows us to have more observations in the regressions 

without substantially altering the nature of the exercise. Recessions are defined as 

follows: For a t + τ forecasting horizon, if at t + τ there is a recession according to the 

NBER, then a new recession variable is defined by assigning a value of 1 at any quarter 
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from t + 1 to t + τ. 17 The expansion variable is the complementary of the recession 

variable. We perform the forecasting regressions for the contemporaneous and long run 

recursive-based SDF specifications. 

The results, reported in Table 5, tend to be consistent with the hypothesis that 

fears strongly characterizes the behaviour of the volatilities of consumption-based 

SDFs. Panel A contains the evidence regarding IPI. Practically in all cases, the sR2  are 

higher for recessions than for expansions, although the evidence is even more consistent 

when we employ the contemporaneous version of the recursive-based SDF. A similar 

pattern is found in the slope coefficients. Panel B presents the evidence for GDP. As 

expected, given the results from Table 4, we now find weaker support for our 

hypothesis. It is clear that the time-varying behaviour of GDP is smoother than IPI. 

This may introduce more difficulties for the forecasting regressions since it may become 

more complicate to distinguish between alternative states of nature with GDP than with 

IPI and, therefore, to deliver significant results. Finally, Panel C reports the results for 

the stock marker return. Once again, they are stronger for recessions than for 

expansions. The overall conclusion favours the hypothesis that fears are behind the 

significant forecasting results observed for the sub-period from 1985:I to 2006:IV. Fears 

seem to be the key determinant of the negative relationship between the volatility of 

SDFs and macroeconomic and stock market cycles.  

We already know that the period in which we find strong support for the 

forecasting capacity of the consumption-based SDFs coincides with a remarkable 

decline in macroeconomic volatility. Then, it may be reasonable to check whether the 

preference parameters of the SDFs used in the analysis show any sign of a changing 

investor’s behaviour from the first to the second sub-period. We therefore repeat the 

process of selecting preference parameters for the contemporaneous and long run 

recursive-based SDF specifications for the two sub-periods separately using quarterly 

data.18 Table 6 contains the results for the two selected SDFs with the lowest pricing 

errors when valuing the ten size-sorted equity portfolios. As expected, the risk aversion 

coefficients tend to be quite high in both sub-periods when we use the contemporaneous 

version of the SDF, while they are more reasonable when the long run specification is 

                                                 
17 Of course, this method delivers exactly the same (small) number of recession data points as the ones 
provided by the NBER when forecasting one quarter ahead. 
18 Recall that we employ data since 1958 when estimating the preference parameters. 
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employed. However, what is more relevant is the increase of risk aversion from the first 

to the second sub-period. In particular, the relative risk aversion coefficient goes from 

21.8 to 29 when we use the contemporaneous recursive-based case, and from 0.35 to 8.5 

when the long run specification is employed. Importantly, no other clear patterns are 

found in other preference parameters. Therefore, the second sub-period is not only 

characterized by low macroeconomic fluctuations but also for an increasing risk 

aversion attitude on the investors´ behaviour. This is consistent with increasing fears 

and with the changing slope of the volatility smile for equity options. 

6.3 Out-of-Sample Analysis 

The obvious critique to our previous approach is that we are basically performing an in-

sample experiment because the preference parameters used in the forecasting 

regressions are estimated with the full sample period. Hence, we actually use not 

available data when we carry out the prediction exercise. To check the robustness of our 

empirical results, we repeat the selection of preference parameters for the 

contemporaneous recursive-based SDF specifications from 1958:I to 1988:IV using 

quarterly data.19 This is the estimation period. These parameters are then employed to 

construct SDFs for each quarter from 1989:I to 2006:IV. This is the forecasting period. 

We next repeat the predicting regressions of expressions (22) to (24) for both SDF 

specifications and for the usual horizons. The results are contained in Table 7. The 

strong forecasting ability of the volatility of the SDF is again found for both future 

macroeconomic and stock market variables. This result generates additional confidence 

in the predicting evidence reported in previous sub-sections. 

