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Abstract

We entertain the possibility of pervasive factors that are not common across two
(or more) groups of securities. We propose a general procedure to estimate the

space spanned by the common and group-specific pervasive factors. In our empirical
analysis, we study the factor structure of excess returns on stocks traded on the Nyse

and Nasdaq exchanges using our methodology. We find that there are no more than
one, or sometimes two, factors that are common across these two exchanges while the

total number of pervasive factors in each group (including group-specific) is usually
around three. Our results point to the absence of complete similarity between the

factors driving the returns on these exchanges. More importantly, we estimate these
common and group-specific pervasive factors.
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1 Introduction

Multifactor models of asset returns have played a central role in finance. The Arbitrage

Pricing Theory (APT) of Ross (1976) was the first theoretically grounded multifactor model

in asset pricing. A key assumption is that the random return of each security is a linear

combination of a small number of common factors plus an asset-specific random variable,

i.e., the idiosyncratic return. Idiosyncratic returns are supposed to be uncorrelated across

firms, which is equivalent to saying that asset returns conform to an exact (or strict) factor

structure. However, Chamberlain and Rothschild (1983) show that the diagonality of the

residual covariance matrix is not necessary for the proof of the APT and derive a version

of APT under a more general approximate factor structure.1

While the approximate factor structure allows idiosyncratic returns to be cross-correlated,

it is still usually assumed that all factors are pervasive, in the sense that they influence a

large number of assets. In an economy partitioned into several groups, such as different

sectors, markets, or countries, the assumption that all pervasive factors are common to all

groups is too strong. In other words, the existence of common pervasive factors (that

affect returns of securities in all groups) and group-specific pervasive factors (that

affect returns of securities only in some groups) is, a priori, not ruled out by APT.2

A particularly relevant instance of a natural group structure in financial markets is

provided by the two main stock exchanges in the U.S., Nyse and Nasdaq. While the Nyse

and the Nasdaq provide the same service, their underlying structures, rules and governing

principles are very different. For instance, the Nyse is a specialist based auction system

and the Nasdaq is a computer-based dealer market. There is also a lot of evidence that

suggests that (the return structure of) the securities that trade on these two exchanges are

very different. Nasdaq has been shown to be less integrated with the Nyse and the Amex

than the latter two are with each other (Naranjo and Protopapadakis, 1997). Fama and

French (2004) report that Nasdaq accounts for most new lists after 1972: the number of

Nyse new lists is approximatively equal to 10% of Nasdaq ones. Before the October 1987

crash, Nasdaq stock volatility was comparable with the one observed on other U.S. markets,

but after, the Nasdaq has become unusually volatile (Schwert, 2002). Although Campbell,

1Ross (1976) notes that uncorrelated idiosyncratic returns are not required for APT but does not
formally prove it.

2Indeed, Connor and Korajczyk (1993, p. 1264) argue that “it seems possible that a few firms in the

same industry might have industry-specific components to their returns which are not pervasive sources of

uncertainty for the whole economy. For example, awarding a defense contract to one aerospace firm might

affect the stock prices of several firms in the industry. Assuming a strict factor structure would force us to

treat this industry-specific uncertainty as a pervasive factor.”
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Lettau, Malkiel and Xu (2001) attest that the level of the idiosyncratic risk has globally

trended up in the U.S., Malkiel and Xu (2003) report that the rise has been much stronger

for Nasdaq stocks than that for Nyse stocks. Baruch and Saar (2006) explain that the

listing decision between Nyse and Nasdaq is not due to differences in the structure or rules

of the markets, but rather due to different return patterns of the securities that are traded

on these markets.

In spite of this body of evidence, there is very little work done on pinpointing the exact

nature of difference(s) between the factors across these two groups. A central difficulty in

this endeavor, namely identifying common pervasive factors and group-specific pervasive

factors, has been the absence of a formal procedure in extracting these factors. Cho, Eun,

and Senbet (1986) use a variant of factor analysis called inter-battery factor analysis to

estimate the factor sensitivity matrix for factors common across pairs of countries. Unfor-

tunately, inter-battery factor analysis can neither estimate common factors for more than

two groups, nor is able to estimate country-specific factors, which are not ruled out by

the international APT. As the first contribution in this paper, we propose a general proce-

dure to estimate pervasive risk factors in the presence of several groups of assets under the

framework of a large number of assets in each group.

Our methodology takes advantage of a multi-group version of the standard principal

component analysis (PCA). The key to the analysis is that the space spanned by the

latent factors can be consistently estimated in each group. Our procedure then estimates

a single common factor subspace which resembles all group-factor subspaces as closely as

possible. Since we study large cross-sections with limited time-series, our methodology

generalizes the pioneering approach of Connor and Korajczyk (1986, 1988) by accounting

for the group structure of the returns. We conduct several simulation experiments to test

the usefulness of our method. We find that the traditional PCA falls short in estimating

the space spanned by the common pervasive factors even in large samples. In contrast,

our method outperforms the standard PCA for estimating the space spanned by common

pervasive factors, as well as the space spanned by all (common and group-specific) pervasive

factors, especially in the presence of cross-correlated residuals.

We apply our methodology to the return structure of Nyse/Amex and Nasdaq securities

by studying excess returns on stocks.3 We consider a 25-year sample covering the 1978-

2002 period, that we divide into five 60-month subperiods. For each of the subperiods, we

extract common pervasive factors and group-specific pervasive factors. We find that, while

3For ease of notation, we frequently refer to the group consisting of stocks traded on Nyse and Amex
as the ‘Nyse group’ while the second group is referred to as the ‘Nasdaq group.’
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there are three factors in each group, there are at most two common pervasive factors. In

other words, we find that there are two (common) factors that govern the returns for both

Nyse and Nasdaq. At the same time, both Nyse and Nasdaq have one more (group-specific)

factor that is not the same across the two exchanges. Therefore, our empirical results point

to the absence of complete correspondence in the return structure of stocks on these two

exchanges.

A comparison of our technique versus the traditional PCA, wherein the data are pooled,

reveals that the traditional techniques have difficulties in uncovering the common factors

across the two groups. This is comforting since it shows that the efficacy of our procedure,

that we document using simulation experiments, carries over to real data. We also make

attempts to ‘identify’ our common pervasive factors. Because of the well-known rotational

indeterminacy problem of PCA, we can only compare canonical correlations of our factors

with other factors. We find that our common pervasive factors are highly related to the

standard benchmark factors, such as the three Fama and French (1993) factors. Although

the standard factors explain less of the common variation in returns in the recent years than

in the early part of the sample, our results still point to the usefulness of the Fama-French

model as the canonical correlation of these factors with our common pervasive factors is in

excess of 0.95 for most of the sample period.

Beyond the theoretical contribution mentioned earlier, our paper makes at least two

practical contributions. First, our methodology can be applied to compare the price of risk

of factors in different groups, such as various countries. Second, we add to the voluminous

literature on multi-factor models, which is motivated in part to describe the covariance

structure of asset returns in a parsimonious manner. We find that there are at most three

pervasive factors in each group, among which two are common. Even though we estimate

these factors ex-post, the consistency of the result across a long time horizon is comforting.

Our paper adds to the small literature on the analysis of group structure superimposed

on classical factor analysis. In addition to the study by Cho, Eun, and Senbet (1986)

mentioned earlier, Bekaert, Hodrick and Zhang (2005) and Korajczyk and Sadka (2007)

have recently proposed a two-step procedure to identify common and group-specific factors.

However, we show in this paper that the first step of their procedure, which aims to estimate

common factors, does not work well when, for instance, some factors are common to a

subset of groups only, or if the sample size or the factor sensitivities (betas) vary across

groups. In contrast, our methodology is general and is able to estimate common pervasive

as well as group-specific pervasive factors. As will become clear later, one can also view our

method to be a multi-group version of the heteroskedastic factor analysis of Jones (2001).
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Finally, our work is related to the studies on differences between the Nyse and the Nasdaq

exchanges. The closest companion from this strand of literature to our paper is Baruch

and Saar (2006) who show that a stock is more liquid when it is listed on a market where

‘similar’ securities are traded. Our study differs from theirs in the focus (we investigate

sources of common and group-specific covariation in returns), approach (we introduce a

new methodology), and the sample period (we study a 25 year period versus their three

year sample period).

The outline of the rest of the paper is as follows. Section 2 introduces the group structure

factor model. Section 3 details our methodology and provides simulation results to discuss

the usefulness of our procedure relative to other existing methods. In Section 4, we apply

our methodology to Nyse and Nasdaq stocks. Section 5 concludes and provides directions

for future research.

2 Background

In the APT of Ross (1976), arbitrage arguments are used to show that the expected return

on a specific stock is a linear function of sensitivities on a finite number of pricing factors.

The return generating process is assumed to be driven by a K-factor model given by:

R = BF K + ε , (1)

where R is a (N ×T ) matrix of excess returns, B is a (N ×K) matrix of factor sensitivities,

F K is a (K × T ) matrix of K pricing factor returns, ε is a (N × T ) matrix of idiosyncratic

returns, N denotes the number of assets, and T the number of observations. The key

assumptions are E(ε) = 0, E(F KF K′) = IK , E(F Kε′) = 0, and E(εε′) = D (Assumptions

1-4) where IK is a (K × K) identity matrix and D is a diagonal matrix. Consequently,

one can express the (N ×N) excess return covariance matrix Σ in terms of the parameters

of the model as Σ = BB ′ + D. Model (1), together with assumptions 1-4, is known as the

exact factor model. When N is relatively small, and much smaller than T , estimation of the

B and D matrices can be obtained by classical factor analysis. Although not essential, the

joint-normality of the stock returns and residuals is often assumed and maximum likelihood

estimation is employed. The main limitation of this approach is that, as the number of

parameters increases with N , computational difficulties make it necessary either to consider

a small cross-section or to combine the numerous available series into portfolios.

Chamberlain and Rothschild (1983) propose a more general setting, called approximate
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factor model, by allowing cross-sectionally correlated residuals, where the residual variance

matrix is not required to be diagonal. This model requires the following assumptions of

E(εε′) = V , plim
N→∞

λ1(V ) < ∞, and plim
N→∞

λK(BB ′) = ∞ (Assumptions 5-7). Here λk(·)

denotes the kth eigenvalue of a given covariance matrix. Assumption 6 states that V is a

matrix with bounded eigenvalues. Assumption 7 implies that none of the K latent factors

can be neglected and that all factors are pervasive.

In an approximate factor model, Chamberlain and Rothschild (1983) show that the

factor structure estimated using principal component analysis (hereafter PCA) converges to

a rotation of the true pervasive factors when the covariance matrix of returns is known and

the number of assets N diverges. Connor and Korajczyk (1986, 1988) show that principal

components have good properties also in samples having a finite number of observations T

(T � N). They show that the first K eigenvectors of the (T × T ) cross-product matrix

Ω = 1
N

R′R converge to a rotation of the true pervasive factor returns under the assumptions

of no-serial correlation and homoskedasticity in the residuals. Jones (2001) generalizes the

Connor and Korajczyk’s method (hereafter APCA) to the heteroskedastic case by letting

the limit of the cross-product matrix of residuals be diagonal. Bai and Ng (2002) and Bai

(2003) show that PCA remains consistent in the presence of both serial and cross-sectional

correlation in the residuals, and heteroskedasticity over time and across residuals, under the

framework of large N and large T . Indeed, the estimated factor structure can be obtained

by running a PCA either from the (N × N) sample covariance matrix when N < T , or by

running an APCA from the (T × T ) cross-product matrix when T < N .

