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1 Introduction

Empirical studies have found a plethora of variables to be informative about future excess

returns in regressions of the form:

rt = α + β′xt−1 + ut, (1)

where rt denotes the return of the aggregate stock market portfolio in excess of the risk-free

rate and xt−1 is a vector of predictive variables, such as the dividend yield, a term spread or

certain macroeconomic variables.2 Statistically significant β coefficients in (1) are interpreted

as evidence for predictability and as evidence that risk premia are time-varying.3

Given the large number of variables proposed in the literature, a typical investor is confronted

by a high degree of uncertainty on what the “right” state variables are. Moreover, the fact

that so many variables have found to be valuable predictors of returns naturally raises the

concern that the apparent predictability in the literature may well arise due to data-snooping

rather than genuine variation of economic risk premia.4 The aim of this paper is to explore

the robustness of several predictive variables in international stock markets in the context of

model uncertainty. We follow the spirit of the seminal work by Cremers (2002) and Avramov

(2002) and use Bayesian model averaging in order to account for model uncertainty. Unlike the

classical framework, the Bayesian approach does not assume the existence of a “true” model.

By contrast, a-posteriori model probabilities can be derived for the different candidate models,

which are then used to weight the coefficients accordingly in a composite model. In this way,

model uncertainty can be accounted for in a coherent way.

2See e.g. Fama and French (1988), Fama and French (1989), Campbell and Shiller (1988a), Campbell and
Shiller (1988b), Lettau and Ludvigson (2001) etc.

3Based on the evidence provided by the articles mentioned in the text documenting stock return predictability,
by the late 1990s the consensus among financial economists considered expected excess returns to be time-
varying. In particular, predictability of market excess returns has been labeled as one of the “new facts in
finance” Cochrane (1999).

4See e.g. Bossaerts and Hillion (1999), Ferson et al. (2003) for critical views. Most notably, after a compre-
hensive out-of-sample forecast evaluation, Goyal and Welch (2006) come to the conclusion that knowledge of
different state variables is of little use for a real-time investor. They interpret their findings as a strong case
against stock return predictability.
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A new feature of our approach is to account for finite-sample bias of the coefficients in the

predictive regressions in a “frequentist” model averaging framework. A pure Bayesian model

averaging framework as in Cremers (2002) and Avramov (2002) requires prior elicitation for

the relevant parameters conditional on the different models. This can be a problematic task

when the set of models becomes very large.5 Therefore, in order to reduce the impact of

subjective prior information, we base our empirical analysis on Bayesian averaging of classical

estimates (BACE) as in Sala-i-Martin et al. (2004). BACE can be seen as a limiting case of

the Bayesian approach as the prior information becomes dominated by the data (See Leamer

1978). Another less-attractive feature of the pure Bayesian model averaging approach as

used by Cremers (2002) and Avramov (2002) is that it treats the predictive variables as

exogenous, an assumption which is clearly violated in the context of predictive regressions.

How to conduct reliable inference in predictive regressions taking the time-series properties

of the predictive variables (such as the dividend yield) into account has been the subject of a

great amount of recent research (See for instance Stambaugh 1999, Campbell and Yogo 2003,

Lewellen 2004, Amihud and Hurvich 2004, Torous et al. 2004, and Moon et al. 2006). In

order to account for problems due to the persistence of the predictive variables, we estimate

the models by classical OLS, where the coefficients are adjusted for finite-sample bias using

the approach put forth in Amihud and Hurvich (2004). The bias-corrected coefficients in the

particular models are then weighted by their posterior model probabilities which are derived

according to the BACE approach of Sala-i-Martin et al. (2004).

This paper also contributes to the literature by conducting a comprehensive analysis of stock

return predictability in international stock markets. It is fair to say that the profession’s

view on stock return predictability has been shaped for the most part by empirical stud-

ies on the US stock market. However, looking in greater depth at other important capital

markets may provide important additional insights, especially in a controversial field such as

return predictability. Moreover, investigation of international markets also provides a way

of guarding against data-snooping concerns. We thus examine the predictive performance of

nine variables in a total of five international stock markets (France, Germany, Japan, United

5Avramov (2002) responds to this problem using an empirical Bayes approach which uses sample data for
prior elicitation. In the Bayesian tradition, Cremers (2002) specifies subjective prior distributions based on
different skeptical or optimistic beliefs about predictability.
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Kingdom, United States). Other important recent papers which provide evidence on inter-

national stock markets with up-to-date methods include Hjalmarsson (2004), Rapach et al.

(2005), Ang and Bekaert (2005) or Giot and Petitjean (2006).6 To our knowledge evidence on

return predictability in international stock markets under model uncertainty has been lacking

so far.

There is a long list of variables which has been proposed in the literature on stock return

predictability. In particular, valuation ratios such as dividend yields or earnings yields (e.g.

Fama and French 1988, Campbell and Shiller 1988a, Lewellen 2004), interest rate related vari-

ables such as short-term interest rates (e.g. Fama and Schwert 1977, Hodrick 1992, Ang and

Bekaert 2005) or default and term spreads (e.g. Campbell 1987, Fama and French 1989) have

featured prominently in predictive regressions. Lamont (1998) has proposed the dividend-

payout ratio as a predictive variable. The predictive power of stock market volatility has

been studied by French et al. (1987). Pure macroeconomic variables used in predictive re-

gressions include for instance the inflation rate (e.g. Fama 1981), consumption-wealth ratio

(Lettau and Ludvigson 2001), price-GDP ratio (Rangvid 2006), industrial production growth

(e.g. Fama 1990 or Avramov 2002), and more recently the output gap (Cooper and Priestley

2006). Variables motivated from a behavioral point of view (such as stock market sentiment

as in Brown and Cliff 2005) have also been shown to predict returns.

The reading of the literature in the previous paragraph suggests that there is not much con-

sensus on what the important variables are, or put differently that there is tremendous model

uncertainty in predictive regressions. In particular, some variables may appear significant in

one specification and be insignificant in others, as researchers may only report their preferred

specifications. As time elapses more variables are sure to be added to the list of predictors.

While in-sample predictability is a debated topic, the question whether stock returns may be

predictable out-of-sample (OOS) has been even more controversial. Empirical results on OOS

predictability are mixed. Recently, several authors – most notably Goyal and Welch (2003;

2006) – argue against stock return predictability or time-varying risk premia based on the

6Hjalmarsson considers only four financial variables. Rapach et al. (2005) focus merely on macroeconomic
variables and do not consider valuation ratios. Giot and Petitjean (2006) consider finite-sample bias but do
not address the issue of model uncertainty. Their set of predictive variables is limited to financial variables.
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lacking evidence for out-of-sample predictability.7 Campbell and Thompson (2006), however,

find that once sensible restrictions are imposed on the predictive regression coefficients, the

OOS forecast performance can be improved. It has also been argued that averaging forecasts

of various models enhances out-of sample forecast performance substantially. Avramov (2002)

finds that the out-of-sample performance of the weighted model is superior to the performance

of models selected by information criteria and better than a naive benchmark. Another aim

of the paper is therefore to look closer at the out-of-sample forecast performance of model

averaging, in particular the variation of OOS performance in the spirit of Goyal and Welch

(2006).

Our results can be summarized as follows. Several differences with regard to return pre-

dictability are found across countries. We find that interest rate related variables are usu-

ally among the most prominent predictive variables, whereas valuation ratios perform rather

poorly. There is also some evidence that risk premia vary with the output gap. The earnings

yield often appears to be a more robust predictor than the dividend yield. Yet, predictability

of market excess returns clearly weakens, once model uncertainty is accounted for. We find

(weak) evidence for out-of-sample predictability by model averaging methods in France and

the United States but not the remaining stock markets.

The remainder of the paper is structured as follows. Section II discusses the econometric

framework of predictive regressions and how model uncertainty can be accounted for in a

model averaging framework. Section III briefly discusses our data set. Empirical findings are

discussed in Section IV. Section V concludes.

2 Methodology

In this paper we assess predictive ability in the conventional framework of predictive regres-

sions. When there are multiple predictive variables (depending on the particular model Mj),

7Cochrane (2006) defends predictability based on the argument that even though predictability from the
dividend-price ratio may be weak on statistical grounds, the fact that dividend growth is not predictable at
all, may be interpreted as evidence that the variation of the dividend-price ratio is informative about future
expected returns.
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the predictive equation for the future stock return is given by

rt = α + β′

jxj;t−1 + uj,t, (2)

where rt denotes the (log)-return on the market portfolio in excess of the (log) risk-free rate

and xj;t−1 is a kj-dimensional vector of predictive variables, whose dimension and composition

depends on the particular model Mj. In total, we have κ different predictive variables which

results in 2κ different subsets, i.e. vectors xj;t−1 (j =, 1, · · · , 2κ). βj is a kj-dimensional vector

of regression coefficients on the predictive variables. As is common in the extant literature,

the vector of predictive variables is assumed to follow a first-order VAR:

xj;t = Θj + Φjxj;t−1 + νj;t. (3)

Θj is a kj-dimensional intercept and Φj is a kj × kj matrix with all eigenvalues smaller than

one in absolute value to ensure stationarity of the process. The errors (uj;t, ν
′

j;t)
′ are i.i.d.

multivariate normal with mean zero.

