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Abstract

Volatility implied from observed option contracts systematically
varies with the contracts strike price and time to expiration, giving
rise to an instantaneously non–flat implied volatility surface (IVS)
that exhibits substantial time variation. We propose a new approach
that jointly models the cross–sectional characteristics and the time–
series dynamics of the IVS. First, instead of imposing a parametric
specification of moneyness and time–to–maturity to explain the IVS
cross–sectionally, we derive directly from the data a number of orthog-
onal statistical factors that are shown to accurately reproduce the IVS
observed on any given day. These statistical factors are shown to have
a natural interpretation in the law of motion of the IVS. At a second
stage, we attempt to exploit the factors identified for forecasting pur-
poses, by modeling their evolution with simple, parsimonious econo-
metric specifications. We demonstrate that our approach achieves
a high–quality fit of the surface and of its evolution over time, using
OTC currency options. The out–of–sample forecasting accuracy of the
approach up to three days in the future is found to be significantly
higher than that of hard–to–beat widely–used benchmarks.
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1 Introduction

Observed option prices implicitly contain information about the volatility
expectations of market participants. Using an option pricing model, these
volatility expectations can be extracted, and if market participants are ra-
tional, then these implied volatilities should contain all the information that
is relevant for the pricing, hedging and management of option contracts and
portfolios.

Conventionally, implied volatilities are found by first equating observed
option prices to the Black–Scholes–Merton (Black and Scholes (1973), Mer-
ton (1973)) theoretical prices, and then by inverting for the unknown and
unobservable volatility parameter, given the characteristics of the option con-
tract (strike level K, option maturity T ), the characteristics of the underlying
asset (price level S, cash flows distributed by the asset until T , expressed ei-
ther as a constant proportion δ of the asset price S or as a present value D
of discrete flows at known times) and the rate of return of a riskless bond,
i.e. given option prices

σBS : (S,K, T, r, δ) → σBS (S,K, T, r, δ) (1)

Contrary to the Black–Scholes–Merton assumption of constant (or determin-
istically time–dependent) volatility, the mapping in (1) has two features that
have attracted the interest of researchers and practitioners in financial mod-
eling: First, the volatilities implied from observed contracts systematically
vary with the options strike price K and date to expiration T , giving rise to
an instantaneously non–flat implied volatility surface, σBS (K, T ) (hereafter
IVS). Canina and Figlewski (1993) and Rubinstein (1994) provide evidence
that when plotted against moneyness, m = K/S (the ratio of the strike price
to the underlying spot price), implied volatilities exhibit either a ‘smile’ or a
‘skew’, while Heynen et. al. (1994), Xu and Taylor (1994) and Campa and
Chang (1995) show that implied volatilities are a function of time to expi-
ration and thus exhibit a ‘term structure’. The second feature is that the
IVS changes dynamically over time, i.e. σBS

t (K, T ) with a time subscript,
as prices in the options market respond to new information that affects in-
vestors’ beliefs and expectations.

In order to exploit this empirically observed profile of the IVS for fore-
casting purposes, researchers and practitioners usually fit parametric speci-
fications of time–to–maturity and moneyness to the available IVS at a point
in time. A well–cited example of this approach is offered by Dumas, Flem-
ing and Whaley (1998) that treat implied volatilities as linear–in–parameters
functions of the strike price and time–to–maturity (what they refer to as the
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ad hoc implied volatility model). Estimating the model on weekly cross sec-
tions of S&P 500 option prices, they observe that the parameter estimates
produced are highly unstable over time, a result that is also confirmed by
Christoffersen and Jacobs (2004).

This work is motivated by this instability of estimates of such parametric
specifications, which is evidence of substantial time variation in the IVS. In
this paper we propose an approach that jointly models the cross–sectional
characteristics and the time–series dynamics of the IVS. Thus our approach
augments the existing literature that either focuses on the cross–sectional
fitting of the IVS, ignoring the time dimension, or models the time–series
dynamics of an arbitrarily chosen segment on the IVS.

The approach is straightforward to set up and delivers accurate forecasts
of implied volatilities for any moneyness or maturity level. It is based on
simple time–series models of the evolution of few orthogonal statistical factors
that are identified in the daily dynamics of the IVS. These statistical factors
have a natural interpretation in the law of motion of the IVS that is intuitively
appealing to practitioners.

To assess the performance of our IVS modeling approach, we study its
ability to accurately predict the level and the direction of change of 1 to
5–day ahead implied volatilities across the surface. The forecasting accuracy
is found to be very good, at least up to 3 days ahead, both in absolute terms
and relatively to natural benchmarks such as a random walk for implied
volatilities. The superior forecasting ability of the approach relatively to
benchmarks is more profound for medium to long option maturities and is
equally good across the moneyness dimension, which is quite interesting.

We demonstrate the approach using daily time–series of implied volatili-
ties for a cross–section of currency options on 30 different currencies quoted
against the Euro from the OTC market, and find that both in–sample perfor-
mance and out–of–sample forecasting are uniformly good, across currencies.
Moreover, there is nothing in the approach that prevents it from being ap-
plied to exchange–traded contracts.

A few existing papers are related to our approach, with Diebold and Li
(2006) and Gonçalves and Guidolin (2006) closest in spirit. Both papers first
apply parametric specifications at the cross–sectional level, and then fit time
series models on the coefficients estimated from the first step. Moreover,
both papers are concerned with forecasting: the yield curve and the IVS of
S&P 500 index options respectively.

Diebold and Li (2006) apply a Nelson and Siegel (1987) type of specifi-
cation to the yield curve derived from the cross–section of U.S. government
bond prices, and the estimated coefficients of the specification are fitted to
an autoregressive integrated moving average model. Gonçalves and Guidolin
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(2006) first estimate a five–parameter version of the ad hoc implied volatility
model of Dumas et. al. (1998) on the volatility surface implied by S&P 500
index options. They then model the time evolution of estimated parameters
with a vector autoregressive model.

In contrast, our approach does not impose any “ad hoc” parametric spec-
ification on the cross–sectional description of the IVS: we simply decompose
the surface into orthogonal unobservable linear statistical factors that are
derived directly from the data and completely characterise the IVS. These
factors capture systematic movements in the evolution of the IVS and turn
out to have an intuitive interpretation. A parsimonious version of the model,
with only few significant factors (decided via a number of criteria) used, turns
out to produce both excellent in–sample fit and accurate out–of–sample fore-
casts.

Our paper is also related to Skiadopoulos, Hodges and Clewlow (1999),
Derman and Kamal (1997), Mixon (2002) and Cont and da Fonseca (2002)
that apply similar statistical–factor decompositions of the volatility surface
implied by equity index options and attempt to relate the factors to observ-
able economic variables; however none of the aforementioned contributions
is concerned with using the factors for forecasting purposes as we do here.

Furthermore–and to the best of our knowledge–our paper is the first that
examines the dynamics of the IVS from currency options; several authors
have reported results from index options markets, however applications to
the currency options market are only concerned with the time–to–maturity
dimension of the IVS (e.g. Xu and Taylor (1994) or Krylova et. al. (2005))
and not the dynamics of the whole surface.

The rest of the paper is organised as follows: Section 2 describes the
data, presents our methodology for describing the implied volatility surface
and discusses the estimation results of this methodology. In section 3 we
propose two alternative model based on our approach, that can capture the
time–series dynamics of the cross–sectional estimates obtained in the pre-
vious section. Section 4 is devoted to the assessment of the out–of–sample
forecasting performance of our approach, while Section 5 concludes the paper.
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2 The volatility surface implied by currency

options

2.1 The data

The data used in this study consist of daily time–series of implied volatili-
ties for a cross–section of OTC currency options on 30 different currencies
quoted against the Euro, kindly supplied by a major market participant. The
time series are from 1/1/1999 to 21/5/2007, a total of 2,184 weekdays. The
currencies examined and some exchange rate statistics are reported in Table
1.

In comparison to exchange–traded currency options, the OTC market is
far more liquid. According to a Bank of International Settlements survey
(2007), the outstanding notional amount of OTC currency options on the
Euro in December 2006 was approximately 3.65 trillion US$ (2.54 trillion
Euros). The corresponding amount of exchange–traded currency options
was 78.64 million US$ (54.77 million Euros), far less than 1% of the notional
amount outstanding in the OTC market.

As is typical in the OTC market, currency options are quoted in terms of
the implied volatilities, which are conventionally converted into prices using
the Garman and Kohlhagen (1983) version of the Black and Scholes (1973)
option pricing formula. Our data–set consists of implied volatility quotes for
the following fourteen expirations: 1 week, 1 month, 2 months, 3 months, 6
months, 9 months, 12 months, 18 months, 2–5 years, 7 years and 10 years.
For each of these maturities, the implied volatility is observed for options
with five different Black–Scholes deltas: OTM puts with ∆BS = −0.10 and
∆BS = −0.25, ATM calls and OTM calls with ∆BS = 0.10 and ∆BS = 0.25,
where

∆BS =
∂O

∂S
=






e−rf TN (d1), if the option O is a call

e−rf T [N (d1) − 1], if the option O is a put
(2)

d1 =
ln (S/K) + (rd − rf + σ2/2)T

σ
√
T

(3)

with rd, rf the risk–free interest rate in the domestic and the foreign country
respectively, S the spot exchange rate, K the strike price of the option, T the
time to option maturity in years and σ the exchange rate’s volatility. Hence,
for each exchange rate and on each observation date, a vector of 70×1 implied
volatilities is observed.
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Code Currency Average Min-Max

AUD Australian $ 1.679 1.504-1.915
BRL Brazilian Real 2.678 1.395-3.977
CAD Canadian $ 1.496 1.256-1.804
CHF Swiss Franc 1.544 1.444-1.656
CLP Chilean Peso 648.5 459.6-849.3
CZK Czech Koruny 32.17 27.48-38.68
DKK Danish Kroner 7.445 7.416-7.512
GBP British 0.658 0.571-0.724
HKD Hong Kong $ 8.564 6.463-10.68
HUF Hungarian Forint 253.5 234.5-284.6
IDR Indonesian Rupiahs 9916.9 6726.9-13220.4
INR Indian Rupees 49.90 38.65-60.03
ISK Icelandic Kronur 83.18 68.06-97.44
JPY Japanese U 126.2 89.34-164.1
KRW South Korean Won 1236.9 943.4-1517.8
MXN Mexican Peso 11.41 7.576-15.31
MYR Malaysian Ringgits 4.222 3.149-6.407
NOK Norwegian Kroner 8.058 7.228-8.947
NZD New Zealand $ 1.961 1.638-2.302
PHP Philippine Peso 55.54 36.80-76.59
PLN Polish Zlotych 4.064 3.351-4.900
RUB Russian Ruble 31.21 23.13-37.85
SEK Swedish Kronor 9.064 8.070-9.937
SGD Singapore $ 1.863 1.453-2.233
SKK Slovakian Koruny 40.89 32.83-48.30
THB Thailand Baht 44.15 34.30-53.20
TRY Turkish (New) Lira 1.341 0.370-2.139
TWD Taiwanese (New) $ 36.32 26.48-45.47
USD United States $ 1.100 0.829-1.366
ZAR South African Rand 8.013 6.099-12.09

Table 1: Average, minimum and maximum middle exchange rates of 30
different currencies against the Euro from January 1999 to May 2007. Source:
European Central Bank.

