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Skewness Correction for Asset Pricing

It is shown that, for CRRA agents, the sensitivity of risk correction for

any cumulant depends on the cumulant of the next order. This result is

then used to derive some interesting approximations for variance and skew-

ness correction. The ¯rst corollary is that negative skewness alone leads to

higher variance swap rates since the variance swap contract provides insur-

ance against sudden market drops. Thus, high variance swap rates are not

necessarily an indication of high variance risk premia. When the results are

extended to the multifactor case, we are able to disentangle the swap rate

premia into their skewness and stochastic variance premia components. Fi-

nally, we contribute to the understanding of option skews by showing that

only 1¡u percent of excess kyrtosis contributes to negative skewness correc-

tion, where u is a newly introduced statistic that normalizes skewness with

kyrtosis.
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Introduction

There is a long line of literature that establishes the importance of system-

atic return skewness, as well as co-skewness of individual returns with the

market, in the formation of asset prices1. The contribution of this paper is

to ¯rst recover the exact sensitivity of risk correction to risk aversion, and

second by using this relation to provide linear approximations for variance

and skewness risk correction without specifying exact return dynamics. Even

though results are approximate, this approach avoids to pre-specify a stochas-

tic process that imposes a particular functional relation between volatility,

skewness, and kyrtosis. The results are developed in continuous-time within

the framework of the L¶evy processes, which are now given considerable atten-

tion since they nest the Brownian motion by incorporating jumps that arrive

at some, potentially in¯nite, rate2. L¶evy models are used to model time

1This research started with the early co-skewness models of Rubinstein (1973) and

Kraus and Litzenberger (1976). Harvey and Siddique (2000) show that systematic skew-

ness can explain an average 3.6 percent risk premium. Recently, Carr and Wu (2006) ¯nd

that skewness is also highly variable over time.
2Examples of in¯nite jump activity models are the normal inverse Gaussian by

Barndor®-Nielsen (1998), the generalized hyperbolic by Eberlein et al. (1998), the Vari-

ance Gamma by Madan and Milne (1991), and the generalization in Carr et al. (2002)
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changes (Clark, 1973), capture higher moments, generate °exible volatility

surfaces, and discuss market incompleteness3. Ait-Sahalia (2004) suggests

that disentangling the pure jump from the di®usive component may be at

the core of risk management, since the di®usive risks are hedgeable.

In the simplest case, the risk premium of a security, the di®erence between

its expected return and the risk free rate, is driven by variance. Since the

risk free rate is equal to the risk neutrally expected return, we may think

of variance as the sensitivity of drift correction to changes in risk aversion.

Our main theorem generalizes this idea by showing that when agents exhibit

constant relative risk aversion, the magnitude of risk correction for the nth

cumulant depends on the (n+1)th cumulant.

Widespread interest for direct exposure to variance risk has led to the

introduction of variance swaps that provide payo®s driven by the di®erential

between realized variance and an ex-ante swap rate. Since variance swaps

can be initiated at zero cost, the no arbitrage condition implies that the

variance swap rate equals a risk neutral expectation of the realized variance

for the underlying security. Variance swap rates (as well as option implied

.
3Carr, Jin and Madan (2001), Cvitanic, Polimenis and Zapatero (2005).
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volatilities squared4) tend to be higher than historical variance rates, and

it is almost universally suggested that the entire rate di®erential is due to

the pricing of stochastic variance risk. The often cited explanation is that

if there is no variance risk (or it is not priced), the variance rate under the

historical and risk neutral measures should equal. In the ¯rst corollary of

the main theorem it is shown that this reasoning is not always valid, since

when skewness is negative, variance is upwards adjusted. The novel insight is

that when SKEW is negative, a long position in the variance swap contract

is more valuable as insurance against extreme negative movements in the

underlying, and swap rates will be upwards adjusted according to

Kvar ¼ ¾2 ¡ °SKEW¾3 (1)

When we model the individual stocks as having a beta exposure to the mar-

ket plus a Gaussian idiosyncratic part, it is shown that the rates at which

individual variance swaps may be entered is

Ki
var ¼ ¾2i ¡

°

bi
SKEWi¾

3
i (2)

In a related paper, Demeter¯, Derman, Kamal and Zou (1999) approximate

the e®ect of volatility skew, de¯ned as the slope of the implied volatility

4Jackwerth and Rubinstein (1996).
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curve, on variance swaps.

Nevertheless, variance is stochastically changing, and there is great inter-

ested in the academic and practitioner communities in pricing variance risk.5

For example, by analyzing the gains of delta hedged strategies, Bakshi and

Kapadia (2003a,b) ¯nd evidence of negative market volatility premia. When

the main theorem is later extended to a multifactor setting, we are also able

to measure the e®ect of stochastic variance premia on the variance swap

rate. Thus, we disentangle the variance correction into separate skewness,

and stochastic variance premia components. More exactly, it is shown that

it is not the leverage e®ect alone (i.e. a negative return-volatility correlation)

that is responsible for higher swap rates. Rather, a bias in the strength of the

leverage e®ect, that makes it more pronounced in negatively moving (falling)

markets, is responsible for such high variance swap rates. The intuition is

that, due to the biased leverage e®ect, large negative returns tend to increase

volatility more than positive returns tend to decrease it. Thus large payo®s

to the long position of a variance swap will tend to arrive at states where

volatility has been upwards updated since inception, and thereby provide

5Carr and Wu (2004) propose a new method for the estimation of variance risk premia

from options data.
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insurance against such undesirable volatility increases.

It is known that the Black-Scholes-Merton implied volatility for deeply

out of the money put options is higher than that for out of the money calls.

Pan (2002) ¯nds that jump and volatility premia are signi¯cant for explain-

ing option "smirks". There is an almost unanimous agreement that these

volatility smirks are signs of a strongly negative risk neutral skewness. Since

empirical return skewness is not high enough, risk neutral skewness should

then be the result of skew correction. This is highlighted in a related paper

by Bakshi, Kapadia and Madan (2003) who derive theoretical links from risk

aversion, and actual returns' higher moments to risk neutral skewness and

option prices.

Even though, it is widely recognized that skewness and kyrtosis (and the

jumps that generate them) are signi¯cant in pricing non-linear payo®s such

as the ones generated by options, the question of whether it is skewness or

kyrtosis the most important factor in determining option smiles is still open.