2.1 Accounting for Model Uncertainty

We want to put ourselves in the position of an investor who is confronted by the voluminous

literature on evidence for stock return predictability, yet is uncertain about which variables

are actually important. In such a context, a Bayesian framework is attractive, since model

uncertainty can be considered coherently. In a classical framework, however, the search for

the “true model” usually implies running a series of model specification tests. Moreover, a

classical approach is less appealing, because once a single model is determined, information

in the remaining 2κ − 1 models is neglected. The approach taken in this paper is therefore

to combine the Bayesian feature of model averaging with coefficients estimated by classical

OLS (adjusted for finite-sample bias) which reduces dependence on prior distributions (See
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Sala-i-Martin et al. 2004).8

We explore the usefulness of κ = 9 candidate predictive variables in total, which implies

that 2κ = 512 different model combinations are assessed. In a Bayesian framework, posterior

probabilities p(Mj|y) for each model j = 1, . . . , 2κ can be derived. These posterior model

probabilities are used in the Bayesian model averaging framework as weights of the composite

model:

E[β|y] =
2κ∑

j=1

p(Mj|y)βj|y, (4)

where βj|y denotes the posterior mean of the predictive coefficients in the jth model. In

the same way, the posterior standard deviation in the composite model is obtained from the

corresponding diagonal element of the matrix

V ar(β|y) =
2κ∑

j=1

p(Mj|y)[V ar(βj|y) + (βj − E[β|y])(βj − E[β|y])′]. (5)

Note that the posterior variance of the composite model in (5) contains essentially two compo-

nents: the first term in the brackets accounts for estimation risk, whereas the second measures

the variation of the predictive coefficients across the different models and thus accounts for

model uncertainty.9

For determining the weights, the marginal likelihood for the different models Mj must be

computed.10 In the pure BMA framework, analytical solutions can be found only for certain

prior distribution families.11 In the “frequentist” model averaging framework of Sala-i-Martin

8Bayesian and classical results are numerically identical when diffuse priors are specified.
9Following Avramov (2002), we report posterior standard deviations with and without adjustment for model
uncertainty in order to demonstrate the effects of accounting for model uncertainty in the inference.

10Mathematically, the marginal likelihoods can be obtained by integrating out the parameters from the com-
bination of the likelihood and the prior conditional on the model.

11Avramov (2002), for instance, uses an “empirical Bayes” approach for prior elicitation, which uses data-
information from the sample in order to determine the prior specification. Yet, such an approach can be
criticized for using information of the dependent variable, which violates the rules of probability necessary
for conditioning (Fernández et al., 2001).
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et al. (2004), however, the marginal likelihood of a particular model is approximated as

exp(−0.5BICj). The posterior model probability for Mj can then be derived as

p(Mj|y) =
p(Mj)exp(−0.5BICj)∑2κ

i=1 p(Mi)exp(−0.5BICi)
. (6)

As discussed in Sala-i-Martin et al. (2004) this formula can be derived in a standard g-prior

framework when one takes the limit as the information in the data gets large relative to the

prior information. Thus, using posterior model probabilities as in Equation (6) essentially

implies using a “prior” that becomes dominated by the data.

2.2 Finite-sample Bias in Predictive Regressions

In the following we outline how we correct for finite sample bias in the BACE framework. In

order to provide some intuition on the econometric problems arising from predictive variables

which are not exogenous but rather predetermined, we first briefly review the single predictor

case by Stambaugh (1999).

rt = α + βxt−1 + ǫt, (7)

where rt denotes the (log)-return on the market portfolio in excess of the (log) risk-free rate

and xt−1 is a predictive variable such as the dividend yield. The predictive variable itself is

modeled as a first-order autoregressive process

xt = γ + ρxt−1 + ξt. (8)

The errors in Equations (7) and (8) are assumed to be i.i.d. jointly normally distributed.

Stambaugh (1999) then derives an analytical formula for the finite-sample bias of the predic-

tive coefficient:
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E(β̂ − β) ≈ γE(ρ̂ − ρ), (9)

where γ =
σǫξ

σ2

ξ

is the ratio of the covariance of the errors in both equations σǫξ and the

variance σ2
ξ of the error term ξt . As Equation (9) shows, the bias of the predictive coefficients

arises from the (downward) bias of the autoregressive parameter for the predictive variable ρ̂

in combination with the correlation of the errors vt and the error term ut in the predictive

equation. The latter effect can be particularly severe in the case of valuation ratios (where

the covariance between the shocks σǫξ is typically negative, which results in an upward bias

of β̂). A bias-corrected estimator β̂s = β̂ + γ̂(1 + 3ρ̂)/n, where n denotes the sample size and

γ̂ is a sample estimate of γ, has been used e.g. by Giot and Petitjean (2006) in the single

predictor case.

Since this paper is concerned about the issue of model uncertainty involving a multiplicity of

variables, we work with the generalized case of multiple predictors as in Equations (2) and

(3). A bias-corrected estimator for the vector of predictive coefficients βj in Equation (2) has

recently been derived by Amihud and Hurvich (2004). The approach by Amihud and Hurvich

(2004) amounts to running an augmented regression

rt = α + β′

jxj;t−1 + φ′

jν
c
j,t + ej,t, (10)

Equation (10) is equivalent to running the predictive regression in (2) augmented by a cor-

rected kj × 1 residual series νc
j,t. As shown by Amihud and Hurvich (2004), this procedure

yields a reduced-bias estimator β̂c
j for the vector of predictive coefficients. The residual se-

ries νc
j,t = xj;t − (Θ̂c

j + Φ̂c
jxj;t−1) is based on a reduced-bias estimator for the autoregressive

parameters Φ̂j in the multivariate AR(1) model in Equation (3). Our estimate of Φ̂c
j follows

the approach put forth by Amihud and Hurvich (2004) for the case when Φj is constrained

to be diagonal.12 Hence, the different series xi
j,t (i = 1, · · · , kj) are considered separately.

12Allowing for a non-diagonal structure raises the need to estimate a multiplicity of parameters, in particular
as kj gets large. This may result in a degradation of performance (See Amihud and Hurvich (2004)). We
therefore impose a diagonal structure.
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The individual error series are constructed as νi
j,t = xi

j,t − θ̂i
j − ρ̂c

ix
i
j,t−1. The autoregressive

parameters are adjusted according to finite-sample bias by ρ̂c
i = ρ̂+(1+3ρ̂)/n+3(1+3ρ̂)/n2

The reduced bias-estimator βc
j is then obtained by regressing stock excess returns on the set

of kj lagged predictive and the corrected error proxies (νi
j,t (i = 1, · · · , kj)). Standard errors

for βc
j are adjusted for the two-step procedure as proposed in Amihud and Hurvich (2004).

3 Empirical Results

3.1 Data

Our dataset comprises monthly and quarterly data for five international stock markets:

France, Germany, Japan, the United States and the United Kingdom. The dependent vari-

ables are log (returns) on broad stock indexes in excess of the (log) short-term interest rate.

Monthly summary statistics on the dependent variables and the predictive variables can be

found in Table 1.

– Insert Table 1 about here –

We assemble a data set of nine financial and macroeconomic predictive variables for the

different international stock markets. The following variables comprise our set of predictors:

Interest rate variables: Difference between the yield on long-term government bonds and

the three-month interest rate (Term spread, TRM), short term interest rate relative

to its 12-month backward-looking moving average (RTB), long-term government bond

yield relative to its 12-month backward-looking moving average (RBR).

Valuation Ratios and other Financial Variables: Dividends paid over the past 12 months

in relation to the current price (dividend yield, LDY) and earnings over the past 12

9



months in relation to the current price (earnings yield, LEY), both in logs. (Log) real-

ized stock market volatility (LRV).

Macro Variables: Annual inflation rate (INF) based upon the Consumer Price Index, an-

nual industrial production growth (IPG), estimate of the output gap obtained by the

HP-filter (GAP).

Due to data availability, the different sample periods differ across markets. For most countries,

the sample periods start in the early 1970s and end in mid 2000. The US sample starts already

in the late 1950s. The selection of variables is guided mainly by the previous US literature, as

well as data availability.13 Unfortunately, a default yield spread based on the yield difference

of BAA and AAA rated corporate bonds (as used e.g. by Avramov 2002 or Cremers 2002)

does not exist in the different international stock markets outside the US in a reasonable

quality. For further information on data sources and construction the reader is referred to

Appendix I.

