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Abstract 
 
 

This paper analyzes the relevance of a set of some performance measures for optimal 
portfolios including hedge funds. Four criteria are considered: the Sharpe Ratio, the 
Returns on VaR and on CVaR, and the Omega performance measure. The results are 
illustrated by an allocation on several indices: HFR (Global Hedge Fund Index), JPM 
Global Bond Index, S&P GSCI, MSCI World and the UBS Global Convertible. Both 
static and dynamic optimizations are considered. Due to the non-convexity of some of the 
criteria, we use the “threshold accepting algorithm” to solve numerically the 
optimization problems. The time period of the analysis is September 1997 to August 2007. 
Our results suggest that, for the dynamic optimization, the portfolio which maximizes the 
Omega measure has the more stable performances, in particular when compared to the 
Return-on-CVaR portfolio. As a by-product, we prove that all the optimal portfolios had 
to contain hedge funds for the time period 1997-2007. 
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1. Introduction 
 
The seminal Markowitz's analysis is based on the first two moments of portfolio return and ignored 
the higher ones. By using an improved estimator of the covariance structure of hedge fund index 
returns, Amenc and Martellini (2002) prove that a portfolio including hedge funds can have a 
significantly smaller volatility (on an out-of-sample basis), while having almost the same mean 
return. This result suggests to incorporate hedge funds to get a mean-variance efficient portfolio. As 
illustrated by Cremers et al. (2005), hedge funds returns usually have higher means and lower 
standard deviations than standard assets, but they also have undesirable higher moment properties. 
For example, hedge funds returns can be negatively skewed. This is due to for instance to the non-
linearity of their payoffs when they are generated by option-like strategies (see Goetzmann et al., 
2002, 2003). 
Many empirical studies have also proved that the mean-variance approach is no more valid when 
investors include hedge funds in their portfolios (Amenc and Martellini, 2002; Terhaar et al., 2003; 
McFall Lamm, 2003; Kat, 2004; Agarwal and Naik, 2004; Alexander and Dimitriu, 2004; Morton et 
al., 2006). 
Empirical studies show that the assumption of normality in return distribution is not justified, in 
particular when dealing with hedge funds which have significant positive or negative skewness and 
high kurtosis (Fung and Hsieh, 1997; Ackerman et al., 1999; Brown et al., 1999; Caglayan and 
Edwards, 2001; Bacmann and Scholz, 2003; Agarwal and Naik, 2004). 
One possible extension of the mean-variance analysis is the use of the expected utility theory. For a 
truncated utility at the order 4, we have to maximize a linear combination of the first four moments 
of the return. In this more general framework, the hedge fund portfolio is built according also to the 
skewness and kurtosis. This problem has been studied by Jurczenko and Maillet (2004), 
Malevergne and Sornette (2005), Davies et al. (2004), Anson and al. (2007)...Martellini and 
Ziemann (2007) extend the Black-Litterman Bayesian approach when building a portfolio of hedge 
funds with non-trivial preferences about higher moments. Their results show that active style 
allocation provides a significant value in a hedge fund portfolio if we take account of non-normality 
and parameter uncertainty in hedge fund return distributions. 
Since the demise of Long Term Capital Management (LTCM), downside risk measures have been 
introduced4 to take more account of the tails of the distributions. In most cases, they are based on 
the Value-at-Risk (VaR) approach. As proved by Weisman (2002), Goetzman et al. (2003), 
Agarwal and Naik (2004), Davies et al. (2004), the VaR can be high, due to important leverage 
effect. VaR also is more appropriate than the first four moments to measure extreme risks. VaR 
optimization has been previously studied by Literman (1997a, 1997b), Lucas and Klaasen, (1998). 
Additionally, Favre and Galeano (2002) introduce a new value-at-risk method to adjust the 
volatility risk with the skewness and the kurtosis of the distribution of returns. They minimize the 
modified VaR at a given confidence level. However, as pointed by Lo (2001), VaR has several 
shortcomings. For instance, it does not indicate the magnitude of the potential losses below itself. 
Additionally, it is not a convex risk measure (see Artzner et al., 1999) and its minimization is rather 
involved. 
For these reasons, Acerbi and Tasche (2002) introduce the expected shortfall (ES). This measure, 
also called CVaR, measures the amount of losses below the VaR, is coherent and leads to portfolio 
optimization problems that can be solved more easily (see Acerbi, Nordio and Sirtori, 2001). 

