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Abstract

This paper analyzes the relevance of a set of some performance measures for optimal
portfolios including hedge funds. Four criteria are considered: the Sharpe Ratio, the
Returns on VaR and on CVaR, and the Omega performance measure. The results are
illustrated by an allocation on several indices. HFR (Global Hedge Fund Index), JPM
Global Bond Index, S&P GSCI, MSCI World and the UBS Global Convertible. Both
static and dynamic optimizations are considered. Due to the non-convexity of some of the
criteria, we use the “threshold accepting algorithm’ to solve numerically the
optimization problems. The time period of the analysis is September 1997 to August 2007.
Our results suggest that, for the dynamic optimization, the portfolio which maximizes the
Omega measure has the more stable performances, in particular when compared to the
Return-on-CVaR portfolio. As a by-product, we prove that all the optimal portfolios had
to contain hedge funds for the time period 1997-2007.
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1. Introduction

The seminal Markowitz's analysis is based on the first two moments of portfolio return and ignored
the higher ones. By using an improved estimator of the covariance structure of hedge fund index
returns, Amenc and Martellini (2002) prove that a portfolio including hedge funds can have a
significantly smaller volatility (on an out-of-sample basis), while having almost the same mean
return. This result suggests to incorporate hedge funds to get a mean-variance efficient portfolio. As
illustrated by Cremers et al. (2005), hedge funds returns usually have higher means and lower
standard deviations than standard assets, but they also have undesirable higher moment properties.
For example, hedge funds returns can be negatively skewed. This is due to for instance to the non-
linearity of their payoffs when they are generated by option-like strategies (see Goetzmann et al.,
2002, 2003).

Many empirical studies have aso proved that the mean-variance approach is no more valid when
investors include hedge funds in their portfolios (Amenc and Martellini, 2002; Terhaar et al., 2003;
McFall Lamm, 2003; Kat, 2004; Agarwal and Naik, 2004; Alexander and Dimitriu, 2004; Morton et
al., 2006).

Empirical studies show that the assumption of normality in return distribution is not justified, in
particular when dealing with hedge funds which have significant positive or negative skewness and
high kurtosis (Fung and Hsieh, 1997; Ackerman et al., 1999; Brown et al., 1999; Caglayan and
Edwards, 2001; Bacmann and Scholz, 2003; Agarwal and Naik, 2004).

One possible extension of the mean-variance analysis is the use of the expected utility theory. For a
truncated utility at the order 4, we have to maximize alinear combination of the first four moments
of the return. In this more general framework, the hedge fund portfolio is built according also to the
skewness and kurtosis. This problem has been studied by Jurczenko and Maillet (2004),
Maevergne and Sornette (2005), Davies et al. (2004), Anson and al. (2007)...Martellini and
Ziemann (2007) extend the Black-Litterman Bayesian approach when building a portfolio of hedge
funds with non-trivial preferences about higher moments. Their results show that active style
allocation provides a significant value in a hedge fund portfolio if we take account of non-normality
and parameter uncertainty in hedge fund return distributions.

Since the demise of Long Term Capital Management (LTCM), downside risk measures have been
introduced” to take more account of the tails of the distributions. In most cases, they are based on
the Vaue-at-Risk (VaR) approach. As proved by Weisman (2002), Goetzman et al. (2003),
Agarwal and Naik (2004), Davies et al. (2004), the VaR can be high, due to important leverage
effect. VaR also is more appropriate than the first four moments to measure extreme risks. VaR
optimization has been previously studied by Literman (1997a, 1997b), Lucas and Klaasen, (1998).
Additionally, Favre and Galeano (2002) introduce a new value-at-risk method to adjust the
volatility risk with the skewness and the kurtosis of the distribution of returns. They minimize the
modified VaR at a given confidence level. However, as pointed by Lo (2001), VaR has several
shortcomings. For instance, it does not indicate the magnitude of the potential losses below itself.
Additionally, it is not a convex risk measure (see Artzner et al., 1999) and its minimization is rather
involved.

For these reasons, Acerbi and Tasche (2002) introduce the expected shortfall (ES). This measure,
also called CVaR, measures the amount of losses below the VaR, is coherent and leads to portfolio
optimization problems that can be solved more easily (see Acerbi, Nordio and Sirtori, 2001).

“Maybe more by academic researchers than by practitioners, as mentioned by Amenc et al. (2004).



Indeed, Rockafellar and Uryasev (2000) prove that the CVaR minimization is equivalent to a
convex optimization problem. Agarwa and Naik (2004) estimate ES from the HFR hedge fund
indices. They show that downside risk is significantly underestimated by the mean-variance
analysis, which suggests that mean-ES optimization must be introduced.