Table 1 provides monthly summary statistics on the mean, standard deviation and first-order

autocorrelation of the particular state variables. The AC(1) coefficients in the table shows

that some series, in particular for valuation ratios and the inflation rate, exhibit a fairly

strong degree of persistence. For this reason, taking into account the time series properties

and finite-sample biases seems to be warranted.

3.2 In-sample Results: Return Predictability in International Stock Markets

We first discuss the results of the in-sample analysis of return predictability in international

stock markets. The only subjective element of the BACE approach is the choice of the a-

priori expected model size k̄, i.e. the researcher’s belief of how many variables are a-priori

likely to be included in the predictive model. We choose a rather moderate specification of

this hyperparameter, consistent with the principle of parsimony prevailing in econometrics.

13(Subsets) of these variables are used for instance in Fama and Schwert (1977), Fama and French (1988),
Campbell and Shiller (1988a), Fama and French (1989)) Fama (1981), Fama (1990), Hodrick (1992),Avramov
(2002), Cremers (2002), Lewellen (2004), Ang and Bekaert (2005), Rapach et al. (2005), Cooper and Priestley
(2006), Pastor and Stambaugh (2006).
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We therefore set the a-priori expected model size to k̄ = 2 variables.14 This implies a prior

probability of inclusion of π = 2/κ = 0.2̄ for each variable. The choice of the expected model

size is linked to the a-priori model probability p(Mj) which is given as p(Mj) = πkj(1 −

π)κ−kj .15 Note that a prior probability of inclusion smaller than 0.5 amounts to an a-priori

down weighting of larger model specifications. This implies an additional penalty for highly

parameterized models beside the penalty implied by the degree of freedom adjustment of the

BIC.

The tables for the different stock markets, which will be discussed in the following, are all

organized in the same way. Panel A and C are based on monthly data while Panel B and D

present results for quarterly data. Panel A and B report results for the composite model with

bias-corrected slope coefficients. π|y denotes the posterior probability of inclusion for each

variable. The posterior probability of inclusion is defined as the total sum of the posterior

probabilities of all models, in which the particular variable is included: C′P, where C is a

2κ × κ matrix denoting inclusion (exclusion) of a particular variable in model j by 1 (0), and

P is a 2κ × 1 vector containing the posterior model probabilities p(Mj|y). Posterior means of

the predictive coefficients in the weighted model are reported in the second column of Panels

A/B. The third and fourth column report posterior Bayesian t-ratios. Following Avramov

(2002), we report both t-ratios based on posterior standard deviations which ignore model

uncertainty and t-ratios adjusted for model uncertainty (see discussion in section 2).

We also assess the robustness of the different state variables according to two other criteria.

In Panels A/B we report the proportion of cases when the coefficient on a particular variable

(every time it is included in one of the j = 1, · · · , 2κ models) has the same sign as the posterior

mean in the composite model (denoted as sgn in the tables). Moreover, we also report the

fraction of cases across the different models, which include the particular variable, when a

classical t-statistic is greater than two in absolute value. This statistic serves as another

indicator of the robustness or fragility of a particular predictive variable. In Panels C and

D, the five top-performing models are displayed (highest posterior probability of all models).

14The main results reported in this paper are not sensitive to this choice.
15In principle, one could also specify different prior probabilities of inclusion for the different variables based

on economic considerations.
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The models are defined by inclusion (1) or exclusion (0) of the specific variable. Moreover,

the corresponding posterior model probabilities and the adjusted R2 are reported.

3.2.1 France

Estimation results for the French stock market are provided in Table 2. As Panel A (monthly

predictive regressions) shows, the only variable for which the posterior probability of inclusion

π|y rises compared to the prior probability of inclusion is the relative bond-rate RBR. In the

case of the other variables, inspection of the data leads us to reduce us our prior opinion

about their usefulness. Panel C reports monthly results for the five best-performing model

specifications. After having seen the data, the model which includes RBR as a single predictive

variable receives a posterior model probability of more than 50%, which is greatly higher than

the one of the next best model specifications. The relative bond rate together with the output

gap is also significant according to a posterior t-ratio.

Robustness of a particular variable can also be assessed by the sign certainty probability. This

is the fraction the coefficient on the variable (when included in one of the 2κ Models) has the

same sign as its coefficient in the weighted model. According to this criterion, the relative bond

rate is rather successful. The relative bond rate (RBR), the term spread (TRM), industrial

production growth (IPG) and the output gap (GAP) all have sign certainty probabilities

exceeding 90%, whereas several other popular predictors such as the dividend yield perform

clearly worse. However, Table 2 also makes clear that none of the variables remains significant

when the additional variability of estimates across models is accounted for.16

– Insert Table 2 about here –

16This is a general result which holds for almost all predictive variables and almost all stock markets considered.
In this way, we provide evidence consistent with Avramov (2002) that predictive regressions in finance are
subject to a great deal of model uncertainty. Avramov also finds that almost all variables which appear to
be significant, lose their significance once model uncertainty is considered.
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Panels B and D show that the evidence for predictability in the French stock market is stronger

in the quarterly case. Both, the relative bond rate and the dividend yield have higher posterior

probabilities of inclusion than 0.2̄. Yet, the dividend yield does not appear to have significant

slope coefficient in the composite model, which may be due to finite-sample bias. It is also

worth noting that the earnings yield performs relatively well in-terms of sign certainty in the

quarterly case.

3.2.2 Germany

Table 3 provides estimation results for the German stock market. As can be seen in Panel

A and C of Table 3, predictability of monthly stock returns is rather weak on statistical

grounds. The case for predictability is clearly less pronounced than in the French stock market

discussed the previous subsection. The model receiving the highest posterior probability is

the one which does not include any lagged state variables (iid case). None of the variables

in the monthly model receives a higher posterior inclusion probability compared to the prior

inclusion probability of 0.2̄. Among the variables considered only the relative bond rate (5%)

and the output gap (10%) can be considered as significant according to a Bayesian t-ratio,

but this does not hold true when the dispersion of coefficients across models is considered.

– Insert Table 3 about here –

Similar to the French case, the relative bond rate is rather important in the quarterly re-

gressions where the probability of inclusion rises after having seen the data. Evidence for

predictability with quarterly data is somewhat stronger than for monthly data. This can be

seen from the result in Panel D that the most likely quarterly model is now the one which

includes the relative bond rate. This model achieves an adjusted R2 of about 5% in the quar-

terly regressions, which is quite high for the stock return predictability literature. Several

variables appear rather robust with regard to sign certainty: The term spread (TRM), the
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relative bond rate (RBR), industrial production growth (IPG), and the dividend yield (LDY)

have the same sign as the posterior mean in the composite model in more than 90% of all

models in which they are included.

3.2.3 Japan

Results for the Japanese stock market are given in Table 4. As for Germany, there is no

compelling evidence that monthly stock returns in Japan are predictable: The model with

clearly the highest posterior probability in Panel C is the model with no explanatory variables

(iid-model). The dividend yield and the output gap are somewhat marginally important. Note

also that the term spread (TRM), industrial production growth (IPG) and the earnings yield

(LEY) are rather robust in terms of sign probability.

– Insert Table 4 about here –

A greater amount of predictability can be detected in the quarterly case. In particular, the

dividend yield receives a higher posterior probability of inclusion than expected a-priori (Panel

D of Table 4). The relative short-term interest rate (RTB) and the earnings yield (LEY) are

the most robust variables with regard to sign certainty. It is also worth noting that Japan is

the only stock market where the relative bond rate has virtually no predictive power for stock

market excess returns.

3.2.4 United Kingdom

Table 5 shows, that both for monthly and quarterly predictive regressions, the case for return

predictability in the United Kingdom is rather weak. Panel C shows, that the largest posterior

probability in the monthly regressions is assigned to the iid model (as for the monthly regres-

sions for Germany and Japan). Among the economically motivated predictors, the output gap
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(GAP) is the most relevant variable, in that our prior opinion on its importance is updated

upwards after having seen the data. According to the posterior t-ratio, also the relative bond

rate (RBR) can be considered as significant in the monthly composite model. Yet, as before,

accounting for model uncertainty greatly reduces the evidence for predictability.

– Insert Table 5 about here –

The inflation rate (INF) and industrial production growth (IPG) can be regarded as rather

robust with respect to sign certainty. The output gap – which performs rather well according

to other criteria – appears to be a rather fragile variable in that regard. Also notice that

industrial production growth and the earnings yield generally appear often as significant

variables according to a classical t-test, but since the models which include these variables

receive a low posterior probability, they are not ranked among the most important variables

in the composite model.