6



Three necessary exclusionary criteria are applied to all currency options:
[a] Days with at least one of the 70 implied volatilities missing are excluded,
[b] days with flat implied volatility profiles (i.e. no “smile” or “skew”) for

all 14 maturities are excluded as misrecordings, and [c] maturities for which
the implied volatility does not change from day to day in more than half
the weekdays in our sample are excluded, as thinly–traded. Table 2 report
the starting date and the number of days remaining in our sample after the
above criteria have been applied.

Several different profiles of implied volatility surfaces are observed in our
sample period. As an indication, in Figures 1–4 the average IVS profile and
the daily standard deviation of the IVS from EUR/USD and HUF/EUR
options are plotted. In the USD/EUR case, the implied volatility surface
exhibits a clear symmetric “smile” with an increasing term structure on av-
erage, and a fair amount of variability around this average profile (ranging
from a fourth to a tenth of its typical value). In contrast, the HUF/EUR
implied volatility surface exhibits a “skew”, with either an increasing or a
humped–shaped term structure, and a significantly asymmetric variability
for short maturities. Similar patterns emerge in all currencies examined; to
conserve space the corresponding figures for the remaining 28 currencies are
relegated to Appendix D (available from the authors upon request).

Given the origin of the data, one possible criticism is that idiosyncratic
effects, specific to the market participant supplying the quotes, could influ-
ence the analysis. There are however reasons to believe that such effects
(if any) are not strongly affecting our analysis. First, our focus here is on
systematic factors in the volatility surface, not on specific events or outliers
of the surface. Secondly, given the liquidity of the market and the size of the
market participant supplying the data, it should be fairly unlikely that our
data are substantially away from typical values.

However using OTC data has many advantages in comparison to exchange–
traded data. Besides superior liquidity, OTC currency options are avail-
able for longer maturities than the currency options traded in exchanges.
Moreover, OTC options have a constant time–to–maturity, unlike exchange–
traded options whose maturity varies from day to day. In practical terms,
this alleviates the need for grouping options into maturity bins (see for ex-
ample Skiadopoulos et. al. (1999)) or for creating synthetic fixed–maturity

series via interpolation (as in Alexander (2001)). This should translate to less
noisy IVSs and more precision in the identification of factors affecting their
dynamics. Similar OTC currency options data have been used in previous
studies by Campa and Chang (1995), (1998) and Christoffersen and Maz-
zotta (2005); the latter study actually concludes that OTC currency options
data are of superior quality for volatility forecasting purposes.
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Currency Start Date # of days Currency Start Date # of days
AUD 08-Sep-2000 1729 MXN 02-Jan-2006 361

BRL 08-Apr-2003 1064 MYR 24-May-2006 259

CAD 03-Nov-2003 883 NOK 04-Sep-2000 1745

CHF 11-Jul-2000 1783 NZD 05-Dec-2005 381

CLP 08-Dec-2004 638 PHP 08-Sep-2003 965

CZK 05-Sep-2000 1741 PLN 05-Dec-2005 381

DKK 02-Jun-2004 773 RUB 03-Jan-2006 359

GBP 05-Sep-2000 1744 SEK 05-Sep-2000 1741

HKD 05-Dec-2005 381 SGD 05-Dec-2005 381

HUF 05-Dec-2005 381 SKK 08-Apr-2003 1062

IDR 05-Apr-2005 555 THB 05-Jan-1999 2172

INR 05-Dec-2005 381 TRY 14-Nov-2000 1688

ISK 03-Jan-2006 357 TWD 05-Dec-2005 381

JPY 04-Sep-2000 1745 USD 04-Sep-2000 1745

KRW 27-Apr-1999 2082 ZAR 05-Dec-2005 381

Table 2: For each of the thirty different currency options in our sample, the
table reports the starting date and the number of trading days in the time
series. The end date in all time series is 21/5/2007.
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Figure 1: Average implied volatility surface from EUR/USD options, for the
period 4/9/2000–21/5/2007.
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Figure 2: Daily standard deviation of EUR/USD implied volatilities as
a function of moneyness and time to maturity for the period 4/9/2000–
21/5/2007.
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Figure 3: Average implied volatility surface from HUF/EUR options, for the
period 5/12/2003–21/5/2007.
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Figure 4: Daily standard deviation of HUF/EUR implied volatilities as
a function of moneyness and time to maturity for the period 5/12/2005–
21/5/2007.
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2.2 Decomposition of the implied volatility surface

A common practice in describing the implied volatility surface on any given
day, is to fit cross–sectionally a parametric specification of moneyness and
time–to–maturity. For example, following Dumas et. al. (1998), Gonçalves
and Guidolin (2006) use the following specification in their investigation of
the IVS of S&P 500 index options:

ln σi = β0 + β1Mi + β2M
2
i + β3Ti + β4 (Mi × Ti) + ǫi, (4)

where ǫi is the random error term, i = 1, . . . , p, with p the number of options
available in each daily cross section, σi, Mi and Ti the implied volatility,
moneyness and time to maturity of option i respectively. Each day, a vector
β = (β0, β1, β2, β3, β4)

′ is stored, and a VAR model is fitted to the time–series
of such vectors, with a view towards forecasting future implied volatility.
Equation (4) can be rewritten, in matrix notation, as

σp×1 = Vp×5β + ǫp×1, (5)

with ǫp×1 a vector of random errors and Vp×5 a matrix of option characteristics
with typical rows (Mi,M

2
i , Ti,Mi × Ti), i = 1, . . . , p.

Instead of imposing a parametric specification of moneyness and time–to–
maturity as matrix V in (5), we simply assume that the implied volatilities
of the p observed options at a given date are coming from a linear model of
the form

σp×1 = µp×1 + Lp×mFm×1 + εp×1 (6)

where E [σ] = µ, E [F ] = E [ε] = 0, E [εε′] = I, and E [FF ′] = Ψ, with I the
p× p identity matrix and Ψ a diagonal matrix.

Equation (6) assumes there are m common factors, the vector Fm×1, that
are associated with the observed implied volatility levels. The p×mmatrix L,
the factor loadings matrix, represents the sensitivity of the implied volatility
to each of the factors. The covariance structure that equation (6) implies is
Σ = LL′ + Ψ.

Since theory does not direct the choice for the number of factors m that
should be used, we let the data decide on a currency–by–currency basis.
Specifically, we estimate the factor loadings by the principal components
method.1 In order to decide how many factors are required to adequately

1The Principal Components method is the empirical (sample) version of what is known
as the Karhunen–Loève decomposition in the theory of stochastic processes. It is essentially
a statistical method of extracting the most important uncorrelated sources of variation in a
multivariate system that is characterised by a high degree of collinearity. It has been used
extensively in finance, especially in the modeling of yield curves (see Rebonato (2000),
Wilson (1994) and the references therein).
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explain the variation of each IVS, we use the Guttman–Kaiser and Velicer
criteria, both reviewed in Appendix A.

Using the estimated dimension m̂, the estimated factor loadings L̂, and
estimated vectors and variances ε̂, Ψ̂ as true values, then from (6) the factor
realisations or scores can be recovered. Specifically, for each day, the following
weighted least–squares estimation is performed

min
Fm

p∑

i=1

ε2
i

ψi

= min
Fm

ε′Ψ−1ε = min
Fm

(σ − µ− LF )′ Ψ−1 (σ − µ− LF ) (7)

The approach accounts for the fact that the diagonal elements of Ψ are most
likely not equal (see Bartlett (1937), Knez, Litterman and Scheinkman (1994)
and Mixon (2002)).

Replacing population with sample analogs in (7) and minimising at each
day, the estimated factor scores are recovered,

F̂m =
(
L̂′Ψ̂−1L̂

)−1

L̂′Ψ̂−1 (σ − µ̂) (8)

These are by construction orthogonal.
Table 3 reports the variance decomposition results for the volatility sur-

face implied by the each of the 30 currency options in our sample. The
number of retained principal components reported in the table is the most
conservative (greatest) from the Guttman–Kaiser and Velicer criteria.

On average, the retained factors can explain 99.09% of the variance in the
daily volatility surface implied by currency options. The proportion of vari-
ance explained ranges from a minimum of 97.20% for options on CZK/EUR
to a maximum of 99.91% in the TWD/EUR case.

On average, the first principal component accounts for 88.09% of the IVS
variation across currencies; it can range from 60.67% (ISK/EUR) to 97.16%
(AUD/EUR). In all but two of the currency options examined it can explain
more than 75% of the IVS.

The second and third principal components contribute, on average, an
additional 8.29% and 2.11% respectively, while PCs 4–9 collectively explain
approximately 1.5% of the IVS variation, wherever retained. Closer inspec-
tion of the results in Table 3 suggests that the three principal components
usually retained in empirical applications explain collectively 98.49% on av-
erage; moreover, in all but one case (CZK/EUR) they can explain 95% of
the IVS or more.

