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Stale Prices and the Performance Evaluation of Mutual Funds 

 

  

 

Abstracts 

Staleness in measured prices imparts a positive statistical bias and a negative 
dilution effect on mutual fund performance. First, evaluating performance with 
nonsynchronous data generates a spurious component of alpha.  Second, stale prices 
create arbitrage opportunities for high-frequency traders whose trades dilute the portfolio 
returns and hence fund performance. Thus, this paper introduces a model that directly 
estimates these biases and evaluates fund performance net of these effects. Empirical 
tests of the model show that the statistical bias is small but the dilution effect is large and 
widespread in the fund industry. Overall, during the sample period, funds lose about 40 
basis points in annual performance due to price staleness.  
 

 

JEL Classifications: G12, G14. 

Key Words: Performance evaluation, stale pricing, timing arbitrage, flows. 
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Typically, studies of mutual fund performance use monthly return data without 

controlling for the issue of stale pricing, an inequality between the current price of fund 

shares and the current value of the underlying assets. This discrepancy occurs when the 

share price set by funds at the end of each day fails to reflect the most current market 

information on these assets, because the underlying securities are thinly traded or traded 

in a different time zone. In funds with stale pricing, observed returns differ from true 

returns. Scholes and William (1977) show that when data are nonsynchronous, estimates 

of beta and alpha are biased and inconsistent. In addition, stale prices in mutual fund 

shares create arbitrage opportunities for short-term traders who purchase shares when the 

fund’s net asset value (NAV) is lower than the value of the underlying securities and sell 

shares after the true value is incorporated into the NAV. The round trip transactions can 

be as quick as overnight.  Chalmers, Edelen, and Kadlec (2001) call such opportunity a 

“wild card” option. Greene and Hodges (2002) and Bhargava, Bose, and Dubofsky 

(1998) provide evidence that arbitrageurs take advantage of such opportunities and their 

trades can dilute fund returns up to 0.5% annually.  

 This paper develops a performance evaluation model that not only controls for 

nonsynchronicity in fund data but also considers the arbitrage dilution due to stale 

pricing. By directly measuring the statistical bias and dilution effect, the model evaluates 

managerial ability net of these effects. In contrast, performance evaluated using various 

traditional models is negatively influenced by stale pricing. As shown in this paper, for 

each one standard deviation increase in stale pricing, traditionally evaluated performance 

decreases by about 40 basis points. Compared to an average expense ratio of 0.78% for 

the sample funds, this magnitude is economically important.   
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This study contributes to two strands of literature: nonsynchronous data in the 

application of pricing models and performance dilution due to stale pricing arbitrage. As 

regards the former, Scholes and William (1976) introduce a model that estimates the beta 

of nonsynchronously traded stocks. Getmansky, Lo, and Makarov (2004) introduce an 

evaluation model of return smoothing in hedge funds. This paper contributes to such 

research in two ways. First, it develops a model that estimates mutual fund performance 

with serially correlated returns. Second, it controls for arbitrage dilution of fund 

performance. As regards to the second strand of literature, whereas the extant studies on 

stale pricing and arbitrage dilution draws inferences from the cross-sectional relation 

between flow and performance, analysis in this paper endogenizes the flow process by 

modeling the arbitrage timer’s response to stale pricing. This endogenization allows 

estimation of the dilution effect and managerial ability simultaneously and directly from 

the performance evaluation model. 

 The model also delivers a method of fund performance decomposition, which is 

especially interesting for performance attribution studies and applications in the fund 

industry.  The difference between the observed alpha and the true alpha is the sum of a 

statistical bias and the arbitrage dilution. According to the empirical evidence, the 

statistical bias is positive but has little economic significance, while the dilution effect is 

negative and significant at the 1% level for most fund style groups. Furthermore, this 

dilution effect increases with the fund stale pricing, with funds in the top quintile having 

an average dilution of 34 basis points annually and those in the lowest quintile, a dilution 

of only 7 basis points.  
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The rest of the paper proceeds as follows. Section I introduces the model, Section 

II describes the data, and Section III presents the empirical results. Section IV then 

compares the alpha from the proposed model with those from various traditional models, 

and Section V presents robustness checks and discusses possible extensions of the model. 

Section VI concludes the paper.   

 

I. The model 

The model is defined in terms of stale pricing, the impact of fund flows, and the 

crucial element of market timing. The literature refers the term of market timing to two 

types of activity: in one, fund managers increase fund beta by changing portfolio holdings 

when they expect the market to go up (hereafter, market timing); in the other, daily timers 

trade in and out of funds frequently (arbitrage timing). This paper focuses only on 

arbitrage timing and refers to the arbitragers as daily timers.  

 

A. Stale pricing 

To address the return process with zero flows, the analysis assumes that the true 

return of the underlying assets follows a market model. However, nonsynchronous 

trading (Sholes and William 1977, Lo and MacKinlay 1990) and naïve methods for 

determining the fair market value or “marks” for underlying assets (Chalmers, Edelen, 

and Kadlec 2001, Getmansky, Lo, and Makarov 2004) yield serially correlated observed 

returns of the fund. Thus, assuming that information generated in time t is not fully 
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incorporated into prices until one period later,1 the observed return becomes a weighted 

average of true returns in the current and last periods: 

rt = α + β rmt + εt  (1a) 

rt
* = η rt-1+(1- η) rt  (1b) 

where rt denotes the true excess return of the portfolio and rmt the excess market return.  

Both rt and rmt are i.i.d, and the error term εt is independent of rmt. ri,t
* is the observed 

excess return of the portfolio with zero flows, while η is the weight on the lagged true 

return. That is, the higher the η, the more the staleness in the prices.  

This form can be extended to a variety of more complicated models; for example, 

to estimate market timing ability by assuming cov(rt, rmt
2) is nonzero or to incorporate 

time-variant stale pricing by specifying the form taken by the parameter η.2 In this paper, 

for simplicity, η is assumed to be constant over time. 

 

B. The arbitrage timer’s decision 

When share prices are stale, the future return or a part of the future NAV of the 

fund is predictable. This predictability, combined with the option to trade at the NAV, 

allows active traders to capture price swings without bearing any risk when moving in 

and out of funds quickly. Nonetheless, the timer faces a choice between fund shares with 

return Rp and risk-free assets with return Rf,, where Rp is the sum of r* (the excess return 

of fund shares) and rf.  The timer maximizes a utility function that depends on the 

expected excess return conditional on observation of past fund returns:  

                                                 
1 This assumption can be verified empirically. In this paper, I apply Getmanky, Lo, and Makorov (2004) to 
mutual fund data and show that, on average, fund returns smooth over the current and one previous period 
(table IV-a).  
2 Chen, Ferson, and Peters (2005) show that systematic stale pricing can cause a spurious component in 
timing measurement and the mean of observed fund returns.   
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U(x) =E{U( [xRp+(1-x)Rf] - [hRp+(1-h)Rf]) |It-1
o)  (2a) 

where x is the weight on fund shares in period t, and h is an exogenous benchmark 

preference parameter. It-1
o includes all the information in past returns {rt-1

o, rt-2
o, - - - r1

o}, 

where rt-1
o is the observed return in period t-1.  

The optimal weights on fund shares are given in equation (2b):  

x = h + γ-1 E(rt*| It-1
o) / Var(rt*| It-1

o)  (2b) 

where γ is the Rubinstein (1973) measure of risk aversion, which is assumed here to be 

constant.  The details of obtaining the weights are presented in appendix A1.  

From equations (1a) and (1b), it can be shown that E(rt*| It-1
o) = η rt-1 + (1- η) μ 

and Var(rt*| It-1
o) = (1-η)2σ2, where rt* is the fund excess return with zero flows. The 

extent of stale pricing, η, can be inferred by observing all past returns. Therefore, at the 

end of t-1, the timer adjusts the position in fund shares by  

Δxt-1= xt - xt-1 = η (rt-1-rt-2) / γ(1-η)2σ2   (2c) 

To assess the fund’s long-term flows, the model assumes that Ct-1 is long-term 

flow occurring at the end of period t-1. This flow responds to past long-run returns and is 

uncorrelated with stale pricing or short-term return rt-1. For simplicity, it follows an N(c, 

σc), i.i.d distribution:  

Ct-1  ~ N(c, σc), i.i.d.  (2e) 

Therefore, the fund flow at the end of period t-1 is 

ft-1 = Ct-1 + η (rt-1-rt-2) / λ(1-η)2σ2  (2d) 

λ = γ* TNA fund, t  / Assets timer, t  (2e) 
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The difference between λ and γ results from the measurement of flows. Δxt-1 represents a 

percentage of the timer’s total assets, while ft-1 represents a percentage of the fund’s 

TNA.  

 

C. The impact of fund flows 

As Greene and Hodge (2002) show, daily flows by active mutual fund traders 

cause a dilution of returns, which results from the lag between the time that money comes 

in and the time that fund managers purchase risky assets. Edelen and Warner (2001) note 

that fund managers typically do not receive a report of the day’s fund flow until the 

morning of the next trading day, by which time the prices of underlying risky assets have 

changed. For simplicity, this model assumes that the fund manager reacts immediately on 

seeing the flows so that the response lags by only one day. 

The flow occurring at the end of the previous trading day is ft-1= CFt-1 /(Nt-1 Pt-1), 

where CFt-1 is the dollar amount of flows, Nt-1 is the number of shares, and Pt-1 is the 

observed share price, Pt-1 = TNAt-1/Nt-1. As noted earlier, rt
* is the observed excess 

portfolio return with zero flows. Because of the lag in new money flow investment, the 

new money flow overnight leads only to a risk-free rate return: 

TNAt = TNAt-1(1+ rt
*+Rf) + CFt-1 (1+Rf)  (3a) 

and Nt = Nt-1+CFt-1/Pt-1.   (3b) 

The observed excess return with flows is denoted by rt
0:  

rt
0 = (Pt - Pt-1)/Pt-1 - Rf  (3c) 

Through the detailed derivation given in appendix A2, it can be shown that rt
0 differs 

from rt
*:  
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rt
0 = rt

* / (1 + ft-1)   (3d) 

 

D. The system 

The system is formulated using the following equations derived from equations 

(1a), (1b), (2d), (2e), and (3d), which define the model. The details are given in appendix 

A3.  

E[ rt
o (1+ft-1)] =  μp   (4a) 

Cov[rt
o (1+ft-1),  rm,t ] = (1- η)  Cov(r,rm)  (4b) 

Cov[rt
o (1+ft-1),  rm,t-1 ] = η  Cov(r,rm)   (4c) 

Var[rt
o (1+ft-1])] = [η2 + (1- η)2] σp

2 (4d) 

E(ft) = c  (4e) 

Cov(ft-1,  ft ) = - η2/ λ2(1-η)4σp
2  (4f) 

Combining these equations with  E(rm) = μm  (4g)  

Var(rm) = σm  (4h) 

produces a system with eight parameters [μm, σm
2, μp, Cov(r,rm), σp

2, η, c, λ], by which 

fund performance can be estimated.  