Given benchmark related investment objectives, Popovaet al. (2007) study the optimal allocation to
hedge funds, for criteria such as expected shortfall and semi-variance. Using a stochastic
programming model based on Monte Carlo simulation, they prove that a 20% allocation to hedge
fundsisjustified. Their optimal portfolios are more skew to the right relative to those of the optimal
mean-variance portfolios. Thus, they have higher Sortino ratios.

Liang and Park (2007) examine the risk-return trade-off for the hedge funds. They compare semi-
deviation, VaR, ES and Tail Risk (TR) at both the individua fund and the portfolio levels. They
show that the cross-sectional variation in hedge fund return is well explained by the left-tail risk
captured by ES and TR and not by the other risk measures. They prove that between January 1995
and December 2004, hedge funds with high ES outperform those with low ES (annua return
difference of 7%).

As shown by Hubner (2007) for the information ratio and the apha, the relevance of performance
measures heavily depends on the kind of portfolios that is managed by the investor. Impacts of
individual constraints are analyzed by Bernd and Xu (2007).

In this paper, we propose also to examine the relevance of different performance measures when
determining optimal portfolios including hedge funds, while taking account of portfolio constraints.
In particular, we focus on the Sharpe, mean VaR and CVaR ratios. As a by-product, we also
introduce the Omega performance measure, defined by Keating and Shadwick (2002) and Cascon et
al. (2003). This ratio takes account of al the moments of the distribution. It penalizes the returns
below a given level and emphasizes the returns beyond this threshold.

Section 2 recalls definitions and main properties of the performance measures that are used in the
paper. Section 3 examines the static and dynamic optimization of the four performance measures,
using VaR Cornish-Fisher estimates and the threshold accepting algorithm for portfolio
optimization. The empirical analysis is based on a portfolio that includes five indices: HFR (Global
Hedge Fund Index), JPM GBI, S& P GSCI TR, MSCI World and the UBS Global Convertible.

The results highlight the importance of the asset allocation model based on the maximization of the
Omega performance measure, with or without specific constraints on portfolio weights. Indeed, this
approach takes account of the characteristics of hedge fund portfolios. Some technical analysis and
empirical illustrations are gathered in the Appendix.



2. Risk-Adjusted Performance M easures and Optimization

To compare funds with different characteristics of returns and risks, several performance measures
have been introduced®. Among them, the Sharpe Ratio, the Returns on VaR and on CVaR, and the
Omega performance measure.

For each criterion to be maximized, we consider that the investor chooses among n financial

assets with returns R= (Ry,...,Ry). Let R, be the return of the riskless asset. Denote e= (1,...,1)
Denote also by w=(ws,...,w,) the weighting vector satisfying :
we=>w=1

i=1

We assume that no shortselling is allowed: w = 0. The portfolio return at maturity with cdf F and

mean R isgiven by

2.1. The Sharpe ratio maximization

It is the standard optimization problem, which is yet a benchmark. We have to solve:
W.R-R,

VWEw

where T is the variance covariance matrix. The mean R is computed from data, observed along a
given time period.

Max , withw'.e=1andw >0,

2.2 The Mean-VaR optimization

The VaR measure has been extensively used in risk management. Recall that the VaR is defined as
aquantile: For a position X and a given probability level &, the value VaR(«) satisfies:

VaR(«) = —min{;/‘P[X <y|= a}.

If X hasanon negative pdf, then:
P[X <-VaR(a)]|=«.

VaR(«) is the smallest loss at the probability level . The Ro VaR (or Mean VaR) ratio is
defined by:
R-R,

RoVaR(«) = VaR(@)

®See L habitant (2004) for more details about the choice of performance measures.



We use the Cornish-Fisher approximation, which allows an approximation of the VaR from the four
first moments of the distribution. The maximization problem is given by:

W.R-R,
Max ——, withw'.e=1andw=> 0,
VaR

Despite its popularity, VaR has some undesirable properties, such the non-convexity (see Artzner et
al. 1999), which may discourage diversification. Additionally, the VaR only takes account of the
probability to be under a given threshold and not of the order of magnitude of the |osses beyond this
level. Therefore, alternative risk measures have been proposed such as the Expected Shortfall (ES),
introduced by Acerbi and al. (2002, 2004), also called the Conditional value-at-risk (CVaR) in
Rockafellar and Uryasev (2002) or TailVaR in Artzner et al. (1999).

2.3 The Mean-CVaR optimization
The CVaR can be defined as the expected value of the portfolio loss below a given threshold, given

the fact that this loss is higher that this level (see Acerbi, 2004). The Ro CVaR (or Mean CVaR)
ratio is defined by:

R-R,

RoCVaR(a) = ————
CVaR(«)
Then, the maximization problem is given by:

W.R-R,

, withw'.e=1andw>0.
CVaR

Note that, if we assume that returns (R").. ., are independently distributed, the CVaR optimization

problem is equivalent to: (notation: 1, istheindicator function of set A).
W.R-R)
ax m
i-1 R}N]-R}"’>VaR
thl 1rM-var

Another risk measure can take account of the characteristics of hedge funds returns. the Omega
function, introduced by Keating and Shadwick (2002, 2003).