To get a better feeling of the results, the estimated three–factor loadings
are plotted against moneyness (∆BS) and time–to–maturity (T ) in Figures 5
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Currency Velicer G–K Total Variance Proportion of Total Variance Explained by
Code fn λ̄ Explained (%) PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9
AUD 5 1 99.83 97.16 1.64 0.66 0.21 0.16
BRL 7 2 99.76 85.15 11.51 1.77 0.76 0.29 0.19 0.09
CAD 2 3 97.95 91.35 4.66 1.94
CHF 4 4 98.31 79.31 11.33 5.15 2.52
CLP 7 2 99.86 91.46 6.36 1.14 0.46 0.24 0.13 0.07
CZK 4 4 97.20 79.94 10.83 4.16 2.27
DKK 1 3 99.17 86.90 10.92 1.35
GBP 3 2 99.31 95.75 2.53 1.03
HKD 2 3 99.44 95.91 3.10 0.43
HUF 7 3 99.82 91.58 5.31 1.98 0.45 0.24 0.17 0.09
IDR 5 3 99.57 87.70 7.89 2.54 1.16 0.28
INR 3 2 98.74 83.72 14.01 1.01
ISK 3 3 97.81 60.67 30.47 6.67
JPY 5 2 99.79 94.98 3.38 1.02 0.30 0.11
KRW 5 2 99.41 93.13 4.11 1.36 0.50 0.31
MXN 9 2 99.71 90.41 5.46 1.60 0.95 0.51 0.28 0.23 0.16 0.11
MYR 3 3 98.84 64.46 30.55 3.83
NOK 4 3 99.37 91.19 4.93 2.51 0.74
NZD 7 2 99.88 88.33 9.18 1.19 0.64 0.23 0.20 0.11
PHP 1 3 98.14 82.75 11.96 3.43
PLN 3 2 99.17 91.09 7.45 0.63
RUB 7 3 99.58 89.42 6.17 1.87 1.11 0.53 0.33 0.15
SEK 1 3 97.66 87.88 5.63 4.15
SGD 3 3 99.05 92.85 4.50 1.70
SKK 3 3 97.76 76.69 17.34 3.73
THB 1 3 99.44 95.09 2.65 1.70
TRY 5 2 99.64 94.36 2.85 1.73 0.47 0.23
TWD 6 2 99.91 96.08 2.41 0.88 0.31 0.19 0.04
USD 3 2 99.41 96.20 2.03 1.18
ZAR 3 2 99.17 91.22 6.94 1.01

Average 4.1 2.6 99.09 88.09 8.29 2.11 0.86 0.28 0.19 0.12 0.16 0.11

Table 3: For each of the thirty different currency options in our sample, the table presents the decomposition of
the exchange rate implied volatility surface per retained principal component. The number of retained principal
components reported in the table is the greatest from the Guttman–Kaiser (λ̄) and Velicer (fn) criteria.
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and 6 for two representative cases: options on the EUR/USD and HUF/EUR
exchange rates.2,3

The character of the factors seems intuitive. Factor 1 in Panels (a) rep-
resents a shock that affects all maturities and deltas (i.e. moneyness) in the
same direction (same sign). The effect is strongest at the short horizons and
it dampens over time. It can be interpreted as a level effect, and it is con-
sistent with a mean–reverting model of stochastic volatility. Factor 1 affects
OTM and ATM volatility differently. This is consistent with the notion that
a change in volatility alters the steepness of the “smile” and correspondingly
the skewness of the implied risk neutral density.

Factor 2 affects short–term and long–term impled volatility with different
signs (it appears to change sign around the 3–month/6–month option ma-
turity). Thus, this factor separates between different ends of the volatility
term structure, i.e. it is a term–structure effect. The effect is almost uniform
across the moneyness dimension.

Finally, the third factor appears to change sign ATM. It separates the
effect between OTM puts and calls and it is present in all maturities. How-
ever its effect is more pronounced for short–dated options. Changes along
this factor alter the steepness of the implied volatility smile; it can be inter-
preted as a jump–fear effect. Similar factors emerge in all currency options
examined. Factors 4–9 that contribute less than 2% whenever retained, are
more difficult to interpret.

Turning our attention to the factor realisations or scores, F̂m, Figures
7 and 8 (from EUR/USD and HUF/EUR options again) suggest that the
IVS is fluctuating significantly over time. The autocorrelations and partial
autocorrelations plotted suggest that some structure may exist in the factor
dynamics. Thus, in the next section, we turn our attention to the in–sample
modeling of the time–series dynamics of the factors, with a view towards
forecasting future implied volatility out–of–sample.

2It should be noted that the estimated factor loadings are unique only up to an orthog-
onal rotation of the factors. An orthogonal rotation corresponds to altering the directions
of the vectors, thus changing the interpretation of the factors, however it does not alter the
space that the factors span. In the exposition and discussion that follows, the unrotated
factor loadings are used.

3Again, the corresponding figures for all other currency options are available in Ap-
pendix D.
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Figure 5: Factor loadings of the three retained principal components that are identified in the daily time series of
the volatility surface implied by options on the EUR/USD exchange rate from 4/9/2000–21/5/2007.

15



0 1 2 3 4 5 0 20 40 60 80 1000.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Moneyness (Delta)

Panel (a): PC1 for HUFEUR

Maturity (in years)

%
 C

h
a

n
g

e
 i
n

 I
m

p
li
e

d
 V

o
la

ti
li
ty

0 1 2 3 4 5 0
20

40
60

80
100−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Moneyness (Delta)

Panel (b): PC2 for HUFEUR

Maturity (in years)

%
 C

h
a

n
g

e
 i
n

 I
m

p
li
e

d
 V

o
la

ti
li
ty

0 1 2 3 4 5 0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Moneyness (Delta)

Panel (c): PC3 for HUFEUR

Maturity (in years)

%
 C

h
a

n
g

e
 i
n

 I
m

p
li
e

d
 V

o
la

ti
li
ty

Figure 6: Factor loadings of the first three retained principal components that are identified in the daily time series
of the volatility surface implied by options on the HUF/EUR exchange rate from 5/12/2005–21/5/2007.
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Figure 7: Factor realisations or scores of the three principal components that are identified in the daily time series
of the volatility surface implied by options on the EUR/USD exchange rate from 4/9/2000–21/5/2007, and their
autocorrelation (ACF) and partial autocorrelation (PACF) for up to 20 lags. The blue horizontal lines in the ACF
and PACF graphs correspond to the α = 5% significance level.
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Figure 8: Factor realisations or scores of the first three principal components that are identified in the daily time
series of the volatility surface implied by options on the HUF/EUR exchange rate from 8/4/2003–21/5/2007, and
their autocorrelation (ACF) and partial autocorrelation (PACF) for up to 20 lags. The blue horizontal lines in the
ACF and PACF graphs correspond to the α = 5% significance level.
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3 Modeling the dynamics of the implied volatil-

ity surface

In this section we model the time variation in the IVS as captured by the
dynamics of factor realisations identified in the cross–sectional analysis that
preceded.

In order to determine whether the implied volatility factor scores are
stationary, the augmented Dickey–Fuller and Phillips–Perron unit root tests
are conducted. The lag length of the tests for each series is decided by
the Bayesian Information Criterion of Schwarz (1978). Results (relegated in
Appendix B) indicate that the null of a unit root is soundly rejected in all
cases at the 10% significance level, and in almost all cases at the 5%.

In section 2.2 we have identified 3–9 factors that explain the volatility
surface implied by options on 30 different exchange rates. Instead of using
all the factors identified in each IVS series in our sample, we have decided
to retain and model only the first 3 factors for all currencies. One should
expect that, if anything, this choice will worsen our results in the cases
where several more factors are present in the data. However, our objective is
to investigate whether a parsimonious model, with only the most important
(and intuitive) factors, can achieve good in–sample fit and accurate out–of–
sample prediction.

Following the lead of Gonçalves and Guidolin (2006), we first consider a
vector autoregressive (VAR) model for the time series of estimated factors

F̂t =
(
F̂1,t, F̂2,t, F̂3,t

)′

of the form:

F̂t = c +
d∑

j=1

ΦF̂t−d + et (9)

where et ∼ Ni.i.d. (0,Ω). Although factors are virtually contemporaneously

orthogonal, the intuition behind (9) is that lagged realisations of one factor
(e.g. the “jump–fear”) might influence the current realisation of another
factor (e.g. the “level”). This is consistent with empirical observations re-
garding the IVS, such as that when the level increases, the steepness of the
smile decreases, etc. We label (9) as model VAR, estimate it by OLS equa-
tion by equation, and select d by successive applications of the log–likelihood
ratio test at the α = 1% significance level, starting with a maximum value
of d = 10.4 Estimation results are summarised in Tables 4 and 5.

4The degrees of freedom correction factor proposed by Sims (1980) is used in the log–
likelihood ratio tests.
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PC Code d R2
adj. LB (d) A (d) Code d R2

adj. LB (d) A (d) Code m R2
adj. LB (m) A (m)

1 AUD 9 0.9580 0.6094 0.0000∗ IDR 4 0.9459 0.9996 0.7228 PLN 7 0.9342 0.9998 0.0605
2 9 0.8870 0.5871 0.0000∗ 4 0.9367 0.6945 0.0000∗ 7 0.9013 0.8667 0.4837
3 9 0.9173 0.7350 0.0000∗ 4 0.9675 0.9999 0.6620 7 0.7353 0.2579 0.7148

1 BRL 6 0.9611 0.9991 0.0000∗ INR 7 0.9343 0.8046 1.0000 RUB 7 0.8488 0.9639 0.9389
2 6 0.9043 0.1474 0.0000∗ 7 0.8598 0.8495 0.7361 7 0.6848 0.9990 0.9913
3 6 0.7956 0.0167∗ 0.0000∗ 7 0.8623 0.9922 0.1541 7 0.8763 0.9261 0.7014

1 CAD 6 0.9248 0.8298 0.0000∗ ISK 5 0.9736 0.8177 1.0000 SEK 10 0.9701 0.1681 0.0000∗

2 6 0.8045 0.9067 0.0000∗ 5 0.9620 0.0930 1.0000 10 0.9381 0.1469 0.0000∗

3 6 0.7292 0.0011∗ 0.0000∗ 5 0.9377 0.7850 0.9962 10 0.9150 0.4525 0.0000∗

1 CHF 8 0.9437 0.0255∗ 0.0000∗ JPY 10 0.9779 0.9266 0.0000∗ SGD 10 0.8398 0.9939 0.9998
2 8 0.9011 0.8653 0.0000∗ 10 0.9591 0.9031 0.0000∗ 10 0.8505 0.9777 0.8441
3 8 0.9402 0.9963 0.0000∗ 10 0.9103 0.5907 0.0000∗ 10 0.8799 1.0000 0.4011

1 CLP 9 0.9070 0.9998 0.0280∗ KRW 6 0.9782 0.1701 0.0000∗ SKK 2 0.9514 0.1953 0.0038∗

2 9 0.8789 0.9764 0.0433∗ 6 0.9607 0.0000∗ 0.0000∗ 2 0.8581 0.0920 0.3107
3 9 0.9561 0.6061 0.7253 6 0.9115 0.0665 0.0000∗ 2 0.9081 0.0023∗ 0.0000∗

