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Abstract 

In this paper we test the empirical performance of the Das and Sundaram model [2006]. 

This model is for the pricing of securities subject to equity, interest rate and credit risks. 

The model is embedded on a bivariate recombining lattice in a risk-neutral setting for the 

joint evolution of equity prices and forward interest rate curve. Assuming that the stock 

price drops to zero in the event of a default, the evolution of the credit risk process is 

captured on this bivariate lattice by the possibility of the stock price dropping to zero. 

The probability of this happening at different nodes of the lattice is estimated from the 

observed credit default swap spreads. We test this model on a sample of risky non-

convertible bonds in the American and European markets. We also extend this model to 

price convertible bonds which are convertible not into the issuer’s stock but the stock of 

some other company.    
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Pricing Securities with Multiple Risks: An Empirical Study 

 

I. Introduction 

 

In this paper we test the empirical performance of a promising model for pricing 

securities subject to equity, interest rate and credit risks. This is the Das and Sundaram 

[2006] model. An example of a security faced with these risks is a defaultable convertible 

bond. We have chosen this model for an empirical study because of its simplicity and 

intuitive appeal. Also, it makes good use of the observed spreads in the rapidly growing 

credit default swap market to estimate default probabilities.  

 

The model we propose to test, Das and Sundaram [2006], is embedded on a bivariate 

recombining lattice in a risk-neutral setting. One of the variables on this lattice is the risk-

free interest rate. The dynamics of this variable is modeled using the Heath-Jarrow-

Morton [1990] framework. The second variable on this lattice is the stock price. A 

generalized form of the Cox – Ross – Rubinstein [1979] model which allows for the 

firm’s default is used to model the stock price. These two variables are combined 

together on a bivariate lattice in a risk-neutral setting. In other words, the drift term of the 

forward rates satisfies the well known HJM [1990] condition, and the drift term of the 

stock price is equal to the risk-free rate. The default probabilities are endogenous to the 

model and are derived from both equity and the debt markets, rather than from just the 

debt market alone. This results in a consistent framework as the default probabilities are 

consistent with the prices in the debt and the equity markets (which probably would not 

be the case if default is treated as an exogenous process and overlaid on the bivariate 

lattice) and all the available information, i.e. the prices from both the debt and equity 

markets, is utilized in the estimation of default probabilities. 

 

In this paper we test the empirical performance of the above model. We price non-

convertible bonds in the American and European markets and compare the model’s prices 

with observed market prices. Next we extend the model and price convertible bonds 

which are convertible not into the issuer’s stock but some other company’s stock.  
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II. Literature Review 

 

 The literature on credit risk modeling can be divided into two groups – the structural 

approach and the reduced-form approach. Structural models (e.g., Merton [1974], Black-

Cox[1976]) focus on the value of the firm. Equity and debt are treated as contingent 

claims on this value. The firm defaults when its value hits the “default boundary”.  The 

probabilities of default are based on a notion called “distance-to-default”.  Implementing 

this class of models poses some problems because the firm value is not directly 

observable and its estimation involves making some restrictive assumptions.  The equity 

market is usually used to estimate the parameters of the model.  

 

The reduced-form models (e.g., Jarrow and Turnbull [1995], Madan and Unal [1995], 

[2000], Duffie and Singleton [1999]) treat the time of bankruptcy as an exogenous 

process and does not explicitly depend on the value of the firm. An exogenous variable is 

assumed to drive default and the conditional probability of default is captured by what is 

known as the hazard or the intensity rate. Therefore, the parameters associated with the 

value of the firm need not be estimated to implement this class of models. The credit risk 

premium is a function of the probability of default and the recovery rate in the event of 

default. One set of reduced form models uses the credit ratings of firms to model credit 

risk. Default is modeled by a change in ratings driven by a Markov transition matrix. In 

the reduced – form models, the parameters are estimated almost exclusively from the debt 

market.  

 

The Das and Sundaram  [2006] model draws upon the ideas from both the above 

approaches to modeling credit risk. As in the reduced-form approach, the probability of 

default is represented by a hazard rate process. And, as in the structural approach, the 

equity value is assumed to fall to zero in the event of a default. However, there is an 

important difference. For the implementation of a typical reduced form model, the bond 

market is solely relied on for the estimation of the hazard rate. Whereas in the present 

model, both the debt and the equity markets are used for its (the hazard rate) estimation. 

This is expected to result in an improved estimation of the hazard rate as not only more 
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information is used but also the fact that equity markets are a lot more liquid than the 

debt markets. Jarrow [2001] also recommends estimating the default rate form both debt 

and equity markets.  

 

The present model is an extension of various models.  Some models such as Schonbucher 

[1998], [2002], Das and Sundaram [2000] model price of securities subject to only 

interest rate and default risk and not equity risk. Risky non-convertible bonds are 

examples of such securities. Others such as Amin and Bodurtha [1995] consider only 

equity and interest rate risks but no default risk. The present model considers all three 

risks.    

 

III. The Das and Sundaram Model 

 

We first describe the Das and Sundaram model. The model incorporates interest rate, 

equity, and credit risks on a recombining bivariate lattice. There is a variable each for 

interest rate and stock price, but not for credit risk. The credit risk is modeled by the 

stock price dropping to zero in the event of a default. Below, we describe the Das and 

Sundaram model. 

 

The Term - Structure Model 

 

The interest rate dynamics, in terms of forward rates, are modeled using the discrete-time 

version of the HJM model (HJM [1990]).  The HJM model gives the dynamics of the 

forward rates. Below is the discrete time version of the evolution of the forward rates. 

 

f(t + h, T) = f(t, T) + α (t, T).h + σ (t, T) Xf √h 

 

where 

α (t, T) is the rate of drift of the forward rate 

σ (t, T) is the volatility 

Xf is a random variable which takes values {-1, 1} 
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h is a fixed length of time 

 

Under conditions of no-arbitrage the drift rate cannot be independent of the volatility.  As 

shown in Das and Sundaram [2001], Acharya, Das, Sundaram [2002], the drift terms can 

be calculated recursively in terms of the volatilities, 
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Using the above, the risk-neutral drifts can be calculated recursively. 

 

The Equity Model 

 

The discrete time stock price dynamics, under the risk-neutral measure, are assumed to be 

 

ln [ S(t + h) / S(t) ] = r(t).h + σS Xs√h 

 

where 

r(t) short term risk-free interest rate at time t 

Xs is a random variable which takes value {- ∞, -1, +1} 

h is the fixed interval of time 

 

Note that the drift rate has been set equal to the risk-free rate because we are modeling 

under the risk-neutral measure. 

 

However, the above form of stock price dynamics is not well suited for representing on a 

lattice. This is because of the stochastic drift rate, r(t). The lattice will not be 

recombining.  