7. Conclusions 

In this paper we present convincing empirical evidence showing that the 

volatility of appropriated-selected consumption-based SDFs captures implicit recession 

fears of investors. More specifically, we report a very important change in the 

forecasting ability of the volatility of the consumption-based SDF specifications which 

coincides with the structural change in the macroeconomic conditions of the U.S. 

economy. The predicting capacity is basically observed during the period in which there 

is a very strong decline in the volatility of key macroeconomic time series. In particular, 
                                                 
19 The estimated preference parameters, in this case, are 0.9975, 21.8, and 0.22, for the subjective 
discount factor, the relative risk aversion, and the elasticity of intertemporal substitution, respectively.  
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from 1985 to 2006, contemporaneous consumption growth specifications of recursive 

and durable preferences predict economic cycles at horizons of one, two and four 

quarters, while long run specifications better forecasts at eight and twelve quarters. 

Even more importantly, the explanatory forecasting ability is stronger at recessions than 

at expansions. This suggests a strong fear component in the volatility of SFDs. It is also 

interesting to note that there is an important increase in the risk aversion coefficient 

from the first sub-period to the second sub-period of our sample, while we do not 

observe any other significant pattern in the behaviour of other preference parameters. It 

should be recalled that the second sub-period is also characterized by a significant 

increase in the slope of the volatility smile of equity options which may also reflect 

increasing fears from investors in the stock market. Therefore, the forecasting ability of 

the volatility of consumption-based SDFs is found when simultaneously we have a 

period of great macroeconomic moderation and increasing fears (higher risk aversion) 

in stock market participants. 

Further research explaining the connection between financial markets and the 

real economy seems to be crucial for the understanding of this simultaneous 

phenomenon. 
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Table 1 
Preference Parameters and Moments for Alternative Consumption-based Stochastic 

Discount Factors with Lowest Pricing Errors 
 

Panel A. Quarterly Data 1958:I-2006:IV 

Preferences β  γ  η  α  ρ  δ  h  ( )E M  ( )Mσ  Pricing 
Errors 

Recursive 0.990 24 0.215 N.A. N.A. N.A. N.A. 0.9563 0.3996 0.0220 

Yogo 0.988 25 0.20 0.80 0.42 N.A. N.A. 0.9545 0.4271 0.0203 

Habit 0.997 29 N.A. N.A. N.A. 0.76 0.997 0.9441 0.5142 0.0169 

Recursive 
Long 0.991 1.65 0.81 N.A. N.A. N.A. N.A. 0.9528 0.4297 0.0125 

Yogo Long 0.980 2.50 0.70 0.85 0.75 N.A. N.A. 0.9354 0.6052 0.0115 

For each SDF specification, we try a large grid of feasible preference parameters. We then select sets of combinations 
of those parameters that generate a volatility of the SDF, calculated with quarterly data, which lies above the HJ 
bound for the average level of interest rate for that period. The selected combinations should enter in the HJ space. 
Given the selected SDFs, we compute the pricing error at every quarter of each of these SDF in valuing the ten-size 
sorted portfolios. We finally calculate the MSE over time and across portfolios. The parameters reported correspond 
to selected SDF with the lowest MSE. β  is the subjective discount factor for future period utility; γ  is the 
coefficient of relative risk aversion; η  is the elasticity of intertemporal substitution; α is the expenditure share of the 
durable consumption good; ρ  is the elasticity of substitution between durable and non-durable consumption; δ  is 
the weight associated with past consumption; h is the global habit persistence parameter; and pricing error is the 
mean squared error over ten size-sorted portfolios.  
 
 

Panel B. Monthly Data 1964:1-2006:4 

Preferences β  γ  η  α  ρ  δ  h  ( )E M  ( )Mσ  Pricing 
Errors 

Recursive 0.999 3.8 0.72 N.A. N.A. N.A. N.A. 0.9814 0.2630 0.00390 

Yogo 0.999 2.8 0.80 0.96 0.38 N.A. N.A. 0.9818 0.2660 0.00387 

Habit 0.998 43 N.A. N.A. N.A. 0.81 0.993 0.9489 1.0318 0.00944 

Recursive 
Long 0.958 0.8 0.02 N.A. N.A. N.A. N.A. 0.9819 0.2725 0.00370 

Yogo Long 0.904 0.9 0.11 0.99 0.89 N.A. N.A. 0.9819 0.2676 0.00369 

We repeat the procedure described in Panel A with monthly data. 
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Table 2 
Volatilities of Macroeconomic, Stock Market Variables and Alternative Stochastic 