The third corollary of the central theorem provides some new insight by

de¯ning a new statistic u that normalizes skewness for excess kyrtosis. It is

shown that leftward risk correction for market skewness, ¢SKEW, is driven
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by the (1¡ u) percent of the excess kyrtosis,

¢SKEW ¼ ¡°(1¡ u) (KURT¡ 3) ¾ (3)

Thus, a fat-tailed return distribution generates an increasingly negative skew-

ness, only to the extend that kyrtosis-normalized skewness u is less than

100%. This result generalizes Theorem 2 in Bakshi, Kapadia and Madan

(2003), which argues that the source of the negative risk neutral skewness

is total excess kyrtosis, and is valid in the special case of symmetric dis-

tributions for which the kyrtosis-normalized skew u is zero. We show that

for skewed processes, the u fraction can be quite high, and skewness correc-

tion small, or even zero. A counter-intuitive consequence is that, for a given

kyrtosis, skewness is more heavily corrected for more symmetric processes.

In section 1, the central result for L¶evy cumulants is developed, and we

derive the approximate variance swap rate for the index and individual stocks.

In section 2, the relation of kyrtosis to skewness correction is developed. In

section 3, the results are extended for many risk factors, and the relation

of stochastic volatility to variance swap rates is developed. In section 4,

the simpler case of stochastic volatility as an independent time change is

discussed.
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1 Correcting market cumulants

I assume the market index returns Xt are generated by a L¶evy process,

Xt = ´wt +

Z t

0

Z 1

¡1
xN(ds; dx) (4)

where wt is a di®usion, and N(dt; dx) is the jump counter with L¶evy mea-

sure ¼(dx). I further assume that 1 ^ jxj is ¼¡integrable.6 In the moment

generating function, M(s), of a L¶evy process, time is factored out,

M(s) = EesXt = etK(s) (5)

where K(s) is the cumulant generator of the L¶evy process.

For agents who exhibit a constant relative risk aversion °, the risk neutral

index process is an exponentially tilted version7 of the original process Xt

µ
dQ

dP

¶

t

= e¡°Xt¡tK(¡°) (6)

Given (6), the risk neutral8 cumulant function of Xt is a ¯rst di®erence of

the actual K(s),

K¤(s) = K(s¡ °)¡K(¡°) (7)

6This is stronger that the general condition
R
(1 ^ x2)¼(dx) <1.

7See, for example, Carr and Wu (2004).
8A star superscript denotes a risk neutral quantity.
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The cumulants of a L¶evy process are horizon-scaled derivatives of its

cumulant function at zero. From (7), risk-neutral cumulants are recovered

by di®erentiating at s = ¡°. The nth order risk neutral cumulant is thus a

function of risk aversion,

cn(°) =
@nK¤(0)

@sn
=

@nK(¡°)

@sn
(8)

When risk neutral cumulants are explicitly written as functions of °, we may

think of actual cumulants as risk corrected cumulants for risk neutral agents,

cn = cn(0) (9)

The central goal of the paper is to provide linear approximations to variance

and skewness risk correction for L¶evy processes. By risk correction for a

quantity f we mean the di®erence between the risk neutral and actual quan-

tities, ¢f = f¤¡ f . Since economic theory anticipates risk correction due to

risk aversion,

f¤ = f(°) (10)

the natural approximation to the risk-adjusted quantity is the linear approx-

imation with respect to the risk aversion parameter (or price of risk) °,

¢f ¼
µ

@f

@°

¶

°=0

£ °
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The linear approximation will be exact for linear (CAPM-style) risk correc-

tions, but in the general case it will be of the type

f(°) = f +
@f(0)

@°
° + o(°)

where the little o notation shows that only sub-linear terms are discarded9.

In Merton's benchmark case, the market risk premium ¹¡ r equals °¾2,

or equivalently, since the risk neutral drift ¹¤ equals r

¹¤ ¡ ¹ = ¡°¾2 (11)

which implies that the sensitivity of drift equals

@¹¤

@°
= ¡¾2 (12)

That is, the drift correction, ¹¤ ¡ ¹, is driven by the variance (i.e. the next

order cumulant). The above discussion is generalized for cumulants of higher

order in the central result for this paper:

Theorem 1. The risk aversion sensitivity of the nth risk corrected market

cumulant equals the negative (n+1)th cumulant,

µ
@cn(°)

@°

¶

°=0

= ¡cn+1 (13)

9lim°!0
o(°)
°

= 0.
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Proof: From (8),

@cn(°)

@°
= ¡@n+1K(¡°)

@sn+1
= ¡cn+1(°) (14)

Since cn+1(0) = cn+1, we have

@cn(0)

@°
= ¡cn+1 (15)

1.1 The approximate variance swap rate

Variance correction is less straightforward than drift correction because the

next cumulant can be positive or negative depending on the sign of skewness.

That is, while negative market skewness will increase risk neutral variance, a

positive skewness will lower variance. This observation has implications for

the formation of variance swap rates.

One way to take a position in volatility is to have a delta-neutral position

on the market. A more direct facility for volatility trading, available to

large investors, is a variance swap that pays the di®erence between a realized

estimate of return variability and a ¯xed variance rate determined at time

zero. Since variance swaps have zero initial cost, the rate at which variance

swaps can be entered equals the risk neutrally expected value of the future

realized quadratic variation.
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Lemma 1. The linear approximation of the variance swap rate for a

constant volatility market is

Kvar ¼ ¾2 ¡ °SKEW¾3 (16)

Proof: From Theorem 1, ¢c2 ¼ ¡°c3, and also SKEW = c3=¾
3

¤

Informally, it is almost universally argued that variance swap rates are

higher than stock variance rates to re°ect the stochastic nature of volatil-

ity (or variance), that is to capture negative volatility premia10. The novel

insight here is that the main force behind variance correction that leads to

higher swap rates, is not negative volatility premia but negative skewness,

since negative SKEW alone generates higher swap rates even for a constant

volatility11. For example, for ° = 3; SKEW= ¡1:5 and ¾ = 20% the SKEW

correction 3.6% which is added to the actual variance of 4%. For ° = 3;

SKEW= ¡1:5 and ¾ = 30% the skewness-related correction is 12.15%, ac-

tually bigger than ¾2 which is 9%. The intuition is that when SKEW< 0, a

long position on a variance swap is more valuable because the positive payo®s

tend to arrive due to extremely negative returns, and thus provide insurance

against extreme negative movements in the underlying.

10The volatility premia connection to high swap rates is developed at the last section.
11I am grateful to a referee for pointing this out.
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1.2 Individual stock swap rates.