While (A)PCA appears to be a general method to estimate the space spanned by the

true pervasive factors, this method says nothing about the space spanned by common per-

vasive factors and group-specific pervasive factors. APT is consistent with the existence

of common pervasive factors, that affect returns of all securities in all groups, and group-

specific pervasive factors, that affect returns of all securities only in some (but not all)

groups. We, therefore, generalize the above framework by considering an economy charac-

terized by the return generating process given in equation (1) and Assumptions (1-3). This

economy is divided into a finite number G of sectors or countries, each of them containing

Ng = (N/G) + γg securities with ΣG
g=1γg = 0, (T < Ng). The number of securities in each

sector goes to infinity with N since G and γg are some constants. In our model, some of

the common factors F K = (F1, F2, ..., FK)
′

in equation (1) are possibly not pervasive in all

groups. We assume that the number of pervasive factors in group g is Kg ≤ K. Moreover,

we denote by KC the number of common pervasive factors. The return generating process
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in group g is:

Rg = BgF Kg + εg (2)

where Rg is a (Ng × T ) matrix of excess returns in group g, Bg is a (Ng × Kg) matrix of

factor sensitivities, εg is a (Ng × T ) matrix of idiosyncratic returns, and F Kg is a (Kg × T )

matrix of Kg pricing factor returns. The group-specific factors F Kg are a subset of F K

(F K : F K =
G⋃

g=1

F Kg). Also, the KC common pervasive factors are given by
G⋂

g=1

F Kg.

The key assumptions are E(εgεg′) = V g, plim
Ng→∞

λ1(V
g) < ∞, and plim

Ng→∞

λKg
(BgBg′) = ∞

(Assumptions 5b-7b). In our model, for i 6= j, i, j = 1, ..., K, it is possible to encounter

the following situation: in group g1, plim
Ng1→∞

λi(B
g1Bg1′) = ∞ and plim

Ng1→∞

λj(B
g1Bg1′) < ∞

and in an other group g2, plim
Ng2→∞

λi(B
g2Bg2′) < ∞ and plim

Ng2→∞

λj(B
g2Bg2′) = ∞. Therefore,

the ith (jth) factor in group g1 (g2) is pervasive while it is not pervasive in group g2 (g1).

Security returns are thus determined by either common pervasive risk factors that in-

fluence almost all stocks in all groups, or group-specific pervasive risk factors that only

affect stocks in some groups. We emphasize that model (2) is a generalization of the tra-

ditional APT models only in the sense of additional group structure superimposed on the

underlying securities. The expected return relation (either approximate as in Ross (1976)

and Chamberlain and Rothschild (1983) or exact as in Connor (1984)) continues to hold

in this model. However, the group structure imposes additional difficulties in estimation,

which we next explore.

3 Estimating common pervasive factors in an approx-

imate factor model

In order to estimate a model similar to that in equation (2), Bekaert, Hodrick and Zhang

(2005) and Korajczyk and Sadka (2007) propose the following two-step procedure. In

the first step, they use the first principal components estimated from the pooled data

across all groups as an estimate of the space spanned by the common factors. In a second

step, the specific factors are estimated using data within each group (the first principal

components in each group), and then the specific factors are orthogonalized with respect to

the common ones. Although this approach works extremely well when all pervasive factors

are pervasive in all groups (i.e., KC = K = Kg), it is not perfectly suited for many other

cases encountered in practice. For instance, the first principal components estimated from

pooled data may not estimate the space spanned by the true common pervasive factors if
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some factors are common to a subset of groups only, or if the sample size or betas vary

across groups (see our simulation results in Tables 1-3 for details). Furthermore, data from

the G groups are needed to perform the first step of the procedure. As shown by Boivin

and Ng (2006), the quality of the estimation with an APCA of the true pervasive factors

may deteriorate since more data are not always better for estimating an approximate factor

model.

A first attempt to generalize principal components to a G−group method was made

by Krzanowski (1979) whose approach consists of a descriptive technique for comparing

the subspaces spanned by the first K components in each group. This is achieved by

approximating the G K−dimensional subspaces by a single K−dimensional subspace. His

idea was to find the minimum angle between the axis of the subspaces spanned by the first

K eigenvectors of several covariance matrices. Krzanowski (1979, Theorem 3) proves that

the solution is given by the first K eigenvectors of P =
∑G

g=1 Pg where Pg = JK
g JK′

g is the

gth group’s eigenprojection corresponding to the first K eigenvalues and JK
g are the first K

eigenvectors of the covariance matrix Σg .

Another multi-group method is the Common Principal Component Analysis (hereafter

CPCA) of Flury (1984). Flury considers the situation in which the G groups have the

common subspace for all g, i.e., Kg = K. In CPCA all group-specific covariance matrices,

Σg, g = 1, ..., G are simultaneously diagonalizable by the same orthogonal matrix J . The

CPCA transformation can be viewed as a rotation yielding variables that are as uncorre-

lated as possible simultaneously in G groups. However, this model has one major drawback.

Under CPCA, the assumption that the same orthogonal matrix diagonalizes all Σg simulta-

neously is often too restrictive in practice. One generalization of CPCA suggested by Flury

(1987) is to assume that K eigenvectors of each matrix span the same subspace. Flury’s

common subspaces can correspond to any principal components, not necessarily those with

the largest eigenvalues.4

More recently, Schott (1999) relaxes the assumptions of Krzanowski (1979) and Flury

(1987) by considering the PCA of G groups for those situations in which, for each group,

the first Kg for g = 1, ..., G principal components account for most of the total variability of

observations in each group. The set of these
∑G

g=1 Kg principal component vectors spans a

space of dimension K, where K is less than min
(∑G

g=1 Kg , T
)
. This subspace is estimated

as the first K eigenvectors of P =
∑G

g=1 Pg where Pg is the gth group’s eigenprojection

Pg = J
Kg

g J
Kg′

g corresponding to the first Kg eigenvalues. The matrix P will have rank equal

to K, and the space spanned by the eigenvectors corresponding to the positive eigenvalues of

4See Pérignon and Villa (2006) for an application of Flury’s techniques to model interest rates.
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P will be the partial common principal component subspace as named by Schott. Moreover,

the first KC eigenvectors of P corresponding to the first KC eigenvalues give an estimation

of the common principal component subspace. In theory, the first KC eigenvalues are all

equal to G.

We use Schott’s (1999) results to extend Connor and Korajczyk (1986, 1988) to group

factors. This hybrid approach gives us a straightforward way to estimate the spaces spanned

by both common pervasive factors and all pervasive factors. Our procedure, which we refer

to as Multi-Group Factor Analysis (hereafter MGFA), can be presented as follows:

1. Perform an APCA in each group.

(a) Compute the cross-product matrix Ω̂g = 1
Ng

R′

gRg of returns.

(b) Compute the first Kg eigenvectors Ĵ
Kg

g of Ω̂g, corresponding to the first Kg

eigenvalues.

(c) Compute P̂g = Ĵ
Kg

g Ĵ
Kg′

g , the gth group’s eigenprojection corresponding to the

first Kg eigenvalues.

2. Compute the eigenvectors Ĵ0 of P̂ =
∑G

g=1 P̂g .

3. The common pervasive space spanned by the true common pervasive factors is esti-

mated as the first KC columns of Ĵ0, i.e., the first KC eigenvectors of P̂ corresponding

to the first KC eigenvalues.

4. The pervasive space spanned by all true pervasive factors is estimated as the first

K columns of Ĵ0, i.e., the first K eigenvectors of P̂ corresponding to the first K

eigenvalues.

The key to the analysis is that the space spanned by the latent factors can be consistently

estimated with APCA in each group and the reduced subspace retains most of the variability

within all groups, which is not the case with an APCA to the pooled data. Moreover, if

following Jones (2001), the space spanned by the true factors in each group is estimated by

Heteroskedastic Factor Analysis (hereafter HFA) in step one of the above procedure, our

approach can also be viewed as a multi-group version of HFA.

3.1 Number of factors

The above procedure implicitly assumes the knowledge of the number of factors. Of course,

the estimation of the number of factors is an integral part of factor analysis. Under the
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assumption of a large number of assets in each group, the number of pervasive factors in a

group (Kg) or in the economy (K) can be estimated using the information criteria (PCp and

ICp) developed by Bai and Ng (2002). The PC statistics are similar to the conventional

panel data criteria and the IC statistics are similar to the conventional time-series criteria.

The important difference is that the penalty is a function of both the number of cross-

sections and the length of the time-series. These criteria estimate the number of factors

even under heteroskedasticity in both the time and the cross-sectional dimensions and also

under weak serial dependence and cross-sectional dependence. Further details on these

criteria are provided in Appendix A.

In the special case of two groups, KC is given by the number of canonical correlations

among the pervasive factors in each group that are equal to one (see Bai and Ng, 2006).

To the best of our knowledge, there are no established criteria to estimate the dimension

(KC) of the common pervasive subspace in the presence of more than two groups. However,

we can rely on the results of Dauxois and Pousse (1975) to solve this problem. Dauxois

and Pousse point out that the spectral analysis of P = P1 + P2 is a canonical analysis

of two subspaces. Therefore, with two groups, KC equals the number of eigenvalues from

the spectral analysis of P that are equal to two. Although canonical correlation and the

eigenvalue-based method provide the same results with two groups, the latter technique

can be used with any number of groups. We, thus, set KC as the number of eigenvalues of

P =
∑G

g=1 Pg that are equal to G. As shown in the simulations in the next subsection, this

approach leads to very accurate estimates for the number of common factors.

These criteria for determining the number of common pervasive factors are also very

intuitive. As an illustration, consider two groups wherein stock returns are driven by three

factors among which two are common and one is group-specific. In this economy, the total

number of pervasive factors is four (i.e., two common and two group-specific factors). The

sequence of eigenvalues of P = P1 + P2 is [2, 2, 1, 1, 0, 0], which suggests that two factors

affect both groups (KC = 2) and two factors affect one group only. Alternatively, the first

three canonical correlations between the pervasive factors in each group are [1, 1, 0].

