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Abstract
In this paper we test the empirical performancéhefDas and Sundaram model [2006].
This model is for the pricing of securities subjeriquity, interest rate and credit risks.
The model is embedded on a bivariate recombinittigdain a risk-neutral setting for the
joint evolution of equity prices and forward intsreate curve. Assuming that the stock
price drops to zero in the event of a default, éhelution of the credit risk process is
captured on this bivariate lattice by the posdipitif the stock price dropping to zero.
The probability of this happening at different ned# the lattice is estimated from the
observed credit default swap spreads. We testnttudel on a sample of risky non-
convertible bonds in the American and European starkVe also extend this model to
price convertible bonds which are convertible mbb ithe issuer’'s stock but the stock of

some other company.

This paper is preliminary and incomplete. Pleasendt quote without the authors’
permission.
* Contact authorrmateti@umassd.edu




Pricing Securities with Multiple Risks: An Empirical Study

|. Introduction

In this paper we test the empirical performanceaopromising model for pricing
securities subject to equity, interest rate andlitmsks. This is the Das and Sundaram
[2006] model. An example of a security faced witbde risks is a defaultable convertible
bond. We have chosen this model for an empiriaadysbbecause of its simplicity and
intuitive appeal. Also, it makes good use of theastied spreads in the rapidly growing

credit default swap market to estimate default phbdliiies.

The model we propose to test, Das and Sundaran6]2@0embedded on a bivariate
recombining lattice in a risk-neutral setting. Qri¢he variables on this lattice is the risk-
free interest rate. The dynamics of this varialdemodeled using the Heath-Jarrow-
Morton [1990] framework. The second variable orsthattice is the stock price. A

generalized form of the Cox — Ross — Rubinstein7@l9model which allows for the

firm’'s default is used to model the stock price.e$& two variables are combined
together on a bivariate lattice in a risk-neutkdtiag. In other words, the drift term of the
forward rates satisfies the well known HIJM [1990hdition, and the drift term of the

stock price is equal to the risk-free rate. Theadkfprobabilities are endogenous to the
model and are derived from both equity and the dedntkets, rather than from just the
debt market alone. This results in a consistemhénaork as the default probabilities are
consistent with the prices in the debt and thetgquarkets (which probably would not

be the case if default is treated as an exogenmeegs and overlaid on the bivariate
lattice) and all the available information, i.eetprices from both the debt and equity

markets, is utilized in the estimation of defaulhlpabilities.

In this paper we test the empirical performancehaf above model. We price non-
convertible bonds in the American and European etarand compare the model’s prices
with observed market prices. Next we extend the eha@ahd price convertible bonds

which are convertible not into the issuer’s stoak$opme other company’s stock.



Il. Literature Review

The literature on credit risk modeling can be diéd into two groups — the structural
approach and the reduced-form approach. Struatuwdkls (e.g., Merton [1974], Black-
Cox[1976]) focus on the value of the firm. Equitydadebt are treated as contingent
claims on this value. The firm defaults when itéueahits the “default boundary”. The
probabilities of default are based on a notionechfidistance-to-default”. Implementing
this class of models poses some problems becawsdirth value is not directly
observable and its estimation involves making soesérictive assumptions. The equity
market is usually used to estimate the paramefareaonodel.

The reduced-form models (e.g., Jarrow and Turnf@b5], Madan and Unal [1995],
[2000], Duffie and Singleton [1999]) treat the tineé bankruptcy as an exogenous
process and does not explicitly depend on the vafidlee firm. An exogenous variable is
assumed to drive default and the conditional proibalof default is captured by what is
known as the hazard or the intensity rate. Theeefthre parameters associated with the
value of the firm need not be estimated to implentieis class of models. The credit risk
premium is a function of the probability of defaald the recovery rate in the event of
default. One set of reduced form models uses thditcratings of firms to model credit
risk. Default is modeled by a change in ratingseftiby a Markov transition matrix. In
the reduced — form models, the parameters are astihalmost exclusively from the debt

market.

The Das and Sundaram [2006] model draws upon dkasi from both the above
approaches to modeling credit risk. As in the reddiorm approach, the probability of
default is represented by a hazard rate process, @in the structural approach, the
equity value is assumed to fall to zero in the éwdna default. However, there is an
important difference. For the implementation ofypi¢al reduced form model, the bond
market is solely relied on for the estimation of thazard rate. Whereas in the present
model, both the debt and the equity markets ard teeits (the hazard rate) estimation.
This is expected to result in an improved estinmabb the hazard rate as not only more



information is used but also the fact that equitgrkets are a lot more liquid than the
debt markets. Jarrow [2001] also recommends estiméte default rate form both debt

and equity markets.

The present model is an extension of various mod&tsne models such as Schonbucher
[1998], [2002], Das and Sundaram [2000] model prdesecurities subject to only
interest rate and default risk and not equity riBisky non-convertible bonds are
examples of such securities. Others such as AmihBodurtha [1995] consider only
equity and interest rate risks but no default riBRe present model considers all three

risks.

[1l. The Das and Sundaram Model

We first describe the Das and Sundaram model. Todemincorporates interest rate,
equity, and credit risks on a recombining bivaristitice. There is a variable each for
interest rate and stock price, but not for crewk.rThe credit risk is modeled by the
stock price dropping to zero in the event of a diéfdBelow, we describe the Das and

Sundaram model.

The Term - Structure Model

The interest rate dynamics, in terms of forwarésatre modeled using the discrete-time
version of the HIM model (HIM [1990]). The HJM nabdjives the dynamics of the

forward rates. Below is the discrete time versibthe evolution of the forward rates.

f(t + h, T) = f(t, T) +a (¢, T).h +o (t, T) X vh

where
a (t, T) is the rate of drift of the forward rate
o (t, T) is the volatility

Xt is a random variable which takes values {-1, 1}



h is a fixed length of time

Under conditions of no-arbitrage the drift rate mainbe independent of the volatility. As
shown in Das and Sundaram [2001], Acharya, Dasd&am [2002], the drift terms can

be calculated recursively in terms of the volaé$t

STtk =2 n(Elexpl Y ot kh) X )

k=t/h+1 k=t/h+1

Using the above, the risk-neutral drifts can bewaked recursively.

The Equity Model

The discrete time stock price dynamics, underigliermreutral measure, are assumed to be
In[S(t+h)/S(t)] = r(t).h 6sXsvh

where

r(t) short term risk-free interest rate at time t

Xsis a random variable which takes valuec{--1, +1}

h is the fixed interval of time

Note that the drift rate has been set equal taidkefree rate because we are modeling

under the risk-neutral measure.

However, the above form of stock price dynamicsaswell suited for representing on a
lattice. This is because of the stochastic drifterar(t). The lattice will not be

recombining.