Individual stocks are assumed to have a beta exposure to systematic risk,

X i
t = ait + biXt + "iw

i
t (17)

with Xt the market risk and wi
t an idiosyncratic di®usion orthogonal to the

market. In this case, R2
i =

b2i¾
2

¾2i
of the total quadratic variation rate

¾2i = b2i ´
2 + b2i

Z
x2¼(dx) + "2i = b2i¾

2 + "2i (18)

of the ith stock is systematic.

The ¯rst key observation is that the di®usive idiosyncratic risk does not

enter in higher cumulants

cin = bni cn for n ¸ 3 (19)

As the next corollary shows, the individual stock in (17) conforms with re-

cent empirical ¯ndings (e.g. Bakshi, Kapadia and Madan (2003)) that most

individual stocks seem to be less left-skewed than the market:

Corollary 1. (proof in appendix) For individual stocks in (17)

SKEWi = SKEW£ R3
i (20)

The fact that the entire market is more left skewed than its individual compo-

nents seems counter-intuitive at ¯rst, but should not surprise since portfolio
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skewness is not a weighted sum of individual skews.

The second key observation is that since the idiosyncratic risk is not

priced, its cumulants are independent of ° and thus any cumulant correction

is the result of correction on the market risk:

Corollary 2. The nth risk corrected cumulant for an individual stock

equals,

@cin(0)

@°
= ¡bni cn+1 (21)

Thus, the risk neutral quadratic variation of the ith stock grows at a rate

¾2i (°) = ¾2i ¡ °b2i c3 + o(°) (22)

which implies that

Lemma 2. The swap rate for the i th individual stock follows

Ki
var ¼ ¾2i ¡

°

bi
SKEWi¾

3
i (23)

Demeter¯, Derman, Kamal and Zou (1999) approximate the e®ect of volatil-

ity skew (the slope of the implied volatility curve) on variance swaps. Instead,

Lemmas 1 and 2 measure the direct e®ect of actual market skewness on the

swap rates for both the index and individual stocks.
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The above results provide an indirect method of estimating market prices

(i.e. °'s) without assuming an exact return generating process. After having

estimated individual stock betas we may recover ° as the slope of a cross-

sectional regression of variance swap rate di®erentials Ki
var ¡ ¾2i on

SKEWi¾
3
i

bi
.

2 Skewness correction

The contemporary empirical option pricing literature agrees that the so called

volatility smiles are signs of a strongly negative risk neutral skewness. Since

empirical return skewness is not high enough, risk neutral skewness should

then be the result of risk correction. It is informally believed that excess

kyrtosis is related to the risk neutral skewness implicit in option smiles.

Furthermore, it is already recognized that fat tails are indeed responsible

for option smiles.12 Here we take this analysis one step further, by show-

ing that only a fraction 1 ¡ u of excess kyrtosis generates skewness correc-

tion, where we de¯ne the horizon-independent kyrtosis-normalized skewness

u statistic as follows

u =
3

2

c23
c2c4

=
3

2

SKEW2

KURT¡ 3
(24)

12Theorem 2 (page 109) in Bakshi, Kapadia and Madan (2003).
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Lemma 3. (proof in the appendix) The index skewness is corrected to the

left only by the 1-u percent of excess kyrtosis

¢SKEW = ¡° (1¡ u) (KURT¡ 3) ¾ + o(°) (25)

2.1 Why only a fraction of excess kyrtosis?

Lemma 3 shows that fat tails are indeed responsible for skew smiles. Since

the full variance is responsible for drift correction, and the full skewness

(Lemma 1) for variance correction, it is tempting to ask why when it comes

to skewness correction only 1¡u percent of excess kyrtosis participates. The

source of the confusion is that while for n = 1; 2 the central moment, mn,

follows

mn(°) ¼ mn ¡ °mn+1 (26)

for n > 2 the recursive equation is only valid for cumulants, cn.

Actually, from Theorem 1, the third moment is corrected as follows,

@m3(0)

@°
=

@c3(0)

@°
= ¡c4 = ¡m4 + 3¾4 (27)
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So the correct relation becomes

¢m3 = ¡°m4 +3¾4°| {z }
not in Eq. (26)

+o(°) (28)

In the special case of symmetric distributions, the u statistic vanishes, and the

correction implied by the entire excess kyrtosis still applies. Thus, keeping

kyrtosis constant, the more symmetric the market returns are, the smaller u

implies a more aggressive skewness correction.

Corollary 3. When market returns are symmetric, the entire excess

kyrtosis generates risk-neutral skewness

SKEW(°) ¼ ¡°(KURT¡ 3)¾ (29)

2.2 Individual stock skews

We have shown in (20) that individual stocks in (17) will have less pronounced

skews. From

ui =
3

2

(ci3)
2

ci4¾
2
i

and cin = bni cn for n ¸ 3, we have that for the ith stock

ui = u£ R2
i (30)
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which implies that a larger percentage of the kyrtosis is responsible for skew

correction than in the index case, 1¡ ui > 1¡ u:

Lemma 4. Individual skew corrections are given by

¢SKEWi = ¡° (1¡ ui) (KURTi ¡ 3)
¾i

bi
+ o(°) (31)

*******************************

Add ¯gure 1 around here

*******************************

The fact that a larger fraction of kyrtosis will generate skew correction

does not imply that individual stocks have more overall skew, because they

start with a smaller actual skew (20), and, since idiosyncratic risk is assumed

not to have fat-tails

KURTi ¡ 3 =
ci4
¾4i

=
b4i c4

b4i ¾
4=R4i

= (KURT¡ 3)£R4i (32)

they also have smaller kyrtosis to start with (see Fig.1). Re-write (31) as

¢SKEWi ¼ ¡° (KURT¡ 3) ¾
¡
1¡ uR2

i

¢
R3

i (33)

and compare to (25), to see that individual stock skews will be corrected

more aggressively when (1¡ uR2
i ) R3

i > 1¡ u. For small values of the index

u, a higher systematic risk R2
i implies a steeper skew correction. But for
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u > 60%, this is not true anymore; as R2
i grows beyond 60%

u
the individual

stock skewness will receive less correction; i.e. the sensitivity of ¢SKEWi

with respect to R2
i becomes positive.