 

E.  Components of performance and biases 

 In this paper, the true alpha or true performance is defined as the alpha estimated 

with true returns. The true alpha from the above model is 

 α = E(rt) - Cov( rt, rm,t) µm/σm  (5a) 

which measures the “true” picking ability of fund managers without influences of stale 

pricing and arbitrage timings. 
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In contrast, the observed alpha or observed performance is defined as the alpha 

estimated by treating the observed returns as the true returns: αo = E(rt
o) - Cov( rt

o,rm,t) 

µm/σm
2. Using equations (1a), (1b), (2d), and (3d), it can then be shown that E(rt

o) = [μp - 

cov(ft-1, rt
o)]/(1+c) and Cov(rt

o,rm,t) = [(1- η) Cov(r,rm)– Cov(rt
o rm,t,  ft-1)+ cov(ft-1, rt

o) 

µm]/(1+c). Again, the detailed derivation is included in appendix A4. Therefore, the 

observed alpha equals 

αo =[μp - cov(ft-1, rt
o)]/(1+c)  

 –{[(1- η)Cov(r,rm) – Cov(rt
o rm,t,  ft-1) +cov(ft-1, rt

o ) µm]/(1+c)} µm/σm
2 (5b) 

In an ideal situation, one in which there is neither stale pricing nor flows—that is, η=0, 

c=0, and cov(ft-1, rt
o)=0, Cov(rt

o rm,t,  ft-1)=0—the observed performance is a consistent 

estimator of the true performance; that is, αo = α.  

When there is stale pricing but zero flows—that is, c=0 and ft-1=0— the observed 

alpha becomes α’ =μp - (1- η)Cov(r,rm) µm/σm
2 . The difference between α’ and α is the 

spurious bias due to stale pricing.  

Δα1  =  η Cov(r,rm) µm/σm
2  (6a) 

When there are long-term flows but no arbitrage flows—that is, c is nonzero but 

cov(ft-1, rt
o)=0 and Cov(rt

o rm,t,  ft-1)=0—the observed alpha becomes α” = (1/1+c) [μp - 

(1- η)Cov(r, rm) µm/σm
2]. The difference between α” and α’ is the dilution effect of the 

long-term flows.  

Δα2 = (-c/1+c) [μp – (1- η) Cov(r,rm)  µm/σm
2]  (6b)  

If c is completely predictable, fund managers can avoid this dilution through certain cash 

budget arrangements; however, as shown by Edelen (1999), the unexpected flows will 

dilute fund performance.  Specifically, when c is zero, this bias is zero. 
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Finally, if there are arbitrage flows responding to the expected short-lived returns 

and correlated with fund returns—that is, cov(ft-1, rt
o) and cov(rt

o rm,t,  ft-1)  are nonzero—

the observed alpha now becomes (5b). The difference between αo  and α” is the dilution 

effect of the arbitrage flows.  

Δα3  = - [1/(1+c)] { cov(ft-1, rt
o) –[Cov(rt

o  rm,t,  ft-1 )- cov(ft-1, rt
o ) µm]  µm/m

2} (6c) 

The higher the correlation between arbitrage flows and fund returns, the larger the bias 

(downward). Flows also reduce performance through a decrease in the portfolio beta—

that is, Cov(rt
o  rm,t,  ft-1 ) < 0. 

  The relation among observed performance, true performance, and these biases is 

αo = α + Δα1 + Δα2 + Δα3, where αo is the observed performance; α, the true 

performance; Δα1, the spurious bias; Δα2, the dilution of long-term flows; and Δα3, the 

dilution of arbitrage flows. 

 

II. Data 

Both Lipper and Trimtab currently have datasets that claim to record daily fund 

flows. However, it is widely recognized that, whereas daily flow data should give a time 

series of daily mutual fund TNAs from which daily flows or the exact flows on a certain 

day can be computed; in fact, mutual funds have no accurate day-end TNA figure 

because they do not know how much flow has been received on the current day. 

Therefore, some funds report TNA on day t including the current day’s flows, some 

report it excluding day t flows, and some report a mixture that includes part but not all of 

day t flows.  In addition, funds may report one way one day and another, the next.  In 

other words, as argued by Edelen and Warner (2001) and Greene and Hodges (2002), true 
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daily flows may sometimes be lagged by one day, without it being clear when or for 

which funds. Furthermore, there is no way to check the daily data against another source 

because all fund databases suffer from this problem.  The SEC’s NSARs are required to 

include the current day’s flow in day t TNA, but because they aggregate all share classes, 

this also cannot be merged with the other data. As a result, it is currently unfeasible to 

calculate the true day-by-day flows.   

A second possibility is monthly return and flow data. In practice, all flows could 

be invested the next day, meaning that the actual amount that dilutes the monthly return is 

the aggregation of the dilution of days within the month. Modifying the monthly flow to a 

daily average flow for the month enables application of equation (3d) and gives a dilution 

measure of the monthly returns (see appendix A5 for details of this aggregation). 

Furthermore, monthly returns are favorable in the application of performance evaluation 

models. 

Funds without monthly return and TNA are therefore excluded from the dataset, 

producing a final sample of 7,246 funds (including different classes) from the CRSP 

Mutual Fund Database from January 1961 to December 2004.  These funds are then 

sorted based on their objective codes and claimed investment strategy into the following 

eight style groups: small company growth, other aggressive growth, maximum capital 

gain, growth funds, income funds, growth and income, sector funds, and timing funds.3  

(Insert table I here.)  

                                                 
3 Denoting the objective codes from Wiesenberger as OBJ, those from ICDI as ICDI, and those from Strategic 
Insight as SI, the styles are classified as following:  small company growth funds = OBJ SCG or SI SCG; other 
aggressive growth funds = OBJ AGG, ICDI AG or AGG, or SI AGG; growth funds = OBJ G, G-S, S-G, GRO 
or LTG or ICDI LG or GRO; income funds = OBJ I, I-S, IEQ, or ING or ICDI IN or ING; growth and income 
funds = OBJ GCI, G-I, G-I-S, G-S-I, I-G, I-G-S, I-S-G, S-G-I, S-I-G, or GRI or ICDI GI or GRI; maximum 
capital gains funds = OBJ MCG; sector funds = OBJ ENR, FIN, HLT, TCH, or UTL or ICDI SF, UT, ENV, 
FIN, HLT, TEC, UTI, RLE, NTR, or SEC; and timing funds = OBJ BAL, ICDI BL, or SI BAL.  
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Panel A of table I summarizes the fund returns by style group. During the 1961–

2004 period, the maximum capital gain funds show the highest mean in returns (1.28% 

per month), while the timing funds show the lowest mean in returns (0.76% per month). 

Fund flow, computed using fund TNA and returns, is the percentage change of total net 

assets after fund returns are controlled for: 

Flowi,t =(TNAi,t-TNAi,t-1*(1+Ri,t))/TNAi,t-1 (7) 

Panel B of table I summarizes fund flow observation. The flow observations start in year 

1991 because the database does not report monthly TNA until 1991. In addition, because 

of investment code changes, the maximum capital gain funds (MCG) category ceases to 

exist after 1992, hence the MCGs have only one year of flow observations. Among the 

other styles, the small company growth group (SCG) exhibits more flows than any other 

group (1.17% of monthly TNA), while the growth and income group exhibits the least 

(0.16% of monthly TNA). Fund flows are persistent with a first-order autocorrelation 

around 0.5. 

The analysis in Section IV compares the proposed performance evaluation model 

with traditional models using the following 11 economy instruments as conditional 

variables (Ferson and Schadt 1996): short-term interest rate, term structure slope, term 

structure concavity, interest rate volatility, stick market volatility, credit spread, dividend 

yield, inflation, industrial output growth, short-term corporate illiquidity, and stock 

market liquidity.4 The returns of the following eight asset classes are also used to 

                                                 
4 These variables take the same definitions as in Ferson and Qian (2004). The short-term interest rate = the 
bid yield to maturity on a 90-day treasury bill; term structure slope = the difference between and five-year 
and a three-month discount treasury yield; term structure concavity = y3 - (y1 + y5)/2, where yj is the j-year 
fixed maturity yield from the Federal Reserve; interest rate volatility = the monthly standard deviation of 
three-month treasury rates, computed from the days within the month. Stock market volatility = the 
monthly standard deviation of daily returns for the Standard and Poor’s 500 index within the month;  
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construct style index returns (Sharpe 1988, 1992):5 a 90-day treasury bill, a one-year 

treasury bond, a 10-year treasury bond, a BAA corporate bond, a broad equity index, 

value stocks, growth stocks, and small-cap stocks. Added to these are the four factors by 

of Carhart (1997) and the liquidity factor of Pastor Stambaugh (2003). All data on these 

variables are obtained from the WRDS. 

 

III. Empirical results 

Overall, the empirical results indicate that the dilution effect is large, but the 

statistical bias due to stale pricing is small, and the true performance is free of biases due 

to stale pricing.  

 
A. Moment conditions and estimations 

The system (4a)–(4h) can be written into the following moment conditions for 

model estimation: 

g1t = rt
o  (1+ft-1) - μp         (8a) 

g2t = [rt
o  (1+ft-1) - μp]’ ( rm,t - µm )- (1- η) Cov(r,rm)    (8b) 

 g3t = [rt
o  (1+ft-1) - μp]’ ( rm,t-1 - µm )- η Cov(r,rm)     (8c)  

g4t = [rt
o  (1+ft-1) - μp]’  [rt

o * (1+ft-1) - μp] – [η2 + (1- η)2] σp
2   (8d) 

g5t =  ft-1 – c         (8e) 

g6t = (ft-1-c)’ (ft-c) – (-η2)/ λ2(1-η)4σp
2      (8f) 

                                                                                                                                                 
dividend yield = the annual dividend yield of the CRSP value-weighted stock index; inflation = the 
percentage change in the consumer price index, CPI-U;  industrial production growth = the monthly 
growth rate of the seasonally adjusted industrial production index;  short-term corporate illiquidity = the 
percentage spread of three-month high-grade commercial paper rates over three-month treasury rates; and 
stock market liquidity = the liquidity measure from Lubos and Stambaugh (2003), based on price 
reversals. 
5 The style-matched benchmark portfolio is a weighted average return of the eight asset classes obtained by 
minimizing the tracking error between the fund returns (for all the funds of the same style) and the style 
benchmark. 
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g7t =rm,t - μm         (8g) 

g8t = (rm,t - μm)’ (rm,t - μm) - σm
2      (8h) 

There are eight moment conditions and eight parameters [μm, σm
2, μp, Cov(r,rm), σp

2, η, c, 

λ] and the system is exactly identified. Estimation is conducted not only for style groups 

with average monthly style group flows and returns but also for individual funds with 

monthly fund flows and returns. The true alpha in equation (5a), the observed alpha in 

equation (5b), the statistical bias in equation (6a), and the dilution effects of long-term 

and short-term flows in equations (6b) and (6c) are all estimated.  