To overcome the above problem, the drift rate tsesgial to zero but absorbed in the

mean of the diffusion termss Xsvh. In other words, the probabilities of the 3 diéfet



branches of Xare so changed that the mean of the diffusion thanges from 0 to

r(t).h. The stock price dynamics are now given by

In[S(t+h)/S(t)]=osXs\h

where
the mean of Xis r(t). Vh / os

The probability of the three branches will havéd&changed at each node, depending on
what r(t) is. This will make the lattice recombigi/Amin and Bodurtha [1995])

The Joint Process

Now the dynamics of the term structure and thekspece are modeled on a bivariate
recombining lattice. In order to accomplish thig meed a probability measure over the
random shocks &) and X(t) such that the observed correlation between stioek
returns and changes in the spot rate is presenratithe stock price has the required
drift, which is the risk free rate. This with theJM drift condition on the drifts of the
forward rates ensures that the stock and bondgacemartingales under the risk-neutral

measure.

At each node of the tree, there are 6 branches.tdlble below shows the different
combination of values of &) and X(t), each of these is represented by a branchthend
probabilities of each branch(t) is the probability of default at each node. \Wileere is

a default, the stock price drops to zero.

Table |
Branch Value of X Value of X Probability
Bl 1 1 1/4.((1 + (1 =A(t))
B2 1 -1 1/4.((1 - (1 —A(t))
B3 -1 1 1/4.((1 + m(d =\(1))




B4 1 -1 1/4.((1 - (1 —r1))

B5 1 -0 A2

B6 -1 <0 A2

The unknowns in the above table a(@ , my and m. In the next section, we will see
how the default probability(t) is estimated. Given the default probabilitye tonditions
on the drift rate of the stock price, and the datrens between the stock price and the
risk-free rate, we should be able to solve farand m. After deriving the probabilities
of various branches, set the drift rates of thewvéod rates according to the HIM
condition given above. This would complete the tamsion of the lattice. Using this
lattice, we can price any security with interederaequity, and credit risks. Also, by
“turning off” risks which are not relevant, we catso price securities subject to just

interest rate and equity risks, or interest raté @edit risks.

Credit Risk

We need to estimate tlwenditional probability of default)(t), at each node of the tree
and this completes the model. Rather than addirexaa dimension to the lattice for the
default process\(t), a one- period default probability functiondsfined at each node of
the bivariate lattice. One of the contributionstioé original paper is to show how to

estimate this function.

If the default intensity ig (t), then the conditional probability of defaul(f), during the

time interval h is given by

MO =1—exp(<(t).h)

The task now is to estimate a default intensitycfiom from the stock prices and the
interest rates. The default intensity function ssuaned to have the following functional

form.



E (1) = exp[a+ ar(t) —aln S(t) + a(t - b) ]

The parameters of the above function can be estinading credit default swap spreads.
Given the liquidity of the credit default swap meirkthis would be a valuable source of

information.

To illustrate calibration to credit default swap§) spreads, let us see how we can
determine the CDS spreads assuming we have aliniatton on the lattice, including
conditional default probabilities. Inverting theoptem will help us estimate the default
intensity function (and the default probabiliti@sterms of the observed CDS spreads.

For ease of exposition, it is assumed that thevergorate, denoted by, is constant.
This assumption can easily be relaxed. In the ew€kefault, the security holders are
assumed to recover a fractipn(recovery rate) of the market value of the segytist
before the default. This is the fractional recovefymarket value (RMV) condition of
Duffie and Singleton[ 1999 ].

The idea is simple. The CDS spreads have to betdhat the expected present value of
payments for default insurance (expectations ttaken under the risk-neutral measure)
have to equal to the expected loss in value dwetault. Let’'s consider the CDS for a
defaultable zero coupon bond (ZCB). Using the RMddition, the price of the zero
coupon bond at time t is given by

ZCB(t) = exp (- r(t).h) {i Ok (). ZCB(t+h) }[1- M) L-o(t)], ZCB(T)=1

where
o) =p/[1-AM1)], k=1, 2, 3, 4 are the four probabilitiestbé non-default branches,

conditional on no default



Next, conditional on no default having occurreditiiwe find the present value at time t
of expected compensation for a possible defaulhen future. Let this be denoted by
CDS(t). Then,

4
CDS(t) =exp (- r(t).h ) 3 ak (). CDK (t+h) } [1 - A(t) I} + A(t) ZCB() (1 o),
k=1
CDS(T)=0
The term in the flower brackets gives the expetiiedes on the default swap, conditional

on no default till time t. The following term givgsesent value of expected loss due to

default at the end of the period.
Finally, we find at time t the present value of exfedfuture payments of $1 each period

till the time of default, conditional on no defabiving occurred till time t. Let this be
denoted by G(t). Then,

G(t) =[ exp (- r(t).h) {Z Ok (). G (t+h)+1}[1-M0] G(T)=0

In order to get the annualized basis points spf{eador the premium payments, the
present value of expected premium payments is equatthe present value of expected

loss due to default,
s.h.G(0) = CDS( 0)
= s=[CDS(0)/h.G(0)] x 10,000 basis points
Given how the spreads are calculated assuming ledgel of the default intensity

function, we can invert the problem and estimagwhknown parameters of the default

intensity function in terms of the observed CDSegpis.



With this, the lattice is complete. We have all ihéormation to price any security
subject to any combination of the three risks usihg usual method of backward

induction.

[ll. Estimating the Inputs to Implement the Das and Sundaram Model

We will to test the empirical performance of thisoael using non-convertible and
convertible price data. The convertible bonds wieephave a peculiar feature. These
bonds are convertible not into the issuer's stock imto the stock of some other
company’s stock. For these bonds, the Das and $amdaodel has to be extended. We

need to build a trivariate lattice. We do this @nde many such convertible bonds.

Data

The data required to implement the DS model aredadt rates, volatilities of forward
rates, stock price, volatility of stock price, aadation between the changes in term
structure and return on the stock, credit defaulipsspreads, and the prices of securities
subject to multiple risks, like convertible bondfie observable data are the stock price,
credit default swap spreads, and prices of seesrifAll other inputs for the model have

to be derived from observable variables. All thsearvable data is from Bloomberg.

In this section we will describe how to estimatetaia critical non-observable variables
to implement the DS model. In particular, we ddsehow to estimate forward rates, two
methods of estimating forward rate volatilitiesgddrow to estimate the parameters of the

default intensity function.
Forward Rates
Though forward rates are not directly observablepBiberg reports these rates based on

the swap rates. (Forward rates can also be estinfaden the prices of treasuries).

Though these rates can be got directly from Bloagpblet us see how one can estimate

10



the forward rates from swap rates. To estimatddheard rates, we will first need zero
coupon bond prices for various maturities, from ahhihe forward rates can be inferred.