3.2 Simulations

We perform a variety of simulations to compare the ability of our MGFA procedure and

APCA methods to estimate pervasive factors. We carry out this analysis for uncorrelated

and cross-correlated residuals.
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3.2.1 Basic setting

Our basic setting consists of three groups of data, G = 3, in which the excess returns Rit are

driven by five pervasive factors, K = 5. There are two common pervasive factors (KC = 2)

and three group-specific factors. Each group has three pervasive factors Kg = 3, ∀g. In

other words, out of the three pervasive factors for each group, two are common across

groups (i.e., they affect asset returns in all groups) and one is group-specific. The exact

return generating process is assumed to be:

Rit = βi1F1t + βi2F2t + βi3F3t + εit, ∀i ∈ [1, N1]

Rit = βi1F1t + βi2F2t + βi4F4t + εit, ∀i ∈ [N1 + 1, N1 + N2]

Rit = βi1F1t + βi2F2t + βi5F5t + εit, ∀i ∈ [N1 + N2 + 1, N1 + N2 + N3] , (3)

where the factors Fj·, j = 1, ..., 5 are orthogonal and N(0, 1) variables. The factor loadings

β·j, j = 1, ..., 5 are N(1, 1) variates and εit = σuit with σ =
√

3 and ui· is N(0, 1). We use

T = 60, Ng = 1, 000, and we perform in each case 1,000 simulations. Factors are estimated

by applying alternatively APCA (to pooled data) and MGFA. Since both methods only

identify the space spanned by the factors (e.g. the estimated factors need not coincide with

the true factors), we compare the span of the estimated factors, F̂ , with the span of the

true factors, F . Following Boivin and Ng (2006), we calculate for each extraction method

the statistic:

S =
trace(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

trace(F ′F )
. (4)

A large S statistic indicates a small discrepancy between the spaces spanned by the actual

and the estimated factors. The S statistic ranges from zero (totally unpredictable) to one

(perfectly predictable). In the first set of simulations, we also assume that the errors are mu-

tually uncorrelated within and across groups. We report the mean and standard-deviation

(across 1,000 simulations) of the S statistic separately for the two common pervasive factors

(first two columns) and for all pervasive factors (last two columns).

We consider the setting described above in Panel A and explore variations on the basic

theme in subsequent panels of Table 1. In Panel B, we assume that the excess returns are

driven by common factors only (β·3 = β·4 = β·5 = 0). In Panel C, we change the basic

setting by removing the effect of all common factors (β·1 = β·2 = 0). We study the effect

of a higher sensitivity to all common pervasive factors in Panel D (β·1 and β·2 are N(2, 1)),

whereas we study the effect of higher sensitivity to group-specific factors in Panel E (β·3,

β·4, and β·5 are N(2, 1)). In Panel F, we investigate the effect of different group sample
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sizes by considering N1 = 2, 000, N2 = 1, 000, and N3 = 500. Finally, we study in Panel

G the effect of the presence of a factor that is common in only two groups (F3 = F4 and

K = 4). We boldface figures denoting the best performing method in each panel.

In all simulations, we estimate the number of factors (both Kg and KC) for MGFA. We

determine Kg using the PCp and ICp criteria of Bai and Ng (2002), and set KC to be the

number of eigenvalues of the matrix P that are equal to G. However, for APCA, we assume

that the first two factors are common pervasive factors, even though APCA itself provides

no guidance on this subject. We report the average of the eigenvalues of P in the line

following the panel description. For example, the number 2.997 for the first eigenvalue in

Panel A means that on average the first factor is pervasive in 2.997 groups. The standard

deviations of these averages are typically very small and are not reported. In all panels,

we can see that the number of common factors is estimated quite precisely. We are able to

determine that there are two common pervasive factors in all groups in all panels (except

Panel C, where we correctly deduce that there are no common pervasive factors). The

criterion is also useful for detecting that there is an additional factor common to only two

groups in Panel G.

The results in Table 1 suggest that MGFA systematically outperforms APCA in esti-

mating the true common pervasive factors. The presence of group-specific pervasive factors

seriously reduces the ability of the APCA method in estimating the common factor struc-

ture. Obviously, absence of group-specific pervasive factors (as in Panel B) reduces our

method to be the same as standard APCA and we see no difference in the S statistic for

this case. Unlike APCA, our procedure is able to identify that there are no common perva-

sive factors, i.e., the intersection of the first common eigenvectors in each group is empty,

when we fix β·1 = β·2 = 0 (i.e., no common pervasive factors in Panel C). Group-specific

factors with a relatively high sensitivity have an especially deleterious impact on the per-

formance of APCA – the S statistic is 0.345 and 0.999 for APCA and MGFA, respectively,

in Panel E. It is also interesting to note that, even under the basic setting, different sample

sizes reduce the ability of standard APCA to identify common pervasive factors (S statistic

for APCA is 0.951 and 0.918 in Panels A and F, respectively) while there is no deterioration

in the performance of MGFA.

In the last two columns of Table 1, we compare the ability of the APCA and MGFA

to estimate all K pervasive factors. We see in all panels that APCA and MGFA provide

similar accurate results in estimating the space spanned by the K pervasive factors: the

average S statistic is systematically in excess of 0.998 and the standard errors are close to

zero.

11



3.2.2 Cross-correlation

In a second series of simulations, we study the effect of cross-correlation within and across

groups. To this end, we suppose that there exist ten non-pervasive factors in each group.

More precisely, we divide each group into n = 10 subgroups (with ten percent of the data

in each subgroup) and suppose that, in each subgroup, asset returns are also driven by an

additional factor. This extra feature introduces the effect of a factor affecting the returns

of all firms in a given industry, regardless of their group. With Lj·, j = 1, ..., n orthogonal

and N(0, 1) variables, we modify the return-generating processes as follows:

Rit = βi1F1t + βi2F2t + βi3F3t +
n∑

j=1

γijLjt + εit, ∀i ∈ [1, N1]

γij ∼ N(1, 1), j = 1, ..., n, if i ∈ [1 + (j − 1)N1/n, jN1/n] and 0 otherwise

Rit = βi1F1t + βi2F2t + βi4F4t +
n∑

j=1

γijLjt + εit, ∀i ∈ [N1 + 1, N1 + N2]

γij ∼ N(1, 1), j = 1, ..., n, if i ∈ [N1 + 1 + (j − 1)N2/n, N1 + jN2/n] and 0 otherwise

Rit = βi1F1t + βi2F2t + βi5F5t +
n∑

j=1

γijLjt + εit, ∀i ∈ [N1 + N2 + 1, N1 + N2 + N3]

γij ∼ N(1, 1), j = 1, ..., n, if i ∈ [N1 + N2 + 1 + (j − 1)N3/n, N1 + N2 + jN3/n]

and 0 otherwise. (5)

The results of this set of experiments are reported in Table 2 (with the same format

as that of Table 1). As far as common pervasive factors are concerned, the quality of

the estimated space is reduced slightly for both estimation methods – the S statistic is

lower in Table 2 than the corresponding values in Table 1. However, the deterioration in

performance is more for APCA than it is for MGFA. Therefore, the span of the estimated

factors is still better with MGFA than that with APCA. Most notably, the standard errors

with APCA are larger than those with our procedure. As in Table 1, we contrast in the

last two columns of Table 2 the span of the estimated K pervasive factors given by the two

competing procedures. With the exceptions of Panels B and C, the reduction in the value

of the S statistic is more severe with APCA than with our MGFA procedure. As a result,

our novel method dominates the standard factor extraction method in panels A, D, E, F,

G, and H in estimating the space spanned by all true pervasive factors. Moreover, if we

combine panels F and H, the performance of asymptotic PCA drops (average S = 0.7804).

At the same time, MGFA yields an average S statistic equal to 0.9849 with a standard

error three times smaller.
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Overall, we conclude that APCA falls short in estimating the space spanned by the

common pervasive factors even in large samples. Furthermore, in the presence of cross-

correlated residuals, MGFA outperforms the standard APCA for estimating the space

spanned by all (common and group-specific) pervasive factors in finite samples. In un-

reported results, we also perform another set of simulations in which we introduce het-

eroskedasticity in residuals. For these experiments, we utilize the HFA as recommenced

by Jones (2001) instead of standard APCA as well as in the first step of MGFA. We find

that while HFA offers an improvement over standard APCA (as in Jones), our method that

incorporates the group structure is still able to outperform the HFA procedure.

3.3 Missing data

The first step of our MGFA is performing an APCA on each group. Specifically, we calculate

the eigenvectors of the cross-product matrix Ω̂g = 1
Ng

R′

gRg of returns in each group. This

calculation requires a balanced sample of complete data history for each firm. However,

unbalanced samples (where not all firms have complete return history) and/or missing

data are ubiquitous features of real data. Does MGFA work under this setting? Since

MGFA relies on APCA as a preliminary step, this question can be rephrased as whether

APCA is robust under missing data? Connor and Korajczyk (1987) answer this question

affirmatively. They show that the Ω̂ matrix approaches a transformation of the factors

as the number of assets grows large, even when the sample contains firms with missing

observations (replaced with zeros). The intuition for this result is that Ω̂ computed with the

full sample is merely an average over greater number of observations than the corresponding

Ω̂ computed with the restricted sample. As long as the assets with missing observations are

not “too” different from continuously traded assets, the approximation error in estimating

the factors is, in fact, smaller with samples including firms with missing observations than

those without.5

We check in simulations whether these claims are indeed justified. The return generating

process is assumed to be the same as in the basic setting of Section 3.2.1. In addition, we

consider a case where half of the firms in all groups have missing data. The proportion

of missing data is 25% of the total - in other words, for each firm with missing data, 15

months out of 60 months are set to have a missing value. The firms and months chosen

to have missing values are, of course, selected at random in each simulation. The missing

values are replaced by zero and MGFA and APCA are performed in each simulation. The

5Jones (2001) shows that HFA is also robust under missing data.
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results of this set of simulation experiments are reported in Table 3 (again with the same

format as that of Table 1). Confirming the results of Connor and Korajczyk (1987), we find

no noticeable deterioration in performance of either APCA or MGFA as the S statistics are

quite close to each other in Tables 1 and 3. Therefore, echoing the earlier results, MGFA

is again better at estimating the common pervasive factors than APCA.

Note that our only claim is that data samples with missing data will not lead to more

deterioration in performance with MGFA than that with APCA. As mentioned earlier, the

key requirement for the validity of this analysis is that the non-missing returns of the firms

with missing data still follow the same data generating process as that for the rest of the

firms. Since we ensure this by design in our simulation experiments, we cannot guarantee

at this stage that MGFA procedures works equally well with real data samples with missing

data. We will check the veracity of our claims for real data in Section 4.

3.4 Price of risk

Our simulations show that APCA falls short in estimating the space spanned by the com-

mon pervasive factors even in large samples. However, in some settings both APCA and

MGFA have comparable performance in identifying the space of all pervasive factors. Even

under these situations, it may be important to identify the exact nature of split in factors

across groups (and hence rely on MGFA). One example is the estimation of the price of

risk of factors. The main implication of the APT is that expected returns on assets are

approximatively linear in their sensitivities to the factors:

E [r] = ιλ0 + Bλ , (6)

where λ0 is a constant, λ is a vector of factor risk premia, and ι is a vector of ones. One

testable restriction of the model is that the implied risk premia are the same across subsets

of assets (see Brown and Weinstein, 1983). That is, if we partition the return vector r into

r1, r2, ..., rG with Bg representing the same partitioning of B, and investigate the subset

pricing relations:

E [rg] = ιλg
0 + Bgλg, g = 1, 2, . . . , G , (7)

then λg
0 = λ0 and λg = λ for all g. These tests can be viewed as tests of the law of one

price – the price of risk is the same across subgroups, conditional on an estimated factor

model.

There are a number of studies that use the APT to analyze asset returns across two or
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more countries since integration across national markets requires that common sources of

risk be priced in a consistent manner across countries. Cho, Eun, and Senbet (1986) use

inter-battery factor analysis (IBFA) to estimate the factor sensitivity matrix for factors

common across pairs of countries and then test for consistent pricing across countries

in a manner similar to that of Brown and Weinstein (1983). However since IBFA picks

out only common factors, the values of λg
0 may differ across countries since they could

incorporate the risk premia for factors specific to that country which are still not globally

diversifiable. Connor and Korajczyk (1995, footnote 25) point out that “Financial market

integration does not imply or require that the countries be engaged in producing the same

goods. Therefore, financially integrated countries might still have assets that are subject to

country-specific productivity shocks. A country specific, but priced, factor could occur if the

country in question is not small relative to the world economy.”