1 CZK 9 0.9582 0.9981 0.0000∗ MXN 4 0.9639 0.3297 0.7855 THB 10 0.9632 0.3900 1.0000
2 9 0.9107 0.4170 0.0000∗ 4 0.7903 0.3036 0.0000∗ 10 0.9484 0.0001∗ 0.0000∗

3 9 0.9333 0.5220 0.0000∗ 4 0.7270 0.6976 0.0012∗ 10 0.9654 0.1428 0.0000∗

1 DKK 1 0.9603 1.0000 1.0000 MYR 1 0.9411 0.1501 1.0000 TRY 8 0.9749 0.8547 0.3926
2 1 0.9726 0.9999 0.0199∗ 1 0.8986 0.1170 0.0220∗ 8 0.9047 0.9986 0.0000∗

3 1 0.9463 0.0000∗ 0.9878 1 0.8673 0.8610 0.9999 8 0.6970 0.6156 0.0000∗

1 GBP 10 0.9869 0.5964 0.0000∗ NOK 8 0.9700 0.9130 0.0057∗ TWD 3 0.7308 0.5829 0.0165∗

2 10 0.9454 0.8447 0.0526 8 0.8250 0.1419 0.0000∗ 3 0.7542 0.7212 0.0006∗

3 10 0.9335 0.9152 0.5774 8 0.8714 0.9932 0.0000∗ 3 0.7975 0.9959 0.9753

1 HKD 2 0.9056 0.8258 0.0382∗ NZD 3 0.9352 0.4849 0.9030 USD 10 0.9764 0.6766 0.0000∗

2 2 0.8724 0.9451 0.9296 3 0.8129 0.0934 0.2829 10 0.8722 0.0000∗ 0.0000∗

3 2 0.6678 0.9995 0.0126∗ 3 0.5481 0.0000∗ 0.0008∗ 10 0.9574 0.55522 0.0000∗

1 HUF 7 0.9277 0.7347 0.0186∗ PHP 6 0.8740 0.5240 0.7748 ZAR 7 0.9661 0.6095 0.0010∗

2 7 0.8757 0.9870 0.4454 6 0.4542 0.0037∗ 0.9999 7 0.9332 0.4348 0.7377
3 7 0.8439 0.2398 0.1955 6 0.8674 0.9966 0.7745 7 0.7873 0.4616 0.1263

Table 4: For the volatility surface implied by the thirty different currency options in our sample, the table reports
the results from the estimation of the VAR model (equation (9)) on the first three factor scores. The lag length,
d, is selected by successive applications of the log–likelihood ratio test at the 1% significance level, starting with
a maximum value of d = 10. Under LB (d) and A (d), p–values for the Ljung–Box statistic (H0 : absence of
autocorrelation up to lag d in the residuals) and the Engle test (H0 : i.i.d. Gaussian residuals) are reported. The
length of the time series for each currency is reported in Table 2.
An ∗ denotes that the null is rejected at the α = 5% significance level.
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PC1 PC2 PC3
Currency is Granger–caused at α = 1% by

Code PC2 PC3 PC1 PC3 PC1 PC2

AUD X

BRL X X X X X

CAD X X X

CHF X X

CLP X

CZK X X X X

DKK X

GBP X

HKD X

HUF X

IDR X X X

INR
ISK X X

JPY X X

KRW X

MXN X X X

MYR X X

NOK X X X

NZD X

PHP X X X X

PLN X X

RUB
SEK X X X X

SGD X

SKK X X X X X

THB X X

TRY X X X X

TWD X X X

USD X

ZAR X

Table 5: For the volatility surface implied by the thirty different currency
options in our sample, the table reports the results of Granger–causality
tests from the estimation of the VAR model (equation (9)) on the first three
factor scores. A X denotes evidence of Granger–causality at the α = 1%
significance level.

21



The adjusted R2’s in Table 4 suggest that the in–sample fit is extremely
good. Moreover, our suspicion that the estimated factors might be interre-
lated is confirmed by Table 5, that reports Granger–causality tests as implied
by the VAR estimation. The table reports significant (at the 1%) off–diagonal
elements of Φ in (9): for example, the tickmarks in JPY suggest that both
the “level” and the “jump–fear” factor is Granger–caused by the “term–
structure” of the IVS.

The Ljung–Box LB (d) lack–of–fit statistic in Table 4 suggests that in
the vast majority of cases the in–sample fit is fairly good, with uncorrelated
residuals. However, in most currencies, several lags are required to achieve
this fit, which suggests that there might be something that our VAR model
is missing. Indeed, the results of Engle’s (1982) ARCH/GARCH test in
Table 4 suggest that there is substantial conditional heteroscedasticity in the
residuals of the VAR fitted specification.

To account for this, we estimate a second model, labeled RMPQ, of the
following form:

F̂i,t = ki +

r∑

j=1

φijF̂i,t−k + ǫi,t +

m∑

κ=1

θiκǫi,t−κ

ǫi,t ∼ N
(
0, h2

i,t

)
(10)

h2
i,t = ωi +

p∑

n=1

ainh
2
i,t−n +

q∑

w=1

biwǫ
2
i,t−w

i = 1, 2, 3

This is a univariate autoregressive moving–average of order (r,m) model
for the estimated factor scores separately, with Gaussian GARCH (p, q) in-
novations. In contrast to the model in (9), the system of equations in (10)
accounts for conditional heteroscedasticity, but ignores relationships between
estimated factors. We estimate RMPQ via maximum likelihood and select
r,m, p, q by the Bayesian Information Criterion of Schwarz (1978), starting
with maximum values r,m = 10 and p = q = 4.

The estimation results are reported in Table 6. Fairly parsimonious spec-
ifications can adequately fit the factors scores in sample, across currencies.
In the majority of cases, both the structure of factor realisations and the
heteroscedasticity in the residuals seem adequately modeled.
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Table 6: For the volatility surface implied by the thirty
different currency options in our sample. the table re-
ports the results from estimating an ARMA (r,m) pro-
cess with Gaussian GARCH (p, q) innovations in the first
three retained principal components scores. The specifi-
cation (r,m, p, q) is selected by the Bayesian Information
Criterion of Schwarz (1978). starting with a maximum of
r = m = 10 and p = q = 4. Under LB and A. p–values
for the Ljung–Box statistic (H0 : absence of autocorre-
lation in the residuals) and the Engle test (H0 : i.i.d.
Gaussian residuals) are reported. The length of the time
series for each currency is reported in Table 2.
An ∗ denotes that the null is rejected at the α = 5%
significance level.

Retained Currency Specification Log Residuals
PC Code r m p q Likelihood LB A
1 AUD 1 0 1 1 -2518.90 0.0881 0.9760
2 4 2 1 1 -1680.60 0.5906 0.7760
3 2 0 1 1 -668.78 0.5554 0.9999

1 BRL 1 0 1 1 -2633.29 0.7831 0.9961
2 1 1 1 1 -2213.28 0.1975 0.7732
3 1 1 1 1 -1555.42 0.8345 0.7337

1 CAD 2 0 2 1 -1124.89 0.1068 0.8994
2 2 1 1 1 -840.58 0.8354 0.4787
3 3 3 2 1 -409.48 0.1356 0.4093

1 CHF 1 0 1 1 -1723.10 0.2978 0.5988
2 1 1 1 1 -1186.14 0.1010 0.7816
3 1 1 1 2 -585.61 0.3326 1.0000

1 CLP 3 4 1 2 -1202.61 0.0401∗ 1.0000
2 3 4 1 1 -783.29 0.0502 1.0000
3 1 0 1 1 -170.90 0.5444 0.9580

1 CZK 1 1 1 1 -2670.94 0.9979 0.8185
2 1 1 2 1 -1879.08 0.1916 0.0084∗

3 2 1 2 1 -1172.28 0.1241 0.2224
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Retained Currency Specification Log Residuals
PC Code r m p q Likelihood LB A
1 DKK 4 0 2 2 465.12 0.0000∗ 1.0000
2 3 4 1 1 327.01 0.0000∗ 1.0000
3 3 2 2 1 805.53 0.0000∗ 0.8807

1 GBP 1 0 1 1 -1981.12 0.3515 0.9804
2 2 1 1 1 -1147.56 0.0742 0.8320
3 2 1 1 1 -356.63 0.0879 1.0000

1 HKD 2 3 1 1 -491.41 0.0001∗ 0.8360
2 1 0 1 1 -278.01 0.6221 0.9674
3 2 2 2 1 -11.23 0.2283 0.8749

1 HUF 1 0 1 1 -745.91 0.6568 0.9626
2 1 1 1 1 -412.07 0.9834 0.1547
3 1 1 2 1 -224.55 0.0168∗ 0.7627

1 IDR 1 0 1 2 -945.98 0.9942 1.0000
2 1 0 1 1 -543.16 0.8948 0.7072
3 4 2 1 1 -90.63 0.4347 1.0000

1 INR 4 1 1 1 -484.55 0.0000∗ 1.0000
2 3 2 2 1 -485.74 0.0000∗ 0.9523
3 1 4 1 2 -44.50 0.4122 0.9990

1 ISK 4 1 1 2 -898.02 0.0093∗ 1.0000
2 3 3 1 2 -831.68 0.0002∗ 1.0000
3 1 0 2 1 -641.69 0.3470 0.9993

1 JPY 1 0 1 1 -2804.62 0.0421∗ 0.7922
2 1 0 1 1 -1753.73 0.4914 0.9904
3 2 1 1 1 -1500.36 0.0406∗ 0.9560

1 KRW 2 0 1 1 -3661.59 0.3843 0.9769
2 2 1 2 2 -2283.15 0.0000∗ 0.9997
3 1 1 2 1 -2271.26 0.1897 0.9962

1 MXN 1 0 1 1 -627.81 0.7177 0.9892
2 1 1 1 1 -458.56 0.8403 0.8877
3 1 0 1 2 -321.64 0.1539 0.0025∗
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Retained Currency Specification Log Residuals
PC Code r m p q Likelihood LB A
1 MYR 1 4 2 2 -434.02 0.0977 1.0000
2 3 4 1 2 -289.50 0.0001∗ 1.0000
3 1 0 1 2 -186.59 0.8860 1.0000