,withwt.e = 1andw > 0.




2.4 The Omega optimization

The Omega function Q(L) can potentially take account of the whole probability distribution of the

returns. The Omega measure introduced by Keating and Shadwick (2002) is based on the stochastic
dominance approach. The measure (L) isequal to:

[ -F@))dx

QL) =
F( j;F(x)dx

where F(.) is the cdf of the random variable (for example equal to the portfolio return) with
support in [a,b]. The level L is the threshold chosen by the investor: returns smaller than L are

viewed as losses and those higher than L are gains. For a given threshold L , the investor would
prefer the portfolio with the highest Omega measure. As shown by Kazemi, Schneeweis and Gupta
(2003), the Omega function has the following properties:

Theratio Omegais equal to:
E- [( X~ L)j

EP[(L_X)+j|.

This is the ratio of the expectations of gains above the given level L upon the expectation of
losses below L . Therefore, Q. (L) can be interpreted as a ratio Call/Put defined on the same
underlying asset X , with strike L and computed with respect to the historical probability P. The

Put is the risk measure component. It allows the control of the losses below the threshold L .
Kazemi, Schneeweis and Gupta (2003) define the Sharpe Omega by:

Q|:X (L)=

E.[X]-L

EP[(L_X)T

Sharpe, (L) = =Q, (L)-1.

If E; [ X ] < L , the Sharpe Omega measure is negative. Otherwise, it is positive. Suppose that X
isthevalue at maturity T of agivenasset S with aLognormal distribution:

X = Spexp[(u — 62/2)T + o W],
where W, has a Gaussian distribution. Then E,[X]= S, exp[4T] does not depend on the
volatility 0. Thus, if S exp[uT]<L , then the Sharpe Omega ratio is an increasing function of
the volatility o whereas, for S exp[uT] > L , itisadecreasing function of ©.

Due to the previous properties, the usual values of the level L are such that L < X. Indeed, it is
more convenient that a performance measure is a decreasing function of the standard risk ¢ than
the converse.



The corresponding optimization problem is:

Max Q(L)(R"), withw!.e = 1and w > 0,
which is equivalent to:

E[(RW—LH
E[(L—RWH

Then, from the observation of independent returns (R").. ., , we have to solve:

Max , withw'.e=1landw=>0.

thl (RIW - L) TRt
EnL(L-R) e

Max , withw!.e = 1andw > 0.

Due to the non convexity of some of the previous objective functions, we use the threshold
accepting algorithm to solve numerically the optimization problems. This algorithm has been
introduced by Dueck and Scheuer (1990). It is a refined version of the standard local search
procedure (for more details, see Appendix A and Winker, 2001). It is a local search procedure
which accepts moves to neighbourhood solutions that improve the objective function value. Dueck
and Scheuer (1990) prove that the Threshold Accepting Algorithm converge to the optimal portfolio
solution when dealing with complex objective functions such as shortfall optimization case.
Recently, Gilli and Kellezi (2000) have used this agorithm for CVaR and Omega portfolios
optimization.

3. The Empirical Results

In what follows, we search for the optimal portfolio based on indices. The optimal allocation is
determined among five main asset classes. Hedge funds, Equities, Bonds, Commodities and
Convertibles. Two optimization methods are used:

- A static optimization with only one period (the whole period of observations).
- A dynamic optimization based on the back testing method.

3.1 Thedata analysis
The portfolio contains the following indices:

The HFRX Global Hedge Fund USD,
The UBS Global Convertible,

The JPM Global GBI LC,

The MSCI World Free Equity

and the S& P GSCI.



Table 1 describes these indices.

Tablel
Description of the five indices

The data on hedge funds are obtained from the commonly used Lipper TASS. The time period of
the analysis lies between September 1997 and August 2007. The sample contains 121 net-of-fees
monthly returns.

Indices Description
HFRX Global Hedge Fund USD The index is built as follows:
Sep-97 to March-03: The index corresponds
to the mean of performances of hedge funds,
quoted by the Lipper basis
(without survivorship bias *)
April-03 to Aug-07: the index is the
HFRX Global Hedge Fund USD
UBS Global Convertible The index represents convertibles
JPMorganGlobal GBI TR LC The index represents the performance
of bonds in local currency.
MSCI World Free TR USD It is the international equities index
S&P GSCI TR It is the commodities index

*See Bing Liang (2000) for such correction.