In order to illustrate the possible errors in estimating λ’s when the APCA or IBFA are

used, we perform a simple simulation exercise. Our basic setting consists of two groups of

data, G = 2, in which the returns rit are driven by two pervasive factors, K = 2. There

is one common pervasive factor (KC = 1) and one group-specific factor. The first group

has two pervasive factors while the second one has only one common pervasive factor. The

exact return generating process is assumed to be:

rit = E [rit] + βi1f1t + βi2f2t + εit, ∀i ∈ [1, N1]

rit = E [rit] + βi1f1t + εit, ∀i ∈ [N1 + 1, N1 + N2] , (8)

where the realization of the factors fj·, j = 1, ..., 2 are orthogonal and N(0, 1) variables. The

factor loadings β·j, j = 1, ..., 2 are N(1, 1) variates and εi· is N(0, 1). We use T = 60, and

we perform in each case 1, 000 simulations. The true prices of risk are λ0 = 5%, λ1 = 20%,

and λ2 = 10%. We perform the analysis in three steps. In the first step, the factors are

extracted. In the second step, we estimate betas by running a time-series regression for

each stock. The third step involves running the following cross-sectional regression model:

µ̂ =
1

T

T∑

t=1

rt = ιλ0 + B̂λ + v, (9)

where v is a vector of pricing errors. When we extract the factors using APCA on the

pooled data, the third stage cross-sectional regression uses loadings on two factors for both

groups (since APCA does not identify common pervasive factors). When we extract the

factors using MGFA, the third stage cross-sectional regression uses loadings on two factors
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for the first group but loadings on only the first factor for the second group. Finally, to

replicate the spirit of IBFA, we also perform a third experiment in which we run the third

stage cross-sectional regression using the true betas on the first factor only for the two

groups.

Table 4 reports the results of this simulation exercise. Panel A is for the same number

of firms in both the groups (N1 = N2 = 1, 000) while Panel B has fewer firms in group

2 (N2 = 100). In both the panels, we see that the estimates of λ̂0 and λ̂1 with MGFA

are virtually equal in both groups. However, in the other two experiments, the estimates

of the prices of risk are different across groups. Consequently, one sometimes rejects the

hypothesis that the prices of risk are the same across groups even when the hypothesis

is true in population. For example, even though APCA often roughly estimates the span

of the two pervasive factors correctly (the unreported S statistic is close to one), it fails

because the estimates of λ̂1 are quite different from each other across the two groups. The

IBFA experiment estimates the λ̂1 correctly but the estimates of the price of zero-beta risk,

λ̂0, vary dramatically between groups.

We conclude that, at least in the setting explored here, it is not enough to identify the

space of all pervasive factors. The split between common and group-specific factors is also

important and, therefore, one would prefer MGFA.

4 Nyse and Nasdaq

While the Nyse and the Nasdaq provide the same service, their underlying structures,

rules and governing principles are very different. For instance, the Nyse is a specialist

based auction system and the Nasdaq is a computer-based dealer market. There are many

reasons why firms choose to list on one versus the other stock exchange. For instance,

it is commonly assumed that firms in high-technology industries would want to list on

Nasdaq. However, industry membership may not be the only criterion. Baruch and Saar

(2006) show that the liquidity of a stock increases when it lists on an exchange where

similar securities trade, which leads them to argue that listing decisions by managers reflect

conscious choices to increase the liquidity of their firms’ stocks. There are also differences

in listing requirements. For example, the listing requirements at Nyse in the early years

could be met only by very large firms, while Nasdaq market tried to attract small start-ups.

It, therefore, seems plausible that the underlying return structure of stocks listed on

Nyse can be very different from that of stocks listed on Nasdaq. However, there is very
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little work done on pinpointing the exact nature of difference(s) between the factors across

these two groups.6 We use our MGFA methodology to overcome the problem of identifying

common pervasive factors and group-specific pervasive factors.

We analyze the congruence between factor structures for Nyse and Nasdaq stocks in

several steps. The first obvious step is to extract factors in each group. As discussed

previously, this step is accomplished by running an APCA (or HFA) separately in each

group. The validity of this step, even in the presence of group structure, arises from the

fact that the space spanned by the latent factors can be consistently estimated in each

group and the reduced subspace retains most of the variability within all groups.

Armed with estimates of factors for each group, we proceed to compare these two groups

of factors. The comparison is done via canonical correlation analysis and provides a visual

inspection of the potential number of common factors across the two groups. The next

step is to formally estimate the number of common factors and then extract them. We

accomplish this task by using MGFA and, for comparison, also estimate common factors

via APCA (or HFA) on pooled data. A horse-race (again via canonical correlation analysis)

is then run between these different sets of estimated common factors to compare their ability

in explaining the common variation in returns in each of the two groups. The final steps

in our analysis deal with the comparison of statistical factors estimated using MGFA and

the set of standard risk factors (motivated by theory or empirical characteristics).

4.1 Data

We use excess returns on stocks traded on the Nyse, Amex and Nasdaq exchanges as

recorded in the CRSP monthly stock file. We calculate the excess returns by subtracting

the interest rate on the one-month Treasury bill from the individual stock returns. We

consider a 25-year sample covering the 1978-2002 period, that we divide into five 60-month

subperiods. In each subperiod, we systematically exclude the stocks (1) with missing

returns data,7 (2) that are not traded either on the Nyse, Amex, and Nasdaq, (3) that

change exchange during the subperiod, and (4) that are not common stocks (we exclude

ADRs, REITs, closed-end funds, and other securities which do not have a CRSP share

type code of 10 or 11). The filtering procedure yields a final number of firms of 2,942

6Baruch and Saar (2006) show differences in loadings on principal components of returns across the two
exchanges. They, however, estimate principal components separately for different groups and, as such, do
not undertake the analysis of extracting factors that are common across the two groups.

7We also perform the analysis using the entire sample of firms (including firms with missing data).
These results are presented in Section 4.5.
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for 1978-1982, 3,068 for 1983-1987, 3,757 for 1988-1992, 3,928 for 1993-1997, and 4,023

for 1998-2002. We partition our original universe of stocks into two groups, the first one

containing the stocks traded on the Nyse and Amex (‘Nyse group’), and the second one,

the stocks traded on the Nasdaq (‘Nasdaq group’).

Table 5 presents the descriptive statistics on the excess returns. For each subperiod

and each group, we compute these statistics from the time-series of each stock and then

report the cross-sectional average. The statistics can, therefore, be interpreted as those for

a representative stock. Panels A and B give these statistics for the Nyse group and the

Nasdaq group, respectively. The number of stocks in each group is not quite the same, with

Nyse having more stocks in the early sub-periods and Nasdaq having more stocks in the

later sub-periods. The volatility of stocks on Nasdaq is higher than that of stocks on Nyse.

The difference in volatility across the two groups has increased over the years, echoing the

results in Malkiel and Xu (2003). It is also apparent from the table that the Nasdaq stocks

have higher skewness and kurtosis than their counterparts on Nyse. While this evidence,

per se, does not imply that the factor structure of returns is different across groups, it is

suggestive of differences in Nyse returns and Nasdaq returns.

4.2 How similar are the pervasive factors across the two groups?

We first run separate APCA on each of these two groups and obtain estimates of factors

within the groups.8 The number of factors is estimated using the information criteria (PCp

and ICp) proposed by Bai and Ng (2002). We report the value of these statistics in Table 6.

We see that, depending on the sample period, the PCp and ICp select between one and

three factors in both Nyse and Nasdaq. The variation in number of pervasive factors over

time is puzzling from an economic standpoint. If some factors are pervasive in one sample

period, they should be pervasive in all sample periods. We, therefore, relying more on

economic intuition than on purely statistical criteria, use three as the number of pervasive

factors in each group in our empirical analysis (in other words, we set K1 = K2 = 3). Note

that this is a conservative assumption as setting the number of factors to be too low could

potentially lead to us missing some important factors. This number also coincides with

the number of factor used in the multi-factor model of Fama and French (1993). Since the

total number of pervasive factors in the economy is bounded by the sum of group-specific

pervasive factors (K ≤
∑G

g=1 Kg), we also conclude that there are between three (i.e., all

factors are common across Nyse and Nasdaq) and six (i.e., no factors are common across

8Note that based on our terminology, these are not group-specific factors. Rather, we refer to them as
factors in a group (that include common pervasive and group-specific pervasive factors).
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Nyse and Nasdaq) pervasive factors for both the exchanges for all sample periods.

We proceed by comparing the estimated factors in each exchange group. We want to test

if the latent pervasive factors in Nyse correspond to the latent factors in Nasdaq. In other

words, we want to gauge the general coherency between F Nyse and F Nasdaq. Since we are

only able to estimate the subspace spanned by the true factors in each group,9 following

common practice, we compare the two sets of factors using canonical correlations. We

follow the methodology of Bai and Ng (2006), who provide statistics that indicate the

extent to which the two sets of factors differ. This procedure compares the (individual or

set of) observed variables with estimates of the unobserved factors. The point of departure

with standard theory is that they work with large dimensional panels. While all non-zero

population canonical correlations should be unity if the two sets of factors span the same

space, the confidence interval for the smallest estimated non-zero canonical correlation

provides a bound for the weakest correlation between the two sets of factors. More details

on the canonical correlation analysis are provided in Appendix B. Here we just note that

canonical correlations are a generalization of the univariate correlations (or regression R2s

as used by Jones, 2001).

We calculate the first three canonical correlations and present these correlations in

Table 7. Panel A reports the results for standard APCA while Panel B reports the results

when we use HFA on each group. Recall that the high values of canonical correlations are

indicative of the presence of common factors across the two groups. Only the first canonical

correlation is typically in excess of 0.9 in both panels. This suggests only one well defined

relations between the two sets of factors (in other words, only one common factor). The

second correlation is around 0.8 suggesting a weak remaining relation between the two

sets of factors. The canonical correlations in the fourth period are intriguing - the first

correlation is close to only 0.8 while the second correlation is close to 0.5. This suggests,

based purely on statistical criteria, that there is possibly no common factor between the

two sets of factors in this sample period. The third canonical correlation is very low and

practically zero in the last three sample periods. This strongly suggests that all three

pervasive factors in Nasdaq stocks cannot span the same factor space in Nyse stocks.

The results in Panel B of Table 7 from HFA are similar to those from APCA results

with the exception of the non-zero canonical correlations in periods three and four. In the

third period the value of the second non-zero canonical correlation is two times smaller with

HFA (0.369) than that with APCA (0.814). Furthermore, the value of the first non-zero

9Obviously, if K1 ≤ K2, then K1 latent factors in Nyse cannot span the space of the K2 latent factors
in Nasdaq. This, however, is ruled out by our assumption of K1 = K2 = 3.
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canonical correlations in the fourth period differ more between the two methods than those

during the first part of our sample period. As Jones (2001) suggests, the latter half of

our sample is characterized by rising volatility of Nasdaq stocks and technology boom of

the 1990s. It is, therefore, not surprising that there is a larger difference between the two

techniques in the latter half of the sample than that in the first half of the sample. We use

the results from HFA later in the paper as HFA better accounts of the heteroskedasticity

prevalent in the sample than APCA. Thus, we conclude from Panel B that there is either

one or two well-defined relations in the factors governing the returns structure of Nyse and

Nasdaq stocks.