3.2.5 United States

Table 6 reports results on in-sample return predictability for the US stock market. As shown

by the table, evidence for predictability is clearly stronger in the US than for the stock markets

previously discussed. Variables which appear important after having seen the data are the

relative bond rate (RBR) and, most importantly, the output gap (GAP). The output gap is the

only variable which can also be considered as significant once model uncertainty is accounted

for. It receives a posterior probability of inclusion of more than 80%, which is a substantial

upward revision of the prior probability of inclusion. Thus, our results corroborate the recent

findings by Cooper and Priestley (2006) that risk-premia may be vary with the output-gap.

Good economic conditions as measured by the output gap are associated with low risk premia.

However, these results must be taken with a grain of salt: the output gap is usually not the

most robust variable with regard to sign certainty, a result which also holds true for most of
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the other stock markets considered. In this way, this paper contributes additional evidence

lacking in Cooper and Priestley (2006) on the role of the output gap in predictive regressions.

Several other variables are important when model uncertainty is ignored (the relative bond

rate (RBR), inflation rate (INF), and industrial production growth (IPG)), but lose their

significance once model uncertainty is considered.

– Insert Table 6 about here –

In the quarterly model, the output gap (GAP), earnings yield (LEY), realized volatility (LRV)

and inflation (INF) appear as important variables a-posteriori. Contrary to the monthly case,

the output gap, however, does not survive the model uncertainty adjustment anymore. Also

note that the relative bond-rate is less important in the quarterly regressions. Panels A and B

further show that the earnings yield appears to be very robust with regard to sign certainty,

which holds both in the monthly and the quarterly models.

3.3 Out-of-Sample Analysis of Return Predictability

The question whether predictability of stock returns exists out-of-sample (OOS) has been

a much debated topic. Results in the literature are mixed.17 There are several theoretical

reasons why OOS performance of stock return prediction models may be poor. Cochrane

(2006), for instance shows by simulations that even in a world where stock returns are truly

predictable, the results of Goyal and Welch (2006) will happen frequently. Inoue and Kilian

(2004) argue that in-sample predictability tests are more powerful than out-of sample tests

and are therefore more trustworthy when assessing the existence of a predictive relationship.

It is not the purpose of this paper to discuss the entire debate in the literature or to take a

particular side. Rather, we are interested in a thorough investigation of the performance of

17The recent predictability debate has been spurred by the question whether the documented (limited) in-
sample predictability is of any use for an investor in real-time. See the different conclusions obtained by e.g.
Goyal and Welch (2006) and Campbell and Thompson (2006).
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model averaging in the context of OOS predictability of excess returns. Avramov (2002) argues

that averaging the forecasts of the different competing models in a Bayesian model averaging

framework can substantially improve the out-of-sample forecast performance. Therefore, the

main motivation of our analysis in this subsection is to reassess the findings by Avramov

(2002) in our set of international stock markets.

For the purpose of evaluating OOS forecast performance, we estimate the 2κ models using a

recursive scheme. The first ten years are used as initialization period. Afterwards, the models

are estimated recursively. We compare the performance of several (conditional) models to the

results of an unconditional (or naive) benchmark model which takes the prevailing historical

mean as the forecast of the dependent variable. The model-based forecasts include Bayesian

averaging of OLS coefficients adjusted for finite-sample bias (BACE-adj), a pure Bayesian

model averaging approach (BMA) with g-prior specification18, the individual model which

receives the highest posterior model probability according to BMA (denoted as TOP), and

an all-inclusive specification (ALL). Following Bossaerts and Hillion (1999), we also assess

the performance of individual models selected by the conventional model selection criteria:

Akaike criterion (AIC), Schwarz criterion (BIC), as well as the adjusted R2. The corresponding

(pseudo-) OOS forecasts are then evaluated according to several criteria for assessing forecast

accuracy.

– Insert Table 7 about here –

Tables 7 and 8 report the results of the evaluation of OOS performance for our international

set of stock markets. The evaluation of forecast accuracy uses standard criteria. MPE de-

notes the mean prediction error. Testing the significance of the MPE amounts to testing the

unbiasedness of the forecasts. U1 is the ratio of the mean absolute prediction error (MAPE)

18The approach is similar to Cremers (2002). However, rather than motivating the g hyperparameter from
economic reasoning, we follow recommended practice and set this parameter to g = max{n, κ2}−1, where n

denotes the sample size (See Fernández et al. 2001; Koop 2003).
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of the particular model-based forecast to the one of the naive benchmark model. U2 is the

ratio of the mean square prediction error (MSPE) of the particular model-based forecast to

the one of the naive benchmark model.19 Contrary to the previous literature we also provide

an evaluation of directional accuracy of forecasts obtained by model averaging. We therefore

report the fraction of times the direction of the dependent variable is correctly predicted by

the model (denoted as Hit in the table). PT denotes the test-statistic for directional accuracy

proposed by Pesaran and Timmermann (1992). Net-SSE plots in the spirit of Goyal and

Welch (2006) are presented in Figures 1 and 2. These graphs display the cumulated sum

of the squared forecast errors of the benchmark model minus the squared forecast errors of

the model of interest. These plots show how the OOS performance of the predictive model

evolves over time. Periods where the line in the graph is upward sloping are times when the

conditional model outperforms the naive model in terms of squared forecast errors.

– Insert Figure 1 about here –

As the evaluation of the monthly forecasts in Table 7 shows, OOS stock return predictability

is very limited. Moreover, notable differences of OOS return predictability can be detected

across countries. It is worth noting that for those countries for which the in-sample evidence

for predictability was stronger also the evidence for return predictability out-of-sample appears

to be stronger.

The results for the French stock market, presented in Panel A of Table 7, show some evidence

for out-of-sample predictability. This is consistent with the in-sample results for the composite

model, where also the evidence was stronger compared to other capital markets (such as the

UK or Germany). Panel A also shows that the model averaging approaches (BACE-adj,

BMA) outperform the naive model and model selection criteria in terms of MSPE. All model-

19Note that U1 and U2 are merely descriptive criteria. In the case of nested models, the mean square prediction
error MSPE of the smaller nested model is expected to be smaller than the MSPE under the null of equal
predictive power, a point raised by Clark and West (2007). This is due to the fact that the larger model
needs to estimate parameters which are zero in population, which introduces noise in the forecasts.
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based forecasts generally appear to be unbiased for the French case. The Net-SSE plot (a)

in Figure 1 shows the relative OOS performance of the forecasts produced by the BACE-adj

model over time.20 As shown by the graph, the model has produced lower squared forecast

errors relative to the benchmark up to about 1999. Afterwards, the relative performance has

somewhat decreased.

In the case of Germany (Panel B of Table 7), BACE-adj and BMA generally do a better job

compared to other model specifications, but are not able to outperform the iid model in terms

of MSPE or MAPE. This is consistent with the modest results for in-sample predictability,

where the most likely model a-posteriori with monthly data was the iid model. The Net-SSE

plot (b) in Figure 1 shows that OOS predictability has been stronger in the 1990s, where

lagged state variables contributed to lower squared prediction errors. Since about 1999, OOS

predictability has declined.

Also in the Japanese stock market the case for OOS predictability is fairly weak, as Panel

C of Table 7 makes clear: forecasts of the naive model generally produce the lower MAPE

or MSPE than conditional models. This is confirmed by the Net-SSE plot (c) of Figure 1.

The plot shows a steady decline of OOS forecast performance of the weighted model forecast

from the late 1980s onwards. Since the early 1990s the OOS performance has remained rather

constant.

Panel D of Table 7 presents results of the OOS evaluation for the United Kingdom. Analo-

gously to Germany and Japan, OOS predictability is very poor. Moreover, the United King-

dom is an exception in that it is the only stock market where the conditional models produce

forecasts with a substantial bias. Also note that the model averaging methods BACE-adj and

BMA outperform the other selection criteria but fail to outperform the naive model in terms

of MAPE and MSPE.

OOS evaluation results for the US stock market are given in Panel E of Table 7. As in the

case of France, consistent with the stronger evidence for in-sample predictability, there is

some evidence for OOS predictability. The forecasts generally appear to be unbiased. When

20Net-SSE plots based on the BMA approach are generally quite similar.
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judged according to MSPE and MAPE, the forecasts produced by BACE-adj show a better

performance compared to other models. Furthermore, forecasts based on Bayesian model

averaging techniques (BACE-adj, BMA) are the only ones which achieve a lower MAPE and

MSPE than the naive model. There is also some (modest) statistical evidence that these

approaches have managed to get the direction of the stock market right (BACE: significant at

the 10% significance level in a one-sided test of “no market timing” against the alternative of

“market timing”, BMA: significant at the 5% level). The Net-SSE plot for the United States

in (e) of Figure 1 shows a decline of predictability since the early 1990s, which has slightly

reversed since 2003.