Discount Factors by Sub-periods 
 

Variables 1965:II-1984:IV 1985:I-2006:IV 

Non-durable Consumption 1.032 0.658 

Durable Consumption 1.108 0.918 

Gross Domestic Product 2.216 0.996 

Industrial Production 4.356 2.068 

Market Return 17.488 16.467 

Risk-free Rate 1.354 0.976 

Sharpe Ratio 0.142 0.524 

Recursive-based SDF 0.400 0.596 

Recursive-based SDF with Long 
Run Consumption Growth 0.406 0.598 

Hansen-Jagannathan Volatility 
Bound 0.394 0.595 

Volatilities are estimated with quarterly data. Figures reported for the macroeconomic variables, stock market return 
and risk-free rate are annualized and in percentages. Volatilities for the alternative SDFs are calculated using the 
preference parameters estimated with data only from the corresponding sub-period. 
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Table 3 
Predicting Future Macroeconomic and Stock Market Cycles with the Volatility of 
Alternative Consumption-based Stochastic Discount Factors with Quarterly Data 

1965:II-1984:IV1 

 
 

Panel A. Future Industrial Production Index and the Volatility of SDFs2 

( )t t
t t

t

IPI IPI
M

IPI
τ

τα βσ ε+
+

−
= + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant -0.002 (-0.17) -0.015 (-1.05) 0.008 (1.09) -0.001 (-0.07) -0.016 (-1.15) 
Slope 0.024 (0.80) 0.055 (1.76) -0.002 (-0.13) 0.043 (0.48) 0.077 (1.98) 

1 
Quarter R2 (%) 0.90  4.29  0.04  0.55  6.59  

Constant -0.010 (-0.43) -0.035 (-1.17) 0.015 (0.95) -0.001 (-0.02) -0.028 (-1.07) 
Slope 0.064 (1.11) 0.121 (1.88) -0.000 (-0.01) 0.077 (0.42) 0.140 (1.94) 

2 
Quarters R2 (%) 2.06  6.76  0.00  0.57  7.18  

Constant -0.025 (-0.57) -0.059 (-1.09) 0.031 (1.03) 0.008 (0.10) -0.033 (-0.76) 
Slope 0.139 (1.32) 0.214 (1.85) -0.001 (-0.03) 0.107 (0.30) 0.205 (1.66) 

4 
Quarters R2 (%) 3.58  7.83  0.00  0.42  5.80  

Constant -0.052 (-0.75) -0.104 (-1.35) 0.039 (0.74) 0.043 (0.34) 0.009 (0.11) 
Slope 0.285 (1.64) 0.401 (2.40) 0.041 (0.46) 0.085 (0.15) 0.166 (0.63) 

8 
Quarters R2 (%) 6.72  12.61  0.86  0.11  1.75  

Constant 0.010 (0.11) -0.045 (-0.57) 0.044 (0.74) 0.136 (0.94) 0.047 (0.42) 
Slope 0.182 (0.77) 0.306 (1.75) 0.074 (0.73) -0.284 (-0.41) 0.102 (0.30) 

12 
Quarters R2 (%) 2.40  6.91  1.90  0.87  0.59  
1/ The SDF employed to calculate the volatilities used in the regressions enter in the feasible HJ space and have the 
lowest pricing errors in valuing the ten size-sorted portfolios. The corresponding preference parameters are estimated 
with data from the full period from 1958:I to 2006:IV. The volatilities are estimated as overlapping standard 
deviations of five years of past data. 
2/ All panels report OLS autocorrelation-robust standard-error regressions. 
 