*******************************

Add ¯gures 2,3,4,5 around here

*******************************

2.3 The u statistic can be large

Since Lemma 3 is counter-intuitive in asserting that symmetry in the ac-

tual returns imparts more asymmetry in the risk corrected ones, a natural

question is whether the statistic u, which regulates the intensity of this phe-

nomenon, will attain large enough values for the phenomenon to become

signi¯cant. As is shown here for a simple pure jump process, the broadly

used gamma, u = 100%. For l; v > 0, the L¶evy measure of the pure jump

gamma process, °t(l; v)

¼(dx) =
v

x
e¡x=ldx for x > 0 (34)

generates an in¯nite arrival rate of small jumps, in the sense that the arrival

rate of jumps away from zero for any ² > 0 is ¯nite, ¼(²;1) < 1. It is well

19



known that the nth cumulant of the gamma equals

cn = (n¡ 1)!lnv (35)

and it is thus clear that u = 100%. In other words, the signi¯cant heavy tails

of gamma do generate any skewness correction, ¢SKEW= 0.

2.4 Two-sided jumps generate more skew correction

The simple gamma of the previous section is not a good candidate since it

won't generate jumps of both signs. We may easily correct this by combining

two gammas that generate jumps of opposite signs

Xt = °+t (l+; v+)¡ °¡t (l¡; v¡) , where l§; v§ > 0 (36)

When the v+ = v¡, this process is called a Variance Gamma (e.g. Madan,

Carr and Chang, 1998). The next lemma is proved in the appendix,

Lemma 5. For a Variance Gamma process there will always be some

skew correction (u<100%).

Lemma 5 is counter-intuitive, but motivates an important general ob-

servation that provides intuition about the skewness correction mechanism:

when two-sided jump processes are involved we always get leftward skew cor-

rection. To understand this general observation we have to consider what
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happens to the one-sided jump measures ¼§(dx) when we correct for risk a

two-sided process that combines positive and negative jumps,

Xt = X+
t ¡X¡

t =

Z t

0

Z +1

0

xN+(ds; dx)¡
Z t

0

Z +1

0

xN¡(ds; dx) (37)

The two-sided cumulant function equals

K(s) =

Z +1

¡1
(esx ¡ 1)¼(dx) (38)

with

¼(dx) = f¼+(dx) for x>0¼¡(dx) for x<0
(39)

From (7) we have that

K¤(s) =

Z +1

¡1
(e(s¡°)x ¡ 1)¼(dx)¡

Z +1

¡1
(e¡°x ¡ 1)¼(dx) (40)

=

Z +1

¡1
(esx ¡ 1)e¡°x¼(dx) (41)

which implies that

Lemma 6. The corrected L¶evy measure equals

¼¤(dx) = e¡°x¼(dx) (42)

Lemma 6 implies that while the positive jumps are arriving at slower rates

under the risk neutral measure,

for x > 0 : ¼¤+(dx) = ¼¤(dx) = e¡°x¼(dx) < ¼(dx) = ¼+(dx) (43)
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negative jumps are accelerated,

for x < 0 : ¼¤¡(dx) = ¼¤(dx) = e¡°x¼(dx) > ¼(dx) = ¼¡(dx) (44)

This asymmetry on the treatment of opposite signed jumps, i.e. the accelera-

tion of negative jump arrivals combined with the deceleration of the positive

jumps, generates left skew correction.

3 The multifactor case

Since in practical applications, index returns may be exposed to multiple

risks, it is useful to extend Theorem 1 to the multifactor case, where index

returns are exposed to a multitude of risk factors X i
t

Rt = ±t + ¯Xt (45)

¯i the ith component of the row vector ¯ = (¯1; ¯2:::¯N) is exposure to risk

X i, and each factor potentially includes di®usive and jump components

X i
t = ´iWt +

Z t

0

ZZ
¢ ¢ ¢
Z

| {z }
N

ziN(ds; dz) (46)

where the inner N-dimensional integral extends over the entire jump support

region, and, where Wt is an N-dimensional vector of independent di®usions.
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For each factor, i, the row vector ´i = (´i
1; ´

i
2; :::´

i
N) describes the exposure

to the di®usive risks, while zi is the jump to this factor due to a global jump

z = (z1; z2; :::).

Correlation between the factors may arise from the di®usive, as well as,

the jump parts and no restriction is placed here. Observe that the above

representation of the vector process X is the most general in this context,

since any prior correlation among the di®usions may be subsummed into

the vectors ´ by properly transforming the di®usions. Unlike a di®usion

vector, which when properly rotated to supress correlations also results in

independent di®usions, rotating a jump vector z to produce uncorrelated

jumps does not simplify the framework, since uncorrelated jumps are not

necessarily independent.13 Furthermore, the rotations for the di®usive and

jump parts will in general be di®erent; thus, we may choose to either work

with uncorrelated (and independent) di®usions, or with uncorrelated (but

still dependent) jumps.

13While uncorrelated Gaussian variables are also independent, in the jump case, rotating

the jumps to supress the correlation between them will not supress their non-zero higher

order cross-cumulants.
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The total covariance14 between factors i and j is

ci;j =
X

k

´i
k´

j
k +

ZZ
¢ ¢ ¢
Z

| {z }
N

zizj¼(dz) (47)

with an N-dimensional integral over the entire jump support capturing the

jump-induced covariance, and where as before, ¼(dz) is the L¶evy measure

of the jump process. With a pricing kernel of the form e¡°R, the change of

measure is

µ
dQ

dP

¶

t

= exp (¡°¯Xt ¡ tK(¡°¯)) (48)

where, for simplicity, I assume that the jump components of X are of ¯nite

variation, that is for row vectors s = (s1; s2:::)

K(s) =
1

2
sHsT +

ZZ
:::

Z
(esz ¡ 1) ¼(dz) (49)

It is then straightforward to observe that under the risk neutral measure the

cumulant generator of the X process becomes

K¤(s) = K(s¡ °¯)¡K(¡°¯) (50)

14To facilitate the multifactor analysis, here the superscript notation ci1;i2;:::iN will be

used to denote the N-order cross cumulant. In this notation, indices need not take distinct

values, and are fully interchangeable. For example, c2;3;3 = c3;3;2 is a cross-cumulant of

3rd order, where the second factor enters once and the third factor twice.
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Following the same reasoning as in Theorem 1, we anticipate that the risk

corrected cross-cumulant15 of nth order with respect to X i; Xj; X l::: , is a

function of °

ci;j;l:::(°) =
@nK(¡°¯)

@si@sj@sl:::
(51)

and, that the sensitivity of the cumulant with respect to risk aversion depends

on the cumulants of higher order as follows

@ci;j;l:::(°)