– Insert Table 8 about here –

The results for OOS predictability of quarterly market excess returns (reported in Table 8)

are quite similar to the monthly case. Again, there is more evidence for OOS predictability in

stock markets where evidence for in-sample predictability was more pronounced (i.e. France

and the United States). There is no evidence however, that OOS predictability increases with

the horizon of the forecast. Quite to the contrary, OOS predictability is somewhat smaller

than the (already modest) OOS predictability in the monthly case.

– Insert Figure 2 about here –

In the quarterly case for the French stock market (Panel A of Table 8), we find again some

evidence that BACE and BMA outperform the iid model in terms of MAPE and MSPE. This

also holds for models selected by the AIC (in contrast to the monthly case). Some evidence

against unbiasedness is found for the all-inclusive specification. The quarterly Net-SSE plot
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for France (a) in Figure 2 shows a decline of OOS performance of the composite model during

the period 1997-2003; since then OOS predictability has picked up somewhat toward the end

of the sample.

Results for the German stock market (Panel B of Table 8) are quite similar to the monthly

case. However, modest evidence of market timing possibility can be found for quarterly

models. This happens in particular for models which tend to be highly parameterized (i.e.

ALL, AIC, R2
adj), with PT-statistics significant at the 10% level. Quarterly results for Japan

(Panel C) and UK (Panel D) are very similar to the monthly case.

For the US stock market (Panel E) evidence for OOS predictability is less pronounced com-

pared to the monthly case. The forecasts by BMA are the only ones which have a (slightly)

lower MSPE compared to the naive model. There exists no evidence for directional pre-

dictability in the case of the quarterly models. According to the Net-SSE plot for the US in

Figure 2, OOS performance has been poor over most of the 1990s; however, there is some

evidence for a slight increase in recent years.

4 Conclusion

This paper explores stock return predictability in international stock markets in the context

of model uncertainty. A Bayesian averaging of classical estimates (BACE) approach is used

to account for the tremendous uncertainty of a typical investor to know what the important

predictive variables are. This approach is combined with a finite-sample bias correction which

accounts for the persistence of the usually employed state variables. Using a comprehensive

dataset for international stock markets allows us to gain fresh insights into the empirical

evidence for return predictability, which has to the date been mainly based on results for the

US stock market.

We find interesting differences across countries in terms of return predictability. Evidence for

in-sample predictability is stronger for France and the United States compared to the other

countries. For these two stock markets, also a (modest amount) of out-of-sample predictability

can be detected. Out-of-sample predictability by model averaging methods appears to be
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stronger for monthly than for quarterly data. Consistent with Avramov (2002), we find

that model averaging often produces better OOS forecasts than individual models based on

selection criteria. Nevertheless, we also document a substantial amount of time-variation of

OOS forecast performance by averaged forecasts.

Two variables appear to be rather robust predictors across countries: the relative bond rate

and the output gap. The latter is the only variable which also remains a significant predictor

of market excess returns in the US, once model uncertainty is accounted for. The earnings

yield often appears to be a more robust predictive variable than the dividend yield. In general,

however, our results show that evidence for in-sample predictability for the excess returns in

international equity markets is substantially weakened once model uncertainty is accounted

for.

The empirical work in this paper can still be extended along the following lines. It would

be interesting to link the evidence for time-series predictability with predictability in the

cross-section. An international analysis with size and book-to-market sorted portfolios may

provide interesting insights whether there are differences in the state variables which drive

risk-premia in the cross-section. Moreover, a major factor for poor out-of-sample performance

may be potential model instability. Our out-of-sample forecasting exercise, for instance, shows

that top-performing models often change over time. To study the time-varying performance

of the predictive models in greater depth may therefore provide important insights on why

out-of-sample performance is rather poor. These issues are on our agenda for further research.
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A Appendix I: Data Description

This section of the appendix provides a more detailed analysis of the stock returns as well

as the information variables used in our analysis. The original data are monthly but we also

report estimation results using quarterly data. Information on the sample periods for the

international stock markets can be found in table 1.

Dependent variables The dependent variables for the international stock markets are

taken from various sources. In the case of Germany, the return on the DAFOX is used, which

is a broad stock index published for research purposes by Karlsruher Kapitalmarktdatenbank.

It comprises all German stocks traded in the top segment (Amtlicher Handel) of the Frankfurt

stock exchange. For the US, the value-weighted return on the CRSP market portfolio is used.21

For the other stock markets broad stock market indexes provided by Datastream are used.

Excess returns are constructed by subtracting a risk-free rate proxy. When available a 3-

month T-Bill is used as the risk-free rate proxy. Otherwise a three-month money market rate

is used. Data are provided by Reuters-Ecowin. In the case of Germany, the money market

rate for three-month deposits obtained from the time series database of Deutsche Bundesbank

is used as our proxy for the risk-free rate.

Interest rate related variables The term spread (TRM) is defined as the difference of

the yield on long-term government bonds and the short-term interest rate (3-month). The

necessary yield curve and interest rate data were obtained from the time series database of

Deutsche Bundesbank (Germany), St-Louis Fed (USA), Econstats (France, United Kingdom

and Japan). Following much of the extant literature, the relative short-term interest rate

(RTB) is calculated as the short-term interest rate minus its 12-month backward looking

moving average. The relative long-term bond rate (RBR) is calculated as the long-term

government bond yield minus its 12-month backward looking moving average.

21We thank Amit Goyal and Ivo Welch for providing these data on their webpages.
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Valuation ratios and other financial variables The time series of dividend yields (LDY)

and earnings yield (LEY) are defined as dividends (earnings) over the past 12 months in

relation to the current price. Both series are used in logs, which improves their time-series

properties as noted by Lewellen (2004). The US data are taken from Amit Goyal’s webpage,

while the rest of the valuation ratios refer to the broad stock market indexes provided by

Datastream. Realized stock market volatility (LRV) is computed as the sum of the squared

daily stock returns and is also used in logs.

Macroeconomic variables The annual inflation rate (INF) is calculated from the seasonally-

-adjusted Consumer Price Index (CPI). Another macroeconomic variable is the annual growth

rate of industrial production (IPG). The time series of the CPI as well as industrial produc-

tion for the calculation of industrial production growth (IPG) and the output gap (OPG)

measure are from the IMF/IFS database and were obtained from Reuters-Ecowin. Following

Cooper and Priestley (2006), we construct the output gap measure by applying the filter by

Hodrick and Prescott (1997) (HP-filter) to the logarithmic series of industrial production. As

in Following Cooper and Priestley (2006) the smoothing parameter to 128800 for the monthly

data and 1600 for the quarterly data. The cyclical component of the series is taken as the

output gap.
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Table 1: Summary Statistics, Monthly

France: 1973:02-2005:10

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
Mean 0.0044 1.0938 -0.0054 -0.0054 5.1294 0.9889 -6.1797 -3.3346 -2.5178 0.0005
Std. 0.0621 1.2517 0.1099 0.0710 4.0892 4.4328 0.7752 0.3515 0.3275 0.0287
AC(1) 0.0798 0.9207 0.9183 0.9237 0.9966 0.8737 0.5835 0.9782 0.9673 0.8598

Germany: 1972:02-2004:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
Mean 0.0031 1.3726 -0.1960 -0.0943 2.8285 1.2246 -6.5848 -3.7179 -2.7080 -0.0019
Std. 0.0513 1.6839 1.1858 0.6146 1.8475 4.0470 0.9695 0.3530 0.2514 0.0289
AC(1) 0.0872 0.9723 0.9566 0.9054 0.9777 0.8178 0.7488 0.9824 0.9568 0.8354

Japan: 1973:02-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
Mean 0.0016 0.6874 -0.0750 -0.0009 3.0833 2.1889 -6.5518 -4.5379 -3.5609 -0.0004
Std. 0.0522 1.1971 1.1642 0.0066 4.6170 6.2448 1.0202 0.5050 0.4687 0.0416
AC(1) 0.0838 0.9518 0.9611 0.9066 0.9890 0.9426 0.7242 0.9930 0.9905 0.9402

United Kingdom: 1973:01-2005:11

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
Mean 0.0037 0.7989 -0.0020 -0.0062 6.6242 1.1718 -6.4382 -3.1629 -2.5142 0.0009
Std. 0.0566 2.1353 0.1168 0.0671 5.2741 4.0886 0.8087 0.2748 0.3977 0.0270
AC(1) 0.1092 0.9774 0.9271 0.9092 0.9930 0.8562 0.6812 0.9747 0.9856 0.8691

United States: 1958:01-2005:12

EXRET TRM RTB RBR INF IPG LRV LDY LEY GAP
Mean 0.0044 1.6348 0.0000 0.0010 4.0387 3.0665 -6.6934 -3.5071 -2.7798 -0.0011
Std. 0.0423 1.4360 0.0860 0.0480 2.7614 4.8664 0.8540 0.3958 0.3923 0.0309
AC(1) 0.0282 0.9493 0.9034 0.8765 0.9936 0.9609 0.8188 0.9918 0.9926 0.9637