4.3 Common pervasive factors

We estimate the number of common pervasive factors between the two groups following the

methodology in Section 3.1. We report the first three eigenvalues of P also in Table 7 for

each sub-sample. Recall that an eigenvalue of P equal to two (in the population) implies

the existence of a common pervasive factor. Focusing on Panel B (HFA), this criterion

indicates two common pervasive factors in the first, second, and the fifth subsamples, and

weaker evidence of two common pervasive factors in the third and fourth subsamples. If one

relaxes the criteria somewhat and considers any eigenvalue greater than 1.5 to be suggestive

of a common factors, one can conclude that there are three common factors in subsamples

one and two, two common factors in subsamples three and five, and one common factor in

subsample four. There is, of course, a strong evidence of at least one common pervasive

factor in all subsamples. This is not surprising because a common market factor would

naturally arise in equilibrium versions of APT (Connor, 1984) and, frequently, the first

estimated factor in traditional PCA is identified closely with the (equal-weighted) market

factor.

We note that our conclusions regarding the number of factors are the same based on

the eigenvalues of P or using the canonical correlations between factors, as discussed in

the preceding section. However, as was the issue with number of all pervasive factors,

the variation in number of common pervasive factors over time indicated by statistical

criterion is troubling from an economic standpoint. We, therefore, again rely more on

economic intuition than on purely statistical criteria and use two as the number of common

pervasive factors in each group in the rest of our empirical analysis.

The stage is now set for us to estimate common pervasive factors. In addition to our

MGFA methodology from Section 3, we also use APCA and HFA techniques in estimating
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common factors. The latter two methods are used for comparison purposes and are, of

course, performed on pooled data. We assume that the number of common factors is two

for all three techniques. The natural question at this stage is whether the factors estimated

with the MGFA method are in fact the underlying unobserved true common factors in each

group. We answer this question by comparing the span of common factors to that of all

pervasive factors in each group. It is useful to recall that all pervasive factors for a group

capture, by definition, the greatest degree of common variation in stock returns within a

group. The idea behind our test (of comparing these factors to common pervasive factors)

is that if the estimated common factors are indeed common, then they should have high

canonical correlations with the factors for each group.

As in Jones (2001), we assume that the true pervasive factors in each group are well

estimated by HFA. Following Bai and Ng (2006) we construct confidence intervals for the

smallest non-zero (i.e., second) canonical correlations between these sets of factors. Results

are presented in Table 8. Panel A shows that the canonical correlation between common

pervasive factors estimated using MGFA and group factors has the same value for both

Nyse and Nasdaq. Moreover, this value is very close to one, indicating that our two common

factors estimated using MGFA are able to capture the source of common variation across

both groups of stocks. Comparison of Panels A and B shows that, in some subsamples,

for some groups, the correlation of group pervasive factors is higher with common factors

extracted using APCA than that with factors extracted using MGFA. However, it is never

the case that APCA common pervasive factors exhibit higher correlations with both groups’

pervasive factors. For example, in the first sub-sample of 1978-1982, canonical correlation

of MGFA (APCA) factors with Nyse group is 0.924 (0.965), while that with Nasdaq group

is 0.924 (0.831). With MGFA, it is possible to simultaneously estimate a reduced subspace

of dimension K for all groups while retaining most of the variability within all the groups.

APCA, on the other hand, pools the data together and in some sub-samples favors one group

over the other. The APCA factors, thus, may have higher correlation with one of the groups’

factors, but they are unable to simultaneously account for the commonality. The common

factors estimated with APCA tend to favor Nyse over Nasdaq in some periods and vice versa

in other periods. We find in Panel C that HFA gives markedly better results than APCA,

in a confirmation of Jones (2001). Moreover, controlling for heteroskesdasticity removes

the bias inherent by APCA of favoring high volatility stocks/groups. More pertinent to

our study is the observation that canonical correlations using HFA are not higher for both

the groups than those using MGFA.

We conclude that common risk factors are best estimated using MGFA and represent the
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highest degree of variation in returns that is common across the two groups. In particular,

our methodology yields the two common pervasive factors that explain the returns structure

of both Nyse and Nasdaq stocks. In contrast, the traditional techniques of APCA and HFA

applied to the pooled data are unable to uncover the covariation that is common across

both exchanges.

4.3.1 A robustness exercise

Our analysis suggests that, even though there are three pervasive factors in each group,

there are at most two common pervasive factors. One critique of our methodology can be

a sampling bias problem. More specifically, it is possible that there are some outliers in

the data that could potentially lead to us not being able to identify closer correspondence

between Nyse and Nasdaq stocks. We address this issue in the following way. We randomly

divide the stocks in each group into two non-overlapping, equally-sized groups and compare

canonical correlations between these two subgroups. We estimate pervasive factors in each

subgroup using HFA (the number of pervasive factors is assumed to be three in each

subgroup). We repeat the estimation 1,000 times and present the average value of the three

canonical correlations with their standard-deviations in parentheses in Table 9. Panel A

(B) presents the results for Nyse (Nasdaq) stocks. We find that the first two canonical

correlations are well in excess of 0.9, and the third is around 0.8, for both Nyse and Nasdaq

across all time periods. This lends support to our earlier conclusion about the number of

factors in each group being three. More important, it shows that the presence of a few

outliers (say in the more volatile Nasdaq stocks) is not driving our earlier results. We

also perform the experiment when we randomly combine 50% of the Nyse/Amex stocks

with 50% of the Nasdaq stocks into two subgroups. Canonical correlations between factors

estimated from each of these two ‘random’ groups provide other evidence of the degree of

closeness between the factors in each group. Panel C shows that the average third canonical

correlation between these two groups is around 0.5 (the first is in excess of 0.95 and the

second one is around 0.8), which is very similar to the results in Table 7. The consistency

of these randomization results with our earlier results shows that the sampling bias does

not plague our conclusions.

4.4 Common pervasive factors and standard benchmark factors

The next set of experiments is designed to understand the relation between our common

pervasive ‘statistical’ factors and the standard benchmark factors that are often used in

22



asset pricing. The set of standard factors that we include are the three Fama and French

(1993) factors and a momentum factor. While the well-known rotational indeterminacy

obviously rules out exact correspondence between statistical factors and real economic

variables/factors, our attempts are designed only to establish correlation (or lack thereof)

between the two time series. We present canonical correlations between these two sets of

factors in Table 10.

There are many interesting patterns revealed by these canonical correlations. For in-

stance, the market factor typically has the highest correlation with the common pervasive

factors. This is not too surprising since, as mentioned before, a market factor is commonly

identified as the first principal component. What is more surprising is the fact that the im-

portance of the market factor in explaining the returns has declined over time. The smallest

non-zero correlation used to be 0.91 in 1978-1982 but is only 0.71 in the last subsample

1998-2002. The other two Fama-French factors (SMB and HML) have lower correlations

than the market factor. The importance of SMB factor seems to have declined while the

importance of the HML factor has increased over the years (although the patterns are not

monotonic). The momentum factor has the lowest correlation with the common pervasive

factors – the confidence interval for the last two subsamples even has a lower bound of

zero. The above facts, therefore, imply that the market factor is closely related to our com-

mon factors. The relation between the other two Fama-French factors and common factors

is weak and there is no discernible relation between the momentum factor and common

factors.

The last two rows of Table 10 present the correlations between the common pervasive

factors and the set of standard factors taken together. Mirroring the earlier results, we

again find that the correlations of the standard factors with common pervasive factors has

declined over time. The addition of the momentum factor only marginally improves the

explanatory power of the standard factors. The positive news from these results is that the

standard Fama-French factors are able to do a good job of explaining the common variation

in returns across securities listed both in Nyse and Nasdaq – the canonical correlation with

the pervasive factors is well in excess of 0.95 for most of the sample periods. Also note that

there is no dichotomy between our finding that there are two common pervasive factors

and the three factor model of Fama and French (1993). We both say that three factors are

required to model stock returns in each group.
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4.5 Missing data

Our analysis so far is based on a sample of stocks with complete returns history over each

sub-sample. This, obviously, induces a survivorship bias. In this section, therefore, we want

to explore whether MGFA can effectively handle missing data. Our results from Section 3.3

already provide some comfort in this regard. However, if the firms with missing data are

very different than those firms with full time-series, then it is not clear whether both APCA

and MGFA can effectively extract factors.

As before, we extract the data from CRSP monthly stock file for the sample period

1978-2002. We no longer impose the requirement of continuous trading and replace the

missing observations with zeros. This leads to a significant increase in the size of the

cross-section, with the number of stocks in some sub-samples more than three times than

that in the restricted sample.10 There are two additional considerations in this experiment.

One, Connor and Korajczyk (1987) point out that the only requirement of the data to

satisfy consistency requirements for APCA is that the non-missing returns follow the same

process as the rest of the data. When missing observations are caused by suspension of

trading, this assumption is violated. The reason is that CRSP includes the returns for the

missing periods in the first non-missing period return (for example, the calculated return

after a month of non-trading is a two-month return). We follow the lead of Connor and

Korajczyk in eliminating the first non-missing observation. Second, significant amount of

non-synchronous trading leads to distortions in estimation of true covariance-factor struc-

tures (see Shanken, 1987). We assume that extent of this problem is not severe for monthly

data and ignore this issue.

Using this new sample, we follow the same steps as before. In particular, we estimate

the factors in each group using APCA and HFA. Table 11 reports the canonical correlation

between these sets of factors as well as the first three eigenvalues of matrix P . The numbers

in this table are roughly similar to those in Table 7. Therefore, our earlier conclusions about

the number of common factors remain valid. In particular, there is strong evidence of two

common pervasive factors in all sub-samples. The only noteworthy feature seems to be

that the canonical correlations between sets of factors extracted using APCA differ from

those between sets of factors extracted using HFA more in Table 11 than in Table 7, in

general.

We then proceed to extract the common pervasive factors using MGFA. In unreported

10The breakdown between Nyse and Nasdaq firms is as follows for the five subperiods: 2,384/3,689,
2,365/6,060, 2,303/5,748, 2,619/6,739, 2,789/6,163, respectively.
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results, we find that the canonical correlations of all pervasive factors is higher with the

common pervasive factors extracted with MGFA than that with factors extracted with

APCA/HFA. We do find, similar to Table 8, that in some subsamples, for some groups,

the correlation of group pervasive factors is higher with common factors extracted using

APCA/HFA than that with factors extracted using MGFA. However, the correlations with

both groups’ pervasive factors are never higher for APCA/HFA common pervasive factors.

5 Conclusion

In this paper we propose a new procedure called MGFA to analyze pervasive factors in

several groups. The key to the analysis is that the space spanned by the latent factors can

be consistently estimated in each group of large dimension. Our approach is very general

and can be viewed as a multi-group version of standard approaches like APCA (Connor

and Korajczyk, 1986) and HFA (Jones, 2001). More precisely, our method estimates the

subspace spanned by all pervasive factors and at the same time the subspace of common

pervasive factors that are pervasive in all groups.

