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Abstract

The authors offer a new perspective to the domain of guaranteed

minimum death benefit contracts. These products have the particular

feature to offer investors a guaranteed capital upon death. The authors

propose a complete methodology illustrated by a numerical analysis

based on Fast Fourier Transform. New results are given in this paper

and as a by product, we give the way to price options in a non Gaussian

economy with stochastic interest rates. This paper extends Milevsky

and Posner (2001). In contrast to their results, the fair costs of the
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1 Introduction

Life insurance contracts have actuarial and financial components. The first

is related to the lifetime of the insured, the second is often linked to financial

markets. These contracts generally offer a capital protection and a partici-

pation in the performance of the market. Thus they match investors desire

to get protection in bear markets and upside participation in bull markets.

They also offer shelters from inheritance taxes. The design of the financial

part can be quite sophisticated and makes these contracts akin to structured

products sold by banks. Under different names such as variable annuities

(VA) in the USA, segregated funds in Canada, unit linked in the UK, or

other products like equity index annuities or guaranteed annuities options,

many kinds of policies bearing these features are offered to investors (see for

example Hardy (2003) or Milevsky (2006)). In the present article, the au-

thors study a particular contract, the Guaranteed Minimum Death Benefit

(GMDB) issued by insurance companies. It belongs to the class of VA and

represent in the USA a multibillion dollar market. This contract is also very

similar to Death Protected Mutual Funds.

The GMDB guarantees a specific monetary amount upon the policy-

holder’s death. The contract is associated with a subaccount and the guar-

anty can take diverse predetermined expressions. The usual one is the maxi-

mum of the subaccount value and the initial investment accrued at a guaran-

teed rate, and this guaranty is only triggered by the insured’s death and will

be returned to the beneficiary of the policy. Insurance companies also offer

other contracts such as capped guaranties or policies with a ratchet clause to
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lock in a previous gain if any. Lapses and surrenders are possible but with

dissuasive penalties. The initial premium is due to the insurance company

which can invest it through mutual funds in financial markets. The promised

guaranty, only paid on death, is not free but is paid for by the insured by

deducting small amounts from her subaccount. In practice, these payments

are made on a periodic basis. In this article, the modeling is in continuous

time and contractual payments are made instantaneously and are considered

equivalent to continuous dividends. These fees are endogenously determined

and are related by construction to the guaranteed minimum death benefit.

They correspond to the so-called mortality and expense (M&E) risk charge.

In Milevsky and Posner (2001) as in recent works on structured products

(see Benet, Giannetti, and Pissaris (2005) or Wilkens and Stoimenov (2007)),

the authors found these contracts overpriced, while fees for death protected

mutual funds which are not tax-sheltered do not seem so. The main question

addressed in this article is: what should be fair costs for GMDB contracts.

Here we examine this question under a more general pricing framework than

that used by Milevsky and Posner (2001).

Usually pricing is done in a Black and Scholes economy: the subaccount

value is assumed to follow a geometric Brownian motion, and the term struc-

ture of interest rates is assumed constant. This last assumption, which can

be acceptable for short-term options can no longer be justified for medium-

or long-term contracts such as life insurance products. In this article we use

a one-factor model of a Vasicek (1977) type for stochastic interest rates.

The Gaussian hypothesis for asset returns has been questioned for a long

time. It is now widely accepted that many return distributions display asym-
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metry and fat tails, see Cont (2001). Many alternatives have been suggested;

beginning with Mandelbrot’s works in the sixties and continuing at the end

of the nineties with research modeling financial asset prices by exponentials

of Lévy processes. For a survey see Cont and Tankov (2004). Today, it still

constitutes an extensive research area. In a seminal article, Carr, Geman,

Madan, and Yor (2002) introduce a new type of purely discontinuous process,

allowing them to replace a diffusive component by small jumps arriving at

infinite rate.

Aït-Sahalia (2004) gave tools to separate the diffusive and jump compo-

nents of a semi-martingale. In life insurance, Hardy (2003) suggested using

regime-switching models introduced by Hamilton (1989), in particular the

regime-switching lognormal model. Ballotta (2005) was the first author to

analyze the impacts of jumps in valuing participating life insurance contracts,

using a jump diffusion process with Gaussian jumps while Kassberger, Kiesel,

and Liebmann (2007) made use of Meixner and NIG processes.

In this article, we consider a jump diffusion process whose jumps have

mainly a double exponential distribution, which is known as a Kou process.

This choice permits a good fit to market data and furthermore is versatile,

easy to understand, mathematically tractable and has many interesting prop-

erties which can be exploited to obtain quasi-closed-form solutions in options

pricing, including barrier options (see Kou (2002) and Kou andWang (2003)).

The jump diffusion model of Merton (1976) with Gaussian jumps is also used

for comparison purposes.

The GMDB policy has an embedded option which can be expressed as a

kind of European option with a rising exercise price and a stochastic expiry
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date. A technical part of this paper is devoted to the pricing of this option.

This is done in three steps.

First, conditioning on the policyholder’s time of death, the option is val-

ued in the context of a Kou process with stochastic interest rates, with the

assumption that the financial asset in the investor subaccount is correlated to

the interest rates. This is a non trivial problem which, as far as the authors

know, has not been solved before. The solution is given here using an adap-

tation of the Fast Fourier Transform methodology proposed by Boyarchenko

and Levendorskǐı (2002) and developed for Kou processes in Quittard-Pinon

and Randrianarivony (2008).