                                                 
4Maybe more by academic researchers than by practitioners, as mentioned by Amenc et al. (2004). 
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Indeed, Rockafellar and Uryasev (2000) prove that the CVaR minimization is equivalent to a 
convex optimization problem. Agarwal and Naik (2004) estimate ES from the HFR hedge fund 
indices. They show that downside risk is significantly underestimated by the mean-variance 
analysis, which suggests that mean-ES optimization must be introduced. 
Given benchmark related investment objectives, Popova et al. (2007) study the optimal allocation to 
hedge funds, for criteria such as expected shortfall and semi-variance. Using a stochastic 
programming model based on Monte Carlo simulation, they prove that a 20%  allocation to hedge 
funds is justified. Their optimal portfolios are more skew to the right relative to those of the optimal 
mean-variance portfolios. Thus, they have higher Sortino ratios. 
Liang and Park (2007) examine the risk-return trade-off for the hedge funds. They compare semi-
deviation, VaR, ES and Tail Risk (TR) at both the individual fund and the portfolio levels. They 
show that the cross-sectional variation in hedge fund return is well explained by the left-tail risk 
captured by ES and TR and not by the other risk measures. They prove that between January 1995 
and December 2004, hedge funds with high ES outperform those with low ES (annual return 
difference of 7%). 
As shown by Hubner (2007) for the information ratio and the alpha, the relevance of performance 
measures heavily depends on the kind of portfolios that is managed by the investor. Impacts of 
individual constraints are analyzed by Bernd and Xu (2007). 
In this paper, we propose also to examine the relevance of different performance measures when 
determining optimal portfolios including hedge funds, while taking account of portfolio constraints. 
In particular, we focus on the Sharpe, mean VaR and CVaR ratios. As a by-product, we also 
introduce the Omega performance measure, defined by Keating and Shadwick (2002) and Cascon et 
al. (2003). This ratio takes account of all the moments of the distribution. It penalizes the returns 
below a given level and emphasizes the returns beyond this threshold. 
Section 2 recalls definitions and main properties of the performance measures that are used in the 
paper. Section 3 examines the static and dynamic optimization of the four performance measures, 
using VaR Cornish-Fisher estimates and the threshold accepting algorithm for portfolio 
optimization. The empirical analysis is based on a portfolio that includes five indices: HFR (Global 
Hedge Fund Index), JPM GBI, S&P GSCI TR, MSCI World and the UBS Global Convertible.  
The results highlight the importance of the asset allocation model based on the maximization of the 
Omega performance measure, with or without specific constraints on portfolio weights. Indeed, this 
approach takes account of the characteristics of hedge fund portfolios. Some technical analysis and 
empirical illustrations are gathered in the Appendix.



 4

2. Risk-Adjusted Performance Measures and Optimization 
 
To compare funds with different characteristics of returns and risks, several performance measures 
have been introduced5. Among them, the Sharpe Ratio, the Returns on VaR and on CVaR, and the 
Omega performance measure. 
For each criterion to be maximized, we consider that the investor chooses among  n   financial 
assets with returns R= (R1,…,Rn). Let fR  be the return of the riskless asset. Denote e= (1,…,1) 
Denote also by w=(w1,…,wn) the weighting vector satisfying : 

1.
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We assume that no shortselling is allowed:  0.iw ≥  The portfolio return at maturity with cdf F and 
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2.1. The Sharpe ratio maximization 
 
It is the standard optimization problem, which is yet a benchmark. We have to solve: 

.
Max ,  with . 1 and w 0,
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f t
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w R R
w e

w w

−
= ≥
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where Σ   is the variance covariance matrix. The mean R  is computed from data, observed along a 
given time period. 
 
2.2 The Mean-VaR optimization 
 
The VaR measure has been extensively used in risk management. Recall that the VaR is defined as 
a quantile: For a position X and a given probability levelα , the value ( )VaR α satisfies: 

[ ]{ }( ) min .VaR P Xα γ γ α= − ≤ ≥  

 
If  X  has a non negative pdf,  then: 

[ ]( ) .P X VaR α α≤ − =  
 
 ( )VaR α  is the smallest loss at the probability level .α  The Ro VaR (or Mean VaR) ratio is 
defined by: 

)(
)(

α
α

VaR
RR

RoVaR f−
=  

 
                                                 

5See Lhabitant (2004) for more details about the choice of performance measures. 
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We use the Cornish-Fisher approximation, which allows an approximation of the VaR from the four 
first moments of the distribution. The maximization problem is given by: 

.
Max ,  with . 1 and 0,

t
f tw R R

w e w
VaR

−
= ≥  

 
Despite its popularity, VaR has some undesirable properties, such the non-convexity (see Artzner et 
al. 1999), which may discourage diversification. Additionally, the VaR only takes account of the 
probability to be under a given threshold and not of the order of magnitude of the losses beyond this 
level. Therefore, alternative risk measures have been proposed such as the Expected Shortfall (ES), 
introduced by Acerbi and al. (2002, 2004), also called the Conditional value-at-risk (CVaR) in 
Rockafellar and Uryasev (2002) or TailVaR in Artzner et al. (1999). 
 
2.3 The Mean-CVaR optimization 
 
The CVaR can be defined as the expected value of the portfolio loss below a given threshold, given 
the fact that this loss is higher that this level (see Acerbi, 2004). The Ro CVaR (or Mean CVaR) 
ratio is defined by: 
 

)(
)(

α
α

CVaR
RR

RoCVaR f−
=  

 
Then, the maximization problem is given by: 
 

.
Max ,  with . 1 and 0.

t
f tw R R

w e w
CVaR

−
= ≥  

 
Note that, if we assume that returns 1( )w

j j mR ≤ ≤ are independently distributed, the CVaR optimization 

problem is equivalent to: (notation: A1  is the indicator function of set  A ).  
 