Looking at realized returns for the given time period, the hedge funds and convertibles generally
have better performances, as shown by Figure 1. The HFR index performances were smooth and
steady despite the high correlation with stock markets (represented by MSCI World Free). The
index has shown real capacity to preserve capital through some crisis periods such as 1998 (LTCM
collapse) or 2000 (Technology bubble). During the financial crisis 2000-2002, the hedge funds had
clearly higher returns (positive returns while those of the equities were significantly negative).

200 - — HFRX Globa Hedge Fund USD
JP Morgan Gobal GBI TRLC
180 — MSC| World Free TRUSD

1 —_— %P Gl TR

—— UBSGlobal Convertible

=Sep 97)
2

Capital Growth(100USD
[E=Y
o
o

60 -

40
ao(t-97 ao(it-99 ao(t-01 ao(t-03 ao(t-05 ao(t-07

Fig. 1 Cumulative monthly returns



The S&P GSCI TR has the worst performance until 2002, while growing up and having the best
performance from January 2005 to January 2007.

The Global Hedge Fund index has regularly grown up. In particular, it has not fallen from 2000 to
2002, contrary to the MSCI World and has provided capital protection during this time period.
Looking at cumulative returns, the UBS Convertible index has risen during two periods: from
Sep97 to Sep 00 and from Jan-03 to Sep 07, while it has fallen between these two periods, which
can be explained by afalling stock market and spreads widening.

Looking at correlations, for most of the cases, the equity index has the highest correlation with the
other indices, in particular with the Convertible and Hedge indices (see Table 2).
The Convertibles also have a high correlation with the hedge funds.

Table 2
Correlations between the indices

The correlation matrix is based on the Pearson Correlation measure. Hedge (1) refers to HFRX Globa Hedge
Fund USD index. Bond (2) is the JP Morgan Global GB Index. Equity (3) represents the MSCI World Free
TR USD index. Commodity (4) represents the S&P GSCI. The last index (5) refers to the UBS Global
Convertible.

Indices 1 2 3 4 5
Hedge 1 1.00

Bond 2 -0.12 1.00

Equity 3 057 -0.27 1.00

Commodity 4 0.20 0.03 0.01 1.00
Convertible 5 0.73 -0.11 0.81 0.13 1.00

As shown by the QQ-Plots in Figure 9 (see Appendix B), the probability distributions are not
Gaussian. The main statistical properties of the five indices are provided in Table 3.



Statistical characteristics of the indices (monthly)

Table 3

Summary statistics for the five indices returns over the period of the analysis. They include the first four
moments. Mean, Standard Deviation, Skewness, and Kurtosis. Other statistics are provided such as Median,
Maximum, Minimum and the risk measure Vaue-at-Risk (VaR) which is calculated at the confidence level

(1-p=5%).
Hedge Bond Equity Commodity Convertible
Mean 0.68 0.40 0.69 0.67 0.74
Median 0.60 0.46 1.23 0.42 0.95
Maximum 5.69 2.19 9.07 16.89 11.21
Minimum -3.53 -1.59 -13.32 -14.41 -9.34
Std. Deviation 1.40 0.84 4,08 6.35 3.05
Skewness 0.42 -0.32 -0.64 0.10 -0.21
Kurtosis 4.25 2.64 3.76 2.67 4.24
VaR (p=5%) 1.62 1.25 8.42 10.33 452

The convertibles have the highest mean, but with arather high standard deviation. The equity index
has similar properties as the convertible index but with a more negative skewness. The hedge index
has aweak standard deviation and a positive skewness. Its mean is similar to those of the equity and
commodity indices. The highest VaR and CVaR at the level 5%, have the same order of magnitude

as the commodity index. Those of the convertibles are higher than those of the equity index.

The Omegaratios of the fiveindices are plotted in next Figure 2, as function of the threshold L .
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Fig 2. Omega measures of the five indices

In particular, we get the following ranking for usual thresholds.
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Table 4
Omega ranking of the five indices (monthly returns)

Thetarget level L varies from 0% to 0.65%. The indices are ranked from the best (1) to the worst (5).

Hedge Bond Equity Commodity  Convertible
Target

0 1 2 4 5 3
0,2 1 2 4 5 3
0,25 1 2 4 5 3
0,3 1 2 4 5 3
0,35 1 4 3 4 2
0,4 1 5 3 4 2
0,45 1 5 3 4 2
0,5 1 5 3 4 2
0,55 1 5 4 3 2
0,6 1 5 3 4 2
0,65 1 5 3 4 2

The hedge fund index dominates the other indices on the set of values L € [0%; 0.65%)]. The bond
index dominates the equity, commodity and convertible indices for thresholds L € [0%;0.02%]
(which are usual value of L). Most of the time, the commodity index is dominated by the other
ones. During the period 1997-2007, the commodities have not provided a true diversification for the
four static optimal portfolios. This property is usually verified. This is due to the left tail of its
distribution, as shown for example by its VaR at the level 5% which isequal to 10.33.