Once this valuation is done, the second step of the pricing is obtained by

quadrature using the density of a chosen mortality distribution. We consider

three distributions, namely an exponential, a parametrized Makeham, and a

Gompertz distribution. For these last two, the authors use estimates from

actual data given in Melnikov and Romaniuk’s (2006) paper. The solution,

although not in closed-form, is fast and accurate. With this model, market

risk, jump risk, interest rate risk, and mortality can simultaneously be taken

into account.

The third step of the procedure is to compute the fair cost of GMDB.

This is done by equating the expected discounted value of the insured’s accu-

mulated payments to the GMDB option. In this way, the fair cost is endoge-

nous. The suggested methodology is easy to implement and is illustrated by

numerous examples.

The main contribution of this study is twofold. From a theoretical point

of view it suggests a general pricing framework where both stochastic interest
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rates and jumps are taken into account. In this respect, it can be considered

as an extension of the seminal Milevsky and Posner (2001) article. From an

empirical point of view it gives an answer to the question of how far from

fair value costs are the observed Mortality and Expense risk charges?

The remainder of this article is organized as follows. The next section will

introduce main notations and the general framework used in the sequel. The

pricing model and applications are studied in section 3. Numerical results

are shown and various risk factor impacts are discussed in section 4. A last

section concludes the paper.

2 General Framework and Main Notations

In this section, the main definitions, and notations are given in a formal way.

The general framework of the analysis is set up. In a first subsection mortality

and financial risk are considered, then in subsection two, the GMDB under

analysis is defined. Subsection three deals with the main equations of this

article and the last subsection recalls Milevsky and Posner’s (2001) solution.

2.1 Financial risk and mortality

Financial risk is related to market risk firstly because the policyholder’s ac-

count is linked to a financial asset or an index, and secondly via interest

rates. We denote by r the stochastic process modeling the instantaneous risk

free rate. The value of the money market account is then:

Rt = e
∫ t

0 rs ds, (1)
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and the discount factor is:

δt = e−
∫ t

0 rs ds. (2)

The policyholder’s account value is modeled by the stochastic process S. In

that model, ` stands for the fees associated with the Mortality and Expense

(M&E) risk charge.

As far as mortality is concerned, we use the traditional actuarial nota-

tions. The future lifetime of a policyholder aged x is the random variable

Tx. For an individual aged x, the probability of death before time t ≥ 0 is

P (Tx ≤ t) = 1− (tpx). If we introduce λ, the force of mortality, we have

P (Tx ≤ t) = 1− exp
(
−
∫ t

0
λ(x+ s)ds

)
. (3)

As usual Fx(t) and fx(t) are respectively the c.d.f. and the p.d.f. of the

random variable Tx. We recall the well-known relationship

λ(x+ t) = fx(t)
1− Fx(t)

, (4)

see for example Gerber (1997) or Bowers, Gerber, Hickman, Jones, and Nes-

bitt (1997). To ease notation, we generally omit the x for the future lifetime

and write T when no confusion is possible. We assume stochastic indepen-

dence between mortality and financial risks.
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2.2 Contract Payoff

The insurer promises to pay upon the policyholder’s death the contractual

amount max{S0e
gT , ST}, where g is a guaranteed rate and S0 is the insured

initial investment and ST is the subaccount value at time of death T . We

can generalize this payoff a bit further: if we consider a contractual expiry

date x + Θ, the contract only provides a guarantee on death. If the insured

is otherwise still alive after time Θ passes, she will receive the account value

by that time. For the sake of simplicity, we keep the first formulation, and

we note that:

max{S0e
gT , ST} = ST +

[
S0e

gT − ST
]+
. (5)

Written in this way, the contract appears as a long position on the policy-

holder account plus a long position on a put option written on the insured

account. Two remarks are in order: firstly, the policyholder has the same

amount as if she invested in the financial market (kept aside the fees), but

has the insurance to get more, due to the put option. Secondly because T is

a random variable, her option is not a vanilla one but an option whose ex-

ercise date is itself random (the policyholder’s death). The other difference

with the option analogy lies in the fact that in this case there is no upfront

payment. Similarly to Milevsky and Posner, we call the option part in (5)

the GMDB Option Payoff. In non formal terms we can write

Death Payment = Account Value + GMDB Option Payoff.
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In this contract, the investor pays the guarantee by installments. The paid

fees constitute the so-called M&E risk charges. We assume they are continu-

ously deducted from the policyholder account at the contractual proportional

rate `. More precisely, we consider that in the time interval (t, t + dt), the

life insurance company receives `St dt as instantaneous earnings. We denote

by F the cumulative discounted fees. Fτ is the discounted accumulated fees

up to time τ which can be a stopping time for the subaccount price process

S.

The contract can also be designed in order to cap the guaranteed rate g;

in the VA literature, this is known as capping the rising floor. Let M be the

maximum amount chosen by the insurer, M ≥ S0. In that case, the payoff

becomes [min[M,S0e
gT ]−ST ]+. As Milevsky and Posner (2001) noticed, this

can be further simplified by


(S0e

gT − ST )+ if T ≤ ln[M/S0]/g

(M − ST )+ if T > ln[M/S0]/g.