 

To overcome the above problem, the drift rate is set equal to zero but absorbed in the 

mean of the diffusion term  σS Xs√h. In other words, the probabilities of the 3 different 
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branches of XS are so changed that the mean of the diffusion term changes from 0 to 

r(t).h. The stock price dynamics are now given by 

 

ln [ S(t + h) / S(t) ] =  σS Xs√h 

 

where  

the mean of Xs is r(t). √h / σS  

 

The probability of the three branches will have to be changed at each node, depending on 

what r(t) is. This will make the lattice recombining. (Amin and Bodurtha [1995]) 

 

The Joint Process 

 

Now the dynamics of the term structure and the stock price are modeled on a bivariate 

recombining lattice. In order to accomplish this, we need a probability measure over the 

random shocks Xf(t) and XS(t) such that the observed correlation between the stock 

returns and changes in the spot rate is preserved, and the stock price has the required 

drift, which is the risk free rate. This with the HJM drift condition on the drifts of the 

forward rates ensures that the stock and bond prices are martingales under the risk-neutral 

measure. 

 

At each node of the tree, there are 6 branches. The table below shows the different 

combination of values of Xf(t) and XS(t), each of these is represented by a branch, and the 

probabilities of each branch. λ(t) is the probability of default at each node. When there is 

a default, the stock price drops to zero.  

 

Table I 

Branch Value of Xf Value of XS Probability 

B1 1 1 1/4.((1 + m1)(1 – λ(t) ) 

B2 1 -1 1/4.((1 - m1)(1 – λ(t) ) 

B3 -1 1 1/4.((1 + m2)(1 – λ(t) ) 
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B4 -1 -1 1/4.((1 – m2)(1 – λ(t) ) 

B5 1 -∞ λ / 2 

B6 -1 -∞ λ / 2 

 

The unknowns in the above table are λ(t) , m1 and m2. In the next section, we will see 

how the default probability λ(t) is estimated. Given the default probability, the conditions 

on the drift rate of the stock price, and the correlations between the stock price and the 

risk-free rate, we should be able to solve for m1 and m2. After deriving the probabilities 

of various branches, set the drift rates of the forward rates according to the HJM 

condition given above. This would complete the construction of the lattice. Using this 

lattice, we can price any security with interest rate, equity, and credit risks. Also, by 

“turning off” risks which are not relevant, we can also price securities subject to just 

interest rate and equity risks, or interest rate and credit risks.  

 

Credit Risk 

 

We need to estimate the conditional probability of default, λ(t), at each node of the tree 

and this completes the model. Rather than adding an extra dimension to the lattice for the 

default process, λ(t),  a one- period default probability function is defined at each node of 

the bivariate lattice.  One of the contributions of the original paper is to show how to 

estimate this function.   

 

If the default intensity is ξ (t), then the conditional probability of default, λ(t), during the 

time interval h is given by  

 

λ(t) = 1 – exp( - ξ (t).h ) 

 

The task now is to estimate a default intensity function from the stock prices and the 

interest rates. The default intensity function is assumed to have the following functional 

form.  
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ξ (t) = exp[ a0 + a1r(t) – a2ln S(t) + a3(t – t0) ] 

 

The parameters of the above function can be estimated using credit default swap spreads. 

Given the liquidity of the credit default swap market, this would be a valuable source of 

information.  

 

To illustrate calibration to credit default swap (CDS) spreads, let us see how we can 

determine the CDS spreads assuming we have all information on the lattice, including 

conditional default probabilities. Inverting the problem will help us estimate the default 

intensity function (and the default probabilities) in terms of the observed CDS spreads. 

 

For ease of exposition, it is assumed that the recovery rate, denoted by φ, is constant. 

This assumption can easily be relaxed. In the event of default, the security holders are 

assumed to recover a fraction φ (recovery rate) of the market value of the security just 

before the default. This is the fractional recovery of market value (RMV) condition of 

Duffie and Singleton[ 1999 ].   

 

The idea is simple. The CDS spreads have to be so set that the expected present value of 

payments for default insurance (expectations to be taken under the risk-neutral measure) 

have to equal to the expected loss in value due to default. Let’s consider the CDS for a 

defaultable zero coupon bond (ZCB). Using the RMV condition, the price of the zero 

coupon bond at time t is given by    

 

ZCB(t) = exp (- r(t).h ) { ∑
=

4

1k

qk (t). ZCBk (t + h) } [1 -  λ(t) (1 – φ (t ) ],   ZCB(T) = 1 

where 

qk(t) = pk / [1 - λ(t)],  k = 1, 2, 3, 4 are the four probabilities of the non-default branches, 

conditional on no default 
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Next, conditional on no default having occurred till t, we find the present value at time t 

of expected compensation for a possible default in the future. Let this be denoted by 

CDS(t). Then, 

 

CDS(t) = exp (- r(t).h ) { ∑
=

4

1k

qk (t). CDSk (t + h) } [1 -  λ(t) ]} + λ(t) ZCB(t) (1 – φ),    

                                                                                                                      CDS( T ) = 0   

 

The term in the flower brackets gives the expected losses on the default swap, conditional 

on no default till time t. The following term gives present value of expected loss due to  

default at the end of the period.  

 

Finally, we find at time t the present value of expected future payments of $1 each period 

till the time of default, conditional on no default having occurred till time t. Let this  be 

denoted by G( t ). Then, 

 

G(t) =[ exp (- r(t).h ) { ∑
=

4

1k

qk (t). Gk (t + h) + 1 }] [1 -  λ(t) ],    G( T ) = 0 

 

In order to get the annualized basis points spread (s) for the premium payments, the 

present value of expected premium payments is equated to the present value of expected 

loss due to default, 

 

s.h.G(0) = CDS( 0) 

 

� s = [CDS( 0 ) / h.G(0)] x 10,000  basis points 

 

Given how the spreads are calculated assuming knowledge of the default intensity 

function, we can invert the problem and estimate the unknown parameters of the default 

intensity function in terms of the observed CDS spreads. 
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With this, the lattice is complete. We have all the information to price any security 

subject to any combination of the three risks using the usual method of backward 

induction.   

 

III. Estimating the Inputs to Implement the Das and Sundaram  Model 

 

We will to test the empirical performance of this model using non-convertible and 

convertible price data. The convertible bonds we price have a peculiar feature. These 

bonds are convertible not into the issuer’s stock but into the stock of some other 

company’s stock. For these bonds, the Das and Sundaram model has to be extended. We 

need to build a trivariate lattice. We do this and price many such convertible bonds. 

 

Data 

 

The data required to implement the DS model are forward rates, volatilities of forward 

rates, stock price, volatility of stock price, correlation between the changes in term 

structure and return on the stock, credit default swap spreads, and the prices of securities 

subject to multiple risks, like convertible bonds. The observable data are the stock price, 

credit default swap spreads, and prices of securities. All other inputs for the model have 

to be derived from observable variables.  All the observable data is from Bloomberg.  

 

In this section we will describe how to estimate certain critical non-observable variables 

to implement the DS model. In particular, we describe how to estimate forward rates, two 

methods of estimating forward rate volatilities, and how to estimate the parameters of the 

default intensity function. 

 

Forward Rates 

 

Though forward rates are not directly observable, Bloomberg reports these rates based on 

the swap rates. (Forward rates can also be estimated from the prices of treasuries). 

Though these rates can be got directly from Bloomberg, let us see how one can estimate 
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the forward rates from swap rates. To estimate the forward rates, we will first need zero 

coupon bond prices for various maturities, from which the forward rates can be inferred. 

We will estimate the zero coupon bond curve from the swap rates.   