3.2 The static framework

In what follows, we examine the static optimal allocations. Our base value for the Omega threshold
L isequal to 0%. Table 5 indicates the optimal allocations (percentage) which correspond to each
optimization criterion.

Table5
Static optimal weights

This table shows the weights of the five indices for each of the four optimal portfolios, in the static case. Four
approaches are considered. The first one (Sharpe) is based on the Sharpe ratio maximization. The second
approach is the Mean-VaR optimization at the (1-p=5%) confidence level. Omega refers to the portfolio
obtained under Omega optimization ratio. The last one represents the Mean-CVaR optimization (CVaR) at the

(1- p=5%) confidence level. Note that short selling is not allowed and the weighting vector satisfies
we=1

Portfolio Hedge Bond Equity Commodity Convertible
Sharpe 029 066 0.00 0.00 0.05
VaR 045 055 0.00 0.00 0.00
Omega 043 037 0.06 0.02 0.12
CVaR (p=5%) 041 002 054 0.03 0.00

Only the hedge fund index is a significant component of al optimal portfolios. This is due to the

11



positive skewness of the hedge index (sk=0.42) while having a mean (E=0.68) similar to the other
indices (except the convertibles). For example, for the equity index (sk=-0.64, E=0.69), the Sharpe
Omega is weaker than for the hedge index. Indeed, the expectation of the losses E[(-X)"] is higher
since the skewness is negative, contrary to the hedge index. The Omega portfolio is the most
diversified: al its weights are different from zero.

The MeanCvaR and Omega optimal portfolios contain much more hedge funds than convertibles.
Indeed, despite its highest mean, the convertible index has high VaR and CVaR. However, the
weights on equities and bonds are quite different for the MeanCvaR and Omega optimal portfolios.
In fact, the Omega performance measure is more sensitive to the probability of a drawdown than the
MeanCVaR criterion. This property is explained in what follows. Consider a given threshold L and
arandom return R . The EroCVaR (or Excess Mean CVaR) ratio is defined by:

R-L
CVaR(a)'

where R denotes the expectation of the rate of return E,[R] . Since we have:

ER0OCVaR(«, L) =

CVaR(a) = E,[-R|-R>VaR(a)]

= E,|L - Rlp.ym )/ E,[- R2VaR(a)]

we deducethat, for L =0, ERoCVaR(«,0) = RoCVaR(«) and also that
RP[-R>VaR(x)] R

RoCVaR(a) = , and Sharpe, (0)= —————.
= I:_R]'-RZVaR(a)J EP[_R]'—RZO]

Then, in that case, maximizing RoCVaR(«) does not penadlize P[-R>VaR(«)] as far as the
ratio R/ Eo[-RL povary] @ndthe Sharpe Q ratio. For L =-VaR(a) , we get:

[Fz +VaR(a)] P[-R>VaR(«)]
EP [_ Rl RVaR(a) ] ,

RoCVaR(a, L) =

and _
R+VaR(x)
Ep [ ~RL povar) |~ VaR(@) E[-R2VaR(@)]

SharpeQ(L) =

Thus, both RoCVaR(«) and Sharpe Q maximizations do not pendize the probability
P[-R>=VaR(«)] in the same manner. Note that both criteria do not penalize the probability to
bear losses beyond VaR(«) asfar astheratio

R+VaR(e)
EP[_ RL FéVaR(a)]

12



Let us examine the cumulative returns of the four optimal portfolios®.
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Fig 3. Cumulative returns of the four optimal portfolios

We note that the Omega optimal portfolio is the more stable one, while the other static portfolios
have quite similar cumulative returns. This is line with the purpose of such portfolio which is to
limit the downside risk and potential losses for L = 0%. The main characteristics of the returns are
provided in Table 6. The Omega portfolio has the smaller mean but only this portfolio has a positive
skewness. Additionally, it has the best kurtosis.

Table 6

Optimal portfolio characteristics

Sharpe VaR Omega CVaR
Mean 0.70 0.68 0.58 0.68
Median 111 1.04 0.50 101
Maximum 7.27 7.01 4.39 6.85
Minimum -9.74 -8.87 -2.78 -8.77
Std. Deviation 0.97 2.64 1.10 2.58
Skewness -0.60 -0.55 0.26 -0.58
Kurtosis 0.82 0.76 0.97 0.83
VaR (p=5%) 7.42 6.16 1.69 3.20
CVaR (p=5%) 1.27 1.00 0.10 5.18
Sharpe ratio (p=5%) 0.72 0.26 0.53 0.26

Figure 4 illustrates the cdf of the four optima portfolios. For the threshold L=0%, the Omega
portfolio return is aimost Gaussian. This is in particular due to the diversification effect, as
illustrated in Table 5 and due to standard statistical property.