1 NOK 1 0 1 1 -2133.90 0.9016 0.9983
2 1 1 2 1 -1145.53 0.0853 0.9916
3 1 1 1 1 -317.69 0.0000∗ 1.0000

1 NZD 1 0 1 1 -623.61 0.7127 0.9577
2 2 1 1 1 -369.07 0.8456 0.6431
3 4 3 2 1 -162.70 0.1811 0.3949

1 PHP 1 1 2 1 -1555.82 0.0000∗ 0.9997
2 2 2 2 2 -1198.31 0.0000∗ 1.0000
3 1 1 2 2 -892.22 0.9982 1.0000

1 PLN 1 0 1 1 -578.68 0.9361 0.9962
2 1 0 1 1 -387.54 0.8244 0.8822
3 1 0 1 1 -96.29 0.1109 0.9634

1 RUB 1 0 1 1 -417.81 0.5697 0.8774
2 3 2 1 1 -247.36 0.0263∗ 0.9690
3 2 1 1 1 -85.63 0.8849 0.8018

1 SEK 1 0 2 1 -2211.00 0.0574 0.2681
2 2 1 2 1 -1231.17 0.1265 0.0000∗

3 1 1 1 1 -1116.21 0.0000∗ 1.0000

1 SGD 1 0 1 1 -438.14 0.1127 0.9993
2 1 0 1 1 -308.92 0.4048 0.8743
3 1 0 1 1 40.03 0.6078 0.9761

1 SKK 3 4 1 1 -1574.24 0.4971 1.0000
2 1 0 1 1 -947.00 0.2155 0.9999
3 1 0 2 1 -395.57 0.2161 0.7405

1 THB 4 1 2 2 -4547.51 0.0000∗ 1.0000
2 1 0 2 1 -2170.60 0.4861 1.0000
3 2 1 2 2 -1573.14 0.9652 1.0000
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Retained Currency Specification Log Residuals
PC Code r m p q Likelihood LB A

1 TRY 1 2 2 1 -5231.82 0.6885 0.4584
2 1 1 1 2 -3893.00 0.6431 0.9195
3 4 2 1 2 -3576.51 0.0000∗ 1.0000

1 TWD 1 1 1 1 -489.33 0.0000∗ 0.7517
2 1 0 1 1 -168.74 0.1489 0.5548
3 1 0 1 1 -1.18 0.2013 0.7387

1 USD 1 0 1 1 -2620.68 0.0025∗ 0.4813
2 2 1 1 1 -1839.53 0.0000∗ 0.1601
3 1 0 1 1 -223.47 0.1696 0.9669

1 ZAR 2 1 1 1 -891.89 0.0182∗ 0.9996
2 1 1 1 1 -560.22 0.2777 1.0000
3 1 0 2 1 -357.71 0.4498 1.0000

As Gonçalves and Guidolin (2006) point out, both models estimated in
this section, VAR and RMPQ, can be considered reduced–form analogs of
more structural models, such as that proposed by Garcia, Luger and Renault
(2003). There, predictability in the IVS dynamics arises as a consequence
of investors’ learning (from option prices) about the processes of fundamen-
tals that are driven by persistent latent variables. In such a setting, simple
reduced–form models like equations (9) and (10) can pick up such predictabil-
ity. The results of this section suggest that in–sample such reduced–form
models can perform very well.
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4 Forecasting the implied volatility surface

Our modeling approach appears successful in–sample across different implied
volatility surfaces. Nevertheless, good out–of–sample predictions should also
be provided by an IVS model in order to be considered successful. The
objective of this section is to investigate the out–of–sample performance of
models VAR and RMPQ at forecasting future daily implied volatilities.

As a benchmark we include the so–called “random walk” (RW) model,
according to which today’s implied volatility for a given option contract is
the best forecast of tomorrow’s implied volatility, i.e. our best estimate of the
future IVS is the IVS observed today. Although naive in spirit, Harvey and
Whaley (1992) point out that practitioners widely use this model in practice.

We set up the forecasting comparison as follows: Using the first 100
implied volatility surfaces we observe for each of the 30 currency options,
factor realisations F̂1,2,3 are extracted by estimating equations (6) and (8).
These are used as inputs to obtain estimates for the parameter of equations
(9) and (10). Using the estimated parameters, forecasts of factor realisations
for τ = 1, 2, . . . , 5 days ahead are produced every day, for the remaining
sample period. Since the IVS on day t + τ can be decomposed into factors
realisations τ days ahead, we can produce the whole predicted IVS via the
forecasted F̂t+τ ’s. We update the estimates of our approach every day for
each new observation of the IVS; however, we keep the lag length d and the
specification (r,m, p, q) in (9)–(10) constant and equal to the values estimated
using the first 100 IVSs throughout.

To assess out–of–sample forecasting performance, the following three mea-
sures are computed each day, for τ–ahead forecasts, for each model:
[a] Mean squared error (MSE), the average (over the number of options)
squared deviations of observed implied volatilities from the model’s implied
volatilities,
[b] Coefficient of determination (R2) from a univariate regression of the ob-
served implied volatilities on the model–predicted implied volatilities, and
[c] Mean correct prediction of the direction of change (MCP), the average
percentage of observations for which the model–predicted and the observed
change in implied volatilities have the same sign

We should stress that the above comparisons are performed across the
whole IVS and that we do not make full use of the information provided
by our approach, since only the first three identified factor are modeled and
employed in forecasting.

Table 7 reports the average values of the out–of–sample performance mea-
sures [a]–[c] for one–day ahead predictions. Both the RMPQ and the VAR
models perform notably better than the “naive” random walk model: their
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One–day ahead forecasts

Currency MSE R2 MCP
Code RMPQ VAR RW RMPQ VAR RW RMPQ VAR RW

AUD 0.0533 0.0569 0.1343 0.9854 0.9846 0.9632 52.65 52.33 47.66
BRL 0.6735 0.8158 1.2341 0.9409 0.9321 0.8999 52.07 52.21 51.19
CAD 0.0368 0.0412 0.2923 0.9377 0.9307 0.6998 53.18 52.86 48.12
CHF 0.0489 0.0502 0.0442 0.9384 0.9386 0.9470 52.34 52.04 47.74
CLP 0.1384 0.1521 0.6249 0.9240 0.9168 0.7774 50.08 49.34 62.71
CZK 0.1220 0.1241 0.0915 0.9193 0.9199 0.9486 50.65 50.70 53.44
DKK 0.0409 0.0471 0.1982 0.9856 0.9714 0.9488 52.47 52.12 49.63
GBP 0.0346 0.0365 0.0719 0.9801 0.9790 0.9608 51.90 51.96 48.50
HKD 0.0418 0.0440 0.5527 0.9715 0.9708 0.7661 50.69 52.22 56.96
HUF 0.0877 0.0907 1.3004 0.9040 0.9059 0.4556 52.26 52.20 45.96
IDR 0.2201 0.2605 0.7358 0.9501 0.9442 0.8734 53.21 53.04 53.23
INR 0.0710 0.0772 0.8744 0.9442 0.9418 0.5795 50.33 50.19 57.52
ISK 0.6458 0.8593 3.3637 0.7445 0.7401 0.6526 51.44 50.30 53.39
JPY 0.0758 0.0800 0.1826 0.9843 0.9836 0.9619 52.38 52.27 46.24
KRW 0.3119 0.3169 0.1996 0.9772 0.9771 0.9862 51.77 51.48 49.70
MXN 0.1326 0.1398 1.4033 0.9414 0.9401 0.6619 53.15 52.13 55.23
MYR 0.1147 0.1165 0.9798 0.6939 0.7258 0.3990 51.13 51.22 51.92
NOK 0.0458 0.0471 0.0856 0.9508 0.9516 0.9092 53.78 53.86 47.36
NZD 0.0469 0.0515 1.1626 0.9408 0.9395 0.4296 56.02 54.24 50.19
PHP 2.3100 33.083 1.4331 0.9037 0.7227 0.8967 50.09 51.34 54.10
PLN 0.0416 0.0427 0.7436 0.9742 0.9745 0.6721 52.80 50.91 46.68
RUB 0.0350 0.0366 0.7531 0.8933 0.8931 0.5598 52.59 52.45 61.05
SEK 0.0696 0.0733 0.0892 0.9583 0.9567 0.9413 51.96 51.76 49.40
SGD 0.0297 0.0304 0.4070 0.9654 0.9655 0.7295 54.92 55.90 55.52
SKK 0.0705 0.0743 0.2045 0.9213 0.9175 0.7950 53.98 52.55 48.55
THB 0.3830 0.4147 0.5107 0.9732 0.9702 0.9643 43.93 53.09 59.95
TRY 2.3048 2.2142 2.0386 0.9694 0.9712 0.9752 52.62 52.56 52.20
TWD 0.0551 0.0713 0.5135 0.9073 0.8785 0.6511 51.74 53.93 55.31
USD 0.0603 0.0632 0.1257 0.9789 0.9782 0.9569 52.10 52.45 46.27
ZAR 0.3119 0.3893 3.1386 0.8861 0.8830 0.4957 52.60 50.89 48.63

Table 7: For the volatility surface implied by the thirty different currency options in our sample, the table reports
out–of–sample average prediction errors across models. RMPQ corresponds to equation (10) with (r,m, p, q) set
equal to the order selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS
(starting with maximum values of (10, 10, 4, 4)). VAR corresponds to equation (9), with d selected via successive
applications of the log–likelihood ratio test, starting with a maximum value of 10. RW stands for the random
walk model that sets one–day’s ahead implied volatility forecast equal to today’s level. MSE is the mean squared
error, R2 is the coefficient of determination from a univariate regression of the observed implied volatilities on the
model–predicted implied volatilities, and MCP the mean correct prediction of the direction of change.
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average mean squared errors are most of the times one half–and in some
occasions one tenth or less–those of the RW model. Concentrating on the
most liquid currencies (USD, JPY, GBP, CAD, CHF), the average MSEs
of RMPQ (VAR) are 0.0603, 0.0758, 0.0346, 0.0368, 0.0489 (0.0632, 0.0800,
0.0365, 0.0412, 0.0502 respectively), a marked improvement over the perfor-
mance of the random walk model (0.1257, 0.1826, 0.0719, 0.2923, 0.0442),
except the CHF case where the latter outperforms only marginally. In all but
4 cases (CZK, KRW, PHP and TRY) our approach outperforms, in terms of
MSEs, the random walk benchmark.