@°
= ¡

X

k

¯kc
k;i;j;l:::(°) (52)

which is also valid for ° = 0 (actual cumulants). Expanding and keeping

only terms linear in °, we get the risk correction to the cumulant as a linear

combination of the cross-cumulants of the next order

ci;j;l;:::(°) = ci;j;l;::: ¡ °
X

k

¯kc
k;i;j;l::: + o(°) (53)

15Higher order single factor cumulants are special cases of cross-cumulants with repeated

indices.
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3.1 Volatiity as a simple time change

A simple volatility16 factor may be introduced if we specialize the multifactor

theory of the previous section to a model where returns are exposed to two

factors, Xt and Yt, with the factor Y representing a \volatility" factor, and

X the market returns. Such a factor could be any proxy for volatility, for ex-

ample the volatility index VIX, or a measure of realized quadratic variation

(RQV). It is known that although raw returns are clearly skewed and lep-

tokurtic, returns conditioned by realized volatilities are approximately Gaus-

sian. To capture this fact here, index returns are generated by a di®usion

process evaluated at random stopping times

X(dt) = W x(Y (dt)) (54)

Here volatility acts as a simple time change but is devoid of any \leverage

e®ects", which will be introduced in the next subsection. Thus, even though

X depends on Y , Y o®ers no directional information on X, cx;y = 0. Later, we

will be more speci¯c, but for now it is best to think of Y as some generalized

volatility factor with ¾y the \volatility of volatility".

16Here, I use the generic terms \volatility" and \activity" interchangeably and in ref-

erence to variances and standard deviations. The precise meaning of these terms will be

clear from the context.
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3.1.1 Swap rates with leverage e®ect

In reality, (54) alone cannot explain return dynamics since it is well known

that the volatility factor Y does o®er directional information for returns, and

more speci¯cally that changes in volatility have a strong negative correlation

to market returns. The model in (54) may be enhanced to capture this so

called \leverage" e®ect if we di®erentiate between X, the market returns

\sans leverage e®ect", and R in

R = X ¡ bY (55)

the total market return \cum leverage".17 The negative sign on b (with b > 0)

denotes a volatility factor contravariant to the market (leverage).

In this case (53) directly explains the formation of the variance swap rates

for swaps written on the factors. Take, for example, what the variance swap

rates would be with no leverage, that is the risk neutral rate of variance for

X, Kx
var = cx;x(°)

Kx
var = ¾2x ¡ °SKEWx¾

3
x + °bco-SKEWxxy¾

2
x¾y + o(°) (56)

17Alternatively, one may think of X = R+ bY , as a hedged portfolio of the market and

a volatility index, which is immune to leverage e®ect.
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where, all the terms are as in Lemma 1, except for the new term

co-SKEWxxy =
cx;x;y

¾2x¾y

(57)

More speci¯cally, since

cx;x;y =
@3K(0)

@s2x@sy
(58)

and the di®usive part enters (49) only quadratically, the continuous path

dynamics of Xt and Yt cannot survive in cx;x;y. Thus, the cx;x;y cumulant is

only driven by the pure jump components in Xt and Yt, and in the appendix

it is shown that

cx;x;y =

ZZ
x2y¼(dx; dy) = ¾2y > 0 (59)

There are two distinct e®ects that push swap rates high in (56); the pure

skewness e®ect of Lemma 1, and the novel co-SKEW e®ect. Even though

the X factor has no skewness (see the appendix)

cx;x;x = 0 (60)

the variance swap rates are still higher

Kx
var = ¾2x + °b¾2y + o(°) (61)
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due to leverage. The intuition is that since Y captures a volatility factor,

relatively large x jumps of both signs will tend to arrive together with positive

y jumps. Intuitively, large payo®s to a variance swap on the X factor -large

absolute returns to the ¯rst factor-, tend to coincide with positive Y changes.

Even though the two factors are uncorrelated, cx;y = 0, the leverage e®ect

induces negative correlation between returns and volatility

cR;y = ¡b¾2y (62)

which means that positive Y changes tend to coincide with market drops.

This variance swap is a hedging instrument and it will be sold at a premium

-high swap rate.

To analyze the swap rates for the entire market, we may treat R as a

single factor and apply Lemma 1, cR;R(°) = ¾2R ¡ °cR;R;R + o(°), with

cR;R;R =
X

i;j;k

¯i¯j¯kc
i;j;k = cx;x;x ¡ 3bcx;x;y + 3b2cx;y;y ¡ b3cy;y;y

Unlike covariance cumulants, coskewness cumulants are fundamentally asym-

metric, in the sense that (even though cx;x;y > 0)

cx;y;y =

ZZ
xy2¼(dx; dy) = 0 (63)

since large volatility movements have no directional information for X (even
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though they do carry directional information for R).18 Combining, (60), (57)

and (63) we ¯nd that the market has negative skewness19

cR;R;R = ¡3b¾2y ¡ b3cy;y;y (64)

and arrive at the following swap rate for the market

KR
var = ¾2R + 3°b¾2y + °b3cy;y;y + o(°) (65)

4 Many factors with independent risk prices

In reality di®erent risks may be priced di®erently. Returns are again assumed

to follow (45) and (46), but now risks carry di®erent prices °i, some even

potentially negative. In this case, the change of measure is

µ
dQ

dP

¶

t

= exp (¡°Xt ¡ tK(¡°)) (66)

with ° = (°1; °2; :::) the row vector of the individual gammas. Under the risk

neutral measure the cumulant generator becomes

K¤(s) = K(s¡ °)¡K(¡°) (67)

18See the appendix.
19Volatility is well known to exhibit a strong positive skewness, cy;y;y > 0.
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and the cross-cumulant is a function of the risk prices

ci;j;l:::(°) =
@nK(¡°)

@si@sj@sl:::
(68)

In this case, the derivative of this cumulant with respect to the sensitivity to

the kth risk price depends on a single cumulant of higher order

@ci;j;l:::(°)

@°k
= ¡ck;i;j;l:::(°) (69)

Expanding around 0, and keeping only terms linear in the gammas, we get

ci;j;l;:::(°) = ci;j;l;::: ¡
X

k

°kc
k;i;j;l::: + o(°) (70)

4.1 Priced Volatility

In (61), volatility risk is priced in the pricing kernel e¡°R = e¡°X+°bY , but its

price is not determined independently of the market risk. Here we continue

on the volatility factor (54) and (55) of the previous section, but we now allow

the volatility factor to carry a negative risk price20 with a pricing kernel that

allows for an independent price of volatility risk (°y = ¡°b¡ ± < 0)

e¡°R+±Y = e¡°X+(°b+±)Y (71)

20Bakshi and Kapadia (2003) suggest that volatility premia are negative.
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The study of how the incorporation of such a factor impacts the pricing of

assets, is now a question of growing interest in the practitioner and academic

communities. The extra premia for holding securities exposed to such a risk

are sometimes called variance risk premia.