 

Consider an interest rate swap with a notional principal of $1. An interest rate swap can 

be treated as an exchange of fixed and floating rate bonds. The swap rate is the fixed rate 

in the swap which would make the present value of fixed and floating segments of the 

swap equal. Since the value of the floating rate bond is always equal to the face value 

($1) on coupon payment days, finding the swap rate is equivalent to finding the coupon 

rate of a par coupon bond. If C is the coupon rate of par bond (and also the swap rate for 

the corresponding maturity), τ is the time interval between coupon payments, and P(0, ti ) 

is the price of a zero coupon bond maturing at time ti, then  

 

1 = τCΣP(0,ti) + 1. P(0, tn) 

=>  

C = [ 1 - P(0, tn) ] / τΣP(0,ti) 

 

Given the swap rates for different maturities from a swap curve, we will use the 

expression for the coupon rate of par coupon bonds to bootstrap the zero coupon bond 

prices. Starting with a swap with only one segment, we can derive P(0, t1)  from the swap 

rate C1 as follows: 

 

1 = τC1P(0, t1) + 1.P(0, t1)   

=> 

P(0, t1) = 1 / [1 + τC1] 

 

Having got P(0, t1), we can get P(0, t2) as follows: 
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1 = τC2P(0, t1) + τC2P(0, t2) + 1. P(0, t2) 

=> 

P(0, t2) = [1 - τC2P(0, t1)] /  [1 + τC2] 

 

This way we can work recursively and get the prices of zero coupon bond prices, P(0, ti). 

Once we have the zero coupon bond prices it is very simple to calculate the forward rates. 

The discretely compounded  forward rate for the period (tk, tk+1) is  

 

f(tk, tk+1)  = [P(0, tk) / P(0, tk+1) – 1] / τ 

 

and the continuously compounded forward rate is 

 

F(tk, tk+1)  = Log[[P(0, tk) / P(0, tk+1) ] / τ  

 

Estimating Forward Rate Volatilities to Implement the DS Model 

 

One of the critical inputs for implementing the Das and Sundaram model is the 

volatilities of forward rates. For a forward rate maturing at time ti, f( , ti), we want its 

volatility to remain unchanged from the current time, t0, till it matures at time ti . That is, 

 

Volatility of f(t, t i) = k (a constant)   for all t,  t0 ≤ t ≤ ti 

 

For example, consider the forward rate maturing after 5 years. We assume 

 

Volatility of f(t, 5) = k (a constant)   for t0 ≤ t ≤ 5 

 

In other words, we want the volatility of the forward rates to depend on the time of 

maturity rather than the time to maturity of the forward rate. In the DS model, as we 
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move forward in time, the volatility of any given forward rate does not change. In other 

words, forward rates maturing on different dates would have different volatilities, and 

these volatilities remain fixed as we move forward in time, even though the time to 

maturity of these forward rates would have reduced. We have this feature to ensure that 

the lattice recombines. If the volatility of forward rates were made a function of time to 

maturity rather than time of maturity, the volatilities of the forward rates would change as 

we move forward in time. Consider again the case of a five year forward rate, f( , 5). At 

the current time, t0, this forward rate would have a certain volatility, say vol(t0, 5). After 

one year, the time to maturity of this forward rate be 4 years and would have a different 

volatility, vol(t1, 5). Though modeling volatilities to depend on time to maturity, rather 

than time of maturity, seems more intuitive, we cannot have a recombining lattice with 

such volatilities. In the DS model, we can interpret the time of maturity volatilities as an 

“average” of the time to maturity volatilities.  

 

f( ,ti) = ( 1/(ti – t0) ). ∫t0 to ti vol(ti – t) dt      

 

We can estimate the “time of maturity” forward rate volatilities in several ways. The two 

broad approaches are using historical data to estimate historical volatilities, and using the 

current market information to estimate the implied volatilities. Historical volatilities can 

be estimated from the historical data on Treasury Constant Maturity Rates provided by 

the Federal Reserve Bank of St. Louis. Data on Treasury Constant Maturity Volatilities is 

freely available on its website: http://research.stlouisfed.org/fred2/categories/22).  

 

Implied volatilities for implementing the DS Model can be inferred from the prices of 

interest rate caps. Interest rate caps are over-the-counter contracts and their prices can be 

obtained from sources like Bloomberg. Prices of interest rate caps are quoted in terms of 

Black’s volatilities, which are derived from a lognormal model. We need to convert these 

“lognormal volatilities” to “normal volatilities”. Details of this conversion are given 

below.  
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Estimating Forward Rate Volatilities from Treasury Constant Maturity Rates 

 

The Federal Reserve Bank St. Louis calculates “Treasury Constant Maturity Rates” for 3-

month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, 20-year, and 30-year 

maturities every business day. The purpose of the constant maturity series is to estimate 

what the yield on, say, a (hypothetical) 2-year note would be on a given day even if there 

is no treasury issue with two years to maturity trading on that day. The estimate is made 

by interpolating yields from “on-the-run” treasury issues. The most recent treasury issue 

for a particular time to maturity is the on-the run-issue for that maturity. It rolls to "off-

the-run" after the next issue for that maturity, which becomes on-the-run. On the day of 

issue of, say, a 2-year note, it is easy to determine the treasury rate for a 2-year maturity  

from the price of the 2-year note. However, a day later, if we want the treasury rate for a 

2-year maturity, we do not have any treasuries which have 2 years remaining to maturity 

to determine the rate from. The 2-year note issued a day ago now has one day less to 

maturity. Cubic splines are used to smooth between on-the-run issues to determine 

treasury constant maturity rates for the key maturities of 3 months, 6 months, 1, 2, 3, 5, 7, 

10, 20,  and 30 years. Since on-the-run issues trade close to par, the treasury constant 

maturity rates, which are determined from these issues, can be treated as par coupon 

bond yields. 

 

In the DS model, if we take the time interval between two successive nodes of the lattice 

to be a quarter of a year, we need volatilities of forward rates spaced out at quarterly 

intervals – 3 months, 6 months, 9 months, 1 year, 1 year 3 months, and so on. Consider 

the treasury constant maturity rates for maturities till, say, 3 years on January 3, 2006. 

Table II 

Maturity 3 months 6 months 1 year 2 years 3 years 

TCMR 4.16% 4.40% 4.38% 4.34% 4.30% 

*TMCR: Treasury Constant Maturity Rate 

 

Since we need volatilities at quarterly intervals, we first need to get an estimate of the 

constant maturity rates for maturities not estimated by the Fed. We can do so either using 

sophisticated methods like cubic splines or simple linear interpolation. For this 
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illustration let us use simple linear interpolation. Using this method, we have the 

following estimates. 

 

Table III 

Maturity 3 months 6 months 9 months 1 year 1 yr 3months 

TCMR 4.16% 4.40% 4.39% 4.38% 4.37% 

Maturity 1yr 6months 1yr 9months 2 years 2yrs 3month 2yrs 6month 

TCMR 4.36% 4.35% 4.34% 4.33% 4.32% 

Maturity 2yrs 9month 3 years    

TCMR 4.31% 4.30%    

*TMCR: Treasury Constant Maturity Rate 

 

Next, we try to infer the zero-coupon bond prices from the constant maturity rates. This is 

a critical step and we bootstrap the zero coupon curve form constant maturity rates. We 

again note that the treasury constant maturity rates can be interpreted as par coupon bond 

yields because these rates are estimated from on-the-run treasury issues, which trade 

close to par value. The price of the zero coupon maturing after 3 months, P(0, 0.25), can 

be easily estimated from the 3-month constant maturity rate. 