We could also consider lapses or surrenders in the way suggested by

Milevsky and Posner. The policyholders, supposing they adopt a purely fi-

nancial attitude, will lapse or surrender their contracts if their account value

at time t is for the first time equal or below a barrier L > S0.

2.3 Main Equations

We are in this article essentially interested in the fair value of the M&E

charges. To do so, we consider the fair price is the arbitrage-free price which,
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according to arbitrage theory, is given by the expectation of the discounted

payoff of the contract under an equivalent martingale measure to the phys-

ical or historical one. In our paper we do not necessarily have a complete

market; however we consider that a risk-neutral measure has been chosen.

For practical purposes, this one can be obtained from the market, see for ex-

ample (Björk 2004). We suppose we have a stochastic basis or a risk neutral

universe, given by the quadruplet (Ω,A,Ft,t≥0, Q), where (Ω,A, Q) is a prob-

ability space with Q as a risk-neutral probability measure, and (Ft, t ≥ 0) a

filtration. Under this assumption, the GMDB option fair price is

G(`) = EQ
[
δT (S0e

gT − ST )+
]
,

and upon conditioning on the insured lifetime,

G(`) = EQ

[
EQ

[
δT (S0e

gT − ST )+|T = t
]]
. (6)

If FT denotes the discounted value of all fees collected up to time T , the

fair value of the M&E charges can be written

ME(`) = EQ[FT ]

which after conditioning, also gives:

ME(`) = EQ
[
EQ[FT |T = t]

]
. (7)

Because the protection is only triggered by the policyholder’s death, the
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endogenous equilibrium price of the fees is the solution in `, if any, of the

following equation

G(`) = ME(`). (8)

This is the key equation of this article. To solve it we have to define the in-

vestor account dynamics, make assumptions on the process S, and, of course,

on mortality.

2.4 Milevsky and Posner solution

In their paper Milevsky and Posner assume: ` is a constant, S a Geometric

Brownian motion with a volatility σ, and the mortality is either of an ex-

ponential type or of a Gompertz type. With obvious notations the GMDB

option price, which they call a Titanic Option, is then given by

G(`) =
∫ Θ

0
fx(t)EQ

[
δT (S0e

gT − ST )+|T = t
]
dt, (9)

where the inner conditional expectation is exactly the standard Black Scholes

Merton put formula with a strike price of K = S0e
gt.

Assuming an exponential future lifetime they obtain the price in a closed

form formula. Although this modeling is not realistic, it has the advantage

of providing simple formulas and it gives a kind of benchmark. They also ob-

tained a closed form solution for the present value of fees. For a parametrized

version of Gompertz lifetime, numerical methods were necessary. In any case,

the equilibrium value of ` can only be obtained by a root searching algorithm.
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3 Pricing Model

Here we adopt Milevsky and Posner’s (2001) approach. The model presented

here is a very general one:

• First, the model takes into account stochastic interest rates. A one-

factor interest rate model with exponential volatility structure is used;

• Second, the underlying asset process incorporates jumps;

• Third, the impact of the chosen mortality model on the fair cost of the

GMDB contract is taken into account.

The zero-coupon bond is assumed to obey the following stochastic differ-

ential equation (SDE) in the risk-neutral universe:

dP (t, T )
P (t, T ) = rt dt+ σP (t, T ) dWt, (10)

where P (t, T ) is the price at time t of a zero-coupon bond maturing at time

T , rt is the instantaneous risk-free rate, and σP (t, T ) describes the volatility

structure, and W is a standard Brownian motion.

In order to take into account a dependency between the subaccount and

the interest rates, we suggest to introduce a correlation between the diffusive

part of the subaccount process and the zero-coupon bond dynamics. The

underlying account price process S is supposed to behave according to the

following SDE under the chosen equivalent pricing measure Q:

dSt
St−

=
(
rt − `

)
dt+ ρσ dWt + σ

√
1− ρ2 dZt + (Y − 1) dÑt. (11)
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Again, rt is the instantaneous interest rate, ` represents the fixed proportional

insurance risk charge, σ is the asset’s volatility, ρ is the correlation between

the asset and the interest rate, W and Z are two independent standard

Brownian motions, and the last part takes into account the jumps. Ñ is a

compensated Poisson process with intensity λ, while Y , a random variable

independent from the former processes, represents the price change after a

jump. The jump size is defined by J = ln(Y ).

Let us emphasize here that the non-drift part M , defined by dMt =

ρσ dWt + σ
√

1− ρ2 dZt + (Y − 1) dÑt, is a martingale in the considered risk-

neutral universe.

3.1 Valuation of the guarantee feature

Denoting by Nt the Poisson process with intensity λ and applying Itō’s

lemma, the dynamics of S writes as:

St = S0 e

∫ t
0 rs ds−(`+ 1

2σ
2+λκ) t+ρσWt+σ

√
1−ρ2 Zt+

Nt∑
i=1

ln
(

(Y )i
)
, (12)

where κ = E(Y −1). On the other hand, the zero-coupon bond price process

obeys the following two equations:

P (t, T ) = P (0, T ) e
∫ t

0 σP (s,T ) dWs− 1
2

∫ t
0 σ

2
P (s,T ) ds+

∫ t
0 rs ds (13a)

P (t, T ) = P (0, T )
P (0, t) e

∫ t
0 [σP (s,T )−σP (s,t)]dWs+ 1

2

∫ t
0 [σ2
P (s,t)−σ2

P (s,T )]ds. (13b)
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Dividing equation (12) by equation (13a) gives

St
P (t, T ) = S0

P (0, T ) exp
(
−
(
`+ 1

2σ
2 + λκ

)
t+ 1

2

∫ t

0
σ2
P (s, T ) ds

)

× exp
(∫ t

0

(
ρσ − σP (s, T )

)
dWs + σ

√
1− ρ2 Zt +

Nt∑
i=1

ln
(
(Y )i

))
.