A similar conclusion is reached when the second measure, the R2’s from
univariate regressions of observed implied volatilities on the model–predicted
implied volatilities, are examined. There is a distinct improvement in ex-
planatory power, ranging from -2.93% (CZK) to 51.11% (NZD), with an
average of 15% across all currencies in our sample. In terms of the MCP
measure, both the RMPQ and the VAR models perform better, by 2%–3%
most of the times, than the 50% benchmark in correctly predicting the di-
rection of change in the future IVS. Taking into account that the MCP (as
all performance measures examined) is averaged across (in excess of) 1500
days for some currencies (AUD, CHF, JPY, GBP, USD, NOK, etc.), this
constitutes a remarkable improvement in terms of correctly–predicted days.5

The prediction accuracy of our approach is also investigated in terms of
multistep–ahead forecasts. Tables C.1–C.4 in Appendix C report the results
of repeating the comparison for 2, 3, . . . , 5 days ahead. Our approach con-
tinues to outperform the random walk benchmark for up to 3–4 day ahead
forecasts, although its absolute performance declines as expected. It is not
until 5–day ahead forecasts are attempted that our approach is not better
than a naive random walk in MSEs; however, even at this forecast horizon
our approach is better at predicting the sign of change across the IVS than
a toss of a coin.

Turning our attention to the comparison between our two proposed mod-
els, the results of Table 7 suggest that the RMPQ model outperforms the
VAR model across all prediction measures for one–day ahead forecasts. This
ranking persists at multistep–ahead forecasting performance as well, as the
tables in Appendix C indicate. Although the VAR model is able to capture
the reported dependence between factors across time (see Table 5), it seems

5Readers should note that MCP, the mean correct prediction of the direction of change
in the IVS, cannot be defined for the random walk, RW model. What is reported in Table
7 and others that follow under MCP for the random walk, is the actual average percentage
of out–of–sample days for which the implied volatility across the surface did not decrease.
That is, in 46.27% of the 1645 days of the EUR/USD out–of–sample period, the average
change in the IVS was greater or equal to zero.
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that for forecasting purposes, adequately modeling the heteroscedasticity in
the factor innovations is more important. By capturing the heteroscedastic-
ity, the RMPQ model picks up autoregressive/moving–average dependence
in factors more sharply than the VAR, and improves implied volatility pre-
dictions considerably.

In order to gain a better understanding of the RMPQ model’s forecasting
performance, Table 8 decomposes the out–of–sample prediction errors into
moneyness and time–to–maturity categories for the USD/EUR case. Evi-
dently, our approach performs better than the random walk model across all
moneyness and maturity categories. Looking at the averages, the improve-
ment of our approach is equally substantial across the moneyness dimension,
and more pronounced for medium and long–term contracts.

Within categories, our approach performs the worst for contracts with
1 week time–to–maturity. This was expected in the light of evidence (see
Hentschel (2003)) suggesting that there are measurement and liquidity–related
biases with the implied volatilities of such short–term contracts. For all op-
tion types (calls and puts), our model has lower errors for ATM and OTM
contracts than DOTM ones; however the relative ranking of the two appears
to be related to maturity. Within each moneyness category, puts appear to
be associated with lower MSEs than calls, except in the extremes of the time–
to–maturity dimension. Thus it seems that the forecasting strength of our
model comes mainly from medium and long–term ATM and OTM segments
of the surface.

5 Conclusions

No single empirically observed deviation from the Black–Scholes–Merton op-
tion pricing framework has attracted more research effort than the noncon-
stant pattern of implied volatility versus the moneyness and time to maturity
dimensions.

Recently, general equilibrium structural models have proposed economic
justifications for the existence of an IVS; under such models, if latent factors
entering the pricing kernel are persistent, then several patterns of an IVS
can be observed, with substantial time–variation from period to period. This
conclusion is consistent with the empirical observation that the coefficients of
parametric specifications devised to fit an observed IVS change dramatically
over time.

In this paper we propose an approach that jointly models the cross–
sectional characteristics and the time–series dynamics of the IVS, which is
based on simple time–series models of the evolution of few orthogonal statis-
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Forecasting horizon: 1-day ahead. Prediction Measure: MSE

ATM OTM DOTM
Calls Puts Calls Puts Averages

Maturity RMPQ RW RMPQ RW RMPQ RW RMPQ RW RMPQ RW RMPQ RW
1wk 0.2039 0.2539 0.2237 0.2727 0.2016 0.2557 0.2682 0.3011 0.2156 0.2714 0.2226 0.2710
1m 0.1111 0.1417 0.1185 0.1559 0.1109 0.1421 0.1421 0.1764 0.1158 0.1524 0.1197 0.1537
2m 0.0718 0.1129 0.0755 0.1238 0.0675 0.1143 0.0878 0.1405 0.0727 0.1247 0.0751 0.1232
3m 0.0529 0.1027 0.0552 0.1123 0.0482 0.1048 0.0644 0.1286 0.0517 0.1158 0.0545 0.1128
6m 0.0290 0.0932 0.0333 0.1018 0.0242 0.0959 0.0436 0.1195 0.0315 0.1081 0.0323 0.1037
9m 0.0240 0.0933 0.0290 0.1026 0.0200 0.0962 0.0403 0.1227 0.0302 0.1100 0.0287 0.1050
12m 0.0225 0.0933 0.0276 0.1033 0.0195 0.0963 0.0388 0.1257 0.0318 0.1115 0.0280 0.1060
18m 0.0210 0.0935 0.0236 0.1037 0.0183 0.0966 0.0327 0.1261 0.0287 0.1119 0.0249 0.1064
2y 0.0217 0.0938 0.0236 0.1040 0.0192 0.0969 0.0321 0.1267 0.0282 0.1124 0.0250 0.1068
3y 0.0262 0.0940 0.0259 0.1038 0.0254 0.0974 0.0279 0.1260 0.0235 0.1127 0.0258 0.1068
4y 0.0359 0.0941 0.0331 0.1036 0.0381 0.0978 0.0388 0.1257 0.0363 0.1132 0.0365 0.1069
5y 0.0495 0.0940 0.0439 0.1032 0.0548 0.0978 0.0518 0.1251 0.0555 0.1133 0.0511 0.1067

Averages 0.0558 0.1133 0.0594 0.1242 0.0540 0.1160 0.0724 0.1454 0.0601 0.1298 0.0603 0.1257

Table 8: For the volatility surface implied by options on the USD/EUR exchange rate from 4/9/2000 to 21/5/2007,
the table provides a decomposition of the mean squared error (MSE) of Table 7 across the moneyness and time–to–
maturity dimensions. RMPQ corresponds to equation (10) with (r,m, p, q) set equal to the order selected by the
BIC criterion on estimation of the model on the first 100 observations of the IVS (starting with maximum values
of (10, 10, 4, 4)). RW stands for the random walk model that sets one–day’s ahead implied volatility forecast equal
to today’s level. ATM, OTM and DOTM stand for at–the–money, out–of–the–money, and deep out–of–the–money
respectively.
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tical factors that are identified in the IVS.
At a first stage, instead of imposing a parametric specification of mon-

eyness and time–to–maturity to explain the IVS cross–sectionally, as the
popular practitioners’ approach dictates, we derive directly from the data a
number of orthogonal statistical factors that are shown to accurately repro-
duce the IVS observed on any given day. These statistical factors exhibit
substantial time–variability, and are shown to have loadings with natural
interpretations in the law of motion of the IVS.

At a second stage, we attempt to exploit the factors identified for forecast-
ing purposes by modeling their evolution with simple, parsimonious econo-
metric specifications. We demonstrate that our approach achieves a high–
quality fit of the surface and of its evolution over time.

We examine the forecasting ability of our proposed approach out–of–
sample in terms of standard prediction measures and in comparison to bench-
marks used in practice. We find that our approach clearly outperforms in
one–day ahead predictions of the IVS, and continues to outperform for fore-
casting horizons up to 3 days in the future. Careful examination of our
approach’s performance suggests that its forecasting power is at the medium
and long–term ATM and OTM segments of the surface.
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A Appendix: Determining the number of re-

tained principal components

A variety of methods, from simple rules of thumb to proper statistical tests,
have been suggested in the literature in order to determine the number of
retained principal components in practical applications (see Jackson (1991)
for a good review).

One popular rule of thumb is the Guttman–Kaiser criterion, also known
as the mean eigenvalue rule of thumb, which retains only the principal compo-
nents that correspond to eigenvalues larger that the mean of all eigenvalues.
Another simple and practical rule is to keep the components which explain
at least 95% of the total variance (as in the application of Litterman and
Scheinkman (1988)).

We use the Guttman–Kaiser criterion in our application, as well as a
testing procedure proposed by Velicer (1976) that examines the partial cor-
relations of the residuals once m principal components are retained.

When m = 0, 1, 2, . . . , p principal components are retained, the partial
correlation matrix of the residuals is given by

Rm = D− 1

2 εmε
′
mD− 1

2 (A.1)

where D is a diagonal matrix made up of the diagonal elements in ǫmǫ
′
m. By

definition, R0 is the original correlation matrix of σp×1. If rij represents the
i th row, j th column element of Rn, then the Velicer (1976) statistic is given
by

fm =
∑

i

∑

j 6=i

r2
ij

p (p− 1)
. (A.2)

The fm statistic always lies in [0, 1] and has a minimum in the range 0 < m <
p− 1, and this should be the number of principal components retained. The
logic behind the test is that as long as fm is declining, the partial covariances
are declining faster than residual variances. Thus principal components will
be retained until the ones left out represent more variance than covariance.

B Appendix: Unit root tests of identified fac-

tors

To determine whether the factor identified in the cross-sectional analysis
are stationary, the augmented Dickey–Fuller and Phillips–Perron tests are
conducted.
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Currency Augmented Dickey–Fuller applied to the scores of
Code PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9
AUD 0.0000 0.0000 0.0000 0.0000 0.0000
BRL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0041 0.0000
CAD 0.0000 0.0000 0.0000
CHF 0.0000 0.0000 0.0000 0.0000
CLP 0.0000 0.0000 0.0150 0.0395 0.0042 0.0000 0.0000
CZK 0.0000 0.0000 0.0000 0.0000
DKK 0.0045 0.0294 0.0093
GBP 0.0691∗ 0.0000 0.0000
HKD 0.0128 0.0000 0.0000
HUF 0.0116 0.0000 0.0000 0.0000 0.0000 0.0010 0.0026
IDR 0.0045 0.0000 0.0544∗ 0.0000 0.0000
INR 0.0029 0.0000 0.0000
ISK 0.0230 0.0391 0.0626∗

JPY 0.0191 0.0000 0.0000 0.0000 0.0000
KRW 0.0021 0.0000 0.0000 0.0000 0.0000
MXN 0.0078 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0267 0.0000
MYR 0.0178 0.0135 0.0041
NOK 0.0000 0.0000 0.0000 0.0000
NZD 0.0290 0.0000 0.0000 0.0000 0.0000 0.0047 0.0000
PHP 0.0000 0.0000 0.0000
PLN 0.0119 0.0249 0.0000
RUB 0.0000 0.0000 0.0000 0.0116 0.0316 0.0000 0.0000
SEK 0.0000 0.0000 0.0000
SGD 0.0000 0.0000 0.0000
SKK 0.0000 0.0000 0.0000
THB 0.0000 0.0000 0.0000
TRY 0.0000 0.0000 0.0000 0.0000 0.0000
TWD 0.0000 0.0000 0.0000 0.0095 0.0012 0.0239
USD 0.0105 0.0000 0.0000
ZAR 0.0239 0.0237 0.0000

Table B.1: For the volatility surface implied by the thirty different currency options in our sample, the table reports
p-values from the augmented Dickey–Fuller test under the null of a unit root process without drift, applied to the
time–series of retained principal component scores. The number of retained principal components reported in the
table is the greatest from the Guttman–Kaiser (λ̄) and Velicer (fn) criteria. The lag length for the test is selected by
the Bayesian Information Criterion of Schwarz (1978) and the length of the time series for each currency is reported
in Table 2.
An ∗ denotes that the null cannot be rejected at the α = 5% level.