 

P(0, 0.25) = 1/(1 + 0.25 x 0.0416) = $0.989707 

 

Similarly, the price of zero-coupon bond maturing after 6 months is 

 

P(0, 0.50) = 1/(1 + 0.50 x 0.0440) = $0.978474 

 

The price of zero-coupon bond maturing after 9 months is 

 

P(0, 0.75) = 1/(1 + 0.75 x 0.0439) = $0.968125 

 

The calculation of the above zero-coupon prices was straight forward. This is because 

these bonds have a maturity of less than a year and therefore do not pay any interest. For 
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the calculation of the 1-year zero-coupon bond price, we have to take coupon payments 

into account. The 1-year bond is expected to pay interest after 6 months, and when it 

matures after one year. Assuming the face value of the bond is $1, when interest is due, 

an amount equal to half of the treasury constant maturity rate (this is assumed to be the 

coupon rate) is paid. For the 1-year bond, this amount is $0.0438/2 = $0.0219. The 1-year 

bond, therefore, makes a payment of $0.0219 after six months, and $0.0219 plus $1 

(principal repayment) after one year. The present value of these payment has to be $1, 

because par coupon bonds trade at par. 

 

1 = P(0, 0.50) x 0.02019 + P(0, 1) x (0.0219 + 1) 

   =  0.978474 x 0.02019 + P(0, 1) x 1.0219 

 

Solving for P(0, 1), we get the price of zero-coupon bond maturing after one year to be  

P(0, 1) = $0.9576 

 

Using the above bootstrapping procedure, we can derive the zero-coupon bond prices for 

other maturities. 

 

After deriving zero-coupon bond prices, we need to estimate the forward rates implicit in 

these zero-coupon bond prices. The annualized, discretely compounded implicit 3-month 

forward rate maturing in three months would be  

 

f(0, 0.25) = [P(0, 0.25) / P(0, 0.50) – 1] x 4 

                 = [0.989707 / 0.978474 -1] x 4 

                 =  0.044928   

 

The continuously compounded forward rate for the above maturity is given by 

 

F(0, 0.25) = log[P(0, 0.25) / P(0, 0.50)] x 4 

                 = log[0.989707 / 0.978474] x 4 

                 = 0.045659 
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Forward rates for other maturities can be found using a similar procedure. 

 

We derive the forward rates for various maturities every day in the sample period. Then 

create a time series of daily changes in forward rates for each maturity and calculate the 

standard deviations of these time series. Multiplying standard deviations by √260 

(assuming 260 trading days in a year) would give us the annualized volatility of the 

forward rates.  

 

Finally, after estimating the volatilities of forward rates for various maturities, we need to 

make one final adjustment. Recall that the volatilities in the DS model depend on the time 

of maturity, rather than the time to maturity, of the forward rates. This is done to ensure 

the lattice recombines. The volatilities used on the lattice can be interpreted as the 

“average” volatilities for different maturities. For example, the volatility of the one year 

forward rate used on the lattice would be the average of the volatilities of forward rates 

with maturities up to one year. Since we are estimating volatilities at quarterly intervals, 

the one year forward rate volatility to be used on the lattice would be the average of three 

month, six month, nine month, and one year volatilities. 

 

Estimating “Normal” Volatilities from Prices of Int erest Rate Caplets   

 

An alternative to using historical volatilities is to use implied volatilities. The implied 

volatilities can be estimated from prices of interest rate caplets.  

 

A caplet is a call option on an interest rate. Assume that the face value of the contract is 

$1, the underlying interest rate is the LIBOR, the cap rate (strike rate) is R , the tenor of 

the caplet (length of time for which interest is to be calculated) is τ, and maturity of the 

caplet is Ti. If the LIBOR at time Ti for the period (Ti , Ti+1 ) is L(Ti , Ti+1 ), then the 

payoff on the caplet would be at time Ti+1, and not at time Ti , and it is 
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C = τ.max[L(Ti , Ti+1 ) – R, 0]  

where Ti+1  - Ti = τ 

 

A series of caplets comprises a cap. The market practice to value caps and caplets is to 

the use Black’s model. Black’s model is a slight modification of the Black-Scholes model 

with the drift of the underlying variable set equal to zero. It is implicit in the Black’s 

formula that the forward rates (the underlying variable for a cap or a caplet) are 

lognormal. The market prices of caps and caplets are not quoted in dollars but in terms of 

implied Black volatilities (just like the implied volatilities are derived from stock option 

prices). Since the Black’s formula assumes that forward rates have a lognormal 

distribution, we will refer to the implied volatilities of the forward rates from the Black’s 

formula as lognormal volatilities.  

 

Black’s formula for caplets is as follows.  

 

Price of caplet maturing at time Ti  is 

 

C(t) = τ.P(t, Ti+1){L(t, T i, Ti+1)N(d1) – RN(d2)} 

 

where 

P(t, Ti+1) = time t price of zero-coupon bond maturing at time Ti+1 

L(t, Ti, Ti+1)= time t forward LIBOR for the period (Ti , Ti+1 )   

R = cap rate 

 

d1 = 1/σ.√( Ti-t) . [ln(L(t, Ti, Ti+1)/R) + 0.5σ2 σ.√( Ti-t)] 

d2 = d1 - σ.√( Ti-t) 

 

Interestingly, a caplet is equivalent to a certain number of put options on a zero-coupon 

bond. The payoff from the caplet at time Ti+1 is  

 



 19 

τ.max[L(Ti , Ti+1 ) – R, 0] 

 

At time Ti , the discounted value of the above payoff is 

 

τ/(1 + τ .R) max(L(Ti , Ti+1 ) – R, 0) 

 

The time Ti payoff from the caplet above can also be expressed as 

(1 + τ .R) max (1/(1 + τ .R) – 1/(1 + τ. L(Ti , Ti+1 ), 0 )  

 

The above expression can be interpreted as the payoff from (1 + τ .R) put options on zero 

coupon bonds with a strike price of 1/(1 + τ .R) and maturing at time Ti.  

1/(1 + τ. L(Ti , Ti+1 ) can be interpreted as the price of a zero coupon bond (face value of 

$1) at time Ti. 

 

In the Ho-Lee model there is a closed-form solution for pricing call and put options on 

zero coupon bonds. The price of a put option on a zero coupon bond is given by 

 

Put(t, Ti, Ti+1) = K.P(t, Ti) N(-d2) – P(t, Ti+1)N(-d1) 

 

where 

 

Put(t, Ti, Ti+1) = price at time t of a put which matures at time Ti on a zero coupon  

                           bond maturing at time Ti+1 

 

P(t, Ti) = price at time t of a zero coupon bond maturing at time Ti 

 

K = strike price 
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d1 = { ln[P(t, Ti+1)/ P(t, Ti)] / σp } + σp/2 

 

d2 = d1 - σp 

 

σp = σ.(Ti+1 - Ti)√( Ti – t) 

 

Finally, we note that HJM model with constant volatility results in the Ho-Lee model. 