We will estimate the zero coupon bond curve fromgdtvap rates.

Consider an interest rate swap with a notionalgipal of $1. An interest rate swap can
be treated as an exchange of fixed and floatirglvahds. The swap rate is the fixed rate
in the swap which would make the present valuexadf and floating segments of the
swap equal. Since the value of the floating ratedbis always equal to the face value
($1) on coupon payment days, finding the swap isaggjuivalent to finding the coupon

rate of a par coupon bond. If C is the coupon o&tear bond (and also the swap rate for

the corresponding maturity),is the time interval between coupon payments,R(0dt )

is the price of a zero coupon bond maturing at tirtben

1 =1CZP(0,{) + 1. P(0, §)
=>

C=[1-P(0,8)]/T=P(0,)

Given the swap rates for different maturities framswap curve, we will use the
expression for the coupon rate of par coupon beodsootstrap the zero coupon bond
prices. Starting with a swap with only one segmesetcan derive P(0,)t from the swap

rate G as follows:

1 =1C,P(0, t) + 1.P(0, t)
=>

P(0, §) = 1/ [1 +TCy]

Having got P(0,1), we can get P(0;)tas follows:

11



1 =1C,P(0, &) + TCP(0, ) + 1. P(0, b)
=>

P(0, ) =[1 -TC,P(0, £)]/ [1 +TC]

This way we can work recursively and get the primfezero coupon bond prices, P(0, t
Once we have the zero coupon bond prices it is sienple to calculate the forward rates.

The discretely compounded forward rate for theoggefty, tx+1) IS

f(t, tesr) = [P0, &) / P(O, ts1) — 1] /7

and the continuously compounded forward rate is

F(t, t+1) = Log[[P(0, t) / P(O, t+1) ] /T

Estimating Forward Rate Volatilities to Implement the DS Model

One of the critical inputs for implementing the Daad Sundaram model is the
volatilities of forward rates. For a forward rateaturing at time;t f( , t), we want its

volatility to remain unchanged from the currentding, till it matures at time;t That is,

Volatility of f(t, t;) = k (a constant) foralltoEt<t

For example, consider the forward rate maturingrdityears. We assume

Volatility of f(t, 5) = k (a constant) fopEt<5

In other words, we want the volatility of the fomdarates to depend on thieme of

maturity rather than thdime to maturity of the forward rate. In the DS model, as we

12



move forward in time, the volatility of any giveorivard rate does not change. In other
words, forward rates maturing on different datesuchave different volatilities, and
these volatilities remain fixed as we move forwamndtime, even though the time to
maturity of these forward rates would have redut®d.have this feature to ensure that
the lattice recombines. If the volatility of forwarates were made a function of time to
maturity rather than time of maturity, the volaids of the forward rates would change as
we move forward in time. Consider again the case twe year forward rate, f( , 5). At
the current time,of this forward rate would have a certain volatjlisay vol(g, 5). After
one year, the time to maturity of this forward rbge4 years and would have a different
volatility, vol(t;, 5). Though modeling volatilities to depend onditto maturity, rather
than time of maturity, seems more intuitive, wertanhave a recombining lattice with
such volatilities. In the DS model, we can intetghee timeof maturity volatilities as an

“average” of the timéo maturity volatilities.

f(,t) = (L@ - 1) ). fo o voI(t —t) dt

We can estimate the “time of maturity” forward ratgatilities in several ways. The two
broad approaches are using historical data to asgitmstorical volatilities, and using the
current market information to estimate the imphexdatilities. Historical volatilities can
be estimated from the historical data on Treaswgstant Maturity Rates provided by
the Federal Reserve Bank of St. Louis. Data onstmgaConstant Maturity Volatilities is

freely available on its websitattp://research.stlouisfed.org/fred2/categorieks/22

Implied volatilities for implementing the DS Modean be inferred from the prices of
interest rate caps. Interest rate caps are overeteter contracts and their prices can be
obtained from sources like Bloomberg. Prices ofnest rate caps are quoted in terms of
Black’s volatilities, which are derived from a lagmal model. We need to convert these
“lognormal volatilities” to “normal volatilities”.Details of this conversion are given

below.

13



Estimating Forward Rate Volatilities from Treasury Constant Maturity Rates

The Federal Reserve Bank St. Louis calculates ‘SingaConstant Maturity Rates” for 3-
month, 6-month, 1-year, 2-year, 3-year, 5-yeargdry 10-year, 20-year, and 30-year
maturities every business day. The purpose of dtimstant maturity series is to estimate
what the yield on, say, a (hypothetical) 2-yeaengbuld be on a given day even if there
IS no treasury issue with two years to maturitgling on that day. The estimate is made
by interpolating yields from “on-the-run” treasussues. The most recent treasury issue
for a particular time to maturity is the on-the 4isaue for that maturity. It rolls to "off-
the-run" after the next issue for that maturity iethbecomes on-the-run. On the day of
issue of, say, a 2-year note, it is easy to detexrthe treasury rate for a 2-year maturity
from the price of the 2-year note. However, a dagrl if we want the treasury rate for a
2-year maturity, we do not have any treasuries Wwhigve 2 years remaining to maturity
to determine the rate from. The 2-year note issueldy ago now has one day less to
maturity. Cubic splines are used to smooth betweeithe-run issues to determine
treasury constant maturity rates for the key maasriof 3 months, 6 months, 1, 2, 3, 5, 7,
10, 20, and 30 years. Since on-the-run issue® tchube to par, the treasury constant
maturity rates, which are determined from theseesscan be treated gar coupon
bond yields.

In the DS model, if we take the time interval betwéwo successive nodes of the lattice

to be a quarter of a year, we need volatilitiedavivard rates spaced out at quarterly

intervals — 3 months, 6 months, 9 months, 1 yeaiedr 3 months, and so on. Consider

the treasury constant maturity rates for maturtiiesay, 3 years on January 3, 2006.
Table 1l

Maturity 3 months 6 months 1 year 2 years 3 years

TCMR 4.16% 4.40% 4.38% 4.34% 4.30%

*TMCR: Treasury Constant Maturity Rate

Since we need volatilities at quarterly interval® first need to get an estimate of the
constant maturity rates for maturities not estirddiy the Fed. We can do so either using

sophisticated methods like cubic splines or simptear interpolation. For this

14



illustration let us use simple linear interpolatiodsing this method, we have the

following estimates.