Application of our methodology to the return structure of Nyse and Nasdaq securities

reveals that, while there are three factors in each group of stocks, there are at most two

common pervasive factors. In other words, our empirical results uncover little evidence

of close correspondence in the return structure of stocks on the two exchanges. At the

same time, we emphasize that one should not interpret our results to imply absence of

any integration between the two exchanges. To the contrary, we do find that there are

two common factors that drive returns of stocks on both the exchanges. Our results only

point to the absence of complete similarity between the factors driving the returns on these

exchanges. More importantly, we estimate these common and group-specific factors.

Future research could apply our methodology for identifying the sources of risk that

drive returns in different countries or asset classes (e.g. equity vs. hedge funds). Another

potential application would be to identify the common and group-specific driving forces

underpinning macroeconomic variables and asset prices.
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Appendix A: Number of Factors

In earlier approaches to determine the number of factors, Trzcinka (1986) and Brown (1989)
investigate the behavior of the eigenvalues, and mainly the number of eigenvalues whose
values increase with the number of securities considered in the analysis. Alternative ap-
proaches are based on the incremental explanatory power of additional factors (see Connor
and Korajczyk, 1993) or test whether the additional factors have some additional risk that
is not already priced by the first factors (see Kandel and Stambaugh, 1989). Bai and Ng
(2002) set up the determination of factors as a model selection problem. In consequence,
the proposed criteria depend on the usual trade-off between good fit and parsimony. Since
the problem is non-standard not only because account needs to be taken of the sample size
in both the cross section and the time series dimensions, but also because the factors are
not observed, they develop a new theory that does not rely on sequential limit, nor does it
impose any restrictions between N (number of assets) and T (length of time-series). The
results hold under heteroskedasticity in both the time and the cross-section dimensions and
also under weak serial dependence and cross-section dependence. Simulations show that
the criteria have good finite sample properties.

The criteria developed by Bai and Ng (2002) to determine the number of factors are
PCp and ICp which are given by:

PCp1(k) = V (k, F̂ k) + k σ̂2

(
N + T

NT

)
ln

(
NT

N + T

)

PCp2(k) = V (k, F̂ k) + k σ̂2

(
N + T

NT

)
lnC2

NT

PCp3(k) = V (k, F̂ k) + k σ̂2

(
lnC2

NT

C2
NT

)
(A1)

and

ICp1(k) = lnV (k, F̂ k) + k

(
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NT

)
ln

(
NT

N + T

)

ICp2(k) = lnV (k, F̂ k) + k

(
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NT

)
lnC2

NT

ICp3(k) = lnV (k, F̂ k) + k

(
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NT
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respectively. Here V (k, F̂ k) = N−1
∑N

i=1 σ̂2
i , σ̂2

i = T−1ê′iêi, σ̂2 = (NT )−1
∑N

i=1

∑T

t=1 ê2
it,

CNT = min(
√

N,
√

T ), and k is the number of estimated factors.

The PC statistics resemble the conventional panel data criteria and the IC statistics
resemble the conventional time-series criteria. The important difference is that the penalty
is a function of both N and T . There are three types of each criterion which are asymp-
totically equivalent, although can have different finite sample properties. Finally, as usual,
the number of factors is to be chosen as k that maximizes PC(k) or the IC(k) criteria.
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Appendix B: Canonical Correlations

Canonical correlation analysis (CCA) seeks to identify and quantify the associations be-
tween two sets of variables. The goal is to find the maximal correlation between a chosen
linear combination of the first set of variables and a chosen linear combination of the sec-
ond set of variables. The pair of linear combinations are called the canonical variables and
their correlations the canonical correlations. The canonical correlations, thus, measure the
strength of association between the two sets of variables. CCA is more general than several
other methods. For instance, regression analysis is CCA with the first subset of variables
consisting of a single numerical variable.

If Ft and Gt are two sets of factors with dimensions (r × 1) and (m × 1), respectively,
then the canonical correlations, denoted by ρ̂2

k, k = 1, . . . , min(m, r) are given by the largest
eigenvalues of the (r × r) matrix:

S−1
FF SFGS−1

GGSGF (B1)

where S is the sample covariance matrix. Bai and Ng (2006) show that having to estimate
F and G has no effect on the sampling distribution of ρ̂2

k. This allows them to construct
(1 − α) percent confidence intervals for the population canonical correlations as:

(
ρ2−

k , ρ2+
k

)
=

(
ρ̂2

k − 2Φα

ρ̂k (1 − ρ̂2
k)√

T
, ρ̂2

k + 2Φα

ρ̂k (1 − ρ̂2
k)√

T

)
(B2)

where Φ is the cumulative density function for standard normal variables and T is the
length of the time-series.
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Table 1: Simulation Results
We consider three groups of data (G = 3), in which the data generating process for excess returns,

Rit, is assumed to be:

Rit = βi1F1t + βi2F2t + βi3F3t + εit, ∀i ∈ [1, N1]

Rit = βi1F1t + βi2F2t + βi4F4t + εit, ∀i ∈ [N1 + 1, N1 + N2]

Rit = βi1F1t + βi2F2t + βi5F5t + εit, ∀i ∈ [N1 + N2 + 1, N1 + N2 + N3]

where the factors Fj·, j = 1, ..., 5 are orthogonal and N (0, 1) variables. The factor loadings β·j,
j = 1, ..., 5 are N (1, 1) variates and εit = σuit with σ =

√
3 and ui· is N (0, 1). Furthermore,

we use T = 60 and Ng = 1, 000. Factors are estimated by applying alternatively APCA (on the
pooled data) and MGFA. The span of estimated factors, F̂ , is compared to that of actual factors,

F , by the statistic:

S =
trace(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

trace(F ′F )
.

We report the mean and standard-deviation (across 1,000 simulations) of S statistic separately

for the two common pervasive factors (first two columns) and for all pervasive factors (last two

columns). Panel A is for the setting described above while the other panels explore variations on

this basic theme. In each panel, boldface figures denote the best performing method.

The number of common factors (KC) is determined to be the number of eigenvalues of the

matrix P that are equal to G. The average of these eigenvalues is also reported in the line following

the panel description. For example, the number 2.997 for the first eigenvalue in Panel A means

that on average the first factor is pervasive in 2.997 groups. The standard deviations of these

averages are typically very small and are not reported.
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Common Pervasive Factors All Pervasive Factors
APCA MGFA APCA MGFA

Panel A: Basic Setting
(Average eigenvalues of P = [2.997, 2.994, 1.014, 1.000, 0.986])

Mean 0.9510 0.9992 0.9987 0.9987

Std-Dev 0.0330 0.0001 0.0001 0.0001

Panel B: No Group-Specific Pervasive Factors, β·3 = β·4 = β·5 = 0

(Average eigenvalues of P = [2.999, 2.996])
Mean 0.9995 0.9995 0.9995 0.9995

Std-Dev 0.0001 0.0001 0.0001 0.0001

Panel C: No Common Pervasive Factors, β·1 = β·2 = 0

(Average eigenvalues of P = [1.007, 1.000, 0.994])
Mean Failure 1.0000 0.9995 0.9995

Std-Dev Failure 0.0000 0.0001 0.0001

Panel D: Common Pervasive Factors with Higher Sensitivity, β·1 and β·2 are N (2, 1)
(Average eigenvalues of P = [2.999, 2.994, 1.015, 1.000, 0.985])

Mean 0.9801 0.9994 0.9986 0.9987

Std-Dev 0.0022 0.0001 0.0002 0.0001

Panel E: Group-Specific Pervasive Factors with Higher Sensitivity, β·3, β·4, and β·5 are N (2, 1)
(Average eigenvalues of P = [2.996, 2.994, 1.010, 1.000, 0.990])

Mean 0.3447 0.9991 0.9992 0.9992

Std-Dev 0.0035 0.0001 0.0001 0.0001

Panel F: Different Group Sample Sizes, N1 = 2, 000, N2 = 1, 000, and N3 = 500

(Average eigenvalues of P = [2.997, 2.993, 1.015, 1.000, 0.985])
Mean 0.9180 0.9991 0.9985 0.9985

Std-Dev 0.0205 0.0001 0.0002 0.0002

Panel G: Same Group-Specific Pervasive Factors in two Groups, F3 = F4 and K = 4
(Average eigenvalues of P = [2.997, 2.994, 1.998, 1.000])
Mean 0.6881 0.9992 0.9989 0.9990

Std-Dev 0.1619 0.0001 0.0001 0.0001
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Table 2: Simulation Results – Cross-correlated Residuals
We consider three groups of data (G = 3), in which the data generating process for excess returns,

Rit, is assumed to be:

Rit = βi1F1t + βi2F2t + βi3F3t +

n∑

j=1

γijLjt + εit, ∀i ∈ [1, N1]

γij ∼ N (1, 1), j = 1, ..., n, if i ∈ [1 + (j − 1)N1/n, jN1/n] and 0 otherwise

Rit = βi1F1t + βi2F2t + βi4F4t +

n∑

j=1

γijLjt + εit, ∀i ∈ [N1 + 1, N1 + N2]

γij ∼ N (1, 1), j = 1, ..., n, if i ∈ [N1 + 1 + (j − 1)N2/n, N1 + jN2/n] and 0 otherwise

Rit = βi1F1t + βi2F2t + βi5F5t +

n∑

j=1

γijLjt + εit, ∀i ∈ [N1 + N2 + 1, N1 + N2 + N3]

γij ∼ N (1, 1), j = 1, ..., n, if i ∈ [N1 + N2 + 1 + (j − 1)N3/n, N1 + N2 + jN3/n]

and 0 otherwise

where the factors Fj·, j = 1, ..., 5 are orthogonal and N (0, 1) variables. The factor loadings β·j,
j = 1, ..., 5 are N (1, 1) variates and εit = σuit with σ =

√
3 and ui· is N (0, 1). We divide each

group into n = 10 subgroups (with ten percent of the data in each subgroup) and suppose that, in
each subgroup, asset returns are also driven by an additional non-pervasive factor. Furthermore,

we use T = 60, Ng = 1, 000, and we perform in each case 1,000 simulations. Factors are estimated
by applying alternatively APCA and MGFA. The span of estimated factors, F̂ , is compared to

that of actual factors, F , by the statistic:

S =
trace(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

trace(F ′F )
.

We report the mean and standard-deviation (across 1,000 simulations) of S statistic separately

for the two common pervasive factors (first two columns) and for all pervasive factors (last two

columns). Panel A is for the setting described above while the other panels explore variations on

this basic theme. In each panel, boldface figures denote the best performing method.