 

B. Results for the style groups and individual funds 

(Insert table II here.) 

Table II presents the estimation results by style groups for the style-group 

portfolios. Panel A presents the estimated parameters and their t-statistics; panel B 

presents the estimated alpha and beta and the biases. Here, the true alpha is on average 

positive but not significant. The spurious bias is small for the style portfolios, but the 

dilution effects of flows are significant. For example, the dilution effect for short-term 

flows is 38 basis points for small company growth funds, 18 for other aggressive growth, 

and 40 for sector funds.   

(Insert figure A here.) 

The model is also estimated for each individual fund. Figure A plots the empirical 

distributions of the t-statistics of the true alphas and the bias components for individual 

funds by style group.6 According to these distributions, fund managers generally have no 

                                                 
6 The maximum capital gain (MCG) group is not presented for the individual fund-level results because the 
number of funds with a sufficient monthly flow observation is small for this group.  



 16

picking ability, and there is little spurious bias or dilution effects of long-term flows; 

however, the dilution effect due to short-term flows is significant and widespread. 

Moreover, not surprisingly, the dilutions, while mostly negative, are positive for some 

funds. This positivity may result, at least partly, from a net outflow causing the cash 

balance to shift downward or, in a downturn market, from the higher cash balance 

making the return look better. 

 

C. Relations between stale pricing and biases, dilutions, and true alpha 

(Insert table III here.) 

Table III summarizes the fund-level estimated true alpha and biases by fund style 

and by the extent of stale pricing. Panel A presents the means of the estimated true alphas 

within each style group, while panel B presents the means of the estimated true alphas 

with the funds sorted into five quintiles according to stale pricing. The estimated true 

alpha and the dilution effect of long-term flows do not differ significantly across groups; 

however, the statistical bias is significantly larger in the top quintile than in the bottom 

quintile. Additionally, the dilution effect of arbitrage flows is larger (in a negative 

direction) in the top quintile than in other quintiles. Since the magnitude of the dilution 

effect is larger than that of the spurious bias, the observed alpha is therefore smaller in 

the top quintile. These results are consistent with the theoretical derivations that the 

statistical bias is linearly and positively related with stale pricing, whereas the dilution 

effect of arbitrage flows is linearly and negatively related with stale pricing. Most 

importantly, the true alpha is independent of stale pricing and flows. 

 
IV. Comparison: Traditional performance measures and stale pricing 
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Now it has been shown that the alpha estimated with the proposed model is free 

of the bias caused by stale pricing, this section compares the proposed model with 

traditional models.  The results suggest that the cross-sectional differences in 

conventional alphas are largely explained by stale pricing even after various fund 

characteristics have been controlled for.  

 

A. Measures of performance and stale pricing 

Fund performance is compared using six conventional alphas estimated by the 

following equations: 

ri,t = αi +βi rm,t  + εi,t  (9a) 

ri,t = αi +βi rs,t +εi,t  (9b) 

ri,t = αi + βi rm,t+ ci rm,t, Zt-1+ εi,t  (9c) 

ri,t = αi + βi rs,t + ci rs,t, Zt-1+  εi,t  (9d) 

ri,t = αi + βi rm,t+ ci HML t + di BMS t + ei MOM t + εi,t  (9e) 

ri,t = αi + βi rs,t + ci PREMLIQt +  εi,t  (9f) 

where ri,t  is fund i’s return in period t, rm,t  is the market return, rs,t  is the style benchmark 

return, and Zt-1 is the lagged economic instruments. In all, the analysis uses 11 

instruments. The first four estimated alphas are Jensen’s (1968) alpha and the conditional 

alpha of Ferson and Schadt (1996) estimated with a market benchmark and style 

benchmarks.7 The fifth controls for Carhart’s (1997) four factors, and the last for Pastor 

and Stambaugh’s (1999) liquidity factor.  

                                                 
7 Tables on the style benchmark weights and returns are available from the author upon request.  
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 Four measures of stale pricing are also used. The first, introduced by Lo and 

MacKinlay (1990), is designed for a nontrading scenario:  

π = -Cov(rt
o, rt+1

o) / μi
 2;  if  Cov(rt

o, rt+1 
o) < 0, otherwise 0  (10a) 

where rt
o is the observed returns. The true return follows a one factor linear model in 

which  μi is the mean of the true return. In each period, security i has πi, the probability of 

nontrading; the larger the π, the staler the price. The detailed derivations of this measure 

are presented in appendix A6. 

 The second measure, the smooth index (Getmansky, Lo, and Makorov 2004), is 

derived for thin trading scenarios in which trades are not deep enough to absorb all 

information: 

ξ = Σθj
2 ; where rt

o = Σθjrt-j
o; Σθj= 1; θj є[0,1]; j=1, 2, - - k (10b) 

where rt
o is again the observed returns, and the true return follows a one factor linear 

model. It is then easy to show 1/(1+k) ≤  ξ ≤  1. The wider the distribution of θj, the 

smaller the ξ; the more concentrated the θj, the larger the ξ. Indeed, Getmansky, Lo, and 

Makorov (2004) show that smoothing increases the Sharpe ratio of the observed returns 

of hedge funds. The detailed derivations of this measure are given in appendix A7.   

In addition to π and ξ, stale pricing can also be measured by the covariance beta 

of fund returns and lagged market returns or the autocovariance beta of fund returns:   

Beta(rt, rm,t-1) = Cov(rt, rm,t-1)/ Var(rm)  (10c) 

Beta(rt, rt-1) = Cov(rt, rt-1)/ Var(r) (10d) 

where r is fund returns, rt is fund return in period t, rm is market return, and rm,t-1 is 

market return in period t-1.  

(Insert table IV-a and table IV-b here.) 
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Table IV-a summarizes the estimated stale pricing by fund style. Less than half 

the funds display nontrading properties. Among the funds with π  > 0, the probability of 

nontrading is as high as 0.5. The minimum smoothing index ξ is 0.17 for all style groups, 

implying that the return can smooth up to five periods, K = 5. The average smoothing 

index ξ is about 0.5, implying that prices on average smooth back only one period, K = 1. 

Table IV-b presents the joint probability of a fund presenting stale pricing in period t and 

t + τ, τ = 1,2, - - 5 (which is similar to Makorov chains), with each block in the table 

sums up to one. It is shown that he sum of the diagonal in every block is larger than the 

sum of the off-diagonal, even when τ > 2. These results imply that stale pricing is 

widespread and persistent in the mutual fund industry. 

 

B. Explanatory and predictive relations  

In a two-step process, the first step estimates each fund’s α, π, and ξ with a rolling 

window of three years (36 months). Each rolling moves observations one year (12 

months) forward. The second step then applies both the pooled panel regression and the 

Fama-MacBeth method to examine the cross-sectional relation between performance, the 

dependent variable, and stale pricing, an explanatory variable. The controlling variables 

include log(TNA), expense ratio, age, portfolio turnover, income distributed, capital 

gains distributed, net flows, total loads, and the fund style. Particularly, since fund loads 

can impede opportunistic trading by imposing high transaction costs, an interactive 

variable of total loads and stale pricing is also included in the panel regression. All 

explanatory variables are studentized, and fund styles are controlled for with dummies. 

(Insert table V here.) 
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Table V summarizes the regression results of all six measures of performance and 

four measures of stale pricing  The three panels in the table present respectively the 

coefficients on stale pricing (panel A), fund loads (panel B), and their interactive 

variables (panel C). Coefficients between fund performance and other fund 

characteristics are not shown here. The coefficients in each column and at corresponding 

row of each panel are from an independent regression, concerning one measure of 

performance and one measure of stale pricing. As panel A illustrates, each one standard 

deviation increase in Beta(rt, rt-1) can decrease alpha by 1.24%. Yet, as panel B 

illustrates, loads alone explain little cross sectional difference in fund performance. On 

the other hand, the coefficients on the interaction terms are positive and significant, 

implying that high loads reduce the dilution of returns in funds with stale pricing.  

(Insert table VI here.) 

In the Fama-MacBeth approach, the standard errors of the coefficients are 

adjusted8 for an MA(2) process, which the estimated coefficient follows because of the 

rolling window approach. The Fama-MacBeth mean and t-statistics of the coefficients on 

stale pricing, as well as coefficients on other fund characteristics, are presented in table 

VI, with each panel concerning one measure of stale pricing. The results indicate that 

each one standard deviation increase in π is associated with a 0.22%–0.51% decrease in 

alpha, while each one standard deviation increase in ξ is associated with a decrease of 

0.29%–0.39% in alpha. All coefficients on staleness measures are significant at the 1% 

level.   

(Insert table VII here.) 
                                                 
8 Because the alpha and stale pricing are estimated using a three-year rolling window, the estimation of γ1 
follows an MA(2) process; therefore, Newey and West’s (1987) approach is used to estimate σ(γ1):  σ(γ1) 
={(1/T)*[Σ t=1:T gtgt + (4/3)Σt=2:T gtgt-1 + (2/3) Σt=3:T gtgt-2]}1/2 , where gt= γ1t - Mean(γ1). 
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If the persistence property is considered, stale pricing may also predict funds’ 

future performance. Therefore, table VII presents the Fama-Macbeth coefficients and t-

statistics between fund performance and stale pricing lagged by 36 months. It is shown 

that even though the coefficients are positive and significant, compared to those in table 

V and table VI, the magnitude of the predictive relation in table VII is smaller and of less 

significance.  

 
 

V. Robustness 

A. Errors in variables  

As shown in the previous section, stale pricing explains cross sectional 

differences in conventionally measured performance. The procedure for estimating the 

relation consists of two stages: estimation of both performance and stale pricing for each 

fund with time series data and regression of the estimators from the first stage on each 

other cross sectionally. As a result, the second stage cross sectional regression is likely to 

suffer an errors-in-variables problem. This section addresses this issue by calculating the 

bias caused by errors-in-variables problem and shows that the magnitude of the bias does 

not dramatically influence the results given in the previous section.  