Table Il
Maturity 3 months 6 months 9 months 1 year 1 yr 3months
TCMR 4.16% 4.40% 4.39% 4.38% 4.37%
Maturity 1yr 6months | 1yr 9months 2 years 2yrs 3month | 2yrs 6month
TCMR 4.36% 4.35% 4.34% 4.33% 4.32%
Maturity 2yrs 9month 3years
TCMR 4.31% 4.30%

*TMCR: Treasury Constant Maturity Rate

Next, we try to infer the zero-coupon bond priaesif the constant maturity rates. This is
a critical step and we bootstrap the zero coupawectorm constant maturity rates. We
again note that the treasury constant maturitysredé® be interpreted as par coupon bond
yields because these rates are estimated fromesnuthtreasury issues, which trade
close to par value. The price of the zero coupoturmg after 3 months, P(0, 0.25), can

be easily estimated from the 3-month constant ritgtate.

P(0, 0.25) = 1/(1 + 0.25 x 0.0416) = $0.989707

Similarly, the price of zero-coupon bond maturifigiaé months is

P(0, 0.50) = 1/(1 + 0.50 x 0.0440) = $0.978474

The price of zero-coupon bond maturing after 9 meim

P(0, 0.75) = 1/(1 + 0.75 x 0.0439) = $0.968125

The calculation of the above zero-coupon prices stesght forward. This is because

these bonds have a maturity of less than a yeathemdfore do not pay any interest. For

15



the calculation of the 1-year zero-coupon bondepree have to take coupon payments
into account. The 1-year bond is expected to p#grest after 6 months, and when it
matures after one year. Assuming the face valueeobond is $1, when interest is due,
an amount equal to half of the treasury constantintg rate (this is assumed to be the
coupon rate) is paid. For the 1-year bond, thisiamhs $0.0438/2 = $0.0219. The 1-year
bond, therefore, makes a payment of $0.0219 aftemenths, and $0.0219 plus $1

(principal repayment) after one year. The presaies of these payment has to be $1,

because par coupon bonds trade at par.

1= P(0, 0.50) x 0.02019 + P(0, 1) x (0.0219 + 1)
= 0.978474 x 0.02019 + P(0, 1) x 1.0219

Solving for P(0, 1), we get the price of zero-coupond maturing after one year to be
P(0, 1) = $0.9576

Using the above bootstrapping procedure, we caneddre zero-coupon bond prices for

other maturities.

After deriving zero-coupon bond prices, we needdtimate the forward rates implicit in
these zero-coupon bond prices. The annualizedretigdg compounded implicit 3-month

forward rate maturing in three months would be

f(0, 0.25) = [P(0, 0.25) / P(0, 0.50) — 1] x 4
= [0.989707 / 0.978474 -1] x 4
= 0.044928

The continuously compounded forward rate for th@valmaturity is given by
F(0, 0.25) = log[P(0, 0.25) / P(0, 0.50)] x 4

= l0g[0.989707 / 0.978474] X 4
= 0.045659

16



Forward rates for other maturities can be foundgisi similar procedure.

We derive the forward rates for various maturiggsry day in the sample period. Then
create a time series of daily changes in forwatesréor each maturity and calculate the
standard deviations of these time series. Multigyistandard deviations by260
(assuming 260 trading days in a year) would givethes annualized volatility of the

forward rates.

Finally, after estimating the volatilities of forwhrates for various maturities, we need to
make one final adjustment. Recall that the votasiin the DS model depend on the time
of maturity, rather than the time to maturity, bétforward rates. This is done to ensure
the lattice recombines. The volatilities used oe thttice can be interpreted as the
“average” volatilities for different maturities. Fexample, the volatility of the one year
forward rate used on the lattice would be the ayeeraf the volatilities of forward rates
with maturities up to one year. Since we are egtimgavolatilities at quarterly intervals,
the one year forward rate volatility to be usedlomlattice would be the average of three

month, six month, nine month, and one year votegsi

Estimating “Normal” Volatilities from Prices of Int erest Rate Caplets

An alternative to using historical volatilities is use implied volatilities. The implied

volatilities can be estimated from prices of ingtnate caplets.

A caplet is a call option on an interest rate. Assuhat the face value of the contract is
$1, the underlying interest rate is the LIBOR, ta@ rate (strike rate) is R , the tenor of

the caplet (length of time for which interest ishi® calculated) is, and maturity of the

caplet is T. If the LIBOR at time Tfor the period (T, Ti+1 ) is L(Ti, Tis1 ), then the

payoff on the caplet would be at timgsiJ and not at time T and it is

17



C =t.max[L(T;, Tis1) - R, 0]

where Ti1 - Ti=T1

A series of caplets comprises a cap. The marketipeato value caps and caplets is to
the use Black’s model. Black’s model is a slightdifioation of the Black-Scholes model
with the drift of the underlying variable set equalzero. It is implicit in the Black’s
formula that the forward rates (the underlying able for a cap or a caplet) are
lognormal. The market prices of caps and caple&sat quoted in dollars but in terms of
implied Black volatilities (just like the impliedolatilities are derived from stock option
prices). Since the Black’s formula assumes thatvdod rates have a lognormal
distribution, we will refer to the implied volatiles of the forward rates from the Black’s

formula as lognormal volatilities

Black’s formula for caplets is as follows.

Price of caplet maturing at time &

C(t) =7.P(t, Twp){L(t, T4, Tiza)N(d1) — RN(ch)}

where

P(t, Tiva) = time t price of zero-coupon bond maturing atetiTi,1
L(t, Ti, Tis1)= time t forward LIBOR for the period (TTi+1 )

R = cap rate

dh = Lo N( Ti-t) . [In(L(t, Ti, Tiea)/R) + 0.55° 6.N( Ti-t)]
d2 =d - o N( Ti-t)

Interestingly, a caplet is equivalent to a ceriimber of put options on a zero-coupon

bond The payoff from the caplet at time.fis

18



r.max[L(T;, Tis1 ) = R, 0]

At time T; , the discounted value of the above payoff is

1/(1 +7.R) max(L(T, Ti+1 ) — R, 0)

The time T payoff from the caplet above can also be expreased

(1 +7.R) max (L/(1 + .R) = /(1 +1. L(Ti, Tu1 ), 0)

The above expression can be interpreted as thdfgeym (1 + 1 .R) put options on zero
coupon bonds with a strike price of 1/(X 4R) and maturing at time. T

1/(1 +71. L(T;, Ti+1 ) can be interpreted as the price of a zero colgoo (face value of

$1) attime T.