34



Currency Phillips–Perron applied to the scores of
Code PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9
AUD 0.0000 0.0000 0.0000 0.0000 0.0000
BRL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CAD 0.0000 0.0000 0.0000
CHF 0.0000 0.0000 0.0000 0.0000
CLP 0.0000 0.0000 0.0049 0.0000 0.0000 0.0000 0.0000
CZK 0.0000 0.0000 0.0000 0.0000
DKK 0.0039 0.0296 0.0031
GBP 0.0232 0.0000 0.0000
HKD 0.0034 0.0000 0.0000
HUF 0.0049 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IDR 0.0026 0.0000 0.1044∗ 0.0000 0.0000
INR 0.0076 0.0000 0.0000
ISK 0.0256 0.0381 0.0229
JPY 0.0000 0.0000 0.0000 0.0000 0.0000
KRW 0.0018 0.0000 0.0000 0.0000 0.0000
MXN 0.0311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MYR 0.0236 0.0058 0.0010
NOK 0.0000 0.0000 0.0000 0.0000
NZD 0.0027 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PHP 0.0000 0.0000 0.0000
PLN 0.0074 0.0033 0.0000
RUB 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SEK 0.0000 0.0000 0.0000
SGD 0.0000 0.0000 0.0000
SKK 0.0000 0.0000 0.0000
THB 0.0000 0.0000 0.0000
TRY 0.0000 0.0000 0.0000 0.0000 0.0000
TWD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
USD 0.0032 0.0000 0.0000
ZAR 0.0083 0.0067 0.0000

Table B.2: For the volatility surface implied by the thirty different currency options in our sample, the table reports
p-values from the Phillips–Perron test under the null of a unit root process without drift, applied to the time–series
of retained principal component scores. The number of retained principal components reported in the table is the
greatest from the Guttman–Kaiser (λ̄) and Velicer (fn) criteria. The lag length for the test is selected by the Bayesian
Information Criterion of Schwarz (1978) and the length of the time series for each currency is reported in Table 2.
An ∗ denotes that the null cannot be rejected at the α = 5% level.
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In the augmented Dickey–Fuller, under the null hypothesis the true un-
derlying process of factor realisations F̂m,t is

F̂m,t = F̂m,t−1 + ζ1∆F̂m,t−1 + ζ2∆F̂m,t−2 + . . .+ ζl∆F̂m,t−l + ut (B.1)

with ∆ the first difference operator, while under the alternative

F̂m,t = φF̂m,t−1 + ζ1∆F̂m,t−1 + ζ2∆F̂m,t−2 + . . .+ ζl∆F̂m,t−l + ut (B.2)

with φ < 1. In Phillips–Perron, the null and alternative hypothesis are

F̂m,t = F̂m,t−1 + νt (B.3)

and
F̂m,t = φF̂m,t−1 + νt (B.4)

respectively.

C Appendix: Prediction accuracy of multi–

step ahead forecasts

In the tables that follow, the out–of–sample prediction accuracy of our RMPQ
and VAR models is assessed, for τ = 2, 3, 4, 5 day–ahead implied volatility
forecasts.
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Two–day ahead forecasts

Currency MSE R2 MCP
Code RMPQ VAR RW RMPQ VAR RW RMPQ VAR RW

AUD 0.0791 0.0849 0.1384 0.9788 0.9776 0.9631 53.68 52.97 45.95
BRL 0.9439 1.1486 1.3584 0.9155 0.9049 0.8906 52.94 52.24 47.74
CAD 0.0520 0.0603 0.2452 0.9147 0.9013 0.7228 54.64 53.41 47.23
CHF 0.0582 0.0605 0.0499 0.9243 0.9255 0.9401 53.32 52.49 46.86
CLP 0.1894 0.1923 0.5314 0.8986 0.8943 0.7913 50.36 49.29 60.55
CZK 0.1500 0.1519 0.1205 0.9004 0.9041 0.9350 51.41 51.00 50.65
DKK 0.0523 0.0549 0.2008 0.9802 0.9683 0.9453 53.08 52.88 48.61
GBP 0.0474 0.0506 0.0735 0.9736 0.9717 0.9606 52.75 52.61 47.77
HKD 0.0636 0.0650 0.4468 0.9564 0.9576 0.7907 51.31 52.54 54.63
HUF 0.1408 0.1458 1.0704 0.8604 0.8675 0.4769 53.18 52.18 45.97
IDR 0.3114 0.3924 0.6912 0.9298 0.9193 0.8748 54.28 52.84 48.95
INR 0.0997 0.1099 0.7039 0.9150 0.9163 0.6159 50.98 50.04 56.91
ISK 0.8834 1.1433 2.7850 0.6999 0.7250 0.6781 52.59 51.13 50.33
JPY 0.1124 0.1210 0.1903 0.9772 0.9761 0.9615 52.99 53.09 43.77
KRW 0.4080 0.4124 0.3012 0.9706 0.9709 0.9796 52.85 52.29 47.27
MXN 0.1718 0.1859 1.1304 0.9268 0.9262 0.6927 56.05 53.48 51.16
MYR 0.1893 0.1909 0.8293 0.5112 0.5870 0.3850 49.24 52.14 51.38
NOK 0.0681 0.0689 0.0981 0.9276 0.9328 0.9013 54.59 54.07 46.40
NZD 0.0766 0.0866 0.9175 0.9003 0.9017 0.4569 56.67 55.87 46.37
PHP 3.0487 43.6199 2.4852 0.8649 0.5828 0.8579 51.77 52.11 51.97
PLN 0.0678 0.0687 0.5946 0.9599 0.9617 0.7082 53.87 53.22 46.25
RUB 0.0408 0.0421 0.5757 0.8827 0.8849 0.5916 54.13 52.90 54.75
SEK 0.0950 0.0968 0.1045 0.9419 0.9436 0.9356 52.52 52.15 47.15
SGD 0.0427 0.0437 0.3282 0.9484 0.9504 0.7559 55.71 56.62 53.27
SKK 0.1017 0.1047 0.2049 0.8904 0.8922 0.7976 54.55 53.33 47.17
THB 0.5808 0.5996 0.6074 0.9596 0.9580 0.9577 43.78 53.28 57.26
TRY 3.1716 2.8775 2.7887 0.9585 0.9627 0.9661 53.24 53.10 50.50
TWD 0.0651 0.0694 0.4105 0.8873 0.8806 0.6759 51.38 53.39 53.62
USD 0.0894 0.0934 0.1402 0.9690 0.9682 0.9531 52.31 53.47 46.13
ZAR 0.5758 0.7634 2.7097 0.8099 0.8129 0.5091 54.60 49.97 47.66

Table C.1: For the volatility surface implied by the thirty different currency options in our sample, the table reports
out–of–sample average prediction errors across models. RMPQ corresponds to equation (10) with (r,m, p, q) set
equal to the order selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS
(starting with maximum values of (10, 10, 4, 4)). VAR corresponds to equation (9), with d selected via successive
applications of the log–likelihood ratio test, starting with a maximum value of 10. RW stands for the random
walk model that sets two–day’s ahead implied volatility forecast equal to today’s level. MSE is the mean squared
error, R2 is the coefficient of determination from a univariate regression of the observed implied volatilities on the
model–predicted implied volatilities, and MCP the mean correct prediction of the direction of change.
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Three–day ahead forecasts

Currency MSE R2 MCP
Code RMPQ VAR RW RMPQ VAR RW RMPQ VAR RW

AUD 0.1045 0.1139 0.1422 0.9723 0.9701 0.9630 54.80 53.42 44.87
BRL 1.1966 1.4428 1.4634 0.8908 0.8807 0.8823 53.32 52.28 46.91
CAD 0.0675 0.0734 0.1950 0.8903 0.8817 0.7561 54.70 53.72 45.76
CHF 0.0662 0.0690 0.0542 0.9115 0.9152 0.9354 53.35 52.13 46.36
CLP 0.2354 0.2266 0.4375 0.8777 0.8740 0.8087 51.25 48.67 60.14
CZK 0.1790 0.1809 0.1481 0.8805 0.8881 0.9222 52.13 51.54 48.58
DKK 0.0631 0.0677 0.2026 0.9745 0.9618 0.9528 53.11 53.01 48.02
GBP 0.0596 0.0632 0.0732 0.9673 0.9649 0.9612 52.77 52.83 46.96
HKD 0.0843 0.0832 0.3351 0.9423 0.9463 0.8245 51.11 52.47 53.59
HUF 0.1945 0.1985 0.8184 0.8165 0.8318 0.5210 53.86 52.45 44.87
IDR 0.4258 0.5748 0.6711 0.9036 0.8876 0.8719 54.96 53.15 46.04
INR 0.1294 0.1435 0.5343 0.8832 0.8910 0.6645 53.45 50.56 55.93
ISK 1.0507 1.4320 2.2412 0.6614 0.6998 0.7058 52.59 51.13 49.66
JPY 0.1507 0.1639 0.1986 0.9698 0.9681 0.9609 53.11 53.35 43.25
KRW 0.4910 0.4902 0.3811 0.9646 0.9655 0.9740 53.49 52.61 46.19
MXN 0.2114 0.2210 0.8434 0.9098 0.9139 0.7365 58.04 55.15 49.64
MYR 0.2611 0.2468 0.6644 0.3504 0.4892 0.3734 48.86 51.91 49.68
NOK 0.0903 0.0913 0.1091 0.9026 0.9130 0.8942 55.59 53.32 45.96
NZD 0.1082 0.1253 0.6700 0.8543 0.8608 0.5021 58.22 54.82 46.05
PHP 2.1226 401.4787 2.4353 0.8494 0.3848 0.8623 52.64 52.33 51.09
PLN 0.0918 0.0931 0.4367 0.9455 0.9495 0.7594 55.96 52.38 43.68
RUB 0.0455 0.0479 0.4024 0.8744 0.8771 0.6333 55.04 53.18 51.62
SEK 0.1225 0.1206 0.1178 0.9231 0.9295 0.9305 52.46 52.71 47.49
SGD 0.0532 0.0540 0.2453 0.9340 0.9387 0.7932 55.69 56.82 51.24
SKK 0.1299 0.1322 0.1986 0.8599 0.8678 0.8046 55.27 53.89 46.53
THB 0.7907 0.7746 0.6957 0.9452 0.9440 0.9516 43.97 53.25 56.33
TRY 3.8264 3.3033 3.1154 0.9505 0.9571 0.9615 53.30 53.15 49.90
TWD 0.0749 0.0801 0.3060 0.8678 0.8605 0.7108 50.42 51.64 52.89
USD 0.1208 0.1272 0.1556 0.9581 0.9569 0.9487 52.70 53.98 45.33
ZAR 0.8549 1.2075 2.2300 0.7285 0.7434 0.5401 53.84 49.13 46.56