Note: The table reports summary statistics of (log) market excess returns (EXRET) and predictive variables in five international
stock markets. The set of predictors comprises the term spread (TRM), the short-term interest rate relative to its 12-month
moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate
(INF), annual growth of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings
yield (LEY), output gap (GAP).
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Table 2: Estimation Results, In-Sample: France

Panel A: Composite Model, Monthly Panel B: Composite Model, Quarterly

π|y post. t-ratio t-ratio sgn fraction π|y post. t-ratio t-ratio sgn fraction
mean (adj) |t| > 2 mean (adj) prob. |t| > 2

TRM 0.034 0.0001 1.196 0.555 0.945 0.023 TRM 0.038 0.0002 0.988 0.506 0.902 0.004
RTB 0.043 -0.0019 -1.456 -0.555 0.473 0.020 RTB 0.063 -0.0066 -1.249 -0.557 0.625 0.027
RBR 0.745 -0.1068 -3.373 -1.551 1.000 0.340 RBR 0.666 -0.2088 -2.635 -1.048 1.000 0.414
INF 0.042 0.0000 0.508 0.273 0.820 0.117 INF 0.165 0.0007 1.689 0.683 0.891 0.453
IPG 0.019 0.0000 0.907 0.438 0.945 0.250 IPG 0.030 0.0000 0.162 0.093 0.961 0.242
LRV 0.050 0.0002 1.210 0.549 0.441 0.000 LRV 0.038 0.0001 0.267 0.166 0.250 0.000
LDY 0.063 -0.0001 -0.100 -0.073 0.566 0.000 LDY 0.264 0.0006 0.066 0.041 0.500 0.000
LEY 0.038 0.0001 0.202 0.163 0.742 0.000 LEY 0.156 0.0048 0.960 0.528 0.910 0.000
GAP 0.113 -0.0284 -2.263 -0.752 0.949 0.172 GAP 0.105 -0.0667 -1.780 -0.675 0.816 0.027

Panel C: Top 5 Models, Monthly Panel D: Top 5 Models, Quarterly

TRM 0 0 0 0 0 TRM 0 0 0 0 0
RTB 0 0 0 0 0 RTB 0 0 0 0 0
RBR 1 1 1 1 1 RBR 1 1 1 0 1
INF 0 0 0 0 0 INF 0 0 0 1 1
IPG 0 0 0 0 0 IPG 0 0 0 0 0
LRV 0 1 0 0 0 LRV 0 0 0 0 0
LDY 0 0 1 0 0 LDY 0 0 1 1 1
LEY 0 0 0 1 0 LEY 0 1 0 0 0
GAP 0 0 0 0 1 GAP 0 0 0 0 0

p(Mj |y) 0.567 0.033 0.028 0.026 0.022 p(Mj |y) 0.314 0.105 0.088 0.070 0.035
R̄2 0.027 0.032 0.031 0.031 0.030 R̄2 0.065 0.094 0.092 0.089 0.123

Note: Panel A (monthly) and B (quarterly) report estimation results for the composite model. The coefficients in the weighted model are the coefficients in individual models
weighted by the posterior model probabilities. Posterior probabilities of inclusion are calculated as the sum of the posterior probabilities of the models which include the respective
variable. Bayesian t-ratios are reported, without and with adjustment for model uncertainty (adj). Panel C (monthly) and D (quarterly) display the five best-performing model
specifications (highest posterior model probability), where 0 indicates exclusion and 1 inclusion of the respective predictive variable. Also the adjusted R2 and the posterior model
probabilities of the models which are receive the highest posterior model probability are reported. The set of predictors comprises the term spread (TRM), the short-term interest
rate relative to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth
of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 3: Estimation Results, In-Sample: Germany

Panel A: Composite Model, Monthly Panel B: Composite Model, Quarterly

π|y post. t-ratio t-ratio sgn fraction π|y post. t-ratio t-ratio sgn fraction
mean (adj) |t| > 2 mean (adj) prob. |t| > 2

TRM 0.0279 0.0000 1.113 0.535 0.934 0.492 TRM 0.038 0.0002 0.934 0.491 0.914 0.445
RTB 0.0247 -0.0001 -0.995 -0.503 0.750 0.082 RTB 0.042 -0.0003 -0.792 -0.432 0.758 0.082
RBR 0.1827 -0.0019 -2.385 -0.809 0.996 0.262 RBR 0.477 -0.0186 -2.645 -1.092 1.000 0.527
INF 0.0152 0.0000 -0.129 -0.111 0.402 0.027 INF 0.027 0.0000 -0.094 -0.083 0.422 0.000
IPG 0.0174 0.0000 -0.197 -0.127 0.047 0.285 IPG 0.032 0.0000 0.298 0.177 0.965 0.324
LRV 0.0174 0.0000 0.339 0.235 0.133 0.520 LRV 0.043 0.0003 0.604 0.352 0.262 0.000
LDY 0.0155 -0.0001 -0.950 -0.491 1.000 0.102 LDY 0.033 -0.0004 -0.453 -0.315 0.977 0.000
LEY 0.0159 -0.0001 -0.313 -0.239 0.496 0.000 LEY 0.040 0.0004 0.252 0.191 0.688 0.000
GAP 0.0714 -0.0121 -1.807 -0.675 0.809 0.117 GAP 0.128 -0.0748 -1.825 -0.698 0.715 0.074

Panel C: Top 5 Models, Monthly Panel D: Top 5 Models, Quarterly

TRM 0 0 0 1 0 TRM 0 0 0 0 0
RTB 0 0 0 0 1 RTB 0 0 0 0 0
RBR 0 1 0 0 0 RBR 1 0 0 1 0
INF 0 0 0 0 0 INF 0 0 0 0 0
IPG 0 0 0 0 0 IPG 0 0 0 0 0
LRV 0 0 0 0 0 LRV 0 0 0 0 0
LDY 0 0 0 0 0 LDY 0 0 0 0 0
LEY 0 0 0 0 0 LEY 0 0 0 0 0
GAP 0 0 1 0 0 GAP 0 0 1 1 1

p(Mj |y) 0.653 0.157 0.058 0.020 0.019 p(Mj |y) 0.353 0.324 0.076 0.022 0.016
R̄2 0.000 0.013 0.007 0.001 0.001 R̄2 0.055 0.000 0.029 0.060 0.055

Note: Panel A (monthly) and B (quarterly) report estimation results for the composite model. The coefficients in the weighted model are the coefficients in individual models
weighted by the posterior model probabilities. Posterior probabilities of inclusion are calculated as the sum of the posterior probabilities of the models which include the respective
variable. Bayesian t-ratios are reported, without and with adjustment for model uncertainty (adj). Panel C (monthly) and D (quarterly) display the five best-performing model
specifications (highest posterior model probability), where 0 indicates exclusion and 1 inclusion of the respective predictive variable. Also the adjusted R2 and the posterior model
probabilities of the models which are receive the highest posterior model probability are reported. The set of predictors comprises the term spread (TRM), the short-term interest
rate relative to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth
of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 4: Estimation Results, In-Sample: Japan

Panel A: Composite Model, Monthly Panel B: Composite Model, Quarterly

π|y post. t-ratio t-ratio sgn fraction π|y post. t-ratio t-ratio sgn fraction
mean (adj) |t| > 2 mean (adj) prob. |t| > 2

TRM 0.018 0.0000 0.706 0.416 0.930 0.137 TRM 0.032 0.0001 0.599 0.330 0.797 0.094
RTB 0.017 0.0000 0.005 0.003 0.887 0.129 RTB 0.034 0.0007 0.509 0.226 0.918 0.246
RBR 0.043 -0.0012 -1.047 -0.485 0.820 0.152 RBR 0.062 -0.0014 -0.402 -0.248 0.809 0.059
INF 0.032 0.0000 0.393 0.256 0.664 0.000 INF 0.097 0.0000 0.552 0.343 0.824 0.012
IPG 0.026 0.0000 1.198 0.551 0.914 0.477 IPG 0.032 0.0000 0.938 0.408 0.867 0.348
LRV 0.029 0.0001 1.075 0.514 0.481 0.000 LRV 0.030 -0.0001 -0.569 -0.360 0.856 0.106
LDY 0.257 0.0044 1.510 0.703 0.840 0.000 LDY 0.585 0.0388 1.840 1.005 0.973 0.211
LEY 0.066 0.0004 0.793 0.456 0.984 0.289 LEY 0.121 0.0034 1.259 0.598 1.000 0.246
GAP 0.119 -0.0193 -1.751 -0.572 0.344 0.387 GAP 0.148 -0.0236 -0.765 -0.232 0.352 0.313