Max
wt. R − Rf 

∑j1
m Rj

w1 Rj
wVaR

∑j1
m 1 Rj

wVaR

,with wt.e  1 and w ≥ 0.

 
 
Another risk measure can take account of the characteristics of hedge funds returns: the Omega 
function, introduced by Keating and Shadwick (2002, 2003). 
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2.4 The Omega optimization 
 
The Omega function ( )LΩ  can potentially take account of the whole probability distribution of the 
returns. The Omega measure introduced by Keating and Shadwick (2002) is based on the stochastic 
dominance approach. The measure ( )LΩ  is equal to: 

FL 


L

b
1 − Fxdx


a

L Fxdx
,

 
where (.)F  is the cdf of the random variable (for example equal to the portfolio return) with 
support in [ , ].a b  The level L is the threshold chosen by the investor: returns smaller than L  are 
viewed as losses and those higher than L  are gains. For a given threshold L , the investor would 
prefer the portfolio with the highest Omega measure. As shown by Kazemi, Schneeweis and Gupta 
(2003), the Omega function has the following properties: 
 
The ratio Omega is equal to: 

( )
( )

( ) .
X

P

F

P

E X L
L

E L X

+

+

⎡ ⎤−⎣ ⎦Ω =
⎡ ⎤−⎣ ⎦

 

 
This is the ratio of the expectations of gains above the given level  L   upon the expectation of 
losses below L . Therefore,  ( )

XF LΩ  can be interpreted as a ratio Call/Put defined on the same 
underlying asset X , with strike L  and computed with respect to the historical probability P. The 
Put is the risk measure component. It allows the control of the losses below the threshold L . 
Kazemi, Schneeweis and Gupta (2003) define the Sharpe Omega by: 
 

( ) [ ]
( )

( ) 1.
X

P
F

P

E X L
Sharpe L L

E L X
Ω +

−
= = Ω −

⎡ ⎤−⎣ ⎦

 

 
If  [ ]PE X L<  , the Sharpe Omega measure is negative. Otherwise, it is positive. Suppose that  X   

is the value at maturity  T   of a given asset  S   with a Lognormal distribution: 
 

X  S0exp − 2 /2T  WT,  
where  TW  has a Gaussian distribution. Then [ ] 0 exp[ ]PE X S Tµ=  does not depend on the 

volatility .σ  Thus, if 0 exp[ ]S T Lµ <  , then the Sharpe Omega ratio is an increasing function of 

the volatility σ  whereas, for 0 exp[ ]S T Lµ >  , it is a decreasing function of  .σ   

Due to the previous properties, the usual values of the level L are such that L X< . Indeed, it is 
more convenient that a performance measure is a decreasing function of the standard risk σ  than 
the converse. 
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The corresponding optimization problem is: 
  

MaxLRw, with wt.e  1 and w ≥ 0,  
which is equivalent to: 
 

( )
( )

Max ,  with . 1 and 0.
w

t

w

E R L
w e w

E L R

+

+

⎡ ⎤−⎢ ⎥⎣ ⎦ = ≥
⎡ ⎤−⎢ ⎥⎣ ⎦

 

Then, from the observation of independent returns  1( )w
j j mR ≤ ≤  , we have to solve: 

 

Max
∑j1

m Rj
w − L 1Rj

wL

∑j1
m L − Rj

w 1Rj
wL

, with wt.e  1 and w ≥ 0.

 
 
Due to the non convexity of some of the previous objective functions, we use the threshold 
accepting algorithm to solve numerically the optimization problems. This algorithm has been 
introduced by Dueck and Scheuer (1990). It is a refined version of the standard local search 
procedure (for more details, see Appendix A and Winker, 2001). It is a local search procedure 
which accepts moves to neighbourhood solutions that improve the objective function value. Dueck 
and Scheuer (1990) prove that the Threshold Accepting Algorithm converge to the optimal portfolio 
solution when dealing with complex objective functions such as shortfall optimization case. 
Recently, Gilli and Kellezi (2000) have used this algorithm for CVaR and Omega portfolios 
optimization. 
 
3. The Empirical Results 
 
In what follows, we search for the optimal portfolio based on indices. The optimal allocation is 
determined among five main asset classes: Hedge funds, Equities, Bonds, Commodities and 
Convertibles. Two optimization methods are used: 
 
- A static optimization with only one period (the whole period of observations). 
- A dynamic optimization based on the back testing method. 
 
3.1 The data analysis 
 
The portfolio contains the following indices:  
 
� The HFRX Global Hedge Fund USD,  
� The UBS Global Convertible,  
� The JPM Global GBI LC,  
� The MSCI World Free Equity  
� and the S&P GSCI.  
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Table 1 describes these indices. 
 

Table 1 
 

Description of the five indices 
 
The data on hedge funds are obtained from the commonly used Lipper TASS. The time period of 
the analysis lies between September 1997 and August 2007. The sample contains 121 net-of-fees 
monthly returns. 
 