Whereas appendix A.8 provides a full outline of the problem and its solution, the 

two biases involved can be summarized as follows. The first is the attenuation bias, A = 

Var (a2 ) / [Var (a2) + (x2’ x2)-1Var(ε2)], where a2  is the explanatory variable in the 

second stage and ε2 is the observation error of a2. This is the bias studied in a traditional 

errors-in-variables problem, in which only the explanatory variable is observed with an 

error. The second is the bias caused by the correlated errors in the dependent and 
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explanatory variables, Φ = (x1’ x1)-1 (x1’ x2 )(x2’ x2)-1 Cov (ε1 , ε2 ) / [Var (a2) + (x2’ x2)-

1Var(ε2)], where x1 and  x2 are explanatory variables in the first stage regressions, in 

which a1 and a2 are estimated. a1 is the dependent variable in the second stage with ε1 as 

its observation error. The problem now becomes the calculation of A and Φ, whose 

values are determined by Cov (ε1 , ε2 ) and Var(ε2).  

To estimate the cross sectional variance and covariance of ε1 and ε2, the equations 

in the first stage must be regressed simultaneously for all the funds. However, this 

procedure is plausible only if the number of funds in the cross section is smaller than the 

number of periods in the time series. Assuming Cov (ε1 , ε2 ) and Var(ε2) to be the same 

for all funds within the same style group, makes it possible to randomly choose one fund 

from each style to form a 16 equation system and compute A and Φ. This procedure is 

repeated 10 times, each time with eight funds randomly redrawn (see table VIII for the 10 

pairs A and Φ). As the table shows, the attenuation bias A ranges from 0.888 to 0.997, 

while the bias caused by correlated errors is smaller than 0.00477. The last column 

illustrates the implied relation between performance and stale pricing, or say the true 

coefficient g, if the estimated coefficient ĝ is 40 basis points in the second stage, where ĝ 

= g A + Φ. According to this estimation, the overall bias due to the errors-in-variable is 

minimal in 9 out of 10 cases. Therefore, it is safe to conclude that the relation between 

performance and stale pricing estimated in the previous section is robust.  

(Insert table VIII here.) 

 

B. Two-stage approach with the proposed measure of performance  
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As shown in section III, the true performance derived from the proposed model is 

free of biases from stale pricing when the model estimates performance and stale pricing 

simultaneously. In contrast, as illustrated in section IV, performance measures produced 

by traditional models are affected by stale pricing, but with performance and stale pricing 

estimated separately. Therefore, another test of robustness is to check whether or not the 

true alpha from the proposed model is correlated with stale pricing as estimated in section 

IV. As is apparent from the results presented in table XI true alpha estimated using the 

proposed model is also free of the stale pricing bias when the two-stage approach is used.  

(Insert table IX here.) 

 

C. Staleness in the indices 

The estimation with the proposed model uses the S&P 500 index returns as 

benchmark returns, a favorable choice given that other benchmark returns, even style 

indices, can be stale. This assumption can be tested with a simplified version of the 

model that uses zero flows. The application of the simplified model to 12 portfolios—

NYSE, AMEX, NASDAQ equally weighted indices, value, growth, small stock indices 

and the six Fama-French portfolios—shows that most of these portfolios are stale relative 

to the S&P 500 index.9  

 

VI. Conclusion 
  

Stale pricing is prevalent in the mutual fund industry and impacts fund 

performance through two channels: a statistical bias and an arbitrage dilution. This paper 

introduces a model of performance evaluation that accounts for the stale prices and 
                                                 
9 Results are available from the author on request. 
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endogenous fund flows. Specifically, it differentiates true performance from observed 

performance and attributes the difference to these two effects. Compared to the true 

alpha, the observed alpha has a positive spurious bias that is small, but a negative dilution 

bias that is large and significant. Such decomposition is particularly interesting for 

performance attribution studies and applications. The structure of the proposed model 

also allows extension to time-variant stale pricing or to evaluate fund managers’ timing 

ability. 

A comparative component of the analysis shows that fund performance evaluated 

with conventional methods is negatively associated with stale pricing, which suggests 

that reducing stale pricing through fair-value pricing to impede arbitrages may not only 

protect long-term investors but also benefit portfolio managers directly. 
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Appendix: 

 
A1: Decision of the timer and flows into the fund 

 A timer is a utility optimizer with a choice between cash and fund shares: 

U(x) =E{U( [xRp+(1-x)Rf] - [hRp+(1-h)Rf]) |It-1
o)     (A1.1) 

where x is the weight on fund shares in period t, and h is an exogenous benchmark 

preference parameter, Rp is the return of fund shares, and Rf is the return of cash. It-1
o 

includes all the information on fund returns observed in the past {rt-1
o, rt-2

o, - - - r1
o}. 

By setting the first-order condition of the utility function to zero, it can be 

simplified using Rubinstein’s (1973) lemma: 

(x-h)  = γ-1 E(rp| It-1
o) / Var(rp| It-1

o)  (A1.2)  

where γ is the risk aversion parameter and rp is the excess return Rp-Rf. This calculation 

then gives the optimal weight: 

x = γ-1 E(rp| It-1
o) / Var(rp| It-1

o) + h  (A1.3) 

From equations (1a) and (1b),  the following can be derived: 

E(rt*| It-1
o) =E[ ηrt-1+(1- η)rt| It-1

o]= η rt-1 + (1- η) μ (A1.4) 

Var(rt*| It-1
o) = var[ ηrt-1+(1- η)rt| It-1

o]=  (1-η) 2σ2 (A1.5) 

where rt-1
o is the observed return, rt-1

 is the true return, and rt* is the return with zero 

flows. μ and σ2 are the mean and variance of the true return, respectively, and η is the 

stale pricing parameter. The derivation of the conditional mean of rt* is based on the 

assumption that timers will know rt-1 once they have observed rt-1
o. This assumption is 

reasonable because timers can infer the parameter of stale pricing η given It-1
o. For 

simplicity, it is also assumed that timers do not consider their own flow’s impact on the 

realized return.  

Substituting (A1.4) and (A1.5) into (A1.3), the timer’s position in fund shares 

becomes    
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x = [η rt-1 + (1- η) μ ] / γ (1-η)2 σ2 + h (A1.6) 

Therefore, the position change at the end of time t-1 is  

 Δx = η  (rt-1 -rt-2) / γ (1-η)2 σ2   (A1.7) 

Denoting the timer’s total assets as M, the arbitrage flow to the fund in time t is 

therefore 

M Δx / TNA=M η  (rt-1 -rt-2) / γ TNA (1-η)2  (A1.8) 

Denoting λ= γ TNA / M and the long term flow component as a fraction of assets 

by C then yields the fund flows at the end of period t-1: 

 ft-1 = Ct-1 + η (rt-1-rt-2) / λ (1-η)2 σ2      (A1.9) 
 
 
 
 
 
A2: Dilution impact of fund flows 

Denoting the observed excess return of NAV with zero flows by rt* and the 

observed excess fund’s NAV with flows by rt
0, 

 rt
0 = (Pt – Pt-1)/Pt-1 -Rf, (A2.1) 

where Pt is the observed price of the fund shares. Denoting the number of fund shares by 

Nt, 

Pt = TNAt/Nt  (A2.2) 

The essential problem of dilution comes from the investment time lag of the new money 

flows. That is, trading of shares is transacted at the NAV price at the end of the day, but 

the new money cannot be invested until the next day. Therefore,  

Nt = Nt-1+ CFt-1/ Pt-1  (A2.3) 

TNAt =TNAt-1 (1+Rt*)+CFt-1(1+ Rf) (A2.4) 
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where Rt* is the total return of the fund, the sum of the risk free rate and the fund’s 

excess return rt* .  CFt-1, which is the amount of the money flow at the end of t-1, can 

also be denoted as a percentage of the total assets, ft-1:   

ft-1= CFt-1 /( Nt-1 Pt-1)  (A2.5) 

Therefore, 

rt
0  = (Pt – Pt-1)/Pt-1 -Rf = (TNAt/Nt)/Pt-1-1 -Rf 

= [Nt-1 Pt-1 (1+rt*+ Rf)+CFt-1(1+ Rf)] /[Nt-1 Pt-1+ CFt-1]-1-Rf 

=[1 + rt* + Rf + ft-1(1+ Rf)]/(1+ ft-1) –1-Rf 

= rt
* / (1 + ft-1)  (A2.6)  

which is equation (8) in the paper. 

 

 

A3: System of the model. 

The model consists of the following:  

rt = α + β rmt + εt (1a) 

rt
* = η rt-1+(1- η) rt  (1b) 

ft-1 = Ct-1 + η (rt-1-rt-2) / λ(1-η)2σ2  (2d)  

Ct-1  ~ N(c, σc)  (2e) 

rt
0 = rt

* / (1 + ft-1)  (3d) 

Where rt denotes the true excess return of the portfolio, and rmt the excess market return.  

Both rt and rmt are i.i.d, and the error term εt is independent of rmt.  ri,t
* is the observed 

excess return of the portfolio with zero flows, η is the weight on the lagged true return, 

and Ct-1 is the long-term flows that occur at the end of period t-1. Furthermore, Ct-1 is 
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independent of rt-1 and follows an N(c, σc), i.i.d distribution. Finally, λ accounts for the 

risk aversion γ and the relative size of the timer’s assets to the fund’s TNA. 

 

Equation (4a) can then be obtained as follows:  

Equation (3d)    rt
* = rt

o (1+ft-1))  (A3.1) 

Equation (1b)     E(rt
*)=E[ η rt-1

 + (1- η) rt ] = μp  (A3.2)  

where μp is the mean of the funds’ true returns, μp = E(rt) 

Therefore,  E( rt
o (1+ft-1)) = μp   (A3.3) 

Similarly, equation (4b) can be obtained by  

Cov(rt
o (1+ft-1),  rm,t ) = Cov(rt

*, rm,t) = Cov(η rt-1
 + (1- η) rt, rm,t)  

=  (1- η)  Cov(r,rm)     (A3.4) 

equation (4c) by  

 Cov(rt
o (1+ft-1),  rm,t-1 ) = Cov(rt

*, rm,t-1) = Cov(η rt-1
 + (1- η) rt , rm,t) 

 = η  Cov(r,rm)  (A3.5)  

and equation (4d) by  

 Var[rt
o (1+ft-1]) - μp] = Var(rt

*) = Var(η rt-1
 + (1- η) rt )  

= [η2 + (1- η)2] σp
2  (A3.6)  

where σp
2 = Var(r). 

Equation (4e) is derived directly from equation (2e). 