In the Ho-Lee model there is a closed-form solufienpricing call and put options on

zero coupon bonds. The price of a put option oera zoupon bond is given by

Put(t, T, Tir1) = K.P(t, T) N(-d2) — P(t, T+1)N(-d1)

where

Put(t, T, Ti+1) = price at time t of a put which matures at tim®n a zero coupon

bond maturing at time, T

P(t, T) = price at time t of a zero coupon bond matuahgme T

K = strike price
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di = { IN[P(t, Tis)/ P(t, T/ 0p } + 0pl2
do=0ch - Gp
6p =6.(Tirs - T)V(Ti — 1)

Finally, we note that HIM model with constant viikgt results in the Ho-Lee model.
Since in the DS model the dynamics of the forwatds are modeled using the HIM
model, and the volatility of each forward rate isnstant until it matures (different
forward rates have different constant volatilities)is like fitting a different Ho-Lee
model for each forward rate. Thus, we can assumetlie forward rate maturing after,
say, 1 year is modeled by a Ho-Lee model with &iqdar volatility, and similarly the
forward rate maturing after 2 years is modeled radgi a Ho-Lee model but with a
different volatility. Given this, we summarize tlséeps to arrive at the volatilities for
different forward rates to be used in the DS moté¢ will call these volatilities the
“normal volatilities” because the forward rates ammally distributed in the Ho-Lee

model.

a) Say we want the volatility of the forward ratetoring after one year. Look at the
market price of at-the-money(ATM) cap maturing afteyear. This is given in terms of
the Black volatility, which has to be convertedhe dollar price by inputting the implied
Black volatility in the Black’s formula. We have aten ATM caps because the trading is
maximum in these caps, and therefore best reviealsarket expectations of the forward
rate compared to caps with other strikes.

b) The above price of the 1-year cap can be intéedras the price of (1 #.Ratm) put

options with a strike price of 1/ (1 #.Ratm) On zero coupon bonds. Now we use the

formula for pricing put options on a zero coupomdban the Ho-Lee model. We search

for that value of volatility §) which best explains the price of the above {1.Ratm) put

options on the zero coupon bond. The optimuifnom the above exercise is chosen as
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the volatility of the forward rate maturing aftemeoyear. We repeat the above procedure

for all other maturities. The volatilities we geedhe normal volatilities

We used the above procedure to convert lognormiatilibes to normal volatilities using

the cap prices reported in Bloomberg on Janua®986. The results are as follows.

Table IV
Time to Maturity 1 year 2 years 3 years 4 years
Lognormal (Black) Vol. 0.1189 0.1664 0.1887 0.1997
Normal Volatility 0.00566 0.00777 0.00889 0.00945
Time to Maturity 5 years 6 years 7 years 8 years
Lognormal (Black) Vol. 0.2037 0.2073 0.2079 0.2076
Normal Volatility 0.00962 0.00978 0.00987 0.00991

Estimating the Parameters of the Default IntensityFunction

One of the crucial steps in implementing the masleltimating the parameters of the
default intensity function. We will be assume ttiag default intensity function has the

following form,

E (1) =exp[a+ ar(t) —aln S(t) + a(t— b) ]

In the above function, default intensity dependsttoee variables — interest rate, stock
price, and time. The intensity decreases whenitikefnee interest rate increases; it also
decreases when the stock price increases. Thd efféione on the intensity depends on
what the current level of the intensity is. If héensity is very high currently but the firm
manages to survive, then the intensity would besetqul to decrease in the future. In this
case the intensity decreases with time. The coaweit happen if the current level of

intensity is low. Given the intensity of defautietprobability of default is given by

MO =1-exp(<(t).h)
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The task is to estimate the parametgrsaa, and g. We make use of the credit default
swap spreads observed in the market to estimase trerameters. Earlier, in the section
on credit risk, it was discussed how the crediadkfspreads could be determined from
the model once we know the parametersaa &, and a. Now the problem is reversed —

given the observed spreads we need to determireedatlnes of the parameters which
best explain the observed spreads. We have foanysers to estimate, and if we have
credit default swap spreads for four different miéies, we can get a good estimate. We
undertake a large minimization exercise for thiee Tobjective function is the sum of

squared deviations between the observed spreadthanspreads given by the model.

Basically, this is an unconstrained minimizatioonkgem.

The problem is rather complex and we need a sogdiistl algorithm to handle this. We
have found that MATLAB’s Optimization Toolbox isefsl for solving this problem. Of
the many functions available in this toolbox, wevddound that the “fminsearch”
function best handles this problem. The fminsedteittion uses the simplex search
method. This is a direct search method that doessenumerical or analytical gradients
as in other functions in the toolbox, like the ftioo “fminunc”. In our problem we have
four unknowns, @ &, &, and @ The stated algorithm creates a simplex in a 4-
dimensional space which is characterized by 5mdistvectors as its vertices. At each
iteration, a new point in or near the current sempls generated. The value of the
function at this new point is compared with thediion’s values at the old vertices of the
simplex and one of them is replaced by the newtp@ihich results in a new simplex.
This procedure is repeated until an acceptabletisolus found or the number of

iterations reaches a predetermined limit.

V. Empirical Results on Pricing Risky Non-Convertible Bonds

First, we test the model on a sample of risky nonvertible bonds. The objective is
twofold. We would like to test how well the modedrforms, and also investigate how
well the information regarding the default risk geyed by the credit default swap
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spreads is absorbed in risky bond prices. We Irfta an important aspect of the model
is using the CDS spreads to estimate the defatéhsity function. By applying the
model to securities subject to only default ancenest rate risks, such as risky non-
convertible bonds, it would be easy to attribue ibsults to these risks and get a clearer
picture of the linkages between the CDS markettherdoond market. In this regard, we
would also like to compare the linkages betweenGBsS and the bond markets in the
U.S. and Europe. After this analysis, we will extehe Das and Sundaram model ( build
a trivariate lattice) to price convertible bondsttwthe conversion feature mentioned

earlier.

To see how well the model prices bonds issuedparficular industry and investigate the
linkages mentioned above, we applied the model &amaple of dollar denominated
bonds issued by the electric utilities in the W% priced the bonds as on January 3,
2006 if the market prices were available on Bloorgbi®r this date, and if not, the

closest day when the market prices were availalite. results are given in the table