Plugging (13b) into the latter results in

St = S0

P (0, t) e
−(`+ 1

2σ
2+λκ) t+ 1

2

∫ t
0 σ

2
P (s,t) ds+

∫ t
0 [ρσ−σP (s,t)]dWs+σ

√
1−ρ2 Zt+

Nt∑
i=1

ln
(

(Y )i
)
.

Let us introduce the T -forward measure QT defined by:

dQT

dQ

∣∣∣
Ft

= δtP (t, T )
P (0, T ) , (14)

where δt is the discount factor defined in equation (2). This equation can be

expressed as follows, from equation (13a):

dQT

dQ

∣∣∣
Ft

= e
∫ t

0 σP (s,T ) dWs− 1
2

∫ t
0 σ

2
P (s,T ) ds.

Girsanov’s theorem states that the stochastic process W T , defined by W T
t =

Wt −
∫ t

0 σP (s, T ) ds, is a standard Brownian motion under QT . Hence, the

subaccount price process can be derived under the T -forward measure:

St = S0

P (0, t)e
Xt (15)
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where X is the process defined by

Xt = −(`+ 1
2σ

2+λκ)t+
∫ t

0

(
σP (s, T )

(
ρσ − σP (s, t)

)
+ 1

2σ
2
P (s, t)

)
ds

+
∫ t

0

(
ρσ − σP (s, t)

)
dW T

s + σ
√

1− ρ2 Zt +
Nt∑
i=1

ln
(
(Y )i

)
.

(16)

Notice we do not have anymore an exponential of a Lévy process here as X

is no longer a Lévy process due to the stochastic nature of interest rates.

Let us proceed by computing the inner expectation in equation (6). Con-

ditional on a given remaining lifetime T and using the T -forward measure,

the inner expectation IT becomes:

IT = EQ
[
δT (S0e

gT − ST )+
]

= P (0, T )EQT
[
(K − ST )+

]
,

where a vanilla put payoff can be recognized with a strike of K = S0e
gT . The

last expectation can be rewritten from equation (15) as:

EQT [(K − ST )+] = EQT

[(
K − S0

P (0,T )e
XT
)+
]
.

The payoff functional will be denoted by h, here

h(x) =
(
K − S0

P (0, T )e
x
)+
, (17)

so the question is now how to compute EQT [h(XT )].

The answer begins by defining the function φT as the exponent of the
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characteristic function of XT :

EQT
[
eiuXT

]
= eφT (u),

from which the p.d.f. of XT can be derived as

fXT (x) = 1
2π

∫
e−iux+φT (u)du. (18)

Let us also introduce the Fourier transform of the payoff functional:

ĥ(u) =
∫
e−iuxh(x) dx (19)

which can be extended to a generalized Fourier transform defined on the line

=u = ∆, parallel to the real numbers axis in the complex plane, provided

e∆xh(x) is integrable. Using (17), the computation of ĥ can proceed as

follows:

ĥ(u) =
∫
e−iux

(
K − S0

P (0, T )e
x
)+

dx

= S0

P (0, T )

KP (0, T )
S0

[
e−iux

−iu

]ln
(
KP (0,T )
S0

)
−∞

−
[
e(1−iu)x

1− iu

]ln
(
KP (0,T )
S0

)
−∞



under condition ∆ = =u > 0 to ensure convergence, and eventually

ĥ(u) = K
e
−iu ln

(
KP (0,T )
S0

)
(−iu)(−iu+ 1) . (20)
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Getting back to the previous expectation:

EQT [h(XT )] =
∫
h(x)fXT (x) dx by definition,

= 1
2π

∫
h(x)

∫
e−iux+φT (u)du dx by (18),

= 1
2π

∫ (∫
e−iuxh(x)dx

)
eφT (u)du changing integration order,

EQT [h(XT )] = 1
2π

∫
ĥ(u)eφT (u)du from (19), (21)

where the last integral is computed along the line (∆) = R+i∆. Substituting

(20) into (21) gives:

EQT [h(XT )] = K
1

2π

∫
(∆)

e
−iu ln

(
KP (0,T )
S0

)
(−iu)(−iu+ 1)e

φT (u)du

= K
1

2π

∫
(∆)
eiu ln(m) e

−iu ln(P (0,T ))+φT (u)

(−iu)(−iu+ 1) du

where m = S0
K

is the moneyness,

= K
1

2π

∫
(∆)
eiuv ζ(u) du

where v is the log-moneyness and ζ(u) is the fraction part of the integrand,

= Ke−∆v × 1
2π

∫
(R)
eiuv ζ(u+ i∆) du (22)

after the u→ u+ i∆ change of variable.
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The rightmost part of (22) is the inverse Fourier transform of ζ(u+i∆). This

fact allows the straightforward use of a very efficient numerical algorithm,

namely the Fast Fourier Transform (FFT).