Finally, equation (4f) is obtained as follows: 

Cov(ft-1,  ft ) =Cov(Ct-1 + η(rt-1-rt-2) / λ(1-η)2σ2, Ct + η (rt-rt-1) / λ(1-η)2σ2) 

=Cov(rt-1-rt-2, rt-1-rt-2 ) [η / λ(1-η)2σ2]2 

= - η2/ λ2(1-η)4σp
2      (A3.7) 
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A4: Derivation of the observed alpha and components of the biases 

 The main elements are E(rt
o) and Cov(rt

o,rm,t) 

Since  E( rt
o (1+ft-1)) =  μp   (A3.3) 

and E( rt
o (1+ft-1)) =  Cov(rt

o, ft-1)- E( rt
o)(1+c) (A4.1)  

 then  E(rt
o) = [μp - cov(ft-1, rt

o)]/(1+c)  (A4.2) 

 

Since Cov(rt
o (1+ft-1),  rm,t ) =  (1- η)  Cov(r,rm)  (A3.4) 

and Cov(rt
o (1+ft-1),  rm,t ) = E( rt

o (1+ft-1 )rm,t) - E( rt
o (1+ft-1)) E(rm,t )  

= Cov(rt
o rm,t, ft-1) + E(rt

o, rm,t)E(1+ft-1) - E( rt
o (1+ft-1)) E(rm,t ) 

= Cov(rt
orm,t, ft-1)+(1+c)[Cov(rt

o, rm,t)+E(rt
o) E(rm,t )]-E( rt

o(1+ft-1)) E(rm,t ) 

= Cov(rt
orm,t, ft-1)+(1+c)Cov(rt

o, rm,t) - E(rm,t )Cov(ft-1, rt
o) (A4.3) 

It should be noted that the last step uses (A4.2) and (A3.3); therefore,   

 Cov(rt
o,  rm,t ) = [(1- η) Cov(r,rm) – Cov(rt

o  rm,t,  ft-1) + cov(ft-1, rt
o) um]/(1+c)  (A4.5) 

 

As a result, the measured performance is αo = E(rt
o) - Cov(r rt

o,rm,t) um/σm
2  

= E(rt)  - cov(ft-1, rt
o)]/(1+c) 

–[(1- η)Cov(r,rm) – Cov(rt
o rm,t,  ft-1) +cov(ft-1, rt

o )um]/(1+c) ] um/σm
2  

= E(rt) - Cov(rt
 ,rm,t) um/σm

2 (α)  

+  η Cov(r,rm) um/σm
2 (Δα1) 

+  (-c/1+c) [μp – (1- η) Cov(r,rm)  um/σm
2]  (Δα2)   

+ [-1/(1+c)] { cov(ft-1, rt
o) –[Cov(rt

o  rm,t,  ft-1)- cov(ft-1, rt
o ) um]  um/m

2} (Δα3)  
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A5. The aggregation of daily dilution to monthly dilution 
 

Supposing that there are D days in each month and for each day d within the 

month, the following is derived: 

rd
o = rd

*/(1+fd) (3d) 
 
where rd

o  is the observed excess return of the fund, rd
* is the would-be excess return of 

the fund with zero flows, and fd is the net flow as a percentage of the TNA. The daily 

dilution in the return is 

rd
* -  rd

o = rd
o * fd (A5.1) 

Denoting the observed excess return for the month as rp
o,  the excess return 

without flows as rp
* , and the flow of the month fp, the monthly dilution is then 

rp
* - rp

o =   ∑ rd
* - ∑ rd

o 

= ∑ rd
o* fd 

= (rp
o * fp )* ∑ (rd

o / rp
o) *( fd/ fp) (A5.2) 

= rp
o *  fp /D  (A5.3) 

A rigorous approach of the iterating from (A5.2) to (A5.3), requires to expand all the 

terms at the daily level and it can be shown that the difference between rp
* - rp

o and       

rp
o *  fp /D has an order of magnitude smaller than rd

2*fd
2. The details of expansion are 

available upon request. A sloppy approach is as the follows. Since 

 plim(rd
* / rp

*) =1/D (A5.4) 

then  

∑ plim (rd
o/ rp

o)* ( fd/ fp) 

=∑plim((rd
* / rp

*)(1+fp)/(1+fd)* ( fd/ fp)  

= 1 /D          (A5.5) 
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A6: Model of stale pricing—nontrading. 

Following Lo and MaKinlay (1990), the true return of security i is assumed to 

follow a one-factor model:  Ri,t = μi+βift+εi,t; E(ft)=E(εi,t)= E(ft εi,t) =0, where ft, εi,t are 

both  i.i.d. In each period t, security i may not trade with probability πi. If it does, its 

observed return for period t is 0, although its true return is Ri,t.  If security i trades at time 

t+1 and t-k -1 but does not trade from time t - k to t, then its observed time t+1 return is 

assumed to be the sum of its true returns from t-k to t+1. This model captures the 

essential feature of nontrading as a source of spurious autocorrelation: news affects those 

stocks that trade more frequently first and influences the returns of thinly traded 

securities with a lag. An explicit expression for the observed returns process is derived 

and its time series properties deduced using two related stochastic processes. 

Defining δit and Xit(k) as the following Bernoulli random variables, 

δit is an indicator of trading in period t:  

δit  = 1 with probability1- πi (A6.1) 

  = 0 with probability πi 

while Xit(k) indicates trading in period t after not having traded in the past K periods:  

Xit(k):  δit(1- δit-1 )(1-δit-2)  - - -(1- δit-k ) k > 0, 

= 1 with probability (1- πi) πi
k 

= 0 with probability 1- (1- πi) πi
k 

Xit(0) = δit  (A6.2) 

It should be noted that δit is implicitly assumed to be an independently and identically 

distributed random sequence for i = l, 2, . . . , N. 

The observed return process Rit
o is given by the following stochastic process:  
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Rit
o = Σ k=0

∞ Xit(k) Rit-k ,  i = 1, . . . , Ν  (A6.3) 

whose moments and comoments can be derived from the definition of Xit(k): 

E [Xit(k)] = (1- πi) πi
k,         (A6.4) 

For arbitrary i, t, and k, 

Xit(k) Xit+n(l)  =    δit(1- δit-1 )- - -(1- δit-k) δit+n (1-δit+n-1 )- - -(1- δit+n-l) (A6.5) 

If 1 > n, E [Xit(k) Xit+n(l)] = 0, since both (1 – δit) and δit are included in the product, and 

if l < n, it can be shown that the expectation reduces to (1 - πi)2 πi
k+l to yield 

E [Xit(k) Xit+n(l)]  = (1 - πi)2 πi
k+l , if l < n  

 = 0, if l >= n  (A6.6)  

Therefore, the moments of the observed return can be derived as follows: 

 E [Rit
o] = E [Σ k=0

∞ Xit(k) Rit-k] = Σ k=0
∞ E [Xit(k) Rit-k] = Σ k=0

∞ E [Xit(k)] E[Rit-k] 

= μi Σ k=0
∞(1- πi) πi

k= μi  (A6.7) 

E [Rit
o Rit+n

o]  = E [Σ k=0
∞ Xit(k) Rit-k  Σ l=0

∞ Xit+n(l) Rit+n-l] 

  = Σ k=0
∞ Σ l=0

∞ E [Xit(k) Rit-k Xit+n(l) Rit+n-l] 

  = Σ k=0
∞ Σ l=0

∞ E [Xit(k) Xit+n(l)] E [Rit-k Rit+n-l] 

  = Σ k=0
∞ Σ l=0

n-1 (1 - πi)2 πi
k+l E [Rit-k Rit+n-l] 

 = Σ k=0
∞ Σ l=0

n-1 (1 - πi)2 πi
k+l μi

2= μi
2 (1- πi

n) (A6.8) 

Cov (Rit
o Rit+n

o) = E [Rit
o Rit+n

o] - E [Rit
o ] E [Rit+n

o] 

  = - μi
2  πi

n  (A6.9) 
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A7: A model of stale pricing—smoothing index 

In the smoothing index introduced by Getmansky, Lo, and Makorov (2004) for a 

thin trading scenario, the true return is governed by a one-factor linear model: 

Rt = μ+βft+εt;  E(ft)= E(εt)=0 (A7.1)  

where ft,εt  are both i.i.d. However, the measured (observed) return is a weighted average 

of true returns in the past k periods:  

Rt
o = ΣθjRt-j;   Σθj= 1; θj є[0,1]; j=1, 2, - - k  (A7.2) 

The smoothing index is defined as the sum of the weights squared:  

ξ = Σθj
2 (A7.3)  

 

 

Smoothed prices vs. smoothed returns 

Letting pt be the natural log of the fund’s true net asset value per share (and 

assuming reinvestment of dividends), then its true return is  

rt = pt – pt-1 (A7.4) 

Due to smoothing, the measured price is  

pt
o = δt pt-1 + (1- δt)pt-1,  δt ε [0,1]   (A7.5) 

where the coefficient δt measures the extent of stale pricing during the month t. 

Therefore, the measured return on a fund is 

rt
o = δt-1rt-1 + (1-δt)rt   (A7.6) 

In a nondynamic stale pricing setting, the extent of stale pricing is assumed to be 

constant. Therefore, rt
o = δrt-1 + (1-δ)rt, which is the same as a smoothed return 

approach. 
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A8: The statistical issue of errors-in-variables 

Abstract of the issue 

The first stage consists of two time series regressions in which estimates of the 

coefficients are obtained: 

y1 = a1 x1 + ε1  (A8.1) 

y2 = a2 x2 + ε2 (A8.2) 

where Cov (xi , εj ) = 0, i, j = 1, 2. In the second stage, the estimates of a1 and a2 are 

regressed on each other in cross section, while the true model is the following:  

a1 = g a2 + ω  (A8.3) 

That is  

g = Cov (a1 , a2 ) / Var (a2 ) (A8.4) 

Assuming x1 and x2 are observed without errors, the following can be derived: 

ĝ  = Cov (â1 , â2) / Var (â2) (A8.5) 

= Cov (a1 + (x1’ x1)-1 x1 ε1 , a2 + (x2’ x2)-1 x2 ε2) / Var (a2 + (x2’ x2)-1 x2 ε2 ) 

= [Cov (a1 , a2 ) + Cov ((x1’ x1)-1 x1 ε1, (x2’ x2)-1 x2 ε2)] / [Var (a2) + Var (x2’ x2)-1 x2 ε2 )] 

= [Cov (a1 , a2 ) + (x1’ x1)-1 (x1’x2 )(x2’ x2)-1 Cov (ε1 , ε2 )] / [Var (a2) + (x2’ x2)-1Var(ε2)] 

= g A + Φ  (A8.6) 

where A = Var (a2 ) / [Var (a2) + (x2’ x2)-1Var(ε2)]  (A8.7) 

and Φ = (x1’ x1)-1 (x1’x2 )(x2’ x2)-1 Cov (ε1 , ε2 ) / [Var (a2) + (x2’ x2)-1Var(ε2)]  (A8.8) 

A is the attenuation bias in the traditional errors-in-variables problem in which only a2 is 

observed with error; Φ is the bias caused by the correlated errors in a1 and a2. The issue 

now becomes one of calculating A and Φ, whose values are determined by Cov (ε1 , ε2) 

and Var(ε2).  
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Necessary assumptions 

Estimating the cross-sectional variance and covariance of ε1 and ε2 requires that 

the equations (A8.1) and (A8.1) be regressed simultaneously for all funds. However, this 

step is plausible only if N<<T, where N denotes total number of funds in the cross section 

and T denotes the number of period in the time series.  In the sample used for this paper, 

N is over 7,000, while the maximum possible T is 360. Therefore, the cross-sectional 

relation (A8.4)–(A8.6) is assumed to be the same for all funds within the same style 

group, meaning that one fund can be selected from each group to form a system with 16 

equations. This system can be estimated using the seemingly unrelated regression method 

and calculating A and Φ. Another complication arises from the functional form of the 

first-stage equations, in which stale pricing does not take a linear form. Therefore, 

another assumption that stale fund returns follow an AR(1) process is imposed to 

simplify the form. 