Since in the DS model the dynamics of the forward rates are modeled using the HJM 

model, and the volatility of each forward rate is constant until it matures (different 

forward rates have different constant volatilities), it is like fitting a different Ho-Lee 

model for each forward rate. Thus, we can assume that the forward rate maturing after, 

say, 1 year is modeled by a Ho-Lee model with a particular volatility, and similarly the 

forward rate maturing after 2 years is modeled again by a Ho-Lee model but with a 

different volatility. Given this, we summarize the steps to arrive at the volatilities for 

different forward rates to be used in the DS model. We will call these volatilities the 

“normal volatilities” because the forward rates are normally distributed in the Ho-Lee 

model. 

 

a) Say we want the volatility of the forward rate maturing after one year. Look at the 

market price of at-the-money(ATM) cap maturing after 1 year. This is given in terms of 

the Black volatility, which has to be converted to the dollar price by inputting the implied 

Black volatility in the Black’s formula. We have chosen ATM caps because the trading is 

maximum in these caps, and therefore best reveals the market expectations of the forward 

rate compared to caps with other strikes.  

 

b) The above price of the 1-year cap can be interpreted as the price of (1 + τ .RATM) put 

options with a strike price of 1/ (1 + τ .RATM) on zero coupon bonds. Now we use the 

formula for pricing put options on a zero coupon bond in the Ho-Lee model. We search 

for that value of volatility (σ) which best explains the price of the above (1 + τ .RATM) put 

options on the zero coupon bond. The optimum σ from the above exercise is chosen as 
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the volatility of the forward rate maturing after one year. We repeat the above procedure 

for all other maturities. The volatilities we get are the normal volatilities 

 

We used the above procedure to convert lognormal volatilities to normal volatilities using 

the cap prices reported in Bloomberg on January 3, 2006. The results are as follows. 

 

Table IV 

Time to Maturity 1 year 2 years 3 years 4 years 

Lognormal (Black) Vol. 0.1189 0.1664 0.1887 0.1997 

Normal Volatility 0.00566 0.00777 0.00889 0.00945 

 

Time to Maturity 5 years 6 years 7 years 8 years 

Lognormal (Black) Vol. 0.2037 0.2073 0.2079 0.2076 

Normal Volatility 0.00962 0.00978 0.00987 0.00991 

 
 
Estimating the Parameters of the Default Intensity Function 
 
One of the crucial steps in implementing the model is estimating the parameters of the 

default intensity function. We will be assume that the default intensity function has the 

following form, 

 

ξ (t) = exp[ a0 + a1r(t) – a2ln S(t) + a3(t – t0) ]  

 
In the above function, default intensity depends on three variables – interest rate, stock 

price, and time. The intensity decreases when the risk-free interest rate increases; it also 

decreases when the stock price increases. The effect of time on the intensity depends on 

what the current level of the intensity is. If the intensity is very high currently but the firm 

manages to survive, then the intensity would be expected to decrease in the future. In this 

case the intensity decreases with time. The converse will happen if the current level of 

intensity is low. Given the intensity of default, the probability of default is given by  

 
λ(t) = 1 – exp( - ξ (t).h ) 
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The task is to estimate the parameters a0, a1, a2, and a3. We make use of the credit default 

swap spreads observed in the market to estimate these parameters. Earlier, in the section 

on credit risk, it was discussed how the credit default spreads could be determined from 

the model once we know the parameters a0, a1, a2, and a3. Now the problem is reversed – 

given the observed spreads we need to determined the values of the parameters which 

best explain the observed spreads. We have four parameters to estimate, and if we have  

credit default swap spreads for four different maturities, we can get a good estimate. We 

undertake a large minimization exercise for this. The objective function is the sum of 

squared deviations between the observed spreads and the spreads given by the model. 

Basically, this is an unconstrained minimization problem. 

 

The problem is rather complex and we need a sophisticated algorithm to handle this. We 

have found that MATLAB’s Optimization Toolbox is useful for solving this problem. Of 

the many functions available in this toolbox, we have found that the “fminsearch” 

function best handles this problem. The fminsearch function uses the simplex search 

method. This is a direct search method that does not use numerical or analytical gradients 

as in other functions in the toolbox, like the function “fminunc”. In our problem we have 

four unknowns, a0, a1, a2, and a3. The stated algorithm creates a simplex in a 4-

dimensional space which is characterized by 5 distinct vectors as its vertices. At each 

iteration, a new point in or near the current simplex is generated. The value of the 

function at this new point is compared with the function’s values at the old vertices of the 

simplex and one of them is replaced by the new point, which results in a new simplex. 

This procedure is repeated until an acceptable solution is found or the number of 

iterations reaches a predetermined limit. 

 

IV. Empirical Results on Pricing Risky Non-Convertible Bonds 

 

First, we test the model on a sample of risky non-convertible bonds. The objective is 

twofold. We would like to test how well the model performs, and also investigate how 

well the information regarding the default risk conveyed by the credit default swap 
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spreads is absorbed in risky bond prices.  We recall that an important aspect of the model 

is using the CDS spreads to estimate the default intensity function. By applying the 

model to securities subject to only default and interest rate risks, such as risky non-

convertible bonds, it would be easy to attribute the results to these risks and  get a clearer 

picture of the linkages between the CDS market and the bond market. In this regard, we 

would also like to compare the linkages between the CDS and the bond markets in the 

U.S. and Europe. After this analysis, we will extend the Das and Sundaram model ( build 

a trivariate lattice) to price convertible bonds with the conversion feature mentioned 

earlier.  

 

To see how well the model prices bonds issued in a particular industry and investigate the 

linkages mentioned above, we applied the model to a sample of dollar denominated 

bonds issued by the electric utilities in the U.S. We priced the bonds as on January 3, 

2006 if the market prices were available on Bloomberg for this date, and if not, the 

closest day when the market prices were available. The results are given in the table 

below. 

 

Table V 

Company Date Market 
Price 

Model Price Abs. % dev. 

Texas Utilities Jan-3-2006 1025.3 1027.5 0.2141 
American Electric Power Jan-3-2006 999.94 1019.6 1.9282 
Columbus Power Jan-3-2006 1027.2 1028.4 0.1166 
Indiana Michigan Power Jan-3-2006 1063 1035.5 2.6557 
South Western Electric Jan-3-2006 1032.37 1040.2 0.7527 
Ohio Power Company Jan-3-2006 986.8 985.18 0.1644 
Public Service Oklahoma Jan-3-2006 988.6 983.31 0.5379 
Florida Power Corp. Jan-3-2006 1023.6 1026.4 0.2727 
Ohio Edison Jan-3-2006 970.5 986.89 1.6607 
Cleveland Elec. Illum. Jan-3-2006 1046.4 1060.4 1.3202 
TXU Corporation Jan-3-2006 966 963.26 0.2844 
First Energy Corp. Jan-3-2006 1062.14 1047.1 1.4363 
Dominion Resources Jan-3-2006 982.24 989.16 0.6995 
Baltimore Gas Jan-3-2006 1042.4 1055.5 1.2411 
PSEG Power Jan-3-2006 1090.15 1076.9 1.2303 
Duke Energy Jan-3-2006 976.39 981.65 0.5358 
PSI Energy Jan-3-2006 1036.8 1048 1.0687 
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Cinergy Global Resources Jan-3-2006 1040.6 1043 0.2301 
Cincinnati Gas & Elec. Jan-3-2006 1027.83 999.95 2.7881 
Florida Power & Light Jan-4-2006 1029.63 1035.3 0.5476 
Exelon Corporation Jan-4-2006 970.22 962.59 0.7926 
Pennsylvania Electricity Co. Jan-4-2006 1034 1041.9 0.7582 
Progress Energy Jan-4-2006 1076.81 1062.6 1.3372 
Virginia Elec.& Power Jan-5-2006 976.99 951.76 2.6508 
Peco Energy Jan-6-2006 1047.58 1028 1.9046 
Constellation Energy Jan-6-2006 1094.98 1079.6 1.4246 
DTE Energy Jan-6-2006 1044.06 1058.8 1.3921 
Detroit Edison Jan-6-2006 1042.95 1039.9 0.2932 
Oncor Electric Jan-9-2006 999.81 1007.1 0.7238 
Appalachian Power Jan-25-2006 1035.8 1058.4 2.1352 
     
Mean Abs. % Deviation    1.1033 
 
 

We see that there is not too much difference between the market prices and the model 

prices. We could infer from this that the model performs well in this sample and that the 

bond prices in this industry seem to absorb well the default risk information contained in 

the CDS spreads. 

 

Next, we do not confine the sample to any one industry but draw the sample from various 

industries. The results are as follows. 

 

Table VI 

Company Date Market 
Price 

Model Price Abs. % dev. 

Baxter International Jan-3-2006 1005.59 1012.5 0.6871 
Wyeth Jan-3-2006 1011.69 1006 0.5624 
Conagra Inc. Jan-3-2006 1098.83 1101.3 0.2247 
Raytheon Co. Jan-3-2006 996.02 973.86 2.2248 
Bristol Myers Squibb Jan-3-2006 1034.18 1039.8 0.5434 
Honeywell International Jan-3-2006 1097.95 1113.7 1.4344 
CVS Corp. Jan-3-2006 965.49 968.67 0.3293 
Marriott International Jan-3-2006 1037.35 1039.6 0.2168 
Southwest Airlines Jan-3-2006 1068.48 1053.2 1.4300 
Lowes Companies Jan-3-2006 1135 1130.1 0.4317 
Wal-Mart Stores Jan-3-2006 972.49 968.52 0.4082 
Newell Rubbermaid Jan-3-2006 944.79 950.15 0.5673 
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Pulte Homes Inc. Jan-3-2006 1090.3 1070 1.8618 
Arrow Electronics Jan-3-2006 1148.8 1165.1 1.4188 
Tyson Foods Jan-3-2006 1126.2 1124.4 0.1598 
IPB Inc. Jan-3-2006 1091.7 1084.8 0.6320 
Lennar Corp. Jan-3-2006 986.8 977.97 0.8948 
Cendant Corp. Jan-3-2006 1035.1 1011.8 2.2509 
Caterpillar Inc. Jan-3-2006 1076.1 1083.2 0.6597 
Boeing Co. Jan-3-2006 1010.45 999.35 1.0985 
McDonnell Douglas Corp. Jan-3-2006 1240.97 1266.8 2.0814 
Federated Dept. Stores Jan-3-2006 1055.12 1063.5 0.7942 
Centex Corp. Jan-3-2006 971.96 956.97 1.5422 
Kraft Foods Jan-3-2006 1041.46 1028.7 1.2252 
Nabisco Inc. Jan-3-2006 1166.2 1151.3 1.2776 
Phillip Morris Jan-3-2006 1059.4 1054.7 0.4436 
Safeway Inc. Jan-3-2006 979.28 956.86 2.2894 
May Dept. Stores Jan-6-2006 1137.9 1112.4 2.2409 
Avnet Inc. Jan-6-2006 1090 1096.9 0.6330 
America Home Products Jan-19-2006 1078.2 1085.5 0.6770 
     
Mean Abs. % Deviation     1.0414 
 
Again, we see that the market prices and the model prices are quite close. We could 

conclude that: 

 

(i) the model is performing well empirically, and  

 

(ii) for those U.S. companies for which CDS quotes are available, the information 

regarding default risk contained in these quotes seems to be well reflected in the bond 

prices.  

 

Next, we investigate the same issues for the European market. We again tested the model 

on a sample on Euro-denominated risky, non-convertible bonds. The results are as 

follows. 
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Table VII  

Company Date Market 
Price 

Model Price Abs. % dev. 

Calyon Jan-3-2006 962 960.75 0.1299 
Vinci Jan-3-2006 1079.25 1070.2 0.8385 
Generali Finance Jan-3-2006 1098.18 1082.9 1.3913 
BAA PLC Jan-3-2006 1039.9 1031.3 0.8270 
BASF AG Jan-3-2006 998.02 989.68 0.8356 
Elec De Portugal Jan-3-2006 1114.99 1102 1.1650 
Mediobanca SPA Jan-3-2006 997.825 993.15 0.4685 
Aegon Inv. Jan-3-2006 1040.47 1011.7 2.7650 
Fortum Oyj Jan-3-2006 1050.12 1040.1 0.9541 
Powergen Jan-3-2006 1053.09 1054 0.0864 
Enel Investment Jan-3-2006 1029.2 1036.8 0.7384 
ENBW Intl. Finance Jan-3-2006 1132.35 1134.8 0.2163 
Banco Sabadell Jan-3-2006 1023.36 1017.4 0.5823 
Union Fenosa Jan-3-2006 1065.51 1052.8 1.1928 
Lyonnai Des Eaux Jan-3-2006 1089.42 1096.9 0.6866 
Intl. Endesa BV Jan-3-2006 1106.38 1094.4 1.0828 
Vattenfall Treasury Jan-3-2006 1054.25 1052.9 0.1280 
RWE AG Jan-3-2006 1072.1 1074.3 0.2052 
Iberdrola Jan-3-2006 1178.76 1175.3 0.2935 
Elec De France Jan-3-2006 1173.63 1128.5 3.8453 
Credit Agricole Jan-3-2006 1025.6 1030.4 0.4680 
Metso Corp. Jan-3-2006 1038.3 1016.9 2.0610 
Rolls-Royce Jan-3-2006 1048.24 1050.6 0.2251 
Lafarge SA Jan-3-2006 1100.16 1056.2 3.9957 
Thales SA Jan-3-2006 1040.6 1034.9 0.5477 
Bouygues Jan-3-2006 1052.75 1049.4 0.3182 
Novartis Secs. Investments Jan-3-2006 1015 1013.1 0.1871 
Intensa Bank Jan-3-2006 973.3 996.99 2.4339 
     
Mean Abs. % Deviation         1.0242  
 
 

We see that the results for the European market are very close those observed for the U.S. 

market. From this, we could probably conclude the bond prices in the U.S and European 

markets reflect equally well the information regarding default risk as contained CDS 

spreads. Also, the model seems to be performing well.     
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V. Pricing Convertible Bonds 
 
 
 There are many convertible bonds trading in the market with a particular interesting 

feature. These bonds are convertible not into the stock of the issuer, but the stock of some 

other company. For example, consider a convertible bond issued by Morgan Stanley. It is 

a 1 ½ percent coupon bond, maturing on September 30, 2011 and convertible into 

13.1313 shares of Walmart. 

 

The pricing of these convertible bonds is both interesting and challenging. The Das and 

Sundaram model has be extended to be price these bonds. Rather than a bivariate lattice 

with six branches emanating from each node, we have a trivariate lattice with eighteen 

branches emanating from each node. However, all of these branches are not equally 

important and quite a few can be ignored when writing a program to implement the 

model. The Das and Sundarm model can be extended as follows. 

 

We now have three state variables – the risk-free interest rate, the stock price of the 

issuer, and the price of the stock into which the bond is convertible. The interest rate and 

the stock price of the issuer determine the probability that the issuer will default over the 

next period on the lattice, which we will take to be a quarter. The interest rate and the 

price of the stock the bond is convertible into will determine the probability that this 

second stock will default. When this default does take place, the conversion value of the 

bond will become zero and the price of the bond will behave like the price of a simple 

risky, non-convertible bond.  

 
The discrete time, risk- neutral dynamics of the forward rates is given by 
 
f(t + h, T) = f(t, T) + α (t, T).h + σ (t, T) Xf √h 

 

where 

α (t, T) is the rate of drift of the forward rate 

σ (t, T) is the volatility 

Xf is a random variable which takes values {-1, 1} 
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h is a fixed length of time 

 

Again, we note that that drift of the forward rates is not independent of the volatility in an 

arbitrage-free market. 

 

The discrete- time, risk- neutral dynamics of the bond issuer’s stock price (S1) is given by 

 

ln [ S1(t + h) / S1(t) ] = r(t).h + σS1 XS1√h 

 

r(t) short term risk-free interest rate at time t 

XS1 is a random variable which takes value {- ∞, -1, +1} 

h is the fixed interval of time 

 

The drift rate is equal to the risk-free risk in the risk-neutral setup. Again, like in the 

original Das and Sundaram model, we need to modify the above dynamics of the stock 

price in order to model it on a recombining lattice. Since the drift is not constant, we have 

to eliminate it and has to be captured in probabilities of various branches of the lattice. 

We will model the dynamics of the bond issuer’s stock price (S1) as 

 

ln [ S1(t + h) / S1(t) ] =  σS1 XS1√h 

 

where the mean of XS1 is r(t) √h / σS1  . 

 

Similarly, the dynamics of the price of the stock into which the bond is convertible, let’s 

call it stock S2 , is modeled as 

 

ln [ S2(t + h) / S2(t) ] = σS2 XS2√h 

 

where XS2 is a random variable which takes value {- ∞, -1, +1} and the mean of XS2 is 

r(t) √h / σS2  . 
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Given the way the dynamics of the above three state variables are modeled, we would 

have a recombining lattice. Each node represents a particular combination of values of 

the three state variables, the spot interest rate (or the vector of forward rates) and the two 

stock prices.  There are eighteen branches emanating from each node. Each branch would 

arise for a particular combination of values of Xf , XS1, and XS2. The table below shows 

this. 

 

Table VIII 
 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 

Xf 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1 

XS1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -∞ -∞ -∞ -∞ -∞ -∞ 

XS2 1 -1 -∞ 1 -1 -∞ 1 -1 -∞ 1 -1 -∞ 1 -1 -∞ 1 -1 -∞ 

 

B1 is branch 1, B2 is branch 2, and so on. B13 to B18 are branches relating to the default 

of the issuer. The lattice does not extend beyond these branches because the bond ceases 

to exist once the issuer defaults. B3, B6, B9, B12, and B12 are branches relating to 

default of stock 2. Once this happens, the bond’s conversion value is zero and the bond is 

effectively a non-convertible bond. However, the lattice does extend beyond these 

branches since the bond continues to exist. 

 

 We need a trivariate lattice, with each node representing the values of three state 

variables – short term risk-free interest rate and prices of two stocks. As mentioned 

earlier, there are eighteen branches emanating from each node of the lattice. Since the 

lattice is being constructed in a risk-neutral framework, the probabilities of the branches 

from each node should be so assigned that the drift rate of the two stocks is equal to the 

risk-free interest rate, and the observed correlations between interest rate and S1, interest 

rate and S2, and S1 and S2 are preserved. We can take the probabilities of the branches in 

the original Das and Sundaram model (Table I, page 7) as a starting point and modify 

them to suit the needs of our problem.  With each of the branches B1, B2, …, and B6 

(these are the branches given in Table I and not Table VIII) we will associate three 

possible movements of stock S2 . The stock price either goes up, goes down, or defaults. 
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This would correspond to XS2 = 1, -1, or -∞ respectively. For example, let’s consider the  

branch B1. B1 is for an upward movement of both the interest rate and the stock price, S1 

, i.e., Xf = 1 and XS1 = 1. Let the unconditional probability of this branch be denoted by 

P1 , and the conditional probability of this branch given no default by p1. Given the 

probabilities of  branches B1 to B6, our task is to divide each of these branches into three 

parts (associated with three values of XS2) in a risk neutral setting.  

 

We will make the assumption that the probability of default of S2 is equally likely given 

any branch. This may not be a very realistic assumption when the defaults of S1 and S2 

are correlated. But given the difficulty in determining this correlation, and also the fact 

that this correlation may not be too high, this is a plausible assumption to make.  If λ2 is 

the probability of default of S2, then  

 

probability( Bi ∩ XS2 = - ∞ ) = λ2 / 6         i  = 1, 2, …, 6 

 

The probabilities of each of the branches of Table I would have to be divided into three 

parts, each part denoting whether the associated movement of stock price S2, would be 

up, down, or drop to zero (that is XS2 = +1, -1, or - ∞). Since the probability of  XS2 = - ∞ 

has already been determined as  λ2 / 6, this means we will need a variable more for each 

branch (six variables in all) to get the required three-way division of probabilities in 

Tabel I. But, we have only three extra conditions for introducing the new stock price, S2. 

That is, we have to ensure that  

 

(a) the growth rate of S2 is equal to the risk-free rate 

(b) the correlation between S2 and the interest rate is preserved 

(c) the correlation between S2 and S1 is preserved 

 

Given six new variables but only three additional restrictions, we have three degrees of 

freedom. Since we really are not very concerned with the branches representing the 

default of the issuer, a good solution to the problem would be to ensure that the above 
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conditions are met, conditional on no default of the issuer. Now we have to consider only 

the four branches on which the firm does not default. This would reduce the number of 

variables from six to four, which still leaves us with one degree of freedom. We can 

impose any “innocuous” additional condition on the variables which does not have an 

undue influence on the results and helps arrive at a solution to the problem.  

 

If p1 is the conditional probability (given that the firm issuing the bond does not default) 

of branch B1, let 

 

p11 = probability (B1 ∩ XS2 = 1 / no default of the firm issuing the bond) 

 

p12 = probability (B1 ∩ XS2 = -1 / no default of the firm issuing the bond) 

 

p13 = probability (B1 ∩ XS2 = -∞ / no default of the firm issuing the bond) 

 

We have similar definitions of probabilities for the other three non-default branches. It 

should be noted here that  

 

probability(XS2 = -∞ ∩ Bi ) = λ2/4    i = 1, 2, 3, 4 

 

This is because we are considering conditional probabilities and not unconditional 

probabilities. We are not taking into account the default branches of the firm issuing the 

bond.  

 

We now derive the probabilities in the risk-neutral setup. We define  

 

c = exp(σS2√h) 

d = exp(-σS2√h) 

 

The first condition is that the growth rate of the stock has to equal to the risk-free rate. 

Ignoring the default branches of S2, we have 
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E[ S2(t + h) / S2(t) ]  = E[c]  

 = {p11. c + (p1 – p11 - λ2/4). d} + {p21. c + (p2 – p21 - λ2/4).d} + {p31. c + (p3 – p31 - 

λ2/4).d} + {p41. c + (p4 – p41 - λ2/4).d} 

= exp(r.h) 

 

(for definitions of p1, p2, p3, p4, p11, p21, p31, and p41 see above) 

=>  

(c – d) p11 + (c – d) p21 + (c – d) p31 + (c – d) p41  

= 1/(c – d) [exp(r.h) – d.(p1 + p2 + p3 + p4 - λ2 )] 

= 1/(c – d) [ exp(r.h)  - d.(1 -  λ2) ]              … (i) 

 

The second condition is that the correlation between S2 and interest rate, ρr,S2 , has to be 

preserved. 

Cov[Xf(t), XS2(t)] = {p11 x 1 x 1 + (p1 – p11 - λ2 /4) x 1 x - 1} + {p21 x 1 x 1 + (p2 – p21 - λ2 

/4) x 1 x -1} + {p31 x -1 x 1 + (p3 – p31 - λ2 /4) x - 1 x -1} + {p41 x -1 x 1 + (p4 – p41 - λ2 

/4) x -1 x -1} 

= ρr,S2 

=> 

p11 + p21 - p31 – p41 = 0.5 (ρr,S2 + p1 + p2 + p3 + p4)                                                   … (ii) 

 

The third condition is that the correlation between S1 and S2, ρS1,S2 , has to be preserved. 

 

Cov[XS1(t), XS2(t)] = {p11 x 1 x 1 + (p1 – p11 - λ2 /4) x 1 x - 1} + {p21 x -1 x 1 + (p2 – p21 - 

λ2 /4) x -1 x -1} + {p31 x 1 x 1 + (p3 – p31 - λ2 /4) x 1 x -1} + {p41 x -1 x 1 + (p4 – p41 - λ2 

/4) x -1 x -1} 

= ρS1,S2 
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=> 

p11 - p21 + p31 – p41 = 0.5 (ρS1,S2 + p1 - p2 + p3 - p4)                                                       …(iii)    

 

We have three equations and four unknowns. We need an additional condition so that we 

can arrive at a solution. We would like to equate two probabilities which are small, and 

because they are small we hope that this equating would not have a significant influence 

on the results. For now, consider branches B3 and B4 representing the downward 

movement of stock S1. The probabilities of upward movement of stock S2 associated with 

these branches are equated. That is, we equate probabilities p21 and p41. This is just one of 

the many possible assumptions that can be made. Given this, the system of equations, in 

matrix notation, can be expressed as 

 

M. K = N 

 

where  

 

M = [1  2  1; 1  0  -1; 1  -2  1]       the semi-colon indicates a new row of the matrix 

K = [ p11; p21; p31] 

 

N = [1/(c – d) {(exp(r.h)  - d.(1 -  λ2)}; 0.5 (ρr,S2 + p1 + p2 - p3 - p4); 0.5 (ρr,S2 + p1 + p2 +   

        p3 + p4); 0.5 (ρS1,S2 + p1 - p2 + p3 - p4)] 

 

So, 

 

K = inv(M). N 

 

This completes determining the probabilities in the risk-neutral setup.  
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Empirical Results on Pricing Convertible Bonds 

 

We applied the above model to price convertible bonds which could be converted into the 

stock of either the issuer or some other company. We have tried to price the bonds as on  

January 03, 2006. If price of a particular bond is not available for this day on Bloomberg, 

we have priced bond on the day closest to the above day for which the price is available. 

 

 

Table IX 

Company Stock 

convertible 

to 

Date Market 

Price 

Model Price % Absolute 

Deviation 

AIG 

 

AIG 1/03/06 942.5 959.4 1.9 

Computer 

Associates 

Computer 

Associates 

1/03/06 1417.5 1417.4 0 

Amgen 

 

Amgen 2/16/06 1026.85 978.7 4.7 

Amgen 

 

Amgen 2/16/06 1028.09 982.59 4.6 

Bear Stearns 

 

Fifth Third 

Bancorp 

1/18/06 843.3 883.16 4.7 

Bank of 

America 

NASDAQ-

100 

3/10/06 1032 1046.6 1.4 

Goldman 

Sachs 

WYE 11/28/05 972.7 972.9 0 

Goldman 

Sachs 

BJ Services 1/18/06 1040.88 1017.3 2.3 

Goldman 

Sachs  

Whirlpool 2/09/06 960.8 989.67 3.0 
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Goldman 

Sachs 

Cendant 

Corp. 

1/25/06 924.5 929.85 0.6 

Salomon 

Holdings 

Pfizer 1/25/06 945 950.77 0.6 

GATX 

Corp. 

GATX 

Corp. 

1/06/06 1176.25 1136.70 3.4 

Morgan 

Stanley 

3M 1/03/06 871.25 916.96 5.2 

Morgan 

Stanley 

Walmart 1/05/06 858.75 850.44 1.0 

Morgan 

Stanley 

CISCO 1/19/06 961.33 984.08 2.4 

Morgan 

Stanley 

General 

Electric 

1/31/06 896.25 904.47 1.0 

Morgan 

Stanley 

CA 4/28/06 937.5 967.0 3.1 

Wachovia 

 

Corning 2/21/06 1005.35 953.64 5.1 

Wachovia 

 

Johnson & 

Johnson 

2/21/06 1006.7 976.65 3.0 

Merrill 

Lynch 

Coca Cola 1/04/06 885.0 902.16 1.9 

Merrill 

Lynch 

McDonald’s 1/11/06 970.0 990.57 2.1 

Merrill 

Lynch 

Berkshire 

Hathaway 

1/05/06 952.1 928.6 2.5 

Lehman 

Bros. 

Deere 5/03/06 1221.5 1229.7 0.7 

Lehman 

Bros. 

Amgen 4/28/06 877.5 926.07 5.5 
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Lehman 

Bros. 

Bristol 

Meyers 

4/28/06 880.0 925.37 5.2 

Lehman 

Bros. 

Micorsoft 5/02/06 1001.5 982.0 1.9 

Lehman 

Bros. 

Cendant 

Corp. 

12/02/05 875.0 884.74 1.1 

Providian 

Financial 

Providian 

Financial 

1/03/06 1405 1369.48 2.5 

Medtronic 

 

Medtronic 4/13/06 988.53 957.66 3.12 

Medtronic Medtronic 4/13/06 987.78 953.33 3.49 

 

   Mean 

Absolute % 

Deviation 

 2.60 

 

.  

VI. Conclusion 

 

The empirical results of the model seem good. The Das and Sundaram model can be used 

to price not just bonds but many other securities with equity, interest rate and credit risks. 

We wish to enlarge our sample and compare the results of this model with those of a few 

other models for pricing risky non-convertible and convertible bonds.  
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