According to (70), variance swap rates \sans leverage", Kx
var = cx;x(°x; °y),

expand as Kx
var = ¾2x ¡ °xc

x;x;x ¡ °yc
x;x;y + o(°), and from (57) and (60) we

have

Kx
var = ¾2x + (°b + ±)¾2y + o(°) (72)

The total variance correction can be separated into a leverage component

°b¾2y as in (61), and the ±¾2y due to the pricing of variance risk.

4.2 Realized volatility as a simple time change

A high realized activity produces a lot of uncertainty and is known to be

negatively correlated to returns. The methodology developed in the previous

section allows the study of this phenomenon, where the business activity risk

is explicitly priced. To provide further insights to the approximation theory,

we treat this important case here with a speci¯c jump structure, and are thus

able to recover exact risk correction formulas. Yet, to remain loyal to the

non-parametric spirit of the paper, we do not assume any persistent dynamics
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for the stochastic volatility, but we only model the non-persistent component

so that the results here apply to a broad set of stochastic volatility processes.

It is already known (see for example Carr and Wu, JFE 2004) that volatil-

ities that vary stochastically over time can be treated as a stochastic time

change

Yt =

Z t

0

vu¡du +

Z t

0

Z +1

0

y (N(du; dy)¡ ¼(du; dy)) (73)

with
R t

0

R +1
0

y (N(du; dy)¡ ¼(du; dy)) being the martingale component. The

literature focus thus far has been in modelling the locally deterministic time

change
R t

0
vu¡du It is also known that stochastic volatilities exhibit clustering,

which in most cases is captured by the fact that the stochastic volatility rate

process (instantaneous activity rate) vt is a mean reverting solution to an

Ornstein-Uhlenbeck equation. Such processes are now called Background

Driving L¶evy Processes (see Barndor®-Nielsen and Shephard 2001 in J of

Royal Stat Soc. and Andersen, Bollerslev, Diebold and Ebens 2001 JFE).

The model here is motivated by the empirical observation that the stan-

dard volatility models used for capturing long horizon (daily or weekly)

volatility level dynamics fail to explain the volatility information in intra-

day data. Similarly models that ¯t high frequency data well produce un-

realistic daily or weekly dynamics (see Andersen, Bollerslev, Diebold and
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Labys, Econometrica 2003). In order to help produce more realistic stochas-

tic volatility models, we provide here a speci¯cation analogous to the one

introduced in Carr and Wu (JFE 2004) and Carr, Geman, Madan, Yor (MF

2003), but in order to accomodate separate modelling of long horizon volatil-

ity dynamics from the intraday realized volatility estimates, we deviate from

the literature by allowing an instantaneous non-negative business activity

rate vt, that captures the persistent component of market volatility, to only

be the locally deterministic part of the intraday activity so that the realized

quadratic variation (RQV) becomes

Yt =

Z t

0

vu¡du +

Z t

0

Z +1

0

y (N(du; dy)¡ ¼(du; dy)) (74)

with an expected rate

Z 1

0

y¼(dt; dy) = vt (75)

Over time, the availability of data for increasingly shorter return horizons

has allowed the focus to shift from modeling at quarterly, monthly and daily

horizons to improving forecasting performance with the incorporation of high

frequency data. In this context, it is useful to think of v as the persistent

component of market wide volatility21, while the positive y realization is a

21Maybe a volatility index such as VIX.
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non-persistent component that is nevertheless correlated to individual stock

returns. A high realization of y implies a day of unusually high activity

given the current level of volatility v (for example, VIX). This implies that

there are three increasing levels of information: Ft is information based on

knowledge of the persistent volatility, Gt is the information including the

realization of quadratic variation, and Ht is the entire information including

the stock return.

To allow the model to capture a leverage e®ect due to the non-persistent

realization y, returns are generated as22 in (55) and (54)

R(dt) = (¹ + ´¾2r;t)dt + X(dt)¡ bY (dt) (76)

where the total return variance ¾2t is included in Ft. Total stock variance is

decomposed in a \pure" stock variance ¾2x;t and variance due to \leverage"

e®ect of the not yet (given Ft) realized quadratic variation, and is given by

¾2R;t = ¾2x;t + b2¾2y;t (77)

In an e®ort to focus on the intraday dynamics, and be as general as

possible, we don't specify the dynamics for the evolution of the positive and

22Observe the subtle but important di®erence between (76) and the more commonly

used Xt = W
x(Yt)¡ bvt. This type of leverage is, for example, used in Barndor®-Nielsen

and Shephard (2001), and in Carr, Geman, Madan and Yor (MF 2003).
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mean reverting persistent component, vt, and volatility of volatility, ¾2y;t,

and their evolution is conditioned out.23 The only assumption is that a

generalized Sharpe ratio for Variance Swap contracts, c2, a quantity that

turns out to be of great interest, because it captures the hedging value of

variance swaps, is assumed to be constant

c2 =
vt
¾2y;t

(78)

The importance of keeping c2 constant is similar to keeping constant the

return Sharpe ratio in the context of optimal portfolio allocation.

We directly model the dynamics of RQV, by modelling a stopped di®usion

process with a drift parameter, lt = 1
vt

, and a di®usion parameter, µt = ¾y;t

v
3=2
t

.

Even though in the above de¯nitions the parameters of the time passage

process, l and µ, vary stochastically, during a short interval of time dt, they

can be treated as constant. The RQV y (clock change) between times t and

t + dt is given as the stopping point

Y (dt) = arg min fy : lty + µt (W y(Yt + y)¡W y(Yt)) = dtg (79)

23Typical processes used in the literature are the mean-reverting geometric Gaussian,

and the constant elasticity of volatility. More recently the literature is shifting to pure

jump mean-reverting processes with the jumps driven by a so-called Background Driving

L¶evy Process (BDLP).
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Observe that even though dt in (79) is in¯nitesimal, y will not necessarily be

small. It is actually the unbounded positive jump in

Y (dt) =

Z 1

0

yN(dt; dy) (80)

where N(dt; dy) given Ft is a Poisson random measure.