Estimation 

In this paper, the two time series regressions are as follows: 

rp,t
i =   αi + βi rm,t + ε1t

i      (A8.9) 

rp,t
i =  η i rp,t-1

i + ε2t
i     (A8.10) 

Denoting Yi = [rp
i  rp

i ]’ 

Xi = [ [I  rm 0  0] [0  0 0 rp(-1)
i ] ]’ 

εi   =  [ε1
i  ε2

i  ]’ (A8.11) 

rp,t
i is fund i’s return in period t, rm,t is the market return, and rp

i  rm rp(-1)
i ε1

i, and ε2
i are 

column vectors with all time series observations of fund returns, market returns, lagged 
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fund returns, and residuals.  Stacking the eight pairs into one large system gives the 

following: 

Y = [Y1 Y2 - - - Y8]’ 

X = [ [X1 0  0  0  0  0  0  0]  [0 X2 0  0  0  0  0  0] - - - [0  0  0  0  0  0  X8] ]’ 

θ = [ α1 β1  η1 α2 β2  η2 - - -  α8 β8  η8]’ 

ε  = [ε1    ε2  - - -  ε8   ]’  (A8.12) 

Y = X θ + ε   (A8.13) 

The system (A8.13) is estimated using eight random funds, one from each style. 

Cov (e1 , e2 ) is computed to proxy for Cov (ε1 , ε2 ) and Var(e2) for Var(ε2).  Var (a2) 

equals Var (â2) - (x2’ x2)-1Var(ε2). Finally, A and Φ are computed. This procedure is 

repeated ten times, each with eight funds redrawn. The ten pairs of A and Φ are presented 

in table VIII. 
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Table I 
Summary Statistics for Monthly Returns and Flows by Fund Style 

 
This table summarizes the fund returns and flows. All funds in each fund style are grouped month by month 
to form an equally weighted portfolio whose time series of returns and flows are summarized here. Panel A 
presents the returns; panel B gives the flow summary. Returns are reported in percentage rate per month; 
fund flows are calculated as a percentage of the fund TNA. 

   
Flowi,t = (TNAi,t-TNAi,t-1*(1+Ri,t))/TNAi,t-1      (7)  

 
Panel A:  Summary of fund returns  
Fund Style Begin End Mean Min Max Std. ρ1

a 
Growth  1961 2004 0.995 -20.05 18.80 4.93 0.079 
Maximum Capital Gains 1968 1992 1.283 -15.37 12.83 4.57 -0.142 
Other 1989 2004 0.886 -18.37 18.00 5.67 0.075 
Income  1961 2004 0.866 -11.53 9.03 2.41 0.041 
Growth and Income 1961 2004 0.954 -15.75 13.52 4.09 0.028 
Sector 1988 2004 1.009 -14.35 18.35 5.21 0.007 
Small Company Growth 1989 2004 1.248 -19.53 20.19 5.47 0.083 
Timing 1961 2004 0.758 -9.01 7.68 2.6 -0.016 
Panel B: Summary of fund flows 
Growth  1991 2004 0.52 -4.34 35.23 3.18 -0.003 
Maximum Capital Gains 1991 1992 1.20 0.00 3.39 0.88 -0.098 
Other 1991 2004 0.89 -2.02 4.64 1.23 0.538 
Income  1991 2004 0.96 -13.46 64.07 4.89 0.321 
Growth and Income 1991 2004 0.16 -3.92 4.84 0.94 0.563 
Sector 1991 2004 0.67 -3.59 8.37 1.67 0.503 
Small Company Growth 1991 2004 1.17 -2.60 6.27 1.40 0.617 
Timing 1991 2004 0.73 -6.22 5.72 1.32 0.581 
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Table II 
Performance Evaluation Considering Stale Pricing and Endogenous flows—by Style Groups 

 

Panel A: Estimated parameters  
 um σm

2 μp Cov(r,rm), σp
2 η c λ  

Growth 1.87 21.04 5.89 15.76 43.70 -0.33 0.01 2264 
 (0.03) (6.12) (1.19) (4.56) (2.88) (-0.38) (0.16) (0.00) 

MCG 7.86 12.14 14.54 10.03 38.34 -0.41 0.01 1222 
 (0.18) (6.88) (3.24) (4.95) (5.75) (-0.43) (1.40) (0.00) 

Other 4.99 17.54 4.91 22.44 33.74 0.00 0.01 474 
 (0.10) (7.43) (0.85) (7.28) (67.48) (0.00) (0.67) (0.00) 

Income 3.15 21.19 3.73 5.96 8.77 -0.23 0.01 732997 
 (0.06) (6.05) (1.56) (3.90) (3.51) (-0.35) (0.19) (0.00) 

G&I 0.75 22.53 4.64 19.47 17.70 -0.00 0.00 145 
 (0.01) (6.49) (1.14) (6.69) (7.08) (-0.00) (0.20) (0.00) 

Sector 4.94 17.42 6.25 18.68 23.34 -0.00 0.01 471 
 (0.10) (7.49) (1.21) (7.00) (5.60) (-0.00) (0.30) (0.00) 

SCG 7.42 16.80 12.67 16.10 31.00 0.00 0.01 340 
 (0.15) (7.17) (2.29) (5.55) (6.20) (0.00) (0.80) (0.00) 

Timing 6.99 18.54 5.81 11.24 7.32 0.00 0.01 99 
 (0.14) (7.89) (2.24) (7.78) (8.79) (0.00) (0.44) (0.00) 

Panel B: Alpha and components of biases at portfolio level  
 α β αo Δα1 Δα2 Δα3 
Growth 4.43 0.75 3.79 -0.46 -0.02 -0.14 

 (0.05) (21.65) (0.03) (-0.01) (-2.27) (-16.44) 
MCG 7.63 0.83 4.67 -2.52 -0.06 -0.20 

 (0.02) (6.22) (0.01) (-0.01) (-1.03) (-3.98) 
Other -1.43 1.28 -1.60 0.00 0.01 -0.18 

 (-0.01) (17.88) (-0.01) (0.00) (0.47) (-7.97) 
Income 2.83 0.28 4.86 -0.20 -0.02 2.22 

 (0.08) (7.15) (0.11) (-0.01) (-1.79) (23.14) 
G&I 3.97 0.86 3.90 -0.00 -0.01 -0.06 

 (0.04) (59.43) (0.04) (-0.00) (-3.43) (-16.83) 
Sector 0.90 1.07 0.49 -0.00 -0.005 -0.40 

 (0.01) (16.84) (0.00) (-0.00) (-0.32) (-11.91) 
SCG 5.24 0.96 4.78 0.00 -0.06 -0.38 

 (0.04) (11.31) (0.03) (0.00) (-1.37) (-12.59) 
Timing 1.56 0.61 1.52 0.00 -0.01 -0.03 

 (0.02) (43.48) (0.02) (0.00) (-2.21) (-4.33) 
 

This table presents the estimation results of the GMM system (equations 8a to 8h) at the style portfolio 
level for the 1991–2004 sample period. The style portfolio is equally weighted month by month with funds 
within that style group. Panel A presents the estimated parameters, including η,  stale pricing, and λ, the 
product of Rubinstein risk aversion γ and the relative assets of the fund to the timer. Panel B presents the 
estimated performance and biases in annual percentage, with α being the true alpha; αo, the measured alpha; 
Δα1, the statistical bias; Δα2, the dilution of long-term flows; and Δα3,  the dilution of arbitrage flows. 



 42

Table III 
Performance Evaluation Considering Stale Pricing and Endogenous flows—by Individual Fund 

 
This table summarizes the estimated results of the GMM system (equations 8a to 8h) at the individual fund 
level for the 1991–2004 sample period. The system is first estimated for each fund, then the estimated true 
alpha, observed alpha, and the biases are summarized in annualized percentage. Panel A summarizes the 
estimates for each style group, although the maximum capital gain style group is missing because of the 
limited number of observations. Panel B shows the funds sorted into five quintiles according to their stale 
pricing, as well as the statistical differences between the highest and lowest quintiles.  
 

 
 
 
 

 α: True Alpha αo : Measured Alpha Δα1 :  
Statistical Bias 

Δα2 : Dilution of  
Long-Term Flows 

Δα3 : Dilution of 
Arbitrage Flows 

Panel A: By style of the funds 
Growth Funds 0.64 0.47 0.00040 -0.036 -0.135 
Other Aggressive  0.86 0.64 0.00026 -0.037 -0.187 
Income Funds 0.20 0.06 0.00048 -0.001 -0.132 
Growth and Income 1.95 1.62 0.00065 -0.099 -0.233 
Sector 5.98 5.55 0.00068 -0.123 -0.314 
Small Company  2.55 2.35 0.00057 -0.085 -0.117 
Timing Funds 0.93 0.84 0.00030 -0.014 -0.078 
 
Panel B: By fund stale pricing 
Lowest: 1 2.09 1.98 0.00002 -0.05 -0.07 
2 2.00 1.86 0.00007 -0.06 -0.09 
3 2.34 2.07 0.00020 -0.08 -0.19 
4 2.02 1.71 0.00043 -0.07 -0.24 
Highest: 5 1.47 1.09 0.00088 -0.04 -0.34 
t-Stat of (Highest–Lowest) -1.32 -1.87 2.23 0.34 -1.70 
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Table IV-a 

Summary of Estimated Stale Pricing of Individual Funds by Style Groups 
 

This table summarizes the stale pricing of funds. For each fund, stale pricing is measured by estimating 
equations (10a) and (10b) with 36 rolling window returns.  Panel A summarizes the estimated stale pricing, 
π, by fund styles. π= -Cov(rt

o, rt+1
o) / E(ri,t

o) 2;  if  Cov(rt
o, rt+1 

o) < 0 ; otherwise 0; (10a). Only the mean of 
the uncensored observations are given and the percentages of uncensored observations are in parentheses. 
Panel B summarizes the estimated stale pricing, ξ, by fund styles. ξ = Σθj

2 ; where Rt
o = ΣθjRt-j; and Σθj= 1; 

θj є[0,1]; j=1, 2, - - k;  (10b). 
 