Indices Description
HFRX Global Hedge Fund USD The index is built as follows:

Sep-97 to March-03: The index corresponds
to the mean of performances of hedge funds,
quoted by the Lipper basis 
(without survivorship bias * )
April-03 to Aug-07: the index is the
HFRX Global Hedge Fund USD

UBS Global Convertible The index represents convertibles 
JPMorganGlobal GBI TR LC The index represents the performance

of bonds in local currency.
MSCI World Free TR USD It is the international equities index
S&P GSCI TR It is the commodities index

*See Bing Liang (2000) for such correction.   
 

Looking at realized returns for the given time period, the hedge funds and convertibles generally 
have better performances, as shown by Figure 1. The HFR index performances were smooth and 
steady despite the high correlation with stock markets (represented by MSCI World Free). The 
index has shown real capacity to preserve capital through some crisis periods such as 1998 (LTCM 
collapse) or 2000 (Technology bubble). During the financial crisis 2000-2002, the hedge funds had 
clearly higher returns (positive returns while those of the equities were significantly negative). 
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Fig. 1 Cumulative monthly returns 
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The S&P GSCI TR has the worst performance until 2002, while growing up and having the best 
performance from January 2005 to January 2007.  
 
The Global Hedge Fund index has regularly grown up. In particular, it has not fallen from 2000 to 
2002, contrary to the MSCI World and has provided capital protection during this time period. 
Looking at cumulative returns, the UBS Convertible index has risen during two periods: from 
Sep97 to Sep 00 and from Jan-03 to Sep 07, while it has fallen between these two periods, which 
can be explained by a falling stock market and spreads widening. 
 
Looking at correlations, for most of the cases, the equity index has the highest correlation with the 
other indices, in particular with the Convertible and Hedge indices (see Table 2).  
The Convertibles also have a high correlation with the hedge funds. 
 

Table 2 
 

Correlations between the indices 
 

The correlation matrix is based on the Pearson Correlation measure. Hedge (1) refers to HFRX Global Hedge 
Fund USD index. Bond (2) is the JP Morgan Global GB Index. Equity (3) represents the MSCI World Free 
TR USD index. Commodity (4) represents the S&P GSCI. The last index (5) refers to the UBS Global 
Convertible.  

 
Indices 1 2 3 4 5
Hedge 1 1.00
Bond 2 -0.12 1.00
Equity 3 0.57 -0.27 1.00
Commodity 4 0.20 0.03 0.01 1.00
Convertible 5 0.73 -0.11 0.81 0.13 1.00  

 
 
As shown by the QQ-Plots in Figure 9 (see Appendix B), the probability distributions are not 
Gaussian. The main statistical properties of the five indices are provided in Table 3. 
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Table 3 
 

Statistical characteristics of the indices (monthly) 
 

Summary statistics for the five indices returns over the period of the analysis. They include the first four 
moments: Mean, Standard Deviation, Skewness, and Kurtosis. Other statistics are provided such as Median, 
Maximum, Minimum and the risk measure Value-at-Risk (VaR) which is calculated at the confidence level  
(1-p=5%).  
 

Hedge Bond Equity Commodity Convertible
Mean 0.68 0.40 0.69 0.67 0.74
Median 0.60 0.46 1.23 0.42 0.95
Maximum 5.69 2.19 9.07 16.89 11.21
Minimum -3.53 -1.59 -13.32 -14.41 -9.34
Std. Deviation 1.40 0.84 4.08 6.35 3.05
Skewness 0.42 -0.32 -0.64 0.10 -0.21
Kurtosis 4.25 2.64 3.76 2.67 4.24
VaR (p=5%) 1.62 1.25 8.42 10.33 4.52   

 
The convertibles have the highest mean, but with a rather high standard deviation. The equity index 
has similar properties as the convertible index but with a more negative skewness. The hedge index 
has a weak standard deviation and a positive skewness. Its mean is similar to those of the equity and 
commodity indices. The highest VaR and CVaR at the level %,5  have the same order of magnitude 
as the commodity index. Those of the convertibles are higher than those of the equity index.  
 
 
The Omega ratios of the five indices are plotted in next Figure 2, as function of the threshold L . 
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Fig 2. Omega measures of the five indices 

 
 

In particular, we get the following ranking for usual thresholds. 
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Table 4 
 

Omega ranking of the five indices (monthly returns) 
 

The target level L varies from 0% to 0.65%. The indices are ranked from the best (1) to the worst (5). 
 

Hedge Bond Equity Commodity Convertible
Target

0 1 2 4 5 3
0,2 1 2 4 5 3

0,25 1 2 4 5 3
0,3 1 2 4 5 3

0,35 1 4 3 4 2
0,4 1 5 3 4 2

0,45 1 5 3 4 2
0,5 1 5 3 4 2

0,55 1 5 4 3 2
0,6 1 5 3 4 2

0,65 1 5 3 4 2   
 

The hedge fund index dominates the other indices on the set of values [0%;0.65%].L ∈ The bond 
index dominates the equity, commodity and convertible indices for thresholds [0%;0.02%]L ∈  
(which are usual value of L ). Most of the time, the commodity index is dominated by the other 
ones. During the period 1997-2007, the commodities have not provided a true diversification for the 
four static optimal portfolios. This property is usually verified. This is due to the left tail of its 
distribution, as shown for example by its VaR at the level %5  which is equal to .33.10  
 
3.2 The static framework 
 
In what follows, we examine the static optimal allocations. Our base value for the Omega threshold 
L  is equal to %.0  Table 5 indicates the optimal allocations (percentage) which correspond to each 
optimization criterion. 