below.
Table V
Company Date Market Model Price | Abs. % dev.
Price

Texas Utilities Jan-3-2006 1025.3 1027.5 0.2141
American Electric Power | Jan-3-2006 999.94 1019.6 1.9282
Columbus Power Jan-3-2006 1027.2 1028.4 0.1166
Indiana Michigan Power | Jan-3-2006 1063 1035.5 2.6557
South Western Electric Jan-3-2006 1032.37 1040.2 0.7527
Ohio Power Company Jan-3-2006 986.8 985.18 0.1644
Public Service Oklahoma | jJan-3-2006 988.6 983.31 0.5379
Florida Power Corp. Jan-3-2006 1023.6 1026.4 0.2727
Ohio Edison Jan-3-2006 970.5 986.89 1.6607
Cleveland Elec. Illum. Jan-3-2006 1046.4 1060.4 1.3202
TXU Corporation Jan-3-2006 966 963.26 0.2844
First Energy Corp. Jan-3-2006 1062.14 1047.1 1.4363
Dominion Resources Jan-3-2006 982.24 989.16 0.6995
Baltimore Gas Jan-3-2006 1042.4 1055.5 1.2411
PSEG Power Jan-3-2006 1090.15 1076.9 1.2303
Duke Energy Jan-3-2006 976.39 981.65 0.5358
PSI Energy Jan-3-2006 1036.8 1048 1.0687
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Cinergy Global Resources | jan-3-2006 1040.6 1043 0.2301
Cincinnati Gas & Elec. Jan-3-2006 1027.83 999.95 2.7881
Florida Power & Light Jan-4-2006 1029.63 1035.3 0.5476
Exelon Corporation Jan-4-2006 970.22 962.59 0.7926
Pennsylvania Electricity Cq. Jan-4-2006 1034 1041.9 0.7582
Progress Energy Jan-4-2006 1076.81 1062.6 1.3372
Virginia Elec.& Power Jan-5-2006 976.99 951.76 2.6508
Peco Energy Jan-6-2006 1047.58 1028 1.9046
Constellation Energy Jan-6-2006 1094.98 1079.6 1.4246
DTE Energy Jan-6-2006 1044.06 1058.8 1.3921
Detroit Edison Jan-6-2006 1042.95 1039.9 0.2932
Oncor Electric Jan-9-2006 999.81 1007.1 0.7238
Appalachian Power Jan-25-2006 1035.8 1058.4 2.1352
Mean Abs. % Deviation 1.1033

We see that there is not too much difference beatwtke market prices and the model
prices. We could infer from this that the modelfpans well in this sample and that the
bond prices in this industry seem to absorb weldbfault risk information contained in
the CDS spreads.

Next, we do not confine the sample to any one itrgidmit draw the sample from various

industries. The results are as follows.

Table VI
Company Date Market Model Price | Abs. % dev.
Price
Baxter International Jan-3-2006 1005.59 1012.5 0.6871
Wyeth Jan-3-2006 1011.69 1006 0.5624
Conagra Inc. Jan-3-2006 1098.83 1101.3 0.2247
Raytheon Co. Jan-3-2006 996.02 973.86 2.2248
Bristol Myers Squibb Jan-3-2006 1034.18 1039.8 0.5434
Honeywell International Jan-3-2006 1097.95 1113.7 1.4344
CVS Corp. Jan-3-2006 965.49 968.67 0.3293
Matrriott International Jan-3-2006 1037.35 1039.6 0.2168
Southwest Airlines Jan-3-2006 1068.48 1053.2 1.4300
Lowes Companies Jan-3-2006 1135 1130.1 0.4317
Wal-Mart Stores Jan-3-2006 972.49 968.52 0.4082
Newell Rubbermaid Jan-3-2006 944.79 950.15 0.5673
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Pulte Homes Inc. Jan-3-2006 1090.3 1070 1.8618
Arrow Electronics Jan-3-2006 1148.8 1165.1 1.4188
Tyson Foods Jan-3-2006 1126.2 1124.4 0.1598
IPB Inc. Jan-3-2006 1091.7 1084.8 0.6320
Lennar Corp. Jan-3-2006 986.8 977.97 0.8948
Cendant Corp. Jan-3-2006 1035.1 1011.8 2.2509
Caterpillar Inc. Jan-3-2006 1076.1 1083.2 0.6597
Boeing Co. Jan-3-2006 1010.45 999.35 1.0985
McDonnell Douglas Corp. | Jan-3-2006 1240.97 1266.8 2.0814
Federated Dept. Stores Jan-3-2006 1055.12 1063.5 0.7942
Centex Corp. Jan-3-2006 971.96 956.97 1.5422
Kraft Foods Jan-3-2006 1041.46 1028.7 1.2252
Nabisco Inc. Jan-3-2006 1166.2 1151.3 1.2776
Phillip Morris Jan-3-2006 1059.4 1054.7 0.4436
Safeway Inc. Jan-3-2006 979.28 956.86 2.2894
May Dept. Stores Jan-6-2006 1137.9 1112.4 2.2409
Avnet Inc. Jan-6-2006 1090 1096.9 0.6330
America Home Products | Jan-19-2006 1078.2 1085.5 0.6770
Mean Abs. % Deviation 1.0414

Again, we see that the market prices and the mpdeés are quite

conclude that:

(i) the model is performing well empirically, and

close. We could

(i) for those U.S. companies for which CDS quotee available, the information

regarding default risk contained in these quotesnseto be well reflected in the bond

prices.

Next, we investigate the same issues for the Earopgarket. We again tested the model

on a sample on Euro-denominated risky, non-corblertbonds. The results are as

follows.
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Table VII

Company Date Market Model Price | Abs. % dev.
Price
Calyon Jan-3-2006 962 960.75 0.1299
Vinci Jan-3-2006 1079.25 1070.2 0.8385
Generali Finance Jan-3-2006 1098.18 1082.9 1.3913
BAA PLC Jan-3-2006 1039.9 1031.3 0.8270
BASF AG Jan-3-2006 998.02 989.68 0.8356
Elec De Portugal Jan-3-2006 1114.99 1102 1.1650
Mediobanca SPA Jan-3-2006 997.825 993.15 0.4685
Aegon Inv. Jan-3-2006 1040.47 1011.7 2.7650
Fortum Oyj Jan-3-2006 1050.12 1040.1 0.9541
Powergen Jan-3-2006 1053.09 1054 0.0864
Enel Investment Jan-3-2006 1029.2 1036.8 0.7384
ENBW Intl. Finance Jan-3-2006 1132.35 1134.8 0.2163
Banco Sabadell Jan-3-2006 1023.36 1017.4 0.5823
Union Fenosa Jan-3-2006 1065.51 1052.8 1.1928
Lyonnai Des Eaux Jan-3-2006 1089.42 1096.9 0.6866
Intl. Endesa BV Jan-3-2006 1106.38 1094.4 1.0828
Vattenfall Treasury Jan-3-2006 1054.25 1052.9 0.1280
RWE AG Jan-3-2006 1072.1 1074.3 0.2052
Iberdrola Jan-3-2006 1178.76 1175.3 0.2935
Elec De France Jan-3-2006 1173.63 1128.5 3.8453
Credit Agricole Jan-3-2006 1025.6 1030.4 0.4680
Metso Corp. Jan-3-2006 1038.3 1016.9 2.0610
Rolls-Royce Jan-3-2006 1048.24 1050.6 0.2251
Lafarge SA Jan-3-2006 1100.16 1056.2 3.9957
Thales SA Jan-3-2006 1040.6 1034.9 0.5477
Bouygues Jan-3-2006 1052.75 1049.4 0.3182
Novartis Secs. Investments Jan-3-2006 1015 1013.1 0.1871
Intensa Bank Jan-3-2006 973.3 996.99 2.4339
Mean Abs. % Deviation 1.0242

We see that the results for the European marketaakeclose those observed for the U.S.
market. From this, we could probably conclude tbhaedoprices in the U.S and European

markets reflect equally well the information regagd default risk as contained CDS

spreads. Also, the model seems to be performing wel
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V. Pricing Convertible Bonds

There are many convertible bonds trading in theketawith a particular interesting
feature. These bonds are convertible not into tihekof the issuer, but the stock of some
other company. For example, consider a convertbled issued by Morgan Stanley. It is
a 1 % percent coupon bond, maturing on September2@D1 and convertible into
13.1313 shares of Walmart.