Panel C: Top 5 Models, Monthly Panel D: Top 5 Models, Quarterly

TRM 0 0 0 0 0 TRM 0 0 0 0 0
RTB 0 0 0 0 0 RTB 0 0 0 0 0
RBR 0 0 0 1 0 RBR 0 0 0 1 0
INF 0 0 0 0 0 INF 0 1 0 0 1
IPG 0 0 0 0 0 IPG 0 0 0 0 0
LRV 0 0 0 0 0 LRV 0 0 0 0 0
LDY 0 1 0 1 1 LDY 1 1 1 1 1
LEY 0 0 0 0 0 LEY 0 0 0 0 0
GAP 0 0 1 0 1 GAP 0 0 1 0 1

p(Mj |y) 0.522 0.181 0.074 0.016 0.015 p(Mj |y) 0.343 0.051 0.044 0.032 0.009
R̄2 0.000 0.015 0.010 0.022 0.022 R̄2 0.060 0.080 0.078 0.072 0.102

Note: Panel A (monthly) and B (quarterly) report estimation results for the composite model. The coefficients in the weighted model are the coefficients in individual models
weighted by the posterior model probabilities. Posterior probabilities of inclusion are calculated as the sum of the posterior probabilities of the models which include the respective
variable. Bayesian t-ratios are reported, without and with adjustment for model uncertainty (adj). Panel C (monthly) and D (quarterly) display the five best-performing model
specifications (highest posterior model probability), where 0 indicates exclusion and 1 inclusion of the respective predictive variable. Also the adjusted R2 and the posterior model
probabilities of the models which are receive the highest posterior model probability are reported. The set of predictors comprises the term spread (TRM), the short-term interest
rate relative to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth
of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 5: Estimation Results, In-Sample: United Kingdom

Panel A: Composite Model, Monthly Panel B: Composite Model, Quarterly

π|y post. t-ratio t-ratio sgn fraction π|y post. t-ratio t-ratio sgn fraction
mean (adj) |t| > 2 mean (adj) prob. |t| > 2

TRM 0.018 0.0000 0.534 0.342 0.809 0.309 TRM 0.028 0.0000 -0.076 -0.059 0.434 0.066
RTB 0.054 -0.0002 -1.645 -0.633 0.574 0.106 RTB 0.037 -0.0002 -0.628 -0.341 0.582 0.102
RBR 0.189 -0.1781 -2.421 -0.803 0.824 0.051 RBR 0.050 -0.0716 -1.159 -0.539 0.664 0.000
INF 0.071 -0.0001 -1.899 -0.687 1.000 0.371 INF 0.057 -0.0001 -0.735 -0.434 0.883 0.031
IPG 0.024 0.0000 1.037 0.452 0.910 0.336 IPG 0.044 0.0001 1.121 0.457 0.895 0.348
LRV 0.022 -0.0001 -1.000 -0.500 0.375 0.000 LRV 0.027 -0.0001 -0.586 -0.373 0.703 0.027
LDY 0.061 -0.0001 -0.234 -0.174 0.793 0.231 LDY 0.105 0.0002 0.103 0.086 0.418 0.027
LEY 0.028 0.0000 -0.067 -0.040 0.238 0.481 LEY 0.069 0.0006 0.447 0.309 0.840 0.500
GAP 0.251 -0.0394 -2.508 -0.829 0.492 0.219 GAP 0.314 -0.1530 -2.217 -0.768 0.645 0.195

Panel C: Top 5 Models, Monthly Panel D: Top 5 Models, Quarterly

TRM 0 0 0 0 0 TRM 0 0 0 0 0
RTB 0 0 0 0 0 RTB 0 0 0 0 0
RBR 0 0 1 0 1 RBR 0 0 0 0 0
INF 0 0 0 1 0 INF 0 0 0 1 0
IPG 0 0 0 0 0 IPG 0 0 1 0 0
LRV 0 0 0 0 0 LRV 0 0 0 0 0
LDY 0 0 0 1 0 LDY 0 0 0 1 0
LEY 0 0 0 0 0 LEY 0 0 0 0 1
GAP 0 1 0 0 1 GAP 0 1 1 0 1

p(Mj |y) 0.428 0.195 0.150 0.028 0.012 p(Mj |y) 0.454 0.216 0.018 0.017 0.016
R̄2 0.000 0.015 0.014 0.024 0.020 R̄2 0.000 0.037 0.047 0.046 0.046

Note: Panel A (monthly) and B (quarterly) report estimation results for the composite model. The coefficients in the weighted model are the coefficients in individual models
weighted by the posterior model probabilities. Posterior probabilities of inclusion are calculated as the sum of the posterior probabilities of the models which include the respective
variable. Bayesian t-ratios are reported, without and with adjustment for model uncertainty (adj). Panel C (monthly) and D (quarterly) display the five best-performing model
specifications (highest posterior model probability), where 0 indicates exclusion and 1 inclusion of the respective predictive variable. Also the adjusted R2 and the posterior model
probabilities of the models which are receive the highest posterior model probability are reported. The set of predictors comprises the term spread (TRM), the short-term interest
rate relative to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth
of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 6: Estimation Results, In-Sample: United States

Panel A: Composite Model, Monthly Panel B: Composite Model, Quarterly

π|y post. t-ratio t-ratio sgn fraction π|y post. t-ratio t-ratio sgn fraction
mean (adj) |t| > 2 mean (adj) prob. |t| > 2

TRM 0.014 0.0000 0.394 0.257 0.930 0.457 TRM 0.025 0.0001 1.270 0.509 0.871 0.555
RTB 0.025 -0.0008 -1.403 -0.564 0.473 0.254 RTB 0.026 0.0022 1.398 0.488 0.918 0.570
RBR 0.299 -0.0339 -3.077 -0.952 0.949 0.418 RBR 0.062 -0.0030 -0.553 -0.218 0.746 0.168
INF 0.103 -0.0003 -3.707 -0.853 0.820 0.402 INF 0.372 -0.0012 -1.795 -0.804 0.606 0.215
IPG 0.063 -0.0001 -2.443 -0.695 0.414 0.477 IPG 0.056 0.0001 1.860 0.581 0.820 0.523
LRV 0.015 0.0000 0.076 0.060 0.078 0.313 LRV 0.353 0.0014 0.898 0.526 0.434 0.172
LDY 0.031 0.0000 -0.293 -0.226 0.898 0.008 LDY 0.065 0.0000 -0.041 -0.024 0.500 0.000
LEY 0.131 0.0025 3.267 0.851 1.000 0.766 LEY 0.482 0.0138 1.753 0.913 1.000 0.531
GAP 0.803 -0.1758 -3.868 -1.998 0.734 0.363 GAP 0.932 -0.3629 -2.690 -0.883 0.633 0.441

Panel C: Top 5 Models, Monthly Panel D: Top 5 Models, Quarterly

TRM 0 0 0 0 0 TRM 0 0 1 0 0
RTB 0 0 0 0 0 RTB 0 0 0 0 1
RBR 0 1 0 0 1 RBR 0 0 0 1 0
INF 0 0 1 1 0 INF 1 1 1 1 1
IPG 0 0 1 0 0 IPG 0 0 0 0 0
LRV 0 0 0 0 0 LRV 1 1 1 1 1
LDY 0 0 0 0 0 LDY 0 1 0 0 0
LEY 0 0 1 1 1 LEY 1 1 1 1 1
GAP 1 1 0 1 1 GAP 1 1 1 1 1

p(Mj |y) 0.531 0.132 0.037 0.032 0.012 p(Mj |y) 0.230 0.009 0.008 0.007 0.005
R̄2 0.029 0.037 0.046 0.046 0.043 R̄2 0.159 0.160 0.159 0.158 0.155

Note: Panel A (monthly) and B (quarterly) report estimation results for the composite model. The coefficients in the weighted model are the coefficients in individual models
weighted by the posterior model probabilities. Posterior probabilities of inclusion are calculated as the sum of the posterior probabilities of the models which include the respective
variable. Bayesian t-ratios are reported, without and with adjustment for model uncertainty (adj). Panel C (monthly) and D (quarterly) display the five best-performing model
specifications (highest posterior model probability), where 0 indicates exclusion and 1 inclusion of the respective predictive variable. Also the adjusted R2 and the posterior model
probabilities of the models which are receive the highest posterior model probability are reported. The set of predictors comprises the term spread (TRM), the short-term interest
rate relative to its 12-month moving average (RTB), a long-term government bond yield relative to its 12-month moving average (RBR), annual inflation rate (INF), annual growth
of industrial production (IPG), (log) realized volatility (LRV), (log) dividend yield (LDY), (log) earnings yield (LEY), output gap (GAP).
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Table 7: Estimation Results: OOS evaluation, Monthly
Panel A: France