 
Table 5 

 
Static optimal weights 

 
This table shows the weights of the five indices for each of the four optimal portfolios, in the static case. Four 
approaches are considered. The first one (Sharpe) is based on the Sharpe ratio maximization. The second 
approach is the Mean-VaR optimization at the (1-p=5%) confidence level. Omega refers to the portfolio 
obtained under Omega optimization ratio. The last one represents the Mean-CVaR optimization (CVaR) at the 
(1 5%)p− =  confidence level. Note that short selling is not allowed and the weighting vector satisfies 

1. =ewt   
 

Portfolio Hedge Bond Equity Commodity Convertible
Sharpe 0.29 0.66 0.00 0.00 0.05
VaR 0.45 0.55 0.00 0.00 0.00
Omega 0.43 0.37 0.06 0.02 0.12
CVaR (p=5%) 0.41 0.02 0.54 0.03 0.00  

 
Only the hedge fund index is a significant component of all optimal portfolios. This is due to the 
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positive skewness of the hedge index (sk=0.42) while having a mean (E=0.68) similar to the other 
indices (except the convertibles). For example, for the equity index (sk=-0.64, E=0.69), the Sharpe 
Omega is weaker than for the hedge index. Indeed, the expectation of the losses E[(-X)+] is higher 
since the skewness is negative, contrary to the hedge index. The Omega portfolio is the most 
diversified: all its weights are different from zero. 
The MeanCvaR and Omega optimal portfolios contain much more hedge funds than convertibles. 
Indeed, despite its highest mean, the convertible index has high VaR and CVaR. However, the 
weights on equities and bonds are quite different for the MeanCvaR and Omega optimal portfolios. 
In fact, the Omega performance measure is more sensitive to the probability of a drawdown than the 
MeanCVaR criterion. This property is explained in what follows. Consider a given threshold L and 
a random return R . The EroCVaR (or Excess Mean CVaR) ratio is defined by: 

,
)(

),(
α

α
CVaR

LRLERoCVaR −=  

where R  denotes the expectation of the rate of return [ ]PE R . Since we have: 
 

( ) [ | ( )]PCVaR E R R VaRα α= − − ≥  
 

( )[ ] ( )[ ],/ 1 VaRR- αα VaRRERLE pp ≥−−= ≥  
 
 

we deduce that, for ,0=L  )()0,( αα RoCVaRERoCVaR =  and also that 
 

0( )

[ ( )]( ) ,  and (0) .
[ 1 ]1 P RP R VaR

RP R VaR RRoCVaR Sharpe
E RE R α

αα Ω
− ≥− ≥

− ≥= =
−⎡ ⎤−⎣ ⎦

 

 
Then, in that case, maximizing )(αRoCVaR  does not penalize [ ( )]P R VaR α− ≥  as far as the 

ratio ( )/ [ 1 ]P R VaRR E R α− ≥−   and the Sharpe Ω  ratio. For )(αVaRL −=  , we get: 
 

( )

( ) [ ( )]
( , ) ,

1P R VaR

R VaR P R VaR
RoCVaR L

E R α

α α
α

− ≥

⎡ ⎤+ − ≥⎣ ⎦=
⎡ ⎤−⎣ ⎦

 

and 

( )

( )( ) .
1 ( ) [ ( )]P R VaR P

R VaRSharpe L
E R VaR E R VaRα

α
α α− ≥

+Ω =
⎡ ⎤− − − ≥⎣ ⎦

 

 
Thus, both )(αRoCVaR  and Sharpe Ω  maximizations do not penalize the probability 

[ ( )]P R VaR α− ≥  in the same manner. Note that both criteria do not penalize the probability to 
bear losses beyond )(αVaR  as far as the ratio 
 

( )

( ) .
[ 1 ]P R VaR

R VaR
E R α

α
− ≥

+
−
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Let us examine the cumulative returns of the four optimal portfolios6. 
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Fig 3. Cumulative returns of the four optimal portfolios  
 

We note that the Omega optimal portfolio is the more stable one, while the other static portfolios 
have quite similar cumulative returns. This is line with the purpose of such portfolio which is to 
limit the downside risk and potential losses for %0=L . The main characteristics of the returns are 
provided in Table 6. The Omega portfolio has the smaller mean but only this portfolio has a positive 
skewness. Additionally, it has the best kurtosis. 
 

Table 6 
 

Optimal portfolio characteristics 
 

Sharpe VaR Omega CVaR
Mean 0.70 0.68 0.58 0.68
Median 1.11 1.04 0.50 1.01
Maximum 7.27 7.01 4.39 6.85
Minimum -9.74 -8.87 -2.78 -8.77
Std. Deviation 0.97 2.64 1.10 2.58
Skewness -0.60 -0.55 0.26 -0.58
Kurtosis 0.82 0.76 0.97 0.83
VaR (p=5%) 7.42 6.16 1.69 3.20
CVaR (p=5%) 1.27 1.00 0.10 5.18
Sharpe ratio (p=5%) 0.72 0.26 0.53 0.26  

 
Figure 4 illustrates the cdf of the four optimal portfolios. For the threshold L=0%, the Omega 
portfolio return is almost Gaussian. This is in particular due to the diversification effect, as 
illustrated in Table 5 and due to standard statistical property.  