®These returns are determined from the optimal allocations and the observed index returns on the given time
period 1997-2007.
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Sharpe optimal portfolio Mean-VaR optimal portfolio

Omega optimal portfolio Mean CVaR optimal portfolio
Fig 4. The four optimal returns (histograms)

The Log Omega ratios of the four optimal portfolios are displayed, in next Figure 5.

5
D 1
&\\\g
P 05
i T () T )
-10 -5 s 0 0l
0 0,2 0,4 0,6 0,8 1
-0
-5

Sharpe Portfolio

Sharpe VaR Portfolio

Sharpe Portfolio
Omega Portfolio

SharpeVaR Portfolio
CVaR Portfolio

Omega Portfolio ——— CVaR Portfolio

Fig. 5 Omegaratios of the four optimal portfolios, as functions of the threshold L

As expected, the Omega optimal portfolio has the highest Omega value, for thresholds L below
0.6%. Note that this value corresponds (approximately) to the means of the four portfolios.

The other portfolios have quite similar Omega performances for L smaller than 0.6%. The previous
results show that the four optimal portfolios exhibit similar absolute performances (about 0.6% per
month). Additionally, they suppose that parameters of interest are quite anticipated. In practice, this
assumption is rather strong.

In what follows, we propose a more realistic framework: the dynamic allocation, as used by fund
managers.
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3.3 The dynamic allocation

Now, we consider dynamic allocations. The data correspond to monthly observations from
30/09/1997 to 31/08/2007 (Currency: US Dallar).

Thedynamic allocation principle and main results.

Dynamic alocations are based on two time periods: the analysis period and the managing period.
The simulation is carried through two steps: First, the estimation of the optimal portfolio weights
using the data in the analysis window and, second, the calculation of the optimal portfolio
performances over the projection window on a monthly basis.

Next Table 7 provides statistical characteristics of the four optimal portfolios according to various
values of both the analysis window length and the projection window length.

Table7
Statistical properties of the four optimal portfolios

We use the following notations: Analysis window length: Aw; Projection window length: Pw. The table
reports summary statistics of the four optimal portfolios. For each one, we compute the statistics of the
dynamic allocations, according to the choice of the analysis window length (A,) and the projection window
length (P,,). Six cases are considered: A,, can take the values (36, 24,0r 12 months). According to the choice
of the A,, we suppose that optimal portfolios could be obtained with 3 or 6 months rebalancing. For the
Omega portfolio, we suppose that the threshold (L=th) is equal to (0%).

Omegath=0 Shar pe

Aw=36  Aw=24 Aw=12  Aw=36 Aw=24 Aw=12 Aw=36 Aw=24 Aw=12 Aw=36  Aw=24 Aw=12

Pw=6 Pw=6 Pw=6 Pw=3 Pw=3 Pw=3 Pw=6 Pw=6 Pw=6  Pw=3 Pw=3 Pw=3
Mean 054 059 0,69 0,55 0,60 0,7 Mean 0,46 0,56 0,74 047 0,54 0,70
Median 047 051 056 054 054 0,63 Median 049 046 0,68 0,50 0,45 0,63
Max 328 346 511 2,59 4,68 5,34 Max 229 2,79 6,82 229 2™ 6,84
Min -245 -324 -286 -213  -270 -384Min -1,79 -175 2,34 179 1B -262
Std .Dev 1,09 122 131 093 137 167 Sd .Dev 0,67 087 132 0,58 0,8 1,34
Skweness -0,22 0,23 028 -022 023 0,67] Skweness 0,32 011 147 -0,32 02 1,39
Kurtosis 0,67 035 113 030 037 254 Kurtosis 042 -0,06 541 0,52 o1 4,99
Sharperatio 049 048 0,53 059 044 0,43 Sharperatio 0,69 0,65 0,56 081 0,61 0,51
VaR 5% 114 155 0,69 094 162 0,8¢ VaR5% 0,74 128 0,88 017 0,07 1,30
CVaR 185 211 2,02 1,50 213 253 CVaR 118 114 162 115 1% 1,79
observations 84 96 108 84 96 108 observations 84 96 108 84 %6 109