It remains to compute the function φT (u). Let φJ(u) denote the charac-

teristic function of the i.i.d. random variables Ji = ln
(
(Y )i

)
. Equation (16)

yields

EQT
[
eiuXT

]
= eφT (u)

= exp
(
−iu`T + iu

∫ T

0

(
−1

2σ
2 + ρσσP (s, T )− 1

2σ
2
P (s, T )

)
ds
)

× exp
(
−1

2u
2
∫ T

0

(
ρ2σ2 − 2ρσσP (s, T ) + σ2

P (s, T ) + σ2(1− ρ2)
)
ds
)

× exp
(
T
[
λ(φJ(u)− 1)− λκ

])
.

Defining

Σ2
T =

∫ T

0

(
σ2 − 2ρσσP (s, T ) + σ2

P (s, T )
)
ds (23)

and noticing that

κ = EQT [Y − 1] = EQT [eJ − 1] = φJ(−i)− 1,

the exponent φT can be deduced as follows:

φT (u) = −iu`T − iu
2 Σ2

T − u2

2 Σ2
T + λT

(
φJ(u)− φJ(−i)

)
. (24)
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3.2 Present value of fees

By definition, Ft is such that

dFt = δt ` Stdt.

Using a chain rule, we get:

d(δtSt) = −rtδtStdt+ δtdSt

= −rtδtStdt+ δt(rt − `)Stdt+ δtSt−dMt

= −dFt + δtSt−dMt,

so we can deduce

FT =
∫ T

0
dFt = S0 − δTST +

∫ T

0
δtSt−dMt.

Without loss of generality, we will also assume from now on that S0 = 1.

Eventually, as the last term of FT is an integral with respect to a mar-

tingale, whose expectation is zero, we recover Milevsky and Posner’s (2001)

previous result on the present value of fees:

ME(`) = EQ[FT ] = 1− EQ[δTST ]. (25)

Using (2) and (12), we get:

ME(`) = 1− EQ
[
e
−`T−1

2σ
2T+ρσWT+σ

√
1−ρ2 ZT+

NT∑
i=1

ln
(

(Y )i
)
−λκT

]
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= 1− EQ
[
EQ

[
e−`T |T = t]

]
, conditioning on the future lifetime T ,

ME(`) = 1−
∫ ∞

0
e−`tfx(t)dt (26)

where fx is the p.d.f. of the r.v. T . A very interesting fact is that only the

mortality model plays a role in the computation of the present value of fees

as seen in (26).

Taking into account the time to contract expiry date Θ, we have:

ME(`) = 1− EQ
[
e−`min(T,Θ)

]
= 1− EQ

[
e−`T 1l{T<Θ} + e−`Θ 1l{T≥Θ}

]
ME(`) = 1−

∫ Θ

0
e−`tfx(t)dt−

(
1− Fx(Θ)

)
e−`Θ. (27)

3.3 Mortality models

Two mortality models are taken into account, namely the Gompertz model

and the Makeham model. In the case of the Gompertz mortality model, the

force of mortality at age x follows

λ(x) = B.Cx, (28)

where B > 0 and C > 1. It can also be written as

λ(x) = 1
b

exp
(
x−m
b

)
,
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where m > 0 is the modal value of the Gompertz distribution and b > 0 is a

dispersion parameter. Both notations are related by the following equations:

B = 1
b
e−

m
b and C = e−

1
b .

From (3) and (4), we get:

fx(t) = λ(x)ebλ(x)e
t
b e−bλ(x)e

t
b

and

Fx(t) = 1− e−bλ(x)
(
e
t
b
−1
)
.

The integral part in (27) can now be computed:

∫ Θ

0
e−`Tfx(t)dt = λ(x)ebλ(x)

∫ Θ

0
e−`T e

t
b e−bλ(x)e

t
b dt

= λ(x)ebλ(x)
∫ e

Θ
b

1
u−`be−bλ(x)udu

after the t→ b ln(u) change of variable,

= ebλ(x)e(x−m)`
∫ bλ(x)e

Θ
b

bλ(x)
e−yy−`bdy

after the u→ y
bλ(x) change of variable,

∫ Θ

0
e−`Tfx(t)dt = ebλ(x)e(x−m)`

(
Γ
(
1− `b, bλ(x)

)
− Γ

(
1− `b, bλ(x)eΘ

b

))

where Γ(a, x) =
∞∫
x
e−tta−1dt is the upper incomplete gamma function where a
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must be positive. This condition entails an upper limit on the possible value

of the insurance risk charge `:

` <
1
b
. (29)

The present value of fees in the case of a Gompertz-type mortality model

amounts to:

ME(`) = 1− ebλ(x)e(x−m)`
[
Γ
(
1− `b, bλ(x)

)
− Γ

(
1− `b, bλ(x)eΘ

b

)]

− ebλ(x)
(

1−e
Θ
b

)
e−`Θ.

(30)

The Makeham mortality model adds an age-independent component to

the Gompertz force of mortality (28) as follows:

λ(x) = A+B.Cx, (31)

where B > 0, C > 1 and A ≥ −B.

In that case, the presence of the constant A does not allow to get closed-

form formulas as in the previous case. Hence, a numerical quadrature was

used to compute the M&E fees.