 Mean Std Min Max 
Panel A: Stale pricing π  (Lo and MacKinlay 1990) 
Growth Funds 0.515 (29.3%)a 0.28 0.01 1 
Maximum Capital Gain 0.445 (11.2%)a 0.27 0.02 0.94 
Other Aggressive Growth 0.419 (9.5%)a 0.28 0.03 1 
Income Funds 0.537 (18.6%)a 0.29 0.01 1 
Growth and Income 0.536 (34.1%)a 0.27 0.01 1 
Sector Funds 0.464 (26.7%)a 0.24 0.02 1 
Small Company Growth 0.443 (4.6%)a 0.29 0.03 0.97 
Timing 0.525 (28.6%)a 0.29 0.01 1 
Panel B: Stale pricing ξ (Getmansky, Lo, and Makorov 2004) 
Growth Funds 0.421 0.17 0.17 1 
Maximum Capital Gain 0.451 0.2 0.17 1 
Other Aggressive Growth 0.464 0.2 0.17 1 
Income Funds 0.495 0.18 0.17 1 
Growth and Income 0.438 0.16 0.17 1 
Sector Funds 0.447 0.17 0.17 1 
Small Company Growth 0.492 0.21 0.17 1 
Timing 0.452 0.16 0.17 1 

 
 
 
 
 

Table IV-b 
Persistence in Stale Pricing 

 
For each year, funds are classified into H or L according to their stale pricing. This table presents the joint 
probability of a fund falling into the high or low category in year t and t + τ. Staleness, π, and ξ are from 
equations (10a) and (10b). For π, H means π > 0 and L means π = 0. For ξ, H means ξ ≥ 0.5 and L means ξ 
< 0.5. 
 
 t (τ = 0) τ =1  τ =2 τ =3 τ =4  τ =5 
Panel A: Stale pricing π  (Lo and MacKinlay 1990)  
 H L  H L  H L  H L  H L 
H 0.28 0.12  0.24 0.17  0.21 0.22  0.18 0.22  0.19 0.20 
L 0.13 0.47  0.17 0.42  0.2 0.36  0.23 0.37  0.22 0.39 
Panel B: Stale pricing ξ (Getmansky, Lo, and Makorov 2004) 
 H L  H L  H L  H L  H L 
H 0.15 0.18  0.13 0.22  0.14 0.24  0.13 0.25  0.14 0.25 
L 0.19 0.48  0.20 0.45  0.21 0.41  0.22 0.40  0.23 0.38 
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Table V 
Traditional Performance Measures, Stale Pricing, and the role of loads—Panel Regressions 

 
This table summarizes all the coefficients and t-statistics from regressions in which the traditional alphas 
are explained by stale pricing. Each pair (in each column and at the corresponding row) is from an 
independent regression. The dependent variables are the traditional alphas in percentage (equations 9a–9h). 
The explanatory variables are stale pricing estimated using equation 10a–10d, fund characteristics, and 
fund styles. Explanatory variables are studentized. Coefficients on stale pricing, total loads, and their 
interactive variables and t-statistics are presented. The sample period is 1973–2004. 
 

 Alpha from 
Unconditional 

CAPM 

Alpha from 
Conditional 

CAPM 

Unconditional 
Alpha with 

Style 
Benchmarks 

Conditional 
Alpha with 

Style 
Benchmarks 

Alpha Excess 
of Carhart’s 
Four Factors 

Alpha 
Excess of 
Market & 
Liquidity 
Premium 

Panel A: Effects of staleness 
Staleness π -0.11 -0.16 -0.12 -0.15 -0.01 -0.08 
 (-1.63) (-2.22) (-1.61) (-2.17) (-0.31) (-2.03) 
Staleness ξ -0.65 -0.52 -0.56 -0.41 -0.30 -0.56 
 (-6.64) (-5.16) (-6.40) (-3.99) (-3.75) (-5.03) 
Beta (rt, rmt-1) -0.12 -0.07 -0.12 -0.05 0.03 -0.04 
 (-1.48) (-1.07) (-1.59) (-0.89) (0.65) (-0.71) 
Beta(rt,rt-1) -1.14 -0.97 -1.24 -1.20 -0.12 -0.93 
 (-9.56) (-7.81) (-10.63) (-9.62) (-1.19) (-7.65) 
Panel B: Effects of load 
Total Load  0.12 0.12 -0.07 -0.10 -0.03 0.14 
(π) (1.16) (1.05) (-0.74) (-0.96) (-0.40) (1.40) 
Total Load 0.13 0.13 -0.07 -0.10 -0.02 0.14 
(ξ) (1.20) (1.12) (-0.71) (-0.92) (-0.30) (1.44) 
Total Load 0.13 0.13 -0.06 -0.09 -0.03 0.15 
(Beta (rt, rmt-1)) (1.29) (1.14) (-0.61) (-0.88) (-0.41) (1.50) 
Total Load 0.07 0.08 -0.12 -0.13 -0.05 0.11 
(Beta(rt,rt-1)) (0.70) (0.69) (-1.18) (-1.22) (-0.57) (1.06) 
Panel C: Effects of interaction variables 
π*Total Load 0.01 0.05 0.00 0.04 -0.02 -0.01 
 (0.29) (0.78) (0.08) (0.77) (-0.64) (-0.33) 
ξ*Total Load 0.01 -0.05 0.01 -0.01 -0.08 0.00 
 (0.11) (-0.64) (0.19) (-0.17) (-1.21) (-0.03) 
Beta (rt, rmt-1)* 0.42 0.33 0.43 0.34 0.05 0.42 
Total Load (4.75) (4.31) (5.20) (4.66) (0.79) (5.27) 
Beta(rt,rt-1)* 0.59 0.50 0.61 0.52 0.10 0.45 
Total Load (5.35) (4.48) (5.70) (4.68) (1.11) (4.14) 
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Table VI 
Traditional Performance Measures and Stale Pricing Contemporary—Fama and MacBeth Approach 
This table displays the relation between fund stale pricing and traditionally evaluated performance. The 
dependent variables are alphas in annual percentages. The explanatory variables are stale pricing, lagged 
fund characteristics, and fund styles. The discretionary turnover is the turnover component that is 
orthogonal to fund flows. The explanatory variables are studentized. Both alphas and stale pricing are 
estimated with 36 rolling window returns. The Fama-MacBeth coefficients and t-statistics are presented. 
The standard errors of the coefficients on staleness are adjusted by an MA(2) process.  
 Alpha from 

Unconditional 
CAPM 

Alpha from 
Conditional 

CAPM 

Unconditional 
and  Style 

Benchmarks 

Conditional 
and Style 

Benchmarks 

Carhart’s 
Four 

Factors 

Market & 
Liquidity 
Premium 

Panel A: Staleness, π, measured as in Lo and MacKinlay (1990) 
Intercept -0.11 0.16 0.29 0.05 -0.90 0.16 
 (-0.16) (0.28) (1.11) (0.16) (-3.28) (0.26) 
Staleness -0.51 -0.45 -0.47 -0.41 -0.22 -0.42 
 (-7.11) (-5.88) (-7.70) (-5.57) (-4.72) (-7.00) 
Flow -0.09 -0.07 -0.07 -0.04 -0.06 -0.11 
 (-0.90) (-0.96) (-0.84) (-0.54) (-1.24) (-1.07) 
Age -0.25 -0.37 -0.29 -0.33 -0.27 -0.39 
 (-3.01) (-3.61) (-3.53) (-3.80) (-5.60) (-5.53) 
Logtna -0.37 -0.29 -0.34 -0.29 -0.08 -0.19 
 (-2.34) (-1.65) (-1.66) (-1.31) (-1.07) (-1.22) 
Income 0.03 -0.37 -0.09 -0.35 -0.31 -0.29 
 (0.12) (-1.04) (-0.37) (-0.80) (-1.06) (-0.79) 
CAP_GNS 0.01 0.33 0.18 0.47 0.42 0.32 
 (0.08) (1.00) (0.75) (1.15) (1.56) (0.98) 
Discretionary  0.31 0.35 0.29 0.22 0.06 0.19 
Turnover  (1.66) (1.53) (1.84) (1.22) (0.61) (0.93) 
Total Load -0.06 -0.14 0.00 -0.06 -0.03 -0.01 
 (-0.94) (-3.55) (-0.02) (-1.21) (-0.45) (-0.08) 
Expense -0.64 -0.53 -0.66 -0.64 -0.59 -0.34 
 (-2.18) (-1.65) (-2.1) (-1.98) (-5.04) (-1.46) 
Styles Controlled with dummy variables 
Panel B: Staleness, ξ, measured as in Getmansky, Lo, and Makorov (2004). 
Intercept -0.11 0.16 0.29 0.05 -0.90 0.16 
 (-0.16) (0.28) (1.11) (0.16) (-3.28) (0.26) 
Staleness -0.39 -0.32 -0.36 -0.31 -0.33 -0.43 
 (-2.48) (-2.41) (-2.43) (-2.32) (-4.03) (-2.56) 
Flow -0.06 -0.05 -0.04 -0.02 -0.05 -0.09 
 (-0.74) (-0.78) (-0.61) (-0.30) (-0.93) (-0.92) 
Age -0.24 -0.37 -0.28 -0.33 -0.28 -0.41 
 (-3.01) (-3.58) (-3.70) (-3.99) (-5.46) (-5.55) 
Logtna -0.38 -0.30 -0.35 -0.30 -0.07 -0.18 
 (-2.38) (-1.68) (-1.70) (-1.34) (-0.94) (-1.19) 
Income -0.01 -0.40 -0.13 -0.38 -0.31 -0.29 
 (-0.03) (-1.07) (-0.46) (-0.82) (-1.08) (-0.80) 
CAP_GNS 0.04 0.35 0.20 0.49 0.42 0.31 
 (0.22) (1.03) (0.81) (1.17) (1.54) (0.97) 
Discretionary 0.30 0.34 0.29 0.21 0.05 0.18 
Turnover (1.69) (1.50) (1.85) (1.19) (0.59) (0.90) 
Total Load -0.04 -0.12 0.01 -0.05 -0.02 0.00 
 (-0.69) (-3.32) (0.16) (-1.01) (-0.41) (-0.03) 
Expense -0.65 -0.54 -0.66 -0.64 -0.60 -0.35 
 (-2.21) (-1.68) (-2.14) (-2.02) (-5.22) (-1.52) 
Styles  Controlled with dummy variables 
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TableVII 
Predictive Relation between Stale Pricing and Traditional Performance Measures 