The number of common factors (KC) is determined to be the number of eigenvalues of the

matrix P that are equal to G. The average of these eigenvalues is also reported in the line following

the panel description. The standard deviations of these averages are typically very small and are

not reported.
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Common Pervasive Factors All Pervasive Factors
APCA MGFA APCA MGFA

Panel A: Basic Setting
(Average eigenvalues of P = [2.995, 2.987, 1.018, 0.999, 0.984])

Mean 0.9401 0.9916 0.9880 0.9913

Std-Dev 0.0032 0.0009 0.0013 0.0008

Panel B: No Group-Specific Pervasive Factors, β·3 = β·4 = β·5 = 0
(Average eigenvalues of P = [2.998, 2.989])

Mean 0.9872 0.9872 0.9872 0.9872

Std-Dev 0.0007 0.0007 0.0007 0.0007

Panel C: No Common Pervasive Factors, β·1 = β·2 = 0

(Average eigenvalues of P = [1.057, 0.976, 0.967])
Mean Failure 1.0000 0.9626 0.9719

Std-Dev Failure 0.0000 0.0022 0.0016

Panel D: Common Pervasive Factors with Higher Sensitivity, β·1 and β·2 are N (2, 1)
(Average eigenvalues of P = [2.997, 2.987, 1.015, 1.000, 0.985])

Mean 0.9740 0.9946 0.9927 0.9954

Std-Dev 0.0026 0.0004 0.0014 0.0005

Panel E: Group-Specific Pervasive Factors with Higher Sensitivity, β·3, β·4, and β·5 are N (2, 1)
(Average eigenvalues of P = [2.992, 2.987, 1.018, 0.997, 0.985])

Mean 0.3370 0.9958 0.9916 0.9929

Std-Dev 0.0037 0.0006 0.0007 0.0005

Panel F: Different Group Sample Sizes, N1 = 2, 000, N2 = 1, 000, and N3 = 500

(Average eigenvalues of P = [2.994, 2.985, 1.019, 0.999, 0.982])
Mean 0.9085 0.9914 0.9762 0.9912

Std-Dev 0.0179 0.0008 0.0091 0.0007

Panel G: Same Group-Specific Pervasive Factors in two Groups, F3 = F4 and K = 4

(Average eigenvalues of P = [2.995, 2.987, 1.996, 1.000])
Mean 0.6677 0.9915 0.9902 0.9917

Std-Dev 0.1542 0.0008 0.0008 0.0006

Panel H: Number of Non Pervasive Factors (n = 5)
(Average eigenvalues of P = [2.994, 2.982, 1.030, 0.995, 0.976])

Mean 0.9274 0.9822 0.9046 0.9853

Std-Dev 0.0038 0.0022 0.0505 0.0014
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Table 3: Simulation Results – Missing Data
We consider three groups of data (G = 3), in which the data generating process for excess returns,
Rit, is assumed to be:

Rit = βi1F1t + βi2F2t + βi3F3t + εit, ∀i ∈ [1, N1]

Rit = βi1F1t + βi2F2t + βi4F4t + εit, ∀i ∈ [N1 + 1, N1 + N2]

Rit = βi1F1t + βi2F2t + βi5F5t + εit, ∀i ∈ [N1 + N2 + 1, N1 + N2 + N3]

where the factors Fj·, j = 1, ..., 5 are orthogonal and N (0, 1) variables. The factor loadings β·j,

j = 1, ..., 5 are N (1, 1) variates and εit = σuit with σ =
√

3 and ui· is N (0, 1). Furthermore,
we use T = 60 and Ng = 1, 000. Half the firms are chosen to have missing observations. We

set 15 months (25% of the total number of observations) to have missing values. The firms and
months with missing values are chosen at random. Missing values are replaced by zero. Factors

are estimated by applying alternatively APCA (on the pooled data) and MGFA. The span of
estimated factors, F̂ , is compared to that of actual factors, F , by the statistic:

S =
trace(F ′F̂ (F̂ ′F̂ )−1F̂ ′F )

trace(F ′F )
.

We report the mean and standard-deviation (across 1,000 simulations) of S statistic separately

for the two common pervasive factors (first two columns) and for all pervasive factors (last two

columns). Panel A is for the setting described above while the other panels explore variations on

this basic theme. In each panel, boldface figures denote the best performing method.

The number of common factors (KC) is determined to be the number of eigenvalues of the

matrix P that are equal to G. The average of these eigenvalues is also reported in the line following

the panel description. The standard deviations of these averages are typically very small and are

not reported.
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Common Pervasive Factors All Pervasive Factors
APCA MGFA APCA MGFA

Panel A: Basic Setting
(Average eigenvalues of P = [2.996, 2.991, 1.017, 1.000, 0.983])

Mean 0.9510 0.9988 0.9978 0.9978

Std-Dev 0.0036 0.0002 0.0002 0.0002

Panel B: No Group-Specific Pervasive Factors, β·3 = β·4 = β·5 = 0

(Average eigenvalues of P = [2.998, 2.994])
Mean 0.9993 0.9993 0.9993 0.9993

Std-Dev 0.0001 0.0001 0.0001 0.0001

Panel C: No Common Pervasive Factors, β·1 = β·2 = 0

(Average eigenvalues of P = [1.008, 1.0000, 0.992])
Mean Failure 1.0000 0.9992 0.9992

Std-Dev Failure 0.0000 0.0001 0.0001

Panel D: Common Pervasive Factors with Higher Sensitivity, β·1 and β·2 are N (2, 1)
(Average eigenvalues of P = [2.998, 2.990, 1.022, 1.000, 0.979])

Mean 0.9785 0.9986 0.9956 0.9965

Std-Dev 0.0031 0.0003 0.0014 0.0005

Panel E: Group-Specific Pervasive Factors with Higher Sensitivity, β·3, β·4, and β·5 are N (2, 1)
(Average eigenvalues of P = [2.994, 2.990, 1.013, 1.000, 0.987])

Mean 0.3452 0.9985 0.9986 0.9982
Std-Dev 0.0041 0.0002 0.0002 0.0002

Panel F: Different Group Sample Sizes, N1 = 2, 000, N2 = 1, 000, and N3 = 500

(Average eigenvalues of P = [2.995, 2.990, 1.018, 1.000, 0.982])
Mean 0.9140 0.9986 0.9974 0.9974

Std-Dev 0.0322 0.0002 0.0004 0.0003

Panel G: Same Group-Specific Pervasive Factors in two Groups, F3 = F4 and K = 4
(Average eigenvalues of P = [2.996, 2.991, 1.997, 1.000])
Mean 0.6803 0.9988 0.9983 0.9983

Std-Dev 0.1570 0.0002 0.0002 0.0002
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Table 4: Simulation Results – Prices of Risk
We consider two groups of data (G = 2), in which the data generating process for returns, rit, is

assumed to be:

rit = E [rit] + βi1f1t + βi2f2t + εit, ∀i ∈ [1, N1]

rit = E [rit] + βi1f1t + εit, ∀i ∈ [N1 + 1, N1 + N2] ,

where the realization of the factors fj·, j = 1, ..., 2 are orthogonal and N (0, 1) variables. The
factor loadings β·j, j = 1, ..., 2 are N (1, 1) variates and εi· is N (0, 1). Expected returns are given

by:
E [r] = ιλ0 + Bλ ,

where λ0 = 5%, λ1 = 20% and λ2 = 10%. We use T = 60. We perform the analysis in three steps.
In the first step, the factors are extracted. In the second step, we estimate betas by running a

time-series regression for each stock. The third step involves running the following cross-sectional
regression model:

µ̂ =
1

T

T∑

t=1

rt = ιλ0 + B̂λ + v ,

where v is a vector of pricing errors. We report the averages of these prices of risks (with standard

deviation across simulations in parenthesis). Panel A has the same number of firms in both groups

(N1 = N2 = 1, 000) while Panel B has fewer firms in the second group (N2 = 100).

Method Group λ̂0 λ̂1 λ̂2

Panel A: N1 = 1, 000, N2 = 1, 000
APCA Group 1 0.0549 (0.0013) 0.2147 (0.0031) 0.0148 (0.0061)

Group 2 0.0533 (0.0013) 0.1779 (0.0034) 0.0769 (0.0075)

MGFA Group 1 0.0550 (0.0014) 0.1933 (0.0021) 0.0933 (0.0011)
Group 2 0.0534 (0.0011) 0.1935 (0.0019) –

Common True Factor Group 1 0.1528 (0.0039) 0.1965 (0.0029) –

Group 2 0.0533 (0.0013) 0.1967 (0.0009) –

Panel B: N1 = 1, 000, N2 = 100

APCA Group 1 0.0550 (0.0013) 0.2075 (0.0022) 0.0553 (0.0073)
Group 2 0.0538 (0.0039) 0.1447 (0.0140) 0.1281 (0.0169)

MGFA Group 1 0.0550 (0.0017) 0.1939 (0.0040) 0.0929 (0.0038)

Group 2 0.0533 (0.0038) 0.1934 (0.0038) –

Common True Factor Group 1 0.1532 (0.0047) 0.1971 (0.0032) –

Group 2 0.0537 (0.0039) 0.1964 (0.0026) –
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Table 5: Descriptive Statistics on Excess Returns
We use excess monthly returns on stocks traded on the Nyse, Amex and Nasdaq calculated by

subtracting the interest rate on the one-month Treasury bill from the individual stock returns.

We exclude the stocks (1) with missing returns data, (2) that are not traded either on the Nyse,

Amex, and Nasdaq, (3) that change exchange during the subperiod, and (4) that are not common

stocks. We partition our original universe of stocks into two groups, the first one containing the

stocks traded on the Nyse and Amex, and the second one, the stocks traded on the Nasdaq. The

sample period is 1978-2002 that we divide into five 60-month subperiods. For each group and

each sub-period, we report the descriptive statistics on the excess returns. Each of these statistics

is calculated using the time-series of individual stocks and then cross-sectionally averaged across

stocks. The statistics can, therefore, be interpreted as those for a representative stock.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

Panel A: Nyse-Amex Stocks

Mean 0.0110 0.0056 0.0083 0.0101 0.0030
Std-Dev 0.1110 0.1084 0.1108 0.0892 0.1265
Skewness 0.4268 0.0486 0.5258 0.3469 0.3624

Kurtosis 4.1554 4.7175 4.8058 4.2624 4.6601
N 1,690 1,500 1,547 1,763 1,760

Panel B: Nasdaq Stocks
Mean 0.0134 0.0047 0.0129 0.0137 0.0119

Std-Dev 0.1319 0.1469 0.1583 0.1543 0.2082
Skewness 0.7026 0.6557 0.9808 0.8544 0.9271

Kurtosis 5.2443 5.8006 6.4174 5.5704 6.0987
N 1,252 1,568 2,210 2,165 2,263
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Table 6: Number of Pervasive Factors in Nyse/Amex and Nasdaq
We run an asymptotic principal component analysis (APCA) on stock returns in each of two

groups of stocks: group G1 consisting of stocks on Nyse/Amex and group G2 consisting of stocks

on Nasdaq. This table presents the optimal number of factors obtained in each of these groups.