 
Panel B. Future Gross Domestic Product and the Volatility of SDFs2 

( )t t
t t

t

GDP GDP
M

GDP
τ

τα βσ ε+
+

−
= + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant -0.000 (-0.02) -0.006 (-0.89) 0.005 (1.24) -0.005 (-0.54) -0.002 (-0.39) 
Slope 0.014 (0.98) 0.029 (1.79) 0.002 (0.21) 0.051 (1.16) 0.025 (1.53) 

1 
Quarter R2 (%) 1.22  4.55  0.09  3.00  2.74  

Constant -0.003 (-0.31) -0.014 (-1.08) 0.008 (0.98) -0.008 (-0.44) -0.002 (-0.17) 
Slope 0.036 (1.32) 0.061 (2.05) 0.006 (0.45) 0.092 (1.06) 0.041 (1.29) 

2 
Quarters R2 (%) 3.02  7.92  0.63  3.80  2.89  

Constant -0.006 (-0.33) -0.020 (-0.91) 0.013 (0.90) -0.006 (-0.17) 0.007 (0.34) 
Slope 0.070 (1.43) 0.100 (2.03) 0.016 (0.59) 0.131 (0.80) 0.046 (0.74) 

4 
Quarters R2 (%) 4.52  8.41  1.52  3.10  1.46  

Constant -0.010 (-0.33) -0.034 (-1.13) 0.019 (0.83) 0.011 (0.22) 0.034 (0.82) 
Slope 0.132 (1.67) 0.184 (2.76) 0.043 (0.96) 0.151 (0.60) 0.027 (0.22) 

8 
Quarters R2 (%) 7.15  13.08  4.72  1.77  0.23  

Constant 0.035 (0.96) 0.002 (0.08) 0.030 (1.32) 0.077 (1.42) 0.043 (0.83) 
Slope 0.054 (0.52) 0.131 (1.83) 0.052 (1.28) -0.107 (-0.39) 0.040 (0.27) 

12 
Quarters R2 (%) 1.18  7.03  5.25  0.69  0.52  
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Panel C. Future Market Portfolio Returns and the Volatility of SDFs 
( )mt t tR Mτ τα βσ ε+ += + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant -0.037 (-0.85) -0.033 (-0.58) -0.007 (-0.28) -0.041 (-0.38) 0.050 (1.42) 
Slope 0.123 (1.20) 0.109 (0.84) 0.033 (0.79) 0.253 (0.93) -0.124 (-1.12) 1 

Quarter R2 (%) 1.36  0.99  0.68  1.11  0.99  
Constant -0.059 (-0.73) -0.063 (-0.60) -0.014 (-0.32) -0.072 (-0.64) 0.118 (1.78) 
Slope 0.204 (1.09) 0.208 (0.87) 0.066 (0.84) 0.455 (0.89) -0.311 (-1.46) 2 

Quarters R2 (%) 1.62  1.53  1.15  1.56  2.72  
Constant -0.121 (-0.86) -0.192 (-1.12) -0.051 (-0.58) -0.171 (-0.90) 0.273 (2.46) 
Slope 0.416 (1.26) 0.571 (1.47) 0.174 (1.16) 1.041 (1.21) -0.744 (-2.00) 4 

Quarters R2 (%) 3.59  6.16  4.24  4.42  8.53  
Constant -0.185 (-1.00) -0.329 (-1.57) -0.140 (-1.15) -0.506 (-2.14) 0.517 (3.05) 
Slope 0.664 (1.59) 0.985 (2.19) 0.409 (2.18) 2.850 (2.71) -1.422 (-2.51) 8 

Quarters R2 (%) 6.00  12.52  14.09  21.11  21.20  
Constant -0.167 (-1.13) -0.183 (-0.90) -0.253 (-2.22) -0.769 (-3.42) 0.709 (5.06) 
Slope 0.613 (1.82) 0.617 (1.41) 0.660 (3.72) 4.232 (4.02) -2.024 (-4.54) 12 

Quarters R2 (%) 5.26  5.45  29.29  37.35  45.28  
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Table 4 
Predicting Future Macroeconomic and Stock Market Cycles with the Volatility of 
Alternative Consumption-based Stochastic Discount Factors with Quarterly Data 

1985:I-2006:IV1 

 
 

Panel A.  Future Industrial Production Index and the Volatility of SDFs2 

( )t t
t t

t

IPI IPI
M

IPI
τ

τα βσ ε+
+

−
= + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant 0.030 (5.88) 0.029 (5.76) 0.008 (2.05) 0.014 (4.62) 0.014 (4.88) 
Slope -0.052 (-4.05) -0.055 (-3.96) -0.000 (-0.00) -0.017 (-2.06) -0.010 (-2.01) 