The pricing of these convertible bonds is bothredééng and challenging. The Das and
Sundaram model has be extended to be price themks bBather than a bivariate lattice
with six branches emanating from each node, we laairevariate lattice with eighteen

branches emanating from each node. However, athede branches are not equally
important and quite a few can be ignored when mgita program to implement the

model. The Das and Sundarm model can be extendetiass.

We now have three state variables — the risk-fréerést rate, the stock price of the
issuer, and the price of the stock into which tbadis convertible. The interest rate and
the stock price of the issuer determine the prdibaliiat the issuer will default over the
next period on the lattice, which we will take te & quarter. The interest rate and the
price of the stock the bond is convertible intolwiktermine the probability that this
second stock will default. When this default dessetplace, the conversion value of the
bond will become zero and the price of the bond lehave like the price of a simple

risky, non-convertible bond.

The discrete time, risk- neutral dynamics of theviard rates is given by

f(t + h, T) = f(t, T) +a (¢, T).h +o (t, T) X vh

where
a (t, T) is the rate of drift of the forward rate
o (t, T) is the volatility

Xt is a random variable which takes values {-1, 1}

27



h is a fixed length of time

Again, we note that that drift of the forward ratesiot independent of the volatility in an

arbitrage-free market.

The discrete- time, risk- neutral dynamics of tbadbissuer’s stock price {8s given by
In [ Syt +h) / S(t) ] = r(t).h +os1Xs1vh

r(t) short term risk-free interest rate at time t

Xs11s a random variable which takes valuec{--1, +1}

h is the fixed interval of time

The drift rate is equal to the risk-free risk irethisk-neutral setup. Again, like in the
original Das and Sundaram model, we need to mdt#éyabove dynamics of the stock
price in order to model it on a recombining latti&&nce the drift is not constant, we have
to eliminate it and has to be captured in probgédiof various branches of the lattice.

We will model the dynamics of the bond issuer'sktprice (3) as

In[ Syt +h) /SO ] = os1Xsrvh

where the mean of s r(t)vh /os; .

Similarly, the dynamics of the price of the stonkoi which the bond is convertible, let's

call it stock $, is modeled as

In [ St + h) / $(t) ] = os2Xs2\h

where X% is a random variable which takes valued--1, +1} and the mean ofgXis
r(t) Vh /os; .
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Given the way the dynamics of the above three statebles are modeled, we would
have a recombining lattice. Each node represem@rtécular combination of values of
the three state variables, the spot interest catehé vector of forward rates) and the two
stock prices. There are eighteen branches emgrfatim each node. Each branch would
arise for a particular combination of values gf, Xs;, and X, The table below shows
this.

Table VIII

Bl | B2 | B3| B4| B5| B6| B7| B8 B9 Bl B1l Blp B13 Bl4

W

13816 | B17| B18

XxJ/trJj12,1}12}21,1, 3 - 12 -1 -1 -1 1 % 1 1 1 1

Xs1|1 |1 |1 ]-1] -1 -1 1] 1] 1] - -1 -1 w-|-w [=0 [=0 [=0 |-

Xs2|1 [ -1 |1 |-1]| |2 |-1] |2 |-1|~ |21 [-1|~ /|1 [-1|=

Bl is branch 1, B2 is branch 2, and so on. B1318 &e branches relating to the default
of the issuer. The lattice does not extend beybedd branches because the bond ceases
to exist once the issuer defaults. B3, B6, B9, Bdizd B12 are branches relating to
default of stock 2. Once this happens, the bonofsersion value is zero and the bond is
effectively a non-convertible bond. However, thétite does extend beyond these

branches since the bond continues to exist.

We need a trivariate lattice, with each node regméng the values of three state
variables — short term risk-free interest rate @nides of two stocks. As mentioned
earlier, there are eighteen branches emanating &ach node of the lattice. Since the
lattice is being constructed in a risk-neutral feamork, the probabilities of the branches
from each node should be so assigned that therdtédtof the two stocks is equal to the
risk-free interest rate, and the observed coriatbetween interest rate ang iBterest

rate and § and $ and $ are preserved. We can take the probabilities ebtianches in

the original Das and Sundaram model (Table |, pAgas a starting point and modify
them to suit the needs of our problem. With eacthe branches B1, B2, ..., and B6
(these are the branches given in Table | and nbteT¥lIl) we will associate three

possible movements of stock SThe stock price either goes up, goes down, faults.
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This would correspond tog$= 1, -1, or « respectively. For example, let’'s consider the
branch B1. B1 is for an upward movement of bothitierest rate and the stock price, S

, .e., X% = 1 and X%; = 1. Let the unconditional probability of this bch be denoted by
P1 , and the conditional probability of this brancivemn no default by p Given the
probabilities of branches B1 to B6, our task iglitdde each of these branches into three

parts (associated with three values @f)Xn a risk neutral setting.

We will make the assumption that the probabilitydefault of $ is equally likely given
any branch. This may not be a very realistic assiampvhen the defaults of;Snd $

are correlated. But given the difficulty in deteninig this correlation, and also the fact

that this correlation may not be too high, this iplausible assumption to make. AMfis

the probability of default of Sthen

probability( B N Xspx=-0)=A,/6 i=12,..,6

The probabilities of each of the branches of TaM®uld have to be divided into three
parts, each part denoting whether the associataegment of stock price Swould be

up, down, or drop to zero (that i$2& +1, -1, or <0). Since the probability of g =-
has already been determined &s/ 6, this means we will need a variable more fwhe

branch (six variables in all) to get the requirbdee-way division of probabilities in
Tabel I. But, we have only three extra conditiooisihtroducing the new stock pricez. S

That is, we have to ensure that

(a) the growth rate of,Ss equal to the risk-free rate
(b) the correlation between 8nd the interest rate is preserved

(c) the correlation between 8nd S is preserved

Given six new variables but only three additioredtrictions, we have three degrees of
freedom. Since we really are not very concerned \lie branches representing the

default of the issuer, a good solution to the pFoblwould be to ensure that the above
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conditions are metonditional on no default of the issuer. Now we have to consider only
the four branches on which the firm does not défdiilis would reduce the number of
variables from six to four, which still leaves usttwone degree of freedom. We can
impose any “innocuous” additional condition on treiables which does not have an

undue influence on the results and helps arrizesatiution to the problem.