Table C.2: For the volatility surface implied by the thirty different currency options in our sample, the table reports
out–of–sample average prediction errors across models. RMPQ corresponds to equation (10) with (r,m, p, q) set
equal to the order selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS
(starting with maximum values of (10, 10, 4, 4)). VAR corresponds to equation (9), with d selected via successive
applications of the log–likelihood ratio test, starting with a maximum value of 10. RW stands for the random
walk model that sets three–day’s ahead implied volatility forecast equal to today’s level. MSE is the mean squared
error, R2 is the coefficient of determination from a univariate regression of the observed implied volatilities on the
model–predicted implied volatilities, and MCP the mean correct prediction of the direction of change.

38



Four–day ahead forecasts

Currency MSE R2 MCP
Code RMPQ VAR RW RMPQ VAR RW RMPQ VAR RW

AUD 0.1263 0.1378 0.1413 0.9666 0.9639 0.9641 55.57 53.67 44.22
BRL 1.4353 1.6877 1.5528 0.8658 0.8594 0.8748 53.45 51.76 46.99
CAD 0.0806 0.0845 0.1405 0.8694 0.8647 0.8063 53.54 53.32 45.36
CHF 0.0743 0.0780 0.0576 0.8977 0.9041 0.9313 53.96 52.37 45.96
CLP 0.2932 0.2739 0.3459 0.8526 0.8477 0.8294 50.95 47.50 60.71
CZK 0.2073 0.2082 0.1737 0.8605 0.8732 0.9102 52.41 51.67 47.51
DKK 0.0829 0.0900 0.1755 0.9715 0.9573 0.9566 53.23 53.05 47.98
GBP 0.0712 0.0750 0.0720 0.9613 0.9584 0.9622 53.09 52.99 46.74
HKD 0.1057 0.1009 0.2241 0.9277 0.9352 0.8678 50.63 50.46 55.74
HUF 0.2591 0.2638 0.5664 0.7603 0.7852 0.5934 53.66 50.98 44.90
IDR 0.5649 0.8077 0.6690 0.8715 0.8514 0.8658 55.11 52.68 43.94
INR 0.1581 0.1754 0.3663 0.8482 0.8679 0.7335 53.97 52.30 59.07
ISK 1.1620 1.6274 1.6539 0.6389 0.6874 0.7498 52.28 49.79 46.88
JPY 0.1886 0.2068 0.2046 0.9622 0.9601 0.9609 52.99 52.88 43.53
KRW 0.5683 0.5626 0.4528 0.9589 0.9604 0.9689 53.26 52.41 45.59
MXN 0.2540 0.2628 0.5621 0.8920 0.9010 0.7984 59.75 55.57 48.27
MYR 0.3404 0.3138 0.4966 0.1957 0.3830 0.3502 46.99 51.25 51.40
NOK 0.1122 0.1122 0.1188 0.8762 0.8949 0.8882 55.85 53.14 46.19
NZD 0.1356 0.1589 0.4122 0.8078 0.8224 0.5918 59.04 52.18 44.00
PHP 3.3095 588.3826 2.3952 0.8494 0.2505 0.8682 52.21 52.06 51.83
PLN 0.1196 0.1188 0.2865 0.9279 0.9357 0.8258 56.67 51.96 42.05
RUB 0.0490 0.0519 0.2264 0.8669 0.8717 0.7045 55.70 53.46 49.31
SEK 0.1504 0.1397 0.1271 0.9028 0.9188 0.9274 52.66 52.53 48.08
SGD 0.0621 0.0632 0.1588 0.9209 0.9282 0.8456 55.76 56.46 50.85
SKK 0.1561 0.1556 0.1879 0.8298 0.8475 0.8166 56.13 54.29 45.06
THB 1.0059 1.1303 0.7757 0.9307 0.9258 0.9459 44.26 53.05 56.20
TRY 4.4857 3.8264 3.5851 0.9431 0.9503 0.9551 53.75 53.22 49.20
TWD 0.0837 0.0878 0.1986 0.8498 0.8464 0.7651 49.40 49.15 55.52
USD 0.1493 0.1563 0.1666 0.9480 0.9471 0.9454 52.80 54.70 44.46
ZAR 1.1745 1.7958 1.7709 0.6423 0.6767 0.5937 54.00 49.30 46.89

Table C.3: For the volatility surface implied by the thirty different currency options in our sample, the table reports
out–of–sample average prediction errors across models. RMPQ corresponds to equation (10) with (r,m, p, q) set
equal to the order selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS
(starting with maximum values of (10, 10, 4, 4)). VAR corresponds to equation (9), with d selected via successive
applications of the log–likelihood ratio test, starting with a maximum value of 10. RW stands for the random
walk model that sets four–day’s ahead implied volatility forecast equal to today’s level. MSE is the mean squared
error, R2 is the coefficient of determination from a univariate regression of the observed implied volatilities on the
model–predicted implied volatilities, and MCP the mean correct prediction of the direction of change.
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Five–day ahead forecasts

Currency MSE R2 MCP
Code RMPQ VAR RW RMPQ VAR RW RMPQ VAR RW

AUD 0.1465 0.1608 0.1399 0.9612 0.9579 0.9653 56.22 53.71 44.26
BRL 1.6750 1.9800 1.6390 0.8397 0.8370 0.8669 53.98 51.74 46.65
CAD 0.0915 0.0947 0.0845 0.8521 0.8493 0.8805 52.59 52.46 45.53
CHF 0.0837 0.0875 0.0619 0.8814 0.8922 0.9256 54.35 52.22 45.67
CLP 0.3719 0.3208 0.2566 0.8210 0.8206 0.8551 49.92 46.50 61.96
CZK 0.2356 0.2343 0.1978 0.8396 0.8588 0.8987 52.58 52.09 47.09
DKK 0.1104 0.1255 0.1306 0.9638 0.9485 0.9661 53.28 53.11 47.49
GBP 0.0832 0.0871 0.0707 0.9552 0.9517 0.9632 53.16 52.83 45.82
HKD 0.1287 0.1206 0.1130 0.9116 0.9232 0.9265 44.26 47.53 64.31
HUF 0.3210 0.3283 0.3140 0.7076 0.7424 0.7436 53.69 50.48 44.16
IDR 0.7094 1.0712 0.6760 0.8374 0.8135 0.8582 55.16 52.72 43.90
INR 0.1824 0.2070 0.1841 0.8152 0.8454 0.8573 53.54 49.87 66.99
ISK 1.3070 2.0432 1.0557 0.6082 0.6516 0.8408 52.67 49.51 45.98
JPY 0.2233 0.2447 0.2069 0.9552 0.9530 0.9615 53.02 53.13 43.26
KRW 0.6459 0.6379 0.5232 0.9531 0.9553 0.9639 53.55 52.42 45.83
MXN 0.2831 0.2970 0.2863 0.8780 0.8909 0.8918 61.38 55.93 45.64
MYR 0.4215 0.3831 0.3282 0.0819 0.2861 0.2670 44.73 49.17 57.41
NOK 0.1331 0.1320 0.1273 0.8495 0.8773 0.8833 56.13 52.68 46.18
NZD 0.1657 0.1929 0.1743 0.7552 0.7874 0.8023 58.22 52.63 44.06
PHP 3.0464 11107.3518 2.3808 0.8456 0.0211 0.8738 50.24 51.09 55.13
PLN 0.1481 0.1448 0.1369 0.9087 0.9216 0.9252 57.84 51.26 41.28
RUB 0.0525 0.0548 0.0470 0.8598 0.8675 0.9082 56.92 54.39 48.12
SEK 0.1816 0.1577 0.1372 0.8807 0.9099 0.9247 53.13 52.65 48.28
SGD 0.0700 0.0721 0.0712 0.9086 0.9184 0.9193 54.80 55.73 52.42
SKK 0.1822 0.1803 0.1787 0.7984 0.8262 0.8291 56.20 54.28 45.27
THB 1.2399 1.3166 0.8548 0.9146 0.8998 0.9402 43.88 52.60 56.45
TRY 5.1569 4.3875 3.9255 0.9355 0.9430 0.9501 54.03 53.65 48.76
TWD 0.0898 0.0929 0.0882 0.8382 0.8357 0.8603 43.73 43.31 63.69
USD 0.1755 0.1832 0.1747 0.9384 0.9378 0.9431 52.70 54.76 44.12
ZAR 1.5102 2.4375 1.3349 0.5474 0.6135 0.7144 55.16 50.14 46.17

Table C.4: For the volatility surface implied by the thirty different currency options in our sample, the table reports
out–of–sample average prediction errors across models. RMPQ corresponds to equation (10) with (r,m, p, q) set
equal to the order selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS
(starting with maximum values of (10, 10, 4, 4)). VAR corresponds to equation (9), with d selected via successive
applications of the log–likelihood ratio test, starting with a maximum value of 10. RW stands for the random
walk model that sets five–day’s ahead implied volatility forecast equal to today’s level. MSE is the mean squared
error, R2 is the coefficient of determination from a univariate regression of the observed implied volatilities on the
model–predicted implied volatilities, and MCP the mean correct prediction of the direction of change.
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