1 
Quarter R2 (%) 15.57  14.72  0.00  5.41  6.35  

Constant 0.059 (6.37) 0.058 (6.18) 0.016 (1.96) 0.028 (4.69) 0.029 (5.25) 
Slope -0.104 (-4.36) -0.109 (-4.24) 0.002 (0.10) -0.034 (-2.15) -0.022 (-2.35) 

2 
Quarters R2 (%) 19.10  17.90  0.02  6.60  9.42  

Constant 0.117 (6.71) 0.114 (6.37) 0.028 (1.81) 0.056 (4.72) 0.062 (5.70) 
Slope -0.199 (-4.67) -0.208 (-4.46) 0.013 (0.42) -0.066 (-2.27) -0.050 (-2.95) 

4 
Quarters R2 (%) 23.95  22.02  0.54  8.52  15.89  

Constant 0.208 (7.15) 0.198 (6.51) 0.040 (1.52) 0.122 (5.38) 0.143 (8.14) 
Slope -0.328 (-4.68) -0.330 (-4.25) 0.075 (1.48) -0.146 (-2.61) -0.127 (-4.74) 

8 
Quarters R2 (%) 21.82  18.80  8.06  13.82  34.37  

Constant 0.236 (4.43) 0.217 (3.76) 0.043 (1.35) 0.193 (6.00) 0.217 (10.76) 
Slope -0.303 (-2.47) -0.277 (-1.96) 0.156 (2.75) -0.247 (-2.80) -0.192 (-5.50) 

12 
Quarters R2 (%) 10.12  7.23  22.83  21.31  45.69  
1/ The SDF employed to calculate the volatilities used in the regressions enter in the feasible HJ space and have the 
lowest pricing errors in valuing the ten size-sorted portfolios. The corresponding preference parameters are estimated 
with data from the full period from 1958:I to 2006:IV. The volatilities are estimated as overlapping standard 
deviations of five years of past data. 
2/ All panels report OLS autocorrelation-robust standard-error regressions. 
 
 

 
Panel B. Future Gross Domestic Product and the Volatility of SDFs 

( )t t
t t

t

GDP GDP
M

GDP
τ

τα βσ ε+
+

−
= + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant 0.012 (5.11) 0.012 (5.20) 0.005 (3.77) 0.006 (4.50) 0.006 (4.90) 
Slope -0.017 (-2.85) -0.019 (-2.92) -0.002 (-0.53) -0.004 (-1.05) -0.003 (-0.96) 

1 
Quarter R2 (%) 7.18  7.21  0.30  1.35  1.72  

Constant 0.023 (5.68) 0.023 (5.74) 0.009 (3.19) 0.012 (4.50) 0.013 (5.28) 
Slope -0.031 (-3.01) -0.034 (-3.05) 0.001 (0.08) -0.007 (-0.96) -0.005 (-1.02) 

2 
Quarters R2 (%) 9.59  9.42  0.01  1.70  2.75  

Constant 0.041 (5.44) 0.041 (5.34) 0.016 (2.74) 0.024 (4.83) 0.027 (6.64) 
Slope -0.051 (-2.69) -0.054 (-2.64) 0.010 (0.92) -0.013 (-0.95) -0.012 (-1.45) 

4 
Quarters R2 (%) 8.98  8.50  1.90  1.84  5.62  

Constant 0.074 (5.35) 0.071 (4.89) 0.023 (2.14) 0.055 (5.66) 0.068 (7.92) 
Slope -0.075 (-2.20) -0.075 (-1.96) 0.048 (2.28) -0.036 (-1.60) -0.045 (-3.02) 

8 
Quarters R2 (%) 5.84  4.93  16.69  4.27  22.09  

Constant 0.092 (4.43) 0.086 (3.70) 0.028 (2.20) 0.094 (6.07) 0.115 (10.32) 
Slope -0.064 (-1.25) -0.053 (-0.87) 0.088 (3.59) -0.082 (-2.17) -0.088 (-4.90) 

12 
Quarters R2 (%) 2.17  1.27  34.78  11.30  45.76  
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Panel C. Future Market Portfolio Returns and the Volatility of SDFs 
( )mt t tR Mτ τα βσ ε+ += + +  