4 Empirical study

This section gives a numerical analysis of jumps, stochastic interest rates and

mortality effects. For the jumps and interest rates, a numerical analysis is

performed in the first two subsections while the last subsection examines all
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Table 1: Gompertz distribution parameters – Milevsky and Posner (2001)

Female Male
Age (years) m b m b

30 88.8379 9.213 84.4409 9.888
40 88.8599 9.160 84.4729 9.831
50 88.8725 9.136 84.4535 9.922
60 88.8261 9.211 84.2693 10.179
65 88.8403 9.183 84.1811 10.282

these risk factors together. Throughout this analysis, all mortality models

were fitted from actual data.

4.1 Jumps impact

In this subsection, we will only study the impact of jumps in the underlying

account dynamics. The interest rate structure will also remain flat. The

contract expiry is set at age 75. The mortality model is the Gompertz mor-

tality model. The Gompertz parameters used in this subsection and the next

one are those calibrated to the 1994 Group Annuity Mortality Basic table in

Milevsky and Posner (2001). They are recalled in Table 1.

We will see in turn the no-jumps case and two jump diffusion models.

The volatility in the no-jumps case is set to 20 %. In the Merton case, given

here for comparison purposes, the jump sizes are Gaussian i.i.d. with mean

µJ and standard deviation σJ . Here, µJ = 0 and σJ = 0.25.

In the Kou case, the jump sizes J = ln(Y ) are i.i.d. and follow a double

exponential law:

fJ(y) = pλ1e
−λ1y1y>0 + qλ2e

λ2y1y≤0 (32)
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Figure 1: Sensitivity to jump arrival rate – r = 6%, g = 5%, 200% cap.
Gompertz mortality model

with p ≥ 0, q ≥ 0, p + q = 1, λ1 > 0 and λ2 > 0. The following parameters

for the Kou case serve as reference parameters: p = 0.4, λ1 = 10 and λ2 = 5.

Figure 1 shows the sensitivity of the annual insurance risk charge to

the jump arrival rate. The diffusive part is set with a volatility of 20 %

and the parameters are those of the reference Kou case described before.

It can be seen that the insurance risk charge is increasing with the jump

arrival rate. This property stems from the option feature embedded in the

GMDB contract, hence a positive sensitivity to a general increase in the total

variation of the underlying process.

We continue to explore the impact of jumps on the fair insurance risk

charge. Keeping the jump parameters as in the reference Kou case, we keep

this time the total quadratic variation constant at 1.5 times the variation of
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Figure 2: Sensitivity to jump arrival rate – r = 6%, g = 5%, 200% cap.
Gompertz mortality model – Keeping total quadratic variation constant.

the no-jumps case. The diffusive part is then set accordingly. In contrast,

Figure 2 shows instead a decrease of the insurance risk charge with respect to

the jump arrival rate. The variation gained by the jump component is offset

by a decrease in the variation of the diffusive part. Hence, this decrease can

be explained by a bigger effect of the variation decrease due to the diffusive

part.

From now on, the Poisson intensity is arbitrarily set to λ = 0.5 in both

jump diffusion cases. The diffusive part of both jump diffusion models is

such that their overall quadratic variation is 1.5 times the variation of the

no-jumps case, unless otherwise stated.

The following tables show the percent of premium versus the annual in-

surance risk charge in all three cases for a female policyholder (see Table 2)
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Table 2: Jumps impact – Female policyholder – r = 6%, g = 5%, 200%
cap. Gompertz mortality model. In each case, the left column displays the
relative importance of the M&E charges given by the ratio ME(`)/S0. The
right column displays the annual insurance risk charge ` in basis points (bp).

Purchase age No jumps case Merton model Kou model
(years) (%) (bp) (%) (bp) (%) (bp)

30 0.76 1.77 1.24 2.89 1.16 2.70
40 1.47 4.45 2.18 6.61 2.04 6.19
50 2.52 10.85 3.41 14.72 3.21 13.86
60 2.99 21.58 3.75 27.24 3.55 25.74
65 2.10 22.56 2.61 28.12 2.47 26.59

Table 3: Jumps impact – Male policyholder – r = 6%, g = 5%, 200% cap.
Gompertz mortality model. In each case, the left column displays the relative
importance of the M&E charges given by the ratio ME(`)/S0. The right
column displays the annual insurance risk charge ` in basis points (bp).

Purchase age No jumps case Merton model Kou model
(years) (%) (bp) (%) (bp) (%) (bp)

30 1.34 3.25 2.15 5.21 2.01 4.86
40 2.52 7.97 3.68 11.73 3.46 10.99
50 4.23 19.22 5.68 26.01 5.35 24.46
60 4.90 37.59 6.14 47.50 5.81 44.82
65 3.48 39.33 4.32 49.05 4.08 46.31

and a male policyholder (see Table 3).

We can notice that both jump diffusion models give roughly the same

contractual insurance risk charge fee, having the same overall quadratic vari-

ation.

4.2 Stochastic interest rates impact

We will focus in the sequel on the case of the Kou jump diffusion model.

Stochastic interest rates are taken into account in this subsection.
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Figure 3: Initial yield curve.

The initial yield curve y(0, t) is supposed to obey the following parametric

equation y(0, t) = α − βe−γt where α, β and γ are positive numbers. For

comparison purposes, we also take into account a flat interest rate structure

set at r = 0.06. The yield is then supposed to converge towards r for bigger

maturities. The initial yield curve equation is set as follows:

y(0, t) = 0.0595− 0.0195 exp(−0.2933 t). (33)

As stated earlier, the interest rates volatility structure is supposed to be

of exponential form. Technically, it writes as follows:

σP (s, T ) = σP
a

(
1− e−a(T−s)

)
, (34)

where a > 0. In the sequel, we will take σP = 0.033333, a = 1 and the
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correlation between the zero-coupon bond and the underlying account will

be set at ρ = 0.35.

