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Abstract

One of the most noticeable stylized facts in �nance is that stock index returns are neg-
atively correlated with changes in volatility. The economic rationale for the e¤ect is still
controversial. The competing explanations have di¤erent implications for the origin of the
relationship: Are volatility changes induced by index movements, or inversely, does volatil-
ity drive index returns? To di¤erentiate between the alternative hypotheses, we analyze
the lead-lag relationship of option implied volatility and index return in Germany based on
Granger causality tests and impulse-response functions. Our dataset consists of all transac-
tions in DAX options and futures over the time period from 1995 to 2005. Analyzing returns
over 5-minute intervals, we �nd that the relationship is return-driven in the sense that in-
dex returns Granger cause volatility changes. This causal relationship is statistically and
economically signi�cant and can be clearly separated from the contemporaneous correlation.
The largest part of the implied volatility response occurs immediately, but we also observe a
smaller retarded reaction for up to one hour. A volatility feedback e¤ect is not discernible.
If it exists, the stock market appears to correctly anticipate its importance for index returns.
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1 Introduction

A well known stylized fact in �nance is that stock index returns are negatively correlated with
changes in volatility (�volatility returns�). (Black (1976)). The negative relationship is typically
more pronounced in falling than in rising markets (Figlewski/Wang (2000)) and is stronger for
indices than for individual stocks. The distinctive cross dependence pattern between return and
volatility plays an essential role in the development of volatility as an asset class, in volatility
modelling and in option pricing. Nevertheless, a fully consistent economic explanation for the
e¤ect has not yet been o¤ered (see Bouchaud et al. (2001), Bollerslev/Zhou (2006)).

The �rst attempt to �nd an economic rationale for the negative return correlation relies on
a corporate �nance argument. Black (1976) and Christie (1982), among others, argue that a
positive