Horizon Estimates Recursive Yogo Habit Recursive 
Long 

Yogo 
Long 

Constant 0.098 (2.47) 0.095 (2.41) 0.010 (0.51) 0.053 (2.47) 0.055 (3.50) 
Slope -0.174 (-1.72) -0.179 (-1.66) 0.045 (1.05) -0.077 (-1.15) -0.051 (-1.75) 1 

Quarter R2 (%) 2.69  2.42  0.78  1.72  2.54  
Constant 0.220 (2.97) 0.214 (2.93) 0.028 (0.81) 0.103 (2.55) 0.108 (3.65) 
Slope -0.41 (-2.14) -0.422 (-2.10) 0.062 (0.91) -0.148 (-1.19) -0.099 (-1.85) 2 

Quarters R2 (%) 7.84  7.19  0.89  3.42  5.03  
Constant 0.403 (3.64) 0.386 (3.52) 0.035 (0.56) 0.192 (2.62) 0.206 (4.06) 
Slope -0.714 (-2.45) -0.730 (-2.35) 0.185 (1.61) -0.250 (-1.14) -0.177 (-2.01) 4 

Quarters R2 (%) 12.3  10.87  4.62  4.91  8.05  
Constant 0.701 (4.89) 0.661 (4.56) 0.054 (0.52) 0.400 (3.53) 0.426 (5.01) 
Slope -1.169 (-3.07) -1.160 (-2.84) 0.394 (2.04) -0.535 (-1.68) -0.373 (-2.94) 8 

Quarters R2 (%) 14.31  11.95  11.55  9.60  15.24  
Constant 0.757 (2.71) 0.674 (2.30) 0.043 (0.32) 0.723 (4.58) 0.758 (7.57) 
Slope -0.981 (-1.52) -0.846 (-1.16) 0.718 (3.22) -1.118 (-2.30) -0.732 (-4.48) 12 

Quarters R2 (%) 5.17  3.29  23.55  21.38  32.52  
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Table 5 
Predicting Future Macroeconomic and Stock Market Recessions and 

Expansions with the Volatility of Alternative Recursive-based Stochastic 
Discount Factors with Quarterly Data1 

1985:I-2006:IV 
 

 
Panel A. Future Industrial Production Index and the Volatility of SDFs2 

( )t t
t t

t

IPI IPI
M

IPI
τ

τα βσ ε+
+

−
= + +  

Recessions Expansions Forecasting 

Horizon 

Regresión 

Estimates 
Recursive Recursive 

Long Recursive Recursive 
Long 

Constant 0.110 (1.67) 0.049 (1.44) 0.053 (7.48) 0.028 (4.89) 
Slope -0.284 (-2.07) -0.166 (-2.18) -0.080 (-5.30) -0.023 (-1.84) 2 Quarters 
R2 (%) 38.28  38.68  20.79  5.58  
Constant 0.309 (3.17) -0.063 (-0.79) 0.116 (8.38) 0.063 (5.79) 
Slope -0.734 (-3.15) 0.159 (0.70) -0.183 (-5.97) -0.066 (-2.91) 4 Quarters 
R2 (%) 32.48  7.77  33.52  14.24  
Constant 0.331 (9.90) 0.036 (0.63) 0.219 (6.78) 0.133 (6.05) 
Slope -0.726 (-6.65) 0.057 (0.36) -0.335 (-4.64) -0.169 (-2.91) 8 Quarters 
R2 (%) 59.96  1.06  23.64  21.72  
Constant 0.299 (6.47) 0.249 (6.37) 0.052 (0.36) 0.165 (4.14) 
Slope -0.474 (-3.56) -0.396 (-3.42) 0.094 (0.31) -0.187 (-1.95) 

12 
Quarters 

R2 (%) 30.38  34.42  0.32  13.82  
1/ The SDF employed to calculate the volatilities used in the regressions enter in the feasible HJ 
space and have the lowest pricing errors in valuing the ten size-sorted portfolios. The corresponding 
preference parameters are estimated with data from the full period from 1958:I to 2006:IV. The 
volatilities are estimated as overlapping standard deviations of five years of past data. Recessions are 
defined as follows: If at t + τ there is a recession according to the NBER, then a new recession 
variable is defined by assigning a value of 1 at any quarter from t + 1 to t + τ. The expansion variable 
is the complementary of the recession variable. 
2/ All panels report OLS autocorrelation-robust standard-error regressions. 