                                                 
6These returns are determined from the optimal allocations and the observed index returns on the given time 
period 1997-2007. 
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Fig 4. The four optimal returns (histograms) 
 
The Log Omega ratios of the four optimal portfolios are displayed, in next Figure 5. 
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 Fig. 5 Omega ratios of the four optimal portfolios, as functions of the threshold L 
 
As expected, the Omega optimal portfolio has the highest Omega value, for thresholds L  below 
0.6%. Note that this value corresponds (approximately) to the means of the four portfolios.  
The other portfolios have quite similar Omega performances for L  smaller than 0.6%. The previous 
results show that the four optimal portfolios exhibit similar absolute performances (about 0.6% per 
month). Additionally, they suppose that parameters of interest are quite anticipated. In practice, this 
assumption is rather strong.  
In what follows, we propose a more realistic framework: the dynamic allocation, as used by fund 
managers.
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3.3 The dynamic allocation 
 
Now, we consider dynamic allocations. The data correspond to monthly observations from 
30/09/1997 to 31/08/2007 (Currency: US Dollar). 
 
The dynamic allocation principle and main results. 
 
Dynamic allocations are based on two time periods: the analysis period and the managing period. 
The simulation is carried through two steps: First, the estimation of the optimal portfolio weights 
using the data in the analysis window and, second, the calculation of the optimal portfolio 
performances over the projection window on a monthly basis. 
Next Table 7 provides statistical characteristics of the four optimal portfolios according to various 
values of both the analysis window length and the projection window length. 
 

Table 7 
 

Statistical properties of the four optimal portfolios 
 

We use the following notations: Analysis window length: Aw; Projection window length: Pw.  The table  
reports summary statistics of the four optimal portfolios. For each one, we compute the statistics of the 
dynamic allocations, according to the choice of the analysis window length (Aw) and the projection window 
length (Pw). Six cases are considered: Aw can take the values (36, 24,or 12 months). According to the choice 
of the Aw, we suppose that optimal portfolios could be obtained with 3 or 6 months rebalancing. For the 
Omega portfolio, we suppose that the threshold (L=th) is equal to (0%). 
 

Aw=36
 Pw=6

Aw=24
 Pw=6

Aw=12
 Pw=6

Aw=36 
Pw=3

Aw=24 
Pw=3

Aw=12 
Pw=3

Aw=36
 Pw=6

Aw=24
 Pw=6

Aw=12
 Pw=6

Aw=36 
Pw=3

Aw=24 
Pw=3

Aw=12 
Pw=3

Mean 0,54 0,59 0,69 0,55 0,60 0,72 Mean 0,46 0,56 0,74 0,47 0,54 0,70
Median 0,47 0,51 0,56 0,54 0,54 0,63 Median 0,49 0,46 0,68 0,50 0,45 0,63
Max 3,28 3,46 5,11 2,59 4,68 5,32 Max 2,29 2,79 6,82 2,29 2,79 6,84
Min -2,45 -3,24 -2,86 -2,13 -2,70 -3,82 Min -1,79 -1,75 -2,34 -1,79 -1,75 -2,62
Std .Dev 1,09 1,22 1,31 0,93 1,37 1,67 Std .Dev 0,67 0,87 1,32 0,58 0,88 1,38
Sk weness -0,22 -0,23 0,28 -0,22 0,23 0,67 Sk weness -0,32 0,11 1,47 -0,32 0,21 1,39
K urtosis 0,67 0,35 1,13 0,30 0,37 2,54 Kurtosis 0,42 -0,06 5,41 0,52 0,11 4,96
Sharpe ratio 0,49 0,48 0,53 0,59 0,44 0,43 Sharpe ratio 0,69 0,65 0,56 0,81 0,61 0,51
VaR 5% 1,14 1,55 0,69 0,94 1,62 0,86 VaR 5% 0,74 1,28 0,88 0,17 0,07 1,30
C VaR 1,85 2,11 2,02 1,50 2,13 2,53 CVaR 1,18 1,14 1,62 1,15 1,26 1,76