From this expression of the volatility structure, Σ2
T can now be completely

specified. Indeed, it can be computed by plugging (34) into (23). On the one

hand, we have:

∫ T

0
σP (s, T ) ds = σP

a

(
T − 1

a

(
1− e−aT

))

and on the other hand, we have:

∫ T

0
σ2
P (s, T ) ds = σ2

P

a2

(
T − 2

a

(
1− e−aT

)
+ 1

2a

(
1− e−2aT

))
.

Finally, combining these two intermediary results yields:

Σ2
T =

(
2ρσσP
a2 − 3

2
σ2
P

a3

)
+
(
σ2+σ2

P

a2 − 2ρσσP
a

)
T+

(2σ2
P

a3 − 2ρσσP
a2

)
e−aT− σ2

P

2a3 e
−2aT . (35)

The results displayed in Tables 4 and 5 show that stochastic interest

rates have a tremendous impact on the fair value of the annual insurance

risk charge across purchase age and gender. Table 5 shows that a 60 years

old male purchaser could be required to pay a risk charge as high as 88.65 bp

for the death benefit in a stochastic interest rates environment.

Thus, the stochastic interest rates effect is significantly more pronounced

than the jumps effect. Indeed, the longer the time to maturity, the more

jumps tend to smooth out hence the lesser impact. On the other hand, the

stochastic nature of interest rates are felt deeply for the typical time horizon

involved in this kind of insurance contract.
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Table 4: Stochastic interest rates impact – Female policyholder – g = 5%,
200% cap. Gompertz mortality model. In each case, the left column displays
the relative importance of the M&E charges given by the ratio ME(`)/S0.
The right column displays the annual insurance risk charge `.

Purchase age Kou model (flat rate) Kou model (stochastic rates)
(years) (%) (bp) (%) (bp)

30 1.16 2.70 5.30 12.63
40 2.04 6.19 6.84 21.29
50 3.21 13.86 8.04 35.63
60 3.55 25.74 6.77 49.93
65 2.47 26.59 4.11 44.61

Table 5: Stochastic interest rates impact – Male policyholder – g = 5%,
200% cap. Gompertz mortality model. In each case, the left column displays
the relative importance of the M&E charges given by the ratio ME(`)/S0.
The right column displays the annual insurance risk charge `.

Purchase age Kou model (flat rate) Kou model (stochastic rates)
(years) (%) (bp) (%) (bp)

30 2.01 4.86 8.87 22.27
40 3.46 10.99 11.38 37.81
50 5.35 24.46 13.38 64.07
60 5.81 44.82 11.14 88.65
65 4.08 46.31 6.82 78.55

In both tables, the annual insurance risk charge decreases after age 60.

This decrease after a certain purchase age will be verified again with the

figures provided in the next section. Indeed, the approaching contract ter-

mination date, set at age 75 as previously, explains this behavior.

4.3 Combined risk factors impact

The impact of mortality models on the fair cost of the GMDB is added in

this subsection. Melnikov and Romaniuk’s (2006) Gompertz and Makeham
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Table 6: Gompertz (G) and Makeham (M) mortality model parameters for
the USA (US), Sweden (S) and Japan (J) – Melnikov and Romaniuk (2006)

A B C
GUS 6.148 ×10−5 1.09159
MUS 9.566 ×10−4 5.162 ×10−5 1.09369
GS 1.694 ×10−5 1.10960
MS 4.393 ×10−4 1.571 ×10−5 1.11053
GJ 2.032 ×10−5 1.10781
MJ 5.139 ×10−4 1.869 ×10−5 1.10883

Table 7: Mortality impact on the annual insurance risk charge (bp) – USA
– g = 5%, 200% cap

Gompertz Makeham
Age No jumps Kou (flat) Kou (stoch.) Kou (stoch.)
30 4.79 6.99 30.23 32.20
40 11.16 15.15 50.86 52.34
50 24.88 31.50 82.50 83.03
60 44.45 52.97 105.27 104.77
65 45.20 53.18 90.41 89.78

parameters, estimated from the Human mortality database 1959-1999 mor-

tality data, are used in the sequel. As given in Table 6, no more distinction

was made between female and male policyholders. Instead, the parameters

were estimated across three countries, namely the USA, Sweden and Japan.

In all subsequent figures, the circled curve corresponds to the no-jumps

model with a constant interest rate. The crossed curve corresponds to the

introduction of Kou jumps but still in a flat term structure of interest rates.

The squared curve adds jumps and stochastic interest rates to the no-jumps

case. These three curves are built with a Gompertz mortality model. The

starred curve takes into account jumps and stochastic interest rates but
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Table 8: Mortality impact on the annual insurance risk charge (bp) – Sweden
– g = 5%, 200% cap

Gompertz Makeham
Age No jumps (flat) Kou (flat) Kou (stoch.) Kou (stoch.)
30 3.27 4.92 22.83 23.94
40 8.22 11.35 39.42 40.41
50 19.85 25.29 66.73 67.42
60 38.22 45.58 90.53 90.72
65 39.87 46.96 79.83 79.85

Table 9: Mortality impact on the annual insurance risk charge (bp) – Japan
– g = 5%, 200% cap

Gompertz Makeham
Age No jumps (flat) Kou (flat) Kou (stoch.) Kou (stoch.)
30 3.58 5.36 24.77 26.04
40 8.94 12.32 42.77 43.91
50 21.45 27.31 72.34 73.08
60 41.04 48.94 97.56 97.70
65 42.71 50.30 85.68 85.63

changes the mortality model to a Makeham one.