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE 0.001 0.001 0.002 -0.004 -0.001 0.002 -0.003
(0.308) (0.163) (0.419) (-1.133) (-0.402) (0.431) (-0.897)

U1 0.993 0.987 0.996 0.965 0.980 0.996 0.976
U2 0.995 0.995 0.998 0.997 1.000 0.998 0.998
Hit 0.572 0.572 0.565 0.572 0.557 0.572 0.579
PT 0.204 0.326 0.386 0.588 0.381 0.623 0.863

Panel B: Germany

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE -0.001 -0.001 -0.001 -0.003 -0.002 -0.001 -0.002
(-0.336) (-0.273) (-0.245) (-0.886) (-0.500) (-0.251) (-0.617)

U1 1.007 1.009 1.012 1.009 1.023 1.009 1.014
U2 1.003 1.003 1.009 1.021 1.021 1.009 1.022
Hit 0.546 0.530 0.542 0.574 0.506 0.542 0.550
PT -0.002 -0.387 0.011 1.338 -0.824 0.011 0.646

Panel C: Japan

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE -0.003 -0.002 -0.002 0.002 -0.003 -0.002 0.000
(-0.944) (-0.571) (-0.603) (0.589) (-0.812) (-0.608) (0.027)

U1 1.009 1.007 1.014 1.016 1.005 1.014 1.011
U2 1.007 1.003 1.003 1.009 1.005 1.003 1.009
Hit 0.533 0.552 0.515 0.518 0.563 0.515 0.522
PT 0.044 0.680 -0.217 0.698 1.363 -0.217 0.506

Panel D: UK

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE 0.006 0.008 0.008 0.013 0.013 0.008 0.013
(1.900) (2.901) (2.873) (4.624) (4.609) (2.901) (4.458)

U1 1.029 1.049 1.058 1.099 1.093 1.058 1.090
U2 1.008 1.017 1.030 1.042 1.038 1.030 1.040
Hit 0.484 0.418 0.432 0.484 0.443 0.432 0.473
PT 0.196 -0.674 -0.973 0.908 -0.091 -0.973 0.571

Panel E: US

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE 0.000 0.001 0.001 0.000 0.001 0.001 0.000
(0.141) (0.248) (0.339) (-0.191) (0.464) (0.404) (0.135)

U1 0.991 0.994 1.000 1.027 1.018 1.003 1.021
U2 0.995 0.998 1.005 1.011 1.002 1.005 1.007
Hit 0.575 0.564 0.515 0.522 0.518 0.513 0.515
PT 1.377 1.700 0.116 0.315 0.325 0.077 0.222

Note: The table reports evaluation results of out-of-sample performance of different predictive models (monthly
data). After 10 years of initialization, the models are estimated recursively. BACEadj uses the forecasts of the
weighted model whose coefficients are adjusted for finite-sample bias. BMA is based on a pure Bayesian model
averaging framework with a g-prior specification. TOP denotes the forecast by the model specification which
receives the highest posterior model probability according to BMA. ALL is the all-inclusive specification. AIC, BIC,
R2

adj
are based on the best models selected by the Akaike, Schwarz criterion or adjusted R2, respectively. MPE

denotes the mean prediction error. U1 is the ratio of the mean absolute error of the particular model-based forecast
to the one of the naive benchmark model. U2 is the ratio of the root mean square error of the particular model-based
forecast to the one of the naive benchmark model. Hit denotes the fraction of times the direction of the dependent
variable is correctly predicted by the model. PT denotes the test-statistic for directional accuracy by Pesaran and
Timmermann (1992).
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Table 8: Estimation Results: Out-of-sample, Quarterly
Panel A: France

BACE-adj BMA TOP All AIC BIC R2

adj

MPE 0.006 0.001 0.005 -0.021 -0.009 0.003 -0.015
(0.496) (0.105) (0.432) (-1.702) (-0.740) (0.227) (-1.237)

U1 0.981 0.976 1.027 1.005 0.983 1.023 1.000
U2 0.998 0.988 1.012 1.008 0.997 1.018 1.005
Hit 0.730 0.697 0.652 0.730 0.730 0.663 0.708
PT 0.393 0.263 0.183 1.031 1.198 0.284 0.840

Panel B: Germany

BACE-adj BMA TOP All AIC BIC R2

adj

MPE -0.003 0.000 0.003 -0.009 -0.005 0.005 -0.006
(-0.224) (-0.031) (0.217) (-0.637) (-0.336) (0.335) (-0.464)

U1 1.019 1.023 1.050 1.038 1.042 1.053 1.026
U2 1.007 1.009 1.029 1.022 1.044 1.030 1.010
Hit 0.568 0.568 0.531 0.617 0.605 0.506 0.617
PT 0.165 0.283 0.199 1.362 1.346 0.016 1.492

Panel C: Japan

BACE-adj BMA TOP All AIC BIC R2

adj

MPE -0.015 -0.009 -0.008 0.008 -0.005 -0.008 0.005
(-1.150) (-0.682) (-0.625) (0.621) (-0.375) (-0.639) (0.391)

U1 1.024 1.012 1.047 1.050 1.058 1.062 1.026
U2 1.019 1.004 1.026 1.027 1.030 1.039 1.008
Hit 0.607 0.640 0.640 0.573 0.528 0.629 0.562
PT 0.000 0.000 0.000 0.001 0.000 -0.001 0.001

Panel D: UK

BACE-adj BMA TOP All AIC BIC R2

adj

MPE 0.018 0.025 0.030 0.033 0.032 0.031 0.032
(1.962) (2.664) (3.120) (3.342) (3.280) (3.195) (3.326)

U1 1.072 1.130 1.143 1.257 1.207 1.170 1.207
U2 1.014 1.043 1.084 1.113 1.097 1.110 1.095
Hit 0.629 0.528 0.506 0.472 0.438 0.472 0.506
PT 0.471 1.035 0.815 0.487 -0.343 0.487 0.815

Panel E: US

BACE-adj BMA TOP ALL AIC BIC R2

adj

MPE 0.002 0.000 0.001 -0.002 0.001 0.000 -0.001
(0.222) (0.045) (0.100) (-0.279) (0.084) (0.057) (-0.088)

U1 1.036 1.010 1.029 1.053 1.021 1.026 1.034
U2 1.022 0.999 1.013 1.022 1.011 1.014 1.010
Hit 0.640 0.620 0.593 0.580 0.587 0.580 0.587
PT -0.096 0.544 0.524 0.231 0.612 0.323 0.331

Note: The table reports evaluation results of out-of-sample performance of different predictive models (quarterly
data). After 10 years of initialization, the models are estimated recursively. BACEadj uses the forecasts of the
weighted model whose coefficients are adjusted for finite-sample bias. BMA is based on a pure Bayesian model
averaging framework with a g-prior specification. TOP denotes the forecast by the model specification which
receives the highest posterior model probability according to BMA. ALL is the all-inclusive specification. AIC, BIC,
R2

adj
are based on the best models selected by the Akaike, Schwarz criterion or adjusted R2, respectively. MPE

denotes the mean prediction error. U1 is the ratio of the mean absolute error of the particular model-based forecast
to the one of the naive benchmark model. U2 is the ratio of the root mean square error of the particular model-based
forecast to the one of the naive benchmark model. Hit denotes the fraction of times the direction of the dependent
variable is correctly predicted by the model. PT denotes the test-statistic for directional accuracy by Pesaran and
Timmermann (1992).
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Figure 1: Net-SSE plots, Monthly

(a) France (b) Germany

(c) Japan (d) United Kingdom

(e) United States

Note: The figure shows Net-SSE plots for the aggregate stock market following Goyal and Welch (2003). Net-SSE is the cumulated
difference of squared forecast errors of the unconditional benchmark model (iid) and the conditional model (all, weighted, top):
Net-SSE(τ) =

Pτ
t=1

(e2

uc,t − e2

c,t), where euc,t is the forecast error of the unconditional benchmark, and ec,t is the error of the
conditional model. A decrease of the slope represents a better forecast performance of the unconditional model at the particular
point in time.
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Figure 2: Net-SSE plots, Quarterly

(a) France (b) Germany

(c) Japan (d) United Kingdom

(e) United States

Note: The figure shows Net-SSE plots for the aggregate stock market following Goyal and Welch (2003). Net-SSE is the cumulated
difference of squared forecast errors of the unconditional benchmark model (iid) and the conditional model (all, weighted, top):
Net-SSE(τ) =

Pτ
t=1

(e2

uc,t − e2

c,t), where euc,t is the forecast error of the unconditional benchmark, and ec,t is the error of the
conditional model. A decrease of the slope represents a better forecast performance of the unconditional model at the particular
point in time.
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