 
 

Panel B. Future Gross Domestic Product and the Volatility of SDFs 

( )t t
t t

t

GDP GDP
M

GDP
τ

τα βσ ε+
+

−
= + +  

Recessions Expansions Forecasting 

Horizon 

Regresión 

Estimates 
Recursive Recursive 

Long Recursive Recursive 
Long 

Constant -0.012 (-0.32) -0.004 (-0.22) 0.021 (7.33) 0.013 (5.21) 
Slope 0.015 (0.20) -0.003 (-0.09) -0.024 (-3.14) -0.004 (-0.58) 2 Quarters 
R2 (%) 0.65  0.09  11.05  0.98  
Constant 0.079 (1.49) -0.026 (-0.63) 0.041 (7.07) 0.027 (6.24) 
Slope -0.172 (-1.43) 0.085 (0.81) -0.046 (-3.02) -0.013 (-1.14) 4 Quarters 
R2 (%) 9.75  12.22  11.58  3.11  
Constant 0.127 (7.29) 0.048 (1.95) 0.064 (3.75) 0.055 (5.34) 
Slope -0.219 (-3.81) -0.009 (-0.14) -0.053 (-1.35) -0.041 (-1.61) 8 Quarters 
R2 (%) 32.87  0.15  2.85  5.95  
Constant 0.115 (7.83) 0.114 (15.02) 0.064 (3.75) 0.079 (3.29) 
Slope -0.102 (-2.14) -0.119 (-4.26) 0.254 (2.02) -0.055 (-1.10) 

12 
Quarters R2 (%) 17.18  38.42  9.03  4.76  
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Panel C. Future Market Portfolio Returns and the Volatility of SDFs 

( )mt t tR Mτ τα βσ ε+ += + +  

Recessions Expansions Forecasting 

Horizon 

Regresión 

Estimates 
Recursive Recursive 

Long Recursive Recursive 
Long 

Constant 0.315 (0.97) 0.040 (0.36) 0.201 (2.77) 0.106 (2.68) 
Slope -0.849 (-1.20) -0.269 (-1.08) -0.330 (-1.79) -0.119 (-0.97) 2 Quarters 
R2 (%) 8.03  2.37  6.51  2.81  
Constant 1.469 (2.66) 0.117 (0.34) 0.394 (3.71) 0.206 (2.93) 
Slope -3.563 (-2.84) -0.437 (-0.46) -0.632 (-2.27) -0.217 (-1.03) 4 Quarters 
R2 (%) 35.92  2.74  13.78  5.25  
Constant 1.113 (5.93) 0.210 (1.02) 0.788 (5.28) 0.429 (3.69) 
Slope -2.594 (-4.34) -0.202 (-0.32) -1.280 (-3.32) -0.558 (-1.67) 8 Quarters 
R2 (%) 51.52  0.89  16.83  11.56  
Constant 1.005 (3.11) 0.969 (5.35) 0.677 (1.22) 0.684 (3.84) 
Slope -1.814 (-2.07) -2.058 (-4.75) -0.765 (.0.66) -0.959 (-1.86) 

12 
Quarters R2 (%) 20.62  43.08  0.96  16.61  
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Table 6 
Preference Parameters and Moments for Alternative Consumption-based Stochastic 

Discount Factors with Lowest Pricing Errors by Sub-periods 
Quarterly Data 1958:I-2006:IV 