observations 84 96 108 84 96 108 observations 84 96 108 84 96 108

CVaR
Aw=36
 Pw=6

Aw=24
 Pw=6

Aw=12
 Pw=6

Aw=36 
Pw=3

Aw=24 
Pw=3

Aw=12 
Pw=3

Aw=36
 Pw=6

Aw=24
 Pw=6

Aw=12
 Pw=6

Aw=36 
Pw=3

Aw=24 
Pw=3

Aw=12 
Pw=3

Mean 0,46 0,56 0,71 0,47 0,56 0,66 Mean 0,38 0,75 0,61 0,47 0,60 0,86
Median 0,50 0,51 0,66 0,50 0,44 0,63 Median 0,48 0,74 0,83 0,54 0,87 0,95
Max 2,27 2,56 5,84 2,28 2,57 6,18 Max 6,04 6,90 5,32 2,35 12,72 6,44
Min -1,74 -1,99 -2,84 -1,74 -1,99 -2,67 Min -8,76 -6,16 -7,75 -1,63 -10,71 -4,33
Std .Dev 0,73 0,87 1,29 0,72 0,88 1,33 Std .Dev 2,82 2,26 2,33 0,70 3,28 2,22
Sk weness -0,31 0,02 0,69 -0,32 0,17 1,14 Sk weness -0,73 -0,22 -0,75 -0,29 -0,26 -0,05
K urtosis 0,61 0,05 2,94 0,72 0,18 4,23 Kurtosis 1,26 1,23 1,27 0,84 2,77 -0,17
Sharpe ratio 0,63 0,64 0,55 0,65 0,64 0,50 Sharpe ratio 0,14 0,33 0,26 0,68 0,18 0,39
VaR 5% 0,64 1,30 1,28 0,42 0,03 0,96 VaR 5% 4,91 0,13 2,17 0,59 6,78 2,08
C VaR 1,18 1,23 1,98 1,13 1,18 1,92 CVaR 6,69 4,67 5,08 1,08 7,56 3,54

observations 84 96 108 84 96 108 observations 84 96 108 84 96 108

Omega th=0

VaR p=0,05

S harpe
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Figure 10 (see Appendix) allows the comparison of the dynamic allocations of the four optimal 
portfolios, according to the choice of Aw and Pw. The first column corresponds to 6=wP  and the 
second one to Pw=3 As it can be seen, the performances of the four portfolios are more sensitive to 
the value Aw than to the value Pw .Indeed, for example, for Aw=36 and Aw=12 , the Omega portfolio 
has better performances than the MeanCvaR one whereas for  24=wA , it is the converse. Note that 
the MeanCVaR portfolio is the most sensitive to the choice of Aw, while the Omega is the less 
sensitive. For the three other portfolios, the performances are relatively stable with respect to the 
choices of both Aw and Pw. Figure 11 (see Appendix) describes the evolution of the four portfolio 
allocations. The parameter values are: 3;36 == ww PA , which are the most used in practice (36 
months correspond to the average life time of hedge funds; 3 months is the standard rebalancing 
time). The Omega portfolio is relatively different from the three other ones. For example, it is the 
only one which contains convertibles and still contains hedge funds from 2006. The Sharpe, 
MeanVaR and MeanCVaR portfolios have similar weighting evolutions. 
 
The Omega portfolio properties 
 
The main statistical characteristics of the Omega portfolio for 0=L , 36=wA and 3wP =  are 
displayed in next Table 8, jointly with those of the five indices. Note that the Omega portfolio has 
the highest Sharpe ratio (equal to 59.0 ) and the smallest kurtosis. 
 

Table 8 
 

Characteristics of the Omega portfolios and the indices 
 

Table 8 represents the main characteristics of the omega portfolio versus the five indices. For the Omega 
portfolio we suppose that the threshold is fixed at 0 %. The optimal portfolio is constructed with 3 months 
rebalancing ( 3=Pw  ) and the analysis window length ( Aw ) is equal to 36 months. 
 

Omega Hedge Bond Equity Commodity Convertible
Mean 0.55 0.68 0.40 0.69 0.67 0.74

Median 0.54 0.60 0.46 1.23 0.42 0.95
Maximum 2.59 5.69 2.19 9.07 16.89 11.21
Minimum -2.13 -3.53 -1.59 -13.32 -14.41 -9.34

Std. Deviation 0.93 1.40 0.84 4.08 6.35 3.05
Skewness -0.22 0.42 -0.32 -0.64 0.10 -0.21
Kurtosis 0.30 4.25 2.64 3.76 3.67 4.24

Sharpe Ratio 0.59 0.48 0.47 0.16 0.01 0.24  
 

 
Figure 12 (see Appendix) shows how the optimal portfolio depends on the upper bound a  imposed 
on the weights. A small upper bound induces more diversification. Note for example that for an 
upper bound about %30  to %40  on all weights, the Omega portfolio must include convertibles 
whereas for higher upper bound values, it does not contain convertibles. Next figure provides the 
optimal Omega allocations for May 2007, according to various upper bound constraints 
( 3,36 == ww PA ). For ,20.0=a  the optimal weighting leads necessarily to weights that are all 
equal to %20 . The higher the upper bound, the smaller the diversification. 
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Fig. 6. Omega portfolio weights according to the maximal constraint 
 

In what follows, we examine the properties of the Omega optimal portfolio according to the 
threshold L  which is varying from %0  to %8.0  by a step equal to  %05.0  . The choice of the 
upper and lower target L  is justified by the characteristic of the index portfolio. In fact, the mean of 
the distribution for all assets in the index portfolio is %.66.0   
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Fig. 7. Cumulative returns of Omega portfolio according to the level L 
 

From August 2004 to August 2007, the Omega portfolio associated to the threshold  %6.0=L  
provides the best cumulative returns. Note that the Omega portfolio corresponding to the value 

%0=L   has the more stable returns along the whole period (as for the static case).  
 