VaR p=0,05 CVaR

AW=36  Aw=24 Aw=12 Aw=36 Aw=24 Aw=12 AW=36 AW=24 AW=12  Aw=36 Aw=24 Aw=12

Pw=6 Pw=6 Pws6 Pw=3 Pw3 Pw3 Pw=6 Pw=6 Pw=6 Pw=3 Pw=3 Pw=3
Mean 0,46 0,56 0,71 047 0,56 0,66 Mean 0,38 0,75 0,61 047 0,60 0,89
Median 0,50 051 0,66 0,50 044 0,63 Median 048 0,74 083 054 0,87 0,95
Max 227 2,56 584 228 257 6,18 Max 6,04 6,90 532 235 127 644
Min <174 -199 284 -174 -199 -267Min -8,76 -6,16 1,75 -163 -1071  -433
Std .Dev 0,73 087 129 072 0,88 133 Sd .Dev 282 226 233 0,70 338 222
Skweness -031 0,02 0,69 -032 017 1,14 Skweness -0,73 -022 -0,75 029 -0 -005
Kurtosis 0,61 0,05 294 072 018 423 Kurtosis 126 123 127 084 277 -017
Sharperatio 0,63 064 0,55 0,65 0,64 0,50 Sharperatio 014 033 0,26 0,68 0,18 0,39
VaR 5% 0,64 130 128 042 0,03 0,9¢ VaR5% 491 013 217 0,59 6,78 2,09
CVaR 118 123 198 113 118 192 CvaR 6,69 4,67 508 1,08 7% 354
observations 84 96 108 84 96 108 observations 84 96 108 84 %6 109
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Figure 10 (see Appendix) alows the comparison of the dynamic alocations of the four optimal
portfolios, according to the choice of A, and P,,. The first column correspondsto P, =6 and the
second one to P,=3 Asiit can be seen, the performances of the four portfolios are more sensitive to
the value A,, than to the value P,, .Indeed, for example, for A,=36 and A,=12 , the Omega portfolio
has better performances than the MeanCvaR one whereasfor A, = 24, it is the converse. Note that
the MeanCVaR portfolio is the most sensitive to the choice of A,, while the Omega is the less

sensitive. For the three other portfolios, the performances are relatively stable with respect to the
choices of both A, and P,,. Figure 11 (see Appendix) describes the evolution of the four portfolio

alocations. The parameter values are: A, = 36; P, = 3, which are the most used in practice (36

months correspond to the average life time of hedge funds; 3 months is the standard rebalancing
time). The Omega portfolio is relatively different from the three other ones. For example, it is the
only one which contains convertibles and still contains hedge funds from 2006. The Sharpe,
MeanVaR and MeanCVaR portfolios have similar weighting evolutions.

The Omega portfolio properties

The main statistical characteristics of the Omega portfolio forL=0, A, =36andP, =3 are

displayed in next Table 8, jointly with those of the five indices. Note that the Omega portfolio has
the highest Sharperatio (equal to 0.59) and the smallest kurtosis.

Table 8
Characteristics of the Omega portfolios and the indices

Table 8 represents the main characteristics of the omega portfolio versus the five indices. For the Omega
portfolio we suppose that the threshold is fixed at 0 %. The optimal portfolio is constructed with 3 months

rebalancing ( Pw = 3 ) and the analysis window length ( AW) is equal to 36 months.

Omega Hedge Bond Equity Commodity Convertible
Mean 0.55 0.68 0.40 0.69 0.67 0.74
Median 0.54 0.60 0.46 1.23 0.42 0.95
Maximum 2.59 5.69 2.19 9.07 16.89 11.21
Minimum -2.13 -3.53 -1.59 -13.32 -14.41 -9.34
Std. Deviation 0.93 1.40 0.84 4.08 6.35 3.05
Skewness -0.22 0.42 -0.32 -0.64 0.10 -0.21
Kurtosis 0.30 4.25 2.64 3.76 3.67 4.24
Sharpe Ratio 0.59 0.48 0.47 0.16 0.01 0.24

Figure 12 (see Appendix) shows how the optimal portfolio depends on the upper bound a imposed
on the weights. A small upper bound induces more diversification. Note for example that for an
upper bound about 30% to 40% on all weights, the Omega portfolio must include convertibles

whereas for higher upper bound values, it does not contain convertibles. Next figure provides the
optimal Omega allocations for May 2007, according to various upper bound constraints

(A, =36,P,=3). For a=0.20, the optima weighting leads necessarily to weights that are all
equal to 20% . The higher the upper bound, the smaller the diversification.
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Fig. 6. Omega portfolio weights according to the maximal constraint

In what follows, we examine the properties of the Omega optimal portfolio according to the
threshold L which is varying from 0% to 0.8% by a step equal to 0.05% . The choice of the
upper and lower target L isjustified by the characteristic of the index portfolio. In fact, the mean of
the distribution for all assetsin the index portfolio is 0.66%.