 
Preferences Periods β  γ  η  ( )E M  ( )Mσ  Pricing 

Errors 

Recursive-
based SDF 

 1958:I-
1984:IV 0.9975 21.8 0.23 0.9744 0.3996 0.0255 

Recursive-
based SDF 

 1985:I-
2006:IV 0.97 29 0.25 0.9278 0.5955 0.0282 

Recursive 
Long-based 

SDF   

 1958:I-
1984:IV 0.915 0.35 0.41 0.9719 0.4056 0.0137 

Recursive 
Long-based 

SDF   

 1985:I-
2004:IV 0.92 8.5 0.33 0.9295 0.5984 0.0112 

For each recursive-based SDF specification, we try a large grid of feasible preference parameters. We then select sets 
of combinations of those parameters that generate a volatility of the SDF, calculated with quarterly data, which lies 
above the HJ bound for the average level of interest rate for that period. The selected combinations should enter in the 
HJ space. Given the selected SDFs, we compute the pricing error at every quarter of each of these SDF in valuing the 
ten-size sorted portfolios. We finally calculate the MSE over time and across portfolios. The parameters reported 
correspond to selected SDF with the lowest MSE. We repeat the procedure for each sub-period. Hence, each 
parameter reported is estimated using only data from the particular sub-period. β  is the subjective discount factor for 
future period utility; γ  is the coefficient of relative risk aversion; η  is the elasticity of intertemporal substitution, 
and pricing error is the mean squared error over ten size-sorted portfolios. 
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Table 7 
Out-of-Sample Prediction of Future Macroeconomic and Stock Market Cycles with 
Volatility of the Recursive-based Stochastic Discount Factor with Quarterly Data 

1989:I-2006:IV1 

 

( )t t
t t

t

V V
M

V
τ

τα βσ ε+
+

−
= + + ,  

V is either industrial Production Index, Gross Domestic Product, or Market Portfolio Returns 
Forecasting 

Horizon 
Regression 
Estimates 

Industrial Production 
Index 

Gross Domestic 
Product 

Stock Market 
Portfolio Returns 

Constant 0.031 (6.57) 0.011 (4.28) 0.095 (2.40) 
Slope -0.060 (-4.44) -0.018 (-2.47) -0.183 (-1.67) 1 Quarter 

 
R2 (%) 18.08  7.31  3.28  

Constant 0.062 (7.10) 0.022 (4.80) 0.198 (2.69) 
Slope -0.117 (-4.69) -0.035 (-2.75) -0.390 (-1.89) 2 Quarters 

 
R2 (%) 21.55  11.10  8.17  

Constant 0.121 (7.72) 0.042 (4.79) 0.408 (3.54) 
Slope -0.225 (-5.11) -0.062 (-2.70) -0.808 (-2.44) 

 
4 Quarters 
 R2 (%) 27.47  12.81  15.61  

Constant 0.215 (7.19) 0.078 (4.68) 0.762 (5.30) 
Slope -0.375 (-4.77) -0.109 (-2.53) -1.440 (-3.43) 8 Quarters 
R2 (%) 27.03  15.63  21.62  

Constant 0.262 (4.84) 0.106 (4.72) 0.918 (3.16) 
Slope -0.395 (-2.93) -0.129 (-2.27) -1.540 (-2.19) 12 

Quarters 
R2 (%) 16.42  15.05  11.67  

1/ The SDF employed to calculate the volatilities used in the regressions enter in the feasible HJ space and have the 
lowest pricing errors in valuing the ten size-sorted portfolios. The corresponding preference parameters are 
estimated with data using data from 1958:I to 1988:IV. The volatilities are estimated as overlapping standard 
deviations of five years of past data. They are assumed to remain constant over the forecasting period. All 
regressions only contain information available up to quarter t. 
2/ All panels report OLS autocorrelation-robust standard-error regressions. 
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Figure 1 
Hansen-Jagannathan Volatility Bound by Overlapping Five-year Sub-periods 

1958-2006 
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Figure 2 
Panel A. Hansen-Jagannathan Volatility Bound and Consumption-based Stochastic 

Discount Factors with Lowest Pricing Errors 
 Quarterly Data 1958:I-2006:4 
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Panel B. Hansen-Jagannathan Volatility Bound and Consumption-based Stochastic 
Discount Factors with Lowest Pricing Errors 

 Monthly Data 1964:1-2006:12 
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Figure 3 
Panel A. Volatilities of Consumption-based Stochastic Discount Factors for Recursive, 

Yogo and Habit Preference Specifications 
Quarterly Data 1965:II-2006:IV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. Volatilities of Consumption-based Stochastic Discount Factors for Recursive 

and Yogo Preference Specifications with Long Run Consumption Growth 
Quarterly Data 1965:II-2006:IV 
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