Figure 4 displays the annual risk insurance charge with respect to the

purchase age in the USA. From 30 years old to around 60 years old, the risk

charge is steadily rising across all models. It decreases sharply afterwards

as the contract expiry approaches. The same pattern can be observed in

Sweden (see figure 5) and Japan (see 6).

The two lower curves in all figures correspond strikingly to the flat term

structure of interest rates setting. The jump effect is less pronounced than the

stochastic interest rates effect as represented by the two upper curves. The

thin band in which lie these upper curves shows that the change of mortality

model has also much less impact than the stochastic nature of interest rates.
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Figure 4: Annual risk insurance charge – USA
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Figure 5: Annual risk insurance charge – Sweden
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Figure 6: Annual risk insurance charge – Japan
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Figure 7: GMDB feature (Titanic option) – USA
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Figure 8: GMDB surface – Stochastic interest rates – USA

The GMDB percentages corresponding to the above fair insurance risk

charge were computed and plotted in Figures 7 (USA), 9 (Sweden) and 11

(Japan). They are again rising in all settings until a certain age and fall

towards zero as the purchase age nears the contract expiry date. In the no-

jumps case, the latter fact stems easily from the integral upper bound time

to maturity Θ going to zero in (9). More generally, the guarantee feature

provided by the GMDB becomes less and less valuable as the purchase age

is near the contract termination date. Indeed, the potential investor has no

incentive to buy the GMDB policy if she is almost certain she won’t possibly

benefit from it in the short time left before contract expiry. Moreover, if the

horizon time is short, the uncertainty surrounding the economic outlook is

very low and she could possibly profit by investing directly in a government

bond.
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Figure 9: GMDB feature (Titanic option) – Sweden

Figures 8 (USA), 10 (Sweden), 12 (Japan) present the GMDB percentages

across purchase age and across levels of annual insurance risk charge. The

setting incorporates Kou jumps effect and stochastic interest rates alongside

a Gompertz mortality model. The falling-to-zero effect is again present at

high purchase ages. For low purchase ages, the GMDB percentage increases

with the level of insurance risk charge.

This section is the most complete one because it takes into account jumps,

stochastic interest rates, and two standard mortality models estimated in

the aforementioned three developed countries. As it is reported in Tables

7, 8, 9, and displayed in Figures 4, 5, and 6, the behavior of the insurance

risk charge with respect to age is of the same type whatever the considered

model. However, within this type, differences can be noticed. First, the

jump effect alone does not change the fees very much but there are more
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Figure 10: GMDB surface – Stochastic interest rates – Sweden
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Figure 11: GMDB feature (Titanic option) – Japan

35



30 40 50 60 70 80

0

50

100

0

2

4

6

8

10

12

14

16

Age (years)

GMDB surface −− Gompertz (stoch) −− Japan

Insurance risk charge (bp)

G
M

D
B

 (
%

)

Figure 12: GMDB surface – Stochastic interest rates – Japan

differences when stochastic interest rates are introduced. In this case, fees

are notably higher. Second, the choice of mortality model does not have a

significant impact. Another point to emphasize is the fact that there is a

kind of hierarchy between countries. In increasing order, Sweden is cheapest,

then comes Japan and finally, the USA. This observed fact corresponds to the

drops of the mortality indices already mentioned by Melnikov and Romaniuk

(2006). It could also be inferred from the parameter estimates recorded in

Table 6, especially from the B parameter.

5 Conclusion

In this paper, we consider the Guaranteed Minimum Death Benefit contract

(GMDB). In short, this contract offers to beneficiaries upon death the maxi-
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mum of the policyholder initial capital accrued at a minimum guaranteed rate

and the value of the insured account linked to a financial market. Milevsky

and Posner named this contract Titanic option. From a purely financial

point of view, the pricing is done via contingent claim analysis. Up until

now, the fair contract price was obtained in a Black and Scholes context as

in Milevsky and Posner (2001) or in a regime-switching lognormal context as

in Hardy (2003).

In this paper, the Black and Scholes framework is extended in a more

general case allowing for stochastic interest rates and jumps. Specifically, the

market value of the policyholder’s account is assumed to follow a geometric

Lévy process. We examine the cases of jump diffusions. The mortality is

of a Gompertz or a Makeham type. We propose a complete methodology

illustrated by a numerical analysis based on Fast Fourier Transform. New

results are given in this paper and as a by-product, we give the way to price

options in a non Gaussian economy with stochastic interest rates.

For the typical maturities involved in this kind of contract, we found that

introducing jumps while keeping constant the overall quadratic variation in

a flat interest rate setting doesn’t change the fair costs of the GMDB that

much. On the other hand, introducing a stochastic interest rate setting

raises substantially these fair costs. The important result stemming from this

paper is that, in contrast to Milevsky and Posner (2001), significantly higher

insurance risk charges are found. However, these fair prices are still below

the fees claimed by life insurance companies but not by much, especially for

policyholders aged around 60.
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