The optimal number of common factors in each group is the one that minimizes the Bai and

Ng (2002) information criteria, ICpi(k) and PCpi(k) (refer to Appendix A for equations). We

calculate each information criterion for k = 1, . . . , 8. The sample consists of all common stocks

that have no missing data and the sample period from 1978 to 2002 is divided into five subperiods

of 60 months each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

G1 G2 G1 G2 G1 G2 G1 G2 G1 G2

ICp1 3 1 2 1 2 1 2 1 3 2

ICp2 3 1 2 1 2 1 2 1 3 2
ICp3 3 1 2 1 2 1 2 1 3 2

PCp1 2 1 2 1 2 1 2 1 3 2

PCp2 2 1 2 1 2 1 2 1 3 2
PCp3 2 1 2 1 2 1 2 1 3 2
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Table 7: Comparison of Factors in Nyse/Amex and Nasdaq
We estimate pervasive factors in each group using APCA in Panel A and HFA in Panel B (the

number of pervasive factors is assumed to be three in both the groups). We present the first three

canonical correlations between all the estimated pervasive factors in Nyse/Amex and Nasdaq. The

numbers in parentheses underneath the canonical correlation are the 95% confidence intervals for

the canonical correlation (refer to Appendix B for equations). We also present the first three

eigenvalues of the matrix P which is the sum of the eigenprojection matrices for each group. The

sample consists of all common stocks that have no missing data and the sample period from 1978

to 2002 is divided into five subperiods of 60 months each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

Panel A: APCA in each group

First 0.955
(0.933, 0.977)

0.953
(0.930, 0.976)

0.962
(0.944, 0.981)

0.786
(0.691, 0.882)

0.901
(0.853, 0.948)

Second 0.707
(0.582, 0.832)

0.655
(0.514, 0.796)

0.814
(0.729, 0.899)

0.418
(0.228, 0.609)

0.804
(0.715, 0.893)

Canonical
Correlations

between factors
Third 0.506

(0.328, 0.684)
0.331

(0.136, 0.526)
0.196

(0.016, 0.377)
0.144

(0.000, 0.308)
0.165

(0.000, 0.336)

First 1.985 1.963 1.971 1.926 1.962
Eigenvalues of P Second 1.854 1.654 1.914 1.434 1.693

Third 1.101 1.162 1.229 1.135 1.359

Panel B: HFA in each group

First 0.962
(0.943, 0.981)

0.959
(0.939, 0.979)

0.954
(0.932, 0.977)

0.829
(0.750, 0.908)

0.879
(0.822, 0.937)

Second 0.720
(0.600, 0.840)

0.689
(0.559, 0.820)

0.369
(0.175, 0.563)

0.451
(0.264, 0.637)

0.793
(0.700, 0.886)

Canonical
Correlations

between factors
Third 0.490

(0.309, 0.671)
0.314

(0.119, 0.508)
0.022

(0.000, 0.095)
0.105

(0.000, 0.251)
0.240

(0.051, 0.428)

First 1.986 1.975 1.972 1.949 1.969
Eigenvalues of P Second 1.824 1.825 1.682 1.466 1.918

Third 1.557 1.517 1.181 1.169 1.481
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Table 8: Comparison of the Common Pervasive Factors and All Pervasive Fac-
tors for Nyse/Amex and Nasdaq
This table presents the smallest non-zero (i.e., second) canonical correlation between common

pervasive factors and all pervasive factors in each group (Nyse/Amex and Nasdaq). Pervasive

factors for a group are calculated using HFA. The common pervasive factors are estimated using

MGFA (Panel A), APCA (Panel B), and HFA (Panel C). Data for APCA and HFA is pooled

across both groups to calculate common pervasive factors. The number of all pervasive factors is

three in each group and the number of common pervasive factors is two. Numbers in parentheses

underneath the canonical correlation are the 95% confidence intervals for the canonical correlation.

The sample consists of all common stocks that have no missing data and the sample period from

1978 to 2002 is divided into five subperiods of 60 months each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

Panel A: MGFA
Nyse 0.924

(0.888, 0.961)
0.915

(0.873, 0.956)
0.804

(0.715, 0.893)
0.836

(0.760, 0.912)
0.945

(0.918, 0.972)

Nasdaq 0.924
(0.887, 0.961)

0.915
(0.873, 0.956)

0.804
(0.715, 0.893)

0.836
(0.760, 0.912)

0.945
(0.918, 0.972)

Panel B: APCA
Nyse 0.965

(0.947, 0.982)
0.935

(0.904, 0.967)
0.642

(0.497, 0.78)
0.844

(0.771, 0.916)
0.834

(0.757, 0.911)

Nasdaq 0.831
(0.753, 0.909)

0.815
(0.730, 0.899)

0.883
(0.827, 0.938)

0.649
(0.506, 0.792)

0.845
(0.772, 0.917)

Panel C: HFA

Nyse 0.973
(0.960, 0.987)

0.976
(0.964, 0.988)

0.758
(0.651, 0.864)

0.848
(0.777, 0.919)

0.842
(0.768, 0.915)

Nasdaq 0.827
(0.748, 0.907)

0.772
(0.671, 0.874)

0.785
(0.688, 0.881)

0.609
(0.454, 0.763)

0.907
(0.862, 0.952)
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Table 9: A Randomization Experiment
In Panel A, Nyse/Amex stocks are randomly divided into two non-overlapping, equally-sized

groups and the first three canonical correlations are estimated between the estimated subgroup-

specific pervasive factors. We repeat the analysis with Nasdaq stocks in Panel B. In Panel C,

we randomly combine 50% of the Nyse/Amex stocks with 50% of the Nasdaq stocks into two

subgroups and the first three canonical correlations are estimated between the estimated subgroup-

specific pervasive factors. We estimate pervasive factors in each subgroup using HFA (the number

of pervasive is assumed to be three in each subgroup). We repeat the estimation 1,000 times and

present the average value of the three canonical correlations with their standard-deviations in

parentheses. The sample period from 1978 to 2002 is divided into five subperiods of 60 months

each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

Panel A: Nyse/Amex

First Canonical Correlation 0.9978
(0.0004)

0.9975
(0.0005)

0.9957
(0.0009)

0.9929
(0.0015)

0.9952
(0.0011)

Second Canonical Correlation 0.9824
(0.0044)

0.9804
(0.0045)

0.9746
(0.0057)

0.9783
(0.0091)

0.9839
(0.0038)

Third Canonical Correlation 0.9410
(0.0293)

0.8716
(0.0451)

0.7927
(0.1095)

0.8424
(0.1183)

0.9667
(0.0101)

Panel B: Nasdaq
First Canonical Correlation 0.9953

(0.0010)
0.9954
(0.0009)

0.9936
(0.0013)

0.9883
(0.0023)

0.9957
(0.0009)

Second Canonical Correlation 0.9364
(0.0136)

0.9136
(0.0178)

0.9382
(0.0129)

0.9380
(0.0124)

0.9823
(0.0038)

Third Canonical Correlation 0.7036
(0.1418)

0.8357
(0.0337)

0.4618
(0.2100)

0.7784
(0.0731)

0.9295
(0.0329)

Panel C: Nyse/Amex and Nasdaq
First Canonical Correlation 0.9783

(0.0030)
0.9763
(0.0029)

0.9725
(0.0038)

0.8982
(0.0116)

0.9351
(0.0077)

Second Canonical Correlation 0.8312
(0.0250)

0.8083
(0.0264)

0.5853
(0.0677)

0.6598
(0.0356)

0.8773
(0.0038)

Third Canonical Correlation 0.6184
(0.1142)

0.5196
(0.0686)

0.1550
(0.0964)

0.2884
(0.0819)

0.4827
(0.0333)
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Table 10: Comparison of Common Pervasive Factors and Standard Benchmark
Factors
This table presents the smallest non-zero canonical correlation between the common pervasive

factors and standard benchmark factors. The standard benchmark factors are the three Fama

and French (1993) factors, FF3 = (MKT, SMB, HML), and a momentum factor, MOM. The

common pervasive factors are estimated using MGFA for the two groups of stocks (Nyse/Amex

and Nasdaq). The number of common pervasive factors is two. Number in parentheses underneath

the canonical correlation are the 95% confidence intervals for the canonical correlation. The

sample consists of all common stocks that have no missing data and the sample period from 1978

to 2002 is divided into five subperiods of 60 months each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

MKT 0.913
(0.870, 0.955)

0.911
(0.869, 0.954)

0.941
(0.912, 0.970)

0.787
(0.692, 0.883)

0.714
(0.592, 0.836)

SMB 0.504
(0.325, 0.682)

0.392
(0.199, 0.584)

0.700
(0.573, 0.827)

0.366
(0.172, 0.560)

0.384
(0.190, 0.577)

HML 0.377
(0.184, 0.571)

0.421
(0.231, 0.611)

0.210
(0.027, 0.393)

0.549
(0.380, 0.718)

0.624
(0.474, 0.774)

MOM 0.421
(0.231, 0.612)

0.196
(0.016, 0.376)

0.211
(0.028, 0.395)

0.097
(0.000, 0.240)

0.137
(0.000, 0.299)

FF3 0.991
(0.987, 0.996)

0.987
(0.981, 0.994)

0.981
(0.971, 0.991)

0.955
(0.933, 0.978)

0.897
(0.848, 0.946)

FF3+MOM 0.992
(0.988, 0.996)

0.990
(0.985, 0.996)

0.985
(0.977, 0.993)

0.956
(0.934, 0.978)

0.936
(0.908, 0.969)
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Table 11: Comparison of Factors in Nyse/Amex and Nasdaq (Including Stocks
with Missing Data)
We estimate pervasive factors in each group using APCA in Panel A and HFA in Panel B (the

number of pervasive factors is assumed to be three in both the groups). We present the first three

canonical correlations between all the estimated pervasive factors in Nyse/Amex and Nasdaq. The

numbers in parentheses underneath the canonical correlation are the 95% confidence intervals for

the canonical correlation (refer to Appendix B for equations). We also present the first three

eigenvalues of the matrix P which is the sum of the eigenprojection matrices for each group. The

sample consists of all common stocks (including the stocks that have missing data) and the sample

period from 1978 to 2002 is divided into five subperiods of 60 months each.

1978-1982 1983-1987 1988-1992 1993-1997 1998-2002

Panel A: APCA in each group

First 0.922
(0.885, 0.960)

0.931
(0.897, 0.964)

0.963
(0.945, 0.982)

0.818
(0.734, 0.901)

0.951
(0.927, 0.975)

Second 0.661
(0.522, 0.801)

0.617
(0.465, 0.770)

0.806
(0.717, 0.894)

0.033
(0.000, 0.121)

0.717
(0.596, 0.838)

Canonical
Correlations

between factors
Third 0.240

(0.052, 0.429)
0.116

(0.000, 0.268)
0.011

(0.000, 0.065)
0.000

(0.000, 0.007)
0.016

(0.000, 0.080)

First 1.964 1.964 1.977 1.907 1.973
Eigenvalues of P Second 1.811 1.786 1.901 1.183 1.849

Third 1.490 1.292 1.107 1.029 1.136

Panel B: HFA in each group

First 0.968
(0.952, 0.984)

0.951
(0.927, 0.975)

0.948
(0.923, 0.974)

0.899
(0.851, 0.948)

0.950
(0.926, 0.975)

Second 0.652
(0.509, 0.794)

0.701
(0.574, 0.827)

0.522
(0.348, 0.697)

0.292
(0.099, 0.486)

0.640
(0.494, 0.786)

Canonical
Correlations

between factors
Third 0.221

(0.036, 0.406)
0.466

(0.281, 0.650)
0.012

(0.000, 0.066)
0.006

(0.000, 0.046)
0.201

(0.019, 0.382)

First 1.985 1.972 1.973 1.951 1.973
Eigenvalues of P Second 1.802 1.833 1.745 1.645 1.803

Third 1.470 1.678 1.105 1.080 1.443
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