The RQV y during dt is equivalently given by the stopping point

Y (dt) = arg min

½
y : cy + W y(Yt + y)¡W y(Yt) =

dt

µt

¾
(81)

which is the inverse Gaussian law with a drift c equal to the variance swap

Sharpe ratio (78).

Formally, if (−;H;P) is the probability space, given the ¯ltration Ft gen-

erated by the process (vt; ¾
2
y;t), Yt is a non-decreasing pure-jump subordinator

process with independent increments and a L¶evy-Khintchine representation

(see Bertoin, 1996) of its cumulant generating function of the form

Ky;t(q; h) = log Eeq(Y (t+h)¡Y (t))jFt+h =

Z t+h

t

du

Z
(eqy ¡ 1) ¼u(dy) (82)

where ¼t(dy) , the conditional marginal L¶evy measure for the RQV, given

Ft, that satis¯es

Z
(y ^ 1)¼t(dy) < 1 (83)
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Using (81) we ¯nd that conditionally24 on Ft+h, the process Yt has a cumulant

generator

Ky;t(q; h) =
³
c¡

p
c2 ¡ 2q

´Z t+h

t

du

µu
(84)

Conditionally, on the evolution of Ft+h, the expected RQV over the next

h-interval is indeed given by

E

Z t+h

t

Z
yN(ds; dy)jFt+h =

@Ky;t(0; h)

@q
=

Z t+h

t

vudu (85)

while the variance of RQV, conditional on the Ft+h information, during the

same interval is

Z t+h

t

Z
y2¼u(dy) =

Z t+h

t

¾2y;udu (86)

Under this speci¯cation, by iterated expectations, the marginal returns'

L¶evy-Khintchine representation of the conditional cumulant generating func-

24Actually we only need to condition on the vt path, since by (78), the ¯ltration gener-

ated by ¾2x;t and ¾
2
y;t is the same as the one generated by vt.
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tion is

Kx;t(s; h) = log Ees(X(t+h)¡X(t))jFt+h = log E
¡
Ees(X(t+h)¡X(t))jGt+h

¢
jFt+h

(87)

=

Z t+h

t

du

Z ³
e
1

2
s2y ¡ 1

´
¼u(dy)

=
³
c¡

p
c2 ¡ s2

´Z t+h

t

du

µu

with ¼t(dx) the conditional marginal L¶evy measure for the return process.25

Following an analogous reasoning, we ¯nd the joint L¶evy-Khintchine rep-

resentation for the two factors X and Y (as always conditional on the infor-

mation Ft+h)

Kt(s; q; h) =

Z t+h

t

du

ZZ ¡
esx+qy ¡ 1

¢
¼u(dx; dy) (88)

=

Z t+h

t

du

Z ³
e(q+

1

2
s2)y ¡ 1

´
¼u(dy) (89)

=
³
c¡

p
c2 ¡ s2 ¡ 2q)

´ Z t+h

t

du

µu

with ¼t(dx; dy) the joint L¶evy measure for returns and realized quadratic

variation conditional on Ft.

The total return for the market is given as the (1;¡b) linear combination

25We overload notation since the speci¯c jump will be clear by context.
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of the X and Y factors and the total conditional expected return is

Z t+h

t

¡
¹ + ´¾2r;u ¡ bvu

¢
du (90)

which makes sense since b measures the negative sensitivity of returns to

RQV, while vt measures the conditional expected RQV. TheFt+h¡conditional

return variance for the X factor (without the leverage) is

¾2x;t(h) =

Z t+h

t

du

Z
x2¼u(dx) =

Z t+h

t

vudu (91)

and when we account for the leverage e®ect

¾2r;t(h) =

Z t+h

t

du

Z
r2¼u(dr) =

Z t+h

t

¡
vu + b2¾2y;u

¢
du = a2

Z t+h

t

¾2y;udu

(92)

with

a2 = b2 + c2 (93)

capturing the relation between the expected rate of quadratic variation for

stock returns and a generalized concept of business activity for the entire

market

¾r;t = a¾y;t (94)
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Furthermore, (93) is the decomposition of the total Ft-conditional quadratic

variation in the Ft-conditional variance of the Gt-expected return, b2¾2y;t, and

the Ft-conditional expectation of the Gt-conditional variance, v = c2¾2y;t.

When the leverage e®ect is not accounted for, there is no correlation

between the factors, ¾xy = 0, but as anticipated by the ¡b term in (76), the

true conditional covariance between returns and RQV over an h-year horizon

is

cr;yt (h) =

Z t+h

t

du

ZZ
ry¼u(dx; dy) = ¡b

Z t+h

t

¾2y;udu (95)

As was discussed in the previous section, the negative covariance is not

enough to describe risk premia, and we have to analyze the skewness and

coskew terms that capture the sign of one factor movements when the other

factor experiences large jumps. Even though returns (sans leverage) are sym-

metric cx;x;x = 0, with leverage conditional return skewness is negative due

to the positive skewness of RQV y

cr;r;rt (h) =

Z t+h

t

du

ZZ
r3¼u(dx; dy) = ¡3b

c2

µ
1 +

b2

c2

¶Z t+h

t

vudu (96)

Furthermore, as we discussed before, it is natural to expect that a suc-

cesful model will predict that the biggest (in absolute size) returns will tend

to occur during a period of a larger than expected realization of quadratic
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variation (or business activity). This is captured by a positive cross coskew-

ness of realized quadratic variation to returns, which is the case of our model

here

cx;x;yt (h) =

Z t+h

t

du

ZZ
x2y¼u(dx; dy) =

Z t+h

t

¾2y;udu (97)

On the other hand, as discussed in the previous section, this phenomenon

is assymetric, in the sense that periods of large realized quadratic variation

will not imply any sign for the unleveraged returns cx;y;y = 0 except when

leverage is accounted for, such periods tend to coincide with negative returns

cr;y;yt (h) =

ZZ
ry2¼t(dx; dy) = ¡3b

c2

Z t+h

t

¾2y;udu (98)

4.3 Pricing the risk of realized quadratic variation

The critical observation here is that we may factor out the conditioning

information vt in (88), (??) and (84) and thus recover the time invariant

factor ci;j;:::n in the Ft+h¡conditional cumulant

ci;j;k;:::n;t (h) = ci;j;k;:::n

Z t+h

t

du

µu
(99)

where following the notation in the previous section, the indices i; j; k take

(possibly repeting) values in the set fX;Y g.
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We assume that realized quadratic variation risk is priced, and variance

premia are negative in the sense of a pricing kernel of the type

e¡°R+±Y (100)