Table 9 and Figure 8 illustrate the influence of the threshold on the four first moments and the 
extreme values. 
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Table 9 
 

Characteristics of the Omega portfolios for different target thresholds L 
 

Table 9 examines the main statistical properties of the optimal Omega portfolio according to the target 
threshold: mean, minimum, maximum, standard deviation, skewness and kurtosis. The threshold L varies 
from 0% to 0.80%. 
 
 

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80

Mean 0,55 0,52 0,57 0,47 0,58 0,52 0,52 0,56 0,58 0,36 0,52 0,62 0,65 0,38 0,54 0,84 0,55
Max 2,59 4,20 4,55 4,38 7,41 4,96 4,96 5,89 6,57 6,77 11,50 12,35 8,86 9,15 9,83 9,27 8,00
Min -2,13 -4,31 -2,42 -4,57 -3,36 -3,35 -3,35 -4,54 -6,87 -6,62 -5,88 -6,70 -5,41 -8,07 -6,45 -7,67 -6,06
Std .Dev 0,93 1,33 1,47 1,62 2,05 1,76 1,76 2,10 2,20 2,35 2,68 3,14 2,63 2,90 2,90 2,89 2,78
Skewness -0,22 -0,27 0,31 0,02 0,92 0,10 0,10 0,04 0,15 0,02 0,79 0,68 0,52 0,24 0,30 0,09 0,24
excess-Kurtosis 0,30 1,50 -0,25 0,49 1,61 0,04 0,04 0,48 1,30 0,45 2,77 2,02 0,43 0,67 0,61 0,91 0,31

Threshold 

 
 

 
The highest Sharpe ratio is reached for the threshold equal to %0 . However, the Sharpe ratio is not 
a decreasing function of the threshold (see for example the values for 15.0=L  and 25.0=L ). 
Note also that none of the standard statistical characteristics is a monotonic function of the 
threshold L . For values of the threshold above %,10.0  the skewness is positive since increasing the 
threshold corresponds to the search of higher right tail of the distribution. 
 
4. Conclusion 
 
We have examined the relevance of four performance measures when they are used to determine 
optimal portfolios including hedge funds. Both CVaR and Omega measures are more appropriate, 
especially when the Cornish-Fisher expansion is introduced to calculate the CVaR. In the static 
optimization framework, the Omega provides more stable results whereas, for high volatility, the 
CVaR portfolio seems to perform better. In the dynamic case, corresponding to more actual 
portfolio management of hedge funds, the difference between the two methods is due to the 
different penalization of a given drawdown. We have also provided the analysis of the Omega 
performance measure when upper bounds on the weights are considered or when the associated 
threshold varies. As a by-product, we have shown that all the optimal portfolios had to contain 
hedge funds, for the time period 1997-2007. All these results are in line with those that can be 
deduced, for example when dealing only with purely hedge funds portfolios such as the 
commodities trading advisers (CTA).  
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Appendix  
 
A.The Threshold Accepting Algorithm 

 
The optimization problem is the following (see Winker, 2001): 
Let  :f X R→   be a function where X  is a finite set: 

min { ( ) },optX X f fχ χ= ∈ = with ).(min χ
χ

ff
Xopt ∈

=  

A standard problem consists in searching for a local optimum local of the function .f   Let  c   be 

an approximated solution and n  a new approximated solution in the neighbourhood  ( )cN χ   of  

c  . The solution n  must satisfy: 

fn  fc.  
Then, consider the following algorithm 1: 

Table 11 
 Algorithm 1 (local search for a minimum) 

1: generate an approximated solutionc

2: while criterion to stop if the condition is not satisfied do

3: select n ∈ Nc (neighborough Nc ofc)

4: if fn  fc then c  n

5: end while   
The criterion to stop the algorithm often is the number of iterations. Different methods are proposed 
to choose this criterion and the acceptation of the neighbourhood. 
For this latter one, for each iteration  r  , the acceptance of a neighbor  ( )n cNχ χ∈  is only based 

on an auxiliary function 
0

( , )c cr χ χ  and a threshold rT  :
0cχ  is accepted if and only if 

0
( , )c c rr Tχ χ <  :The sequence of thresholds  Tr   is non increasing:  1 2 ... 0T T> > >   and 0Tr → . 

Therefore, the algorithm is defined as follows: 
 

Table 12 
 

Algorithm 2: pseudo code of the Threshold Accepting Algorithm 
Initialisation  Choose a threshold sequence  Ti, i  0, . . . , Imax  , 
 set  i  0   and generate an intial x c   
Step 1 Choose  x n ∈ Nx c   
Step 2 Calculate  Δf  fx n − fx c   
Step 3 If  Δf ≤ Ti,   set   x c  x n   
Step 4 If i  Imax  , set  i  i  1   and go to step 1 
 Otherwise,  x c   is the output of the algorithm 
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B. The pdf of the five indices 
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Fig. 9. The pdf of the five indices (histograms). 
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Fig. 10. Cumulative returns according to the analysis and projection windows 
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Fig. 11. Optimal allocation for the four criteria (Aw=36; Pw=3) 
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Fig. 12. Omega optimal allocation according to the upper bound 