170
160 —0,00
150 ~ - 02
140 + —0.3
130 - ) I 035
120 v — 0.5
110 A ——055
100 ~ 0.6
90 \ \ \ \ \ \ \ 0.65

ao(t- 00 aolt-01 aolt-02 aolt-03 ao(t-04 aolt-05 aolt-06 ao(t-07

Fig. 7. Cumulative returns of Omega portfolio according to the level L
From August 2004 to August 2007, the Omega portfolio associated to the threshold L =0.6%
provides the best cumulative returns. Note that the Omega portfolio corresponding to the value
L = 0% hasthe more stable returns along the whole period (as for the static case).

Table 9 and Figure 8 illustrate the influence of the threshold on the four first moments and the
extreme values.
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Table9

Characteristics of the Omega portfolios for different target thresholds L

Table 9 examines the main statistical properties of the optimal Omega portfolio according to the target
threshold: mean, minimum, maximum, standard deviation, skewness and kurtosis. The threshold L varies
from 0% to 0.80%.

Threshold
000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 0,75 0,80
Mean 055 052 057 047 058 052 052 056 058 036 052 062 065 038 054 084 055
Max 259 420 455 438 741 496 496 589 657 6,77 1150 12,35 886 9,15 983 927 8,00
Min 213  -431 -242 -457 -336 -335 -335 -454 -687 -662 -588 -670 -541 -8,07 -645 -7,67 -6,06
Sd .Dev 093 1,33 147 162 205 1,76 1,76 210 220 235 268 314 263 290 290 289 278
Skewness 022 -027 031 002 092 010 010 004 015 002 079 068 052 024 030 009 0724

excess-Kurtosis 0,30 150 -025 049 161 004 004 048 130 045 277 202 043 067 061 091 031

The highest Sharpe ratio is reached for the threshold equal to0% . However, the Sharpe ratio is not
a decreasing function of the threshold (see for example the values for L =0.15 andL =0.25).
Note aso that none of the standard statistical characteristics is a monotonic function of the
threshold L . For values of the threshold above 0.10%, the skewness is positive since increasing the

threshold corresponds to the search of higher right tail of the distribution.
4. Conclusion

We have examined the relevance of four performance measures when they are used to determine
optimal portfolios including hedge funds. Both CVaR and Omega measures are more appropriate,
especialy when the Cornish-Fisher expansion is introduced to calculate the CVaR. In the static
optimization framework, the Omega provides more stable results whereas, for high volatility, the
CVaR portfolio seems to perform better. In the dynamic case, corresponding to more actual
portfolio management of hedge funds, the difference between the two methods is due to the
different penalization of a given drawdown. We have aso provided the analysis of the Omega
performance measure when upper bounds on the weights are considered or when the associated
threshold varies. As a by-product, we have shown that all the optimal portfolios had to contain
hedge funds, for the time period 1997-2007. All these results are in line with those that can be
deduced, for example when dealing only with purely hedge funds portfolios such as the
commoditiestrading advisers (CTA).
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Appendix
A.The Threshold Accepting Algorithm

The optimization problem is the following (see Winker, 2001):
Let f : X —> R beafunction where X isafinite set:

X ={2€ X|T(2) = f} With fo, = min f (7).
A standard problem consists in searching for alocal optimum local of the function f. Let Xc be
an approximated solution and Xn a new approximated solution in the neighbourhood N(.) of
Xc . Thesolution ¥n must satisfy:

f(xn) < f(xo)-

Then, consider the following algorithm 1.
Table11
Algorithm 1 (local search for a minimum)

generate an approximeted solution y ¢
while criterion to stop if the condition is not satisfied do
select xn € N(xc) (neighborough N(xc) of xc)
iff(xn) < f(xe) thenyc = xn
5: end while

The criterion to stop the algorithm often is the number of iterations. Different methods are proposed
to choose this criterion and the acceptation of the neighbourhood.

For this latter one, for each iteration r , the acceptance of a neighbor ., € N(.) isonly based
on an auxiliary function r(y.,z.) and a threshold T :y.  is accepted if and only if

r

r(;gc,;(%) <T, :Thesequence of thresholds Tr isnonincreasing: T, >T,>...>0 and Tr — 0.
Therefore, the algorithm is defined as follows:

Table 12
Algorithm 2: pseudo code of the Threshold Accepting Algorithm
Initiglisation Choose athreshold sequence Ti,i = 0,...,Imax ,
set | =0 and generateanintial X©
Step 1 Choose X" € N(X°)
Step 2 Calculate Af = f(x) - f(x°)
Step 3 If Af<T, st x°=x"
Step 4

Ifi <lmax ,set i=1+1 andgotostep1
Otherwise, X° isthe output of the algorithm
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Fig. 9. The pdf of the five indices (histograms).
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Fig. 10. Cumulative returns according to the analysis and projection windows
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Fig. 12. Omega optimal alocation according to the upper bound