This implies that agents seek protection in states of high RQV (and states of

low stock returns). Observe that we may put the pricing kernel in the form

(66) as

e¡°xX¡°yY (101)

with °y = ¡b° ¡ ± which implies that states of high RQV need hedging not

only due to the higher volatility but also due to leverage e®ect. In this case,

conditionally on the information in Ft, the joint L¶evy measure is

¼¤t (dx; dy) = e¡°R+±y¼t(dx; dy) (102)

Lemma 7. The risk neutral process is the same type of process, but with

parameters connected to their actual counterparts as follows

µ¤;t = µt (103)

a2¤ = a2 ¡ 2± < a2 (104)

b¤ = b + ° > b (105)

c2¤ = a2¤ ¡ b2¤ < c2 (106)
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Proof: Using the analysis of the previous section, and (7), we may identify

the process through its cumulant generator

K¤t (s; q; h) = Kt(s¡ °; q + b° + ±; h)¡Kt(¡°; b° + ±; h) =

µp
c2 ¡ °2 ¡ 2b° ¡ 2± ¡

q
c2 ¡ (s¡ °)2 ¡ 2q ¡ 2b° ¡ 2±

¶Z t+h

t

du

µu

¤

A SIMPLE CALIBRATION EXERCISE

Assume that the value for the persistent volatility currently is at 20%, or

equivalently v = 4%. Assume also that the volatility of the RQV is ¾y = 5%.

This implies that c = 20%=5% = 4. Finally if we assume a correlation of

returns with their RQV equal to ½ = ¡60%, from (95) we ¯nd that b
a

= 60%

and c
a

= 80%. Thus under these assumptions we have a = 5 and b = 3. From

(92) we have that the total return variance equals ¾2x = 6:25% (¾x = a¾y =

25%) of which 4% (or 64% of the total) is the expected persistent part v,

and 2:25% due to the variance of the non-persistent realization b2¾2y . Also

note that in this case from (96) we have an annual return skewness equal to

SKEWx = 3½
c
p
v

= ¡2:25.

Figure 6 is generated to provide a comparison between the parametric risk

corrected return volatility ¾x(°; ±) and the risk neutral volatility and rom the
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fact that µ = 1
vc

remains unchanged under both measures (103) and the ratio

of persistent volatilities is v(°;±)
v

= 1:12 = 1:21, we have that c(°; ±) = 3:30.

From µ = ¾y
v3=2

we also ¯nd that ¾y(°; ±) = 1:211:5¾y = 6:655%. Now observe

that if we do not assume any other risk correction (besides v(°; ±)) we cannot

recover both risk prices ° and ±, but we have a relation that they have to

satisfy from (106)

2± + (° + 3)2 = 21:70 (107)

This implies Assume that for a large enough period the persistent com-

ponents v and ¾y are constant. a2 = 1. From CBOE website we get the long

term stock volatility during 2005 as v = 10%. At the end of 2005, the VIX

index (a risk neutral volatility) was around v¤ = 12%. This implies a 2% dif-

ferential between risk neutral and historical volatility values. Furthermore,

the reported correlation between S&P 500 and its volatility index between

Jan 1990 and June 2004, was around ¡60%. The volatility of volatility was

around ¾y = 83%.

From (92) we have that

¾2 = a2¾2y ) a = (108)
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5 Conclusion

The ¯rst result of the paper is that, when agents exhibit a constant degree of

relative risk aversion, risk correction for any cumulant depends on the next

order cumulant. This result is then used to develop some general results

for skewness correction. Firstly, it is shown that negative return skewness

implies an increase in the variance swap rates. It is then shown that only

1 ¡ u percent of the excess kyrtosis generates skewness correction, where u

is a new kyrtosis-normalized skew measure. Finally, the results are extended

for stochastic volatility and multi-factor risks. In the last application, we

are able to disentangle the variance swap rate di®erential into a skewness

component, and a second component due to negative volatility premia.
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A Appendix

Proof of (20). The di®usive idiosyncratic risk does not enter in higher

cumulants

SKEWi =
ci3
¾3i

=
b3i c3

b3i¾
3=R3

i

= SKEWR3
i

Proof of Lemma 3. Using (13), the derivative of the corrected skewness

with respect to risk aversion at zero equals

³
@SKEW(°)

@°

´

°=0
= @

@°

µ
c3(°)

c
3=2
2
(°)

¶

°=0

=
³

@c3(°)
@°

c
¡3=2
2 (°)¡ 3

2
c3(°)c

¡5=2
2 (°)@c2(°)

@°

´

°=0

= ¡
¡
c4¾

¡3 ¡ 3
2
c23¾

¡5¢ = ¡ c4
¾4

³
1¡ 3

2

c2
3

c4c2

´
¾

Finally expanding SKEW(°) around zero and using the above value for

@SKEW
@°

¯̄
°=0

we recover (25).

Proof of Lemma 4. The proof follows the same steps as above, with

the added observation that for individual stocks @cin(0)
@°

= ¡bni cn+1
³

@SKEWi(°)
@°

´

°=0
= @

@°

³
ci
3
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(ci
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(°))3=2

´
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@°
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i b2i c3

¢
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Proof of Lemma 5. From (35) we can recover the cumulants of the VG
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process

c2 = (l2+ + l2¡)v

c3 = 2(l3+ ¡ l3¡)v

c4 = 6(l4+ + l4¡)v (109)

Even though for the one-sided u statistics

u§ =
3

2

c§23
c§4 c§2

= 100% (110)

the two-sided u; which depends on total cumulants, is smaller

u =
3

2

(c+3 ¡ c¡3 )2

(c+4 + c¡4 )(c+2 + c¡2 )
=

(l3+ ¡ l3¡)2

(l4+ + l4¡)(l2+ + l2¡)
< 100% (111)

as simple algebra shows. ¤

Proof of (60) (57) and (63). From (54) we have that the joint cumulant

kernel equals K(s; q) = Ky(u) for u = 1
2
s2 + q. Firstly, cx;x;x = @3K(0;0)

@s3
=

3s@2Ky(0)
@u2

+ s3 @
3Ky(0)
@u3

= 0. Then, cx;x;y = @3K(0;0)
@s2@q

= @2Ky(0)
@u2

= ¾2y. Using the

same algebra, we have cx;y;y = @3K(0;0)
@s@q2

= 0. ¤
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