If p1 is the conditional probability (given that thenfiissuing the bond does not default)
of branch B1, let

p11 = probability (B1N Xs2= 1/ no default of the firm issuing the bond)

p12 = probability (B1N Xs, = -1/ no default of the firm issuing the bond)

p13 = probability (B1N Xs, = -0 / no default of the firm issuing the bond)

We have similar definitions of probabilities foretlbther three non-default branches. It

should be noted here that

probability(Xs>= <0 N B ) =A\J4 i=1,2 3,4

This is because we are considering conditional givdities and not unconditional
probabilities. We are not taking into account tleéadlt branches of the firm issuing the
bond.

We now derive the probabilities in the risk-neusalup. We define

c = expbsa'h)
d = exp(ssz2vh)

The first condition is that the growth rate of g8teck has to equal to the risk-free rate.
Ignoring the default branches of, 8ve have

31



E[ S(t+h)/S(t)] =E[c]
={p1 ¢+ (A —pu1-AS4). d} + {pP21. C+ (B — 1 - Af4).d} + {p3r. C + (B — 1 -
Ao/4).d} + {pa1. C + (@ — 1 - Ao/4).d}

= exp(r.h)

(for definitions of @, P2, Ps, P4, P11, P21, P31, @and p1 See above)
=>

(c-dpit(c-d)yprt(c—d)pi+(c—d)p:

=1/(c —d) [exp(r.h) —d.(p+ P2 + p3 + - A2 )]

= 1/(c — d) [ exp(r.h) - d.(1 A)] .. ()

The second condition is that the correlation betw®eand interest ratey s, , has to be

preserved.

Cov[Xi(t), XsA)] ={puXxI1x1+(R—p1-M/A) x1x-1} +{pix1x1+(pP—p1-A

A) X 1 X -1} +{paaX-1Xx1+(RB—1-A2/4) X -1 x-1}+{paX-1 X1+ (R—pui-A

/4) x -1 x -1}

= Pr,s2

=>

P11+ Po1- Pa1— 1= 0.5 Prsot Pr+ P2+ Pz + ) .. (i)

The third condition is that the correlation betwé&m@mand S, psi s2, has to be preserved.

Cov[Xsit), XsA)] ={p1iXIx1+(R—p1-AM/A) x1x-1} +{paix-1x1+(pR—p1-

MIA) X -1X-1}+{paX1IX1+(R—m1-A/A) X I X-1}+{piX-IXx1+(R—pur-A2

/4) x -1 x -1}

= psi1,s2
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=>

P11- P21+ Par— 1= 0.5 Ps1,s2+ Pr- P2 + P3 - Pa) ... (ii)

We have three equations and four unknowns. We aeextiditional condition so that we
can arrive at a solution. We would like to equate probabilities which are small, and
because they are small we hope that this equatiuddanot have a significant influence
on the results. For now, consider branches B3 addrdpresenting the downward
movement of stock:SThe probabilities of upward movement of stoglaSsociated with

these branches are equated. That is, we equateljiites i1 and pi. This is just one of

the many possible assumptions that can be maden@s, the system of equations, in

matrix notation, can be expressed as

M.K=N

where

M=[121;10-1;1 -2 1] the semiawindicates a new row of the matrix

K =[ p11; P21; Ps1]

N =[1/(c —d) {(exp(r.h) -d.(1 A)}; 0.5 (prs2t Pr+ P2-P3-Pa); 0.5 Prs2t pr+ 2+

B+ ps); 0.5 Ps1,s0t PL- P2+ P3 - Pa)]

So,

K = inv(M). N

This completes determining the probabilities intis&-neutral setup.
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Empirical Results on Pricing Convertible Bonds

We applied the above model to price convertibledsomhich could be converted into the

stock of either the issuer or some other compang.hake tried to price the bonds as on
January 03, 2006. If price of a particular bondas available for this day on Bloomberg,

we have priced bond on the day closest to the abaydor which the price is available.

Table IX
Company Stock Date Market Model Price | % Absolute
convertible Price Deviation
to
AIG AlIG 1/03/06 942.5 959.4 1.9
Computer | Computer | 1/03/06 1417.5 1417.4 0
Associates | Associates
Amgen Amgen 2/16/06 1026.85 978.7 4.7
Amgen Amgen 2/16/06 1028.09 982.59 4.6
Bear Stearns Fifth Third | 1/18/06 843.3 883.16 4.7
Bancorp
Bank of NASDAQ- | 3/10/06 1032 1046.6 1.4
America 100
Goldman WYE 11/28/05 972.7 972.9 0
Sachs
Goldman BJ Services | 1/18/06 1040.88 1017.3 2.3
Sachs
Goldman Whirlpool 2/09/06 960.8 989.67 3.0
Sachs
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Goldman Cendant 1/25/06 924.5 929.85 0.6

Sachs Corp.

Salomon Pfizer 1/25/06 945 950.77 0.6

Holdings

GATX GATX 1/06/06 1176.25 1136.70 3.4

Corp. Corp.

Morgan 3M 1/03/06 871.25 916.96 5.2

Stanley

Morgan Walmart 1/05/06 858.75 850.44 1.0

Stanley

Morgan CISCO 1/19/06 961.33 984.08 2.4

Stanley

Morgan General 1/31/06 896.25 904.47 1.0

Stanley Electric

Morgan CA 4/28/06 937.5 967.0 3.1

Stanley

Wachovia | Corning 2/21/06 1005.35 953.64 51

Wachovia | Johnson & | 2/21/06 1006.7 976.65 3.0
Johnson

Merrill Coca Cola 1/04/06 885.0 902.16 1.9

Lynch

Merrill McDonald’s | 1/11/06 970.0 990.57 2.1

Lynch

Merrill Berkshire 1/05/06 952.1 928.6 2.5

Lynch Hathaway

Lehman Deere 5/03/06 1221.5 1229.7 0.7

Bros.

Lehman Amgen 4/28/06 877.5 926.07 5.5

Bros.
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Lehman Bristol 4/28/06 880.0 925.37 5.2

Bros. Meyers

Lehman Micorsoft 5/02/06 1001.5 982.0 1.9

Bros.

Lehman Cendant 12/02/05 875.0 884.74 11

Bros. Corp.

Providian Providian 1/03/06 1405 1369.48 2.5

Financial Financial

Medtronic | Medtronic 4/13/06 988.53 957.66 3.12

Medtronic Medtronic 4/13/06 987.78 953.33 3.49
Mean 2.60

Absolute %

Deviation

VI. Conclusion

The empirical results of the model seem good. Tag &hd Sundaram model can be used

to price not just bonds but many other securitigh ®quity, interest rate and credit risks.

We wish to enlarge our sample and compare thetsestthis model with those of a few

other models for pricing risky non-convertible asahvertible bonds.
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