This table presents the relation between the traditional alphas and the predetermined stale pricing. The 
dependent variables are the traditional alphas in annual percentages. The explanatory variables are stale 
pricing, fund characteristics, and fund style. Both alphas and stale pricing are estimated with 36 rolling 
window returns. Stale pricing are lagged by 36 months and studentized. The discretionary turnover is the 
turnover orthogonal to fund flows. The Fama-MacBeth coefficients and t-statistics are presented. Standard 
errors of the coefficients on staleness are adjusted by an MA(2) process.  
 Alpha from 

Unconditional 
CAPM 

Alpha from 
Conditional 

CAPM 

Unconditional 
and  Style 

Benchmarks 

Conditional 
and Style 

Benchmarks 

Excess of 
Carhart’s 

Four Factors 

Excess of Market 
& Liquidity 

Premium 
Panel A: Staleness, π, measured as in Lo and MacKinlay (1990). 
Intercept -0.57 -0.34 -0.07 -0.33 -1.10 -0.23 
 (-0.87) (-0.60) (-0.32) (-1.34) (-4.02) (-0.39) 
Staleness -0.11 -0.14 -0.11 -0.12 -0.03 -0.06 
 (-1.77) (-1.98) (-1.66) (-1.65) (-0.57) (-0.94) 
Flow -0.07 -0.08 -0.08 -0.06 -0.03 -0.12 
 (-0.75) (-0.81) (-0.89) (-0.63) (-0.39) (-1.09) 
Age -0.18 -0.29 -0.24 -0.27 -0.24 -0.33 
 (-1.43) (-2.04) (-2.50) (-2.48) (-7.30) (-3.50) 
Logtna -0.35 -0.27 -0.34 -0.29 -0.05 -0.22 
 (-2.44) (-1.62) (-1.66) (-1.26) (-0.64) (-1.46) 
Income 0.08 -0.22 0.00 -0.19 -0.14 -0.16 
 (0.29) (-0.83) (0.03) (-0.78) (-1.30) (-0.58) 
CAP_GNS -0.06 0.17 0.05 0.26 0.16 0.13 
 (-0.34) (0.98) (0.31) (1.26) (1.91) (0.78) 
Discretionary 0.24 0.29 0.23 0.21 -0.08 0.10 
Turnover (1.54) (1.35) (1.56) (1.16) (-0.96) (0.59) 
Total Load -0.07 -0.15 -0.02 -0.08 -0.04 -0.01 
 (-0.80) (-2.44) (-0.26) (-1.24) (-0.42) (-0.08) 
Expense -0.81 -0.68 -0.83 -0.79 -0.69 -0.47 
 (-2.44) (-1.87) (-2.28) (-2.07) (-5.38) (-1.92) 
Styles Controlled with dummy variables 
Panel B: Staleness, ξ, measured as in Getmansky, Lo, and Makorov (2004). 
Intercept -0.57 -0.34 -0.07 -0.33 -1.10 -0.23 
 (-0.87) (-0.6) (-0.32) (-1.34) (-4.02) (-0.39) 
Staleness -0.15 -0.16 -0.13 -0.13 -0.12 -0.08 
 (-1.74) (-1.64) (-1.46) (-1.28) (-1.74) (-0.88) 
Flow -0.07 -0.07 -0.08 -0.05 -0.02 -0.09 
 (-0.70) (-0.75) (-0.84) (-0.58) (-0.21) (-0.86) 
Age -0.17 -0.29 -0.24 -0.27 -0.23 -0.32 
 (-1.41) (-2.01) (-2.47) (-2.43) (-6.59) (-3.40) 
Logtna -0.35 -0.27 -0.33 -0.28 -0.04 -0.21 
 (-2.46) (-1.63) (-1.67) (-1.28) (-0.61) (-1.42) 
Income 0.06 -0.23 -0.01 -0.18 -0.15 -0.17 
 (0.22) (-0.86) (-0.05) (-0.77) (-1.48) (-0.62) 
CAP_GNS -0.04 0.18 0.06 0.26 0.17 0.14 
 (-0.23) (1.02) (0.41) (1.25) (2.13) (0.84) 
Discretionary 0.24 0.29 0.23 0.21 -0.09 0.09 
Turnover (1.52) (1.34) (1.55) (1.16) (-1.00) (0.53) 
Total Load -0.07 -0.16 -0.02 -0.09 -0.04 -0.02 
 (-0.81) (-2.59) (-0.25) (-1.34) (-0.48) (-0.17) 
Expense -0.79 -0.68 -0.82 -0.78 -0.68 -0.46 
 (-2.41) (-1.86) (-2.26) (-2.07) (-5.42) (-1.86) 
Styles Controlled with dummy variables 
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Table VIII 
The Attenuation Bias and the Bias Caused by Correlated Errors 

 
This table presents the estimated attenuation bias and the bias caused by correlated errors in the two-stage 
regressions. The system (A8.9) to (A8.13) in appendix A8 is estimated using eight funds, each randomly 
drawn from a style group. Each row presents a random drawn sample. Cov (ε1 , ε2 ), Var(ε2), A, Φ, and 
implied g are given in the table.  

ĝ  = Cov (â1 , â2) / Var (â2) = g A + Φ       
where  g is the true slope, ĝ is the estimated slope, 

 A = Var (a2 ) / [Var (a2) + (x2’ x2)-1Var(ε2)], 
 and   Φ = (x1’ x1)-1 (x1’ x2 )(x2’ x2)-1 Cov (ε1 , ε2 ) / [Var (a2) + (x2’ x2)-1Var(ε2)]  

x1 and  x2 are explanatory variables in the first stage regressions, in which a1 and a2 are estimated. a1 is 
dependent variable in the second stage and a2 is the explanatory variable in the second stage regression. ε1 
and ε2 are observation errors for a1 and a2in the second stage regression. 

Cov (e1 , e2 ) is computed to proxy for Cov (ε1 , ε2 ) and Var(e2) for Var(ε2).  Var (a2) equals Var 
(â2) - (x2’ x2)-1Var(ε2). The attenuation bias A, and the bias caused by correlated errors Φ, are also 
computed. This procedure is repeated ten times with funds redrawn randomly for each iteration. 

 
  

  Cov (ε1 , ε2 ) var(ε2) A Φ 

Implied g  
If ĝ = 40  

Basis Points 
Jan.1992–Dec. 2000 1 0.1477 0.3052 0.8998 0.00101 33
 2 0.2054 0.3800 0.9067 0.00037 40
 3 0.2054 0.3800 0.9067 0.00037 40
 4 0.2045 0.3849 0.8885 0.00020 43
 5 0.2045 0.3849 0.8885 0.00020 43
Jan. 1981–Dec.1989 6 0.2605 0.2759 0.9258 0.00477 -8
 7 0.1926 0.2056 0.9950 0.00034 37
 8 0.2061 0.2179 0.9973 0.00017 38
 9 0.2528 0.2677 0.9961 0.00023 38
 10 0.2192 0.2310 0.9946 0.00042 36
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Table IX 
Performance Estimated with the Proposed Model and Stale Pricing using a 2-Stage Approach 

 
This table displays the relation between the proposed performance measure and the stale pricing of the 
fund. The dependent variable is the true alpha estimated from the proposed model. The explanatory 
variables are stale pricing measured using equation (9a)–(9d), fund characteristics, and fund styles. The 
stale pricing measure and the fund characteristics are studentized. The sample period is 1991-2004. 
 
 (1) (2) (3) (4) 
Intercept 2.66 2.18 2.67 2.68 
 (6.68) (4.63) (6.78) (6.81) 
Staleness π -0.31    
 (-0.47)    
Staleness ξ  0.47   
  (0.80)   
Staleness: Beta (rt, rmt-1)   -0.01  
   (-0.01)  
Staleness: Beta(rt,rt-1)    0.56 
    (0.40) 
Flow 0.62 0.66 0.63 0.62 
 (1.25) (1.27) (1.25) (1.24) 
Age -0.44 -0.40 -0.44 -0.44 
 (-4.74) (-4.21) (-4.71) (-4.74) 
Logtna 0.78 0.82 0.79 0.79 
 (3.44) (3.42) (3.47) (3.49) 
Income -0.12 -0.13 -0.12 -0.12 
 (-2.21) (-2.35) (-2.26) (-2.24) 
CAP_GNS 0.23 0.19 0.23 0.23 
 (1.15) (0.95) (1.14) (1.14) 
Discretionary Turnover -0.11 -0.14 -0.13 -0.13 
 (-0.51) (-0.65) (-0.62) (-0.61) 
Total Load 0.70 0.69 0.70 0.70 
 (2.24) (2.21) (2.24) (2.24) 
Expense -0.52 -0.44 -0.51 -0.52 
 (-2.68) (-2.19) (-2.68) (-2.69) 
Growth -1.36 -1.17 -1.37 -1.36 
 (-3.08) (-2.57) (-3.10) (-3.09) 
Other 0.21 0.33 0.18 0.19 
 (0.24) (0.35) (0.2) (0.21) 
Income -2.13 -1.92 -2.15 -2.13 
 (-4.43) (-3.75) (-4.44) (-4.38) 
G & I -2.04 -1.89 -2.05 -2.05 
 (-4.84) (-4.24) (-4.85) (-4.84) 
Sector 0.43 0.94 0.39 0.40 
 (0.54) (1.20) (0.50) (0.51) 
SCG 6.90 7.17 6.89 6.90 
 (11.57) (11.19) (11.51) (11.53) 
Timing -1.53 -1.30 -1.52 -1.52 
 (-3.69) (-3.04) (-3.69) (-3.68) 
# of obs. 2541 2318 2541 2541 
F-Test 27.99 24.39 27.8 27.88 
R2 0.15 0.15 0.15 0.15 
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Figure A: Distribution of t-statistics of Alpha and Bias Components in the Observed Performance 

The GMM system (8a) to (8h) is estimated fund by fund, and their t-statistics are grouped and then 
plotted by style group. The four plots are for the net alpha, the spurious bias, the dilution of the long-term 
flows, and the dilution of the arbitrage flows. 

The X-axis presents the fund style group. From 1–7, they are growth funds, other aggressive 
growth, income, growth and income, sector, small capital growth, timing.   

The Y-axis presents the range of the t-values. From 1-8, they are t>2.36, 1.96<t<2.36, 0<t<1.96, 
0<t<-1.96, -1.96<t<-2.36, t<-2.36. 

The Z-axis presents the percentage of funds that fall into the range of the t-values for each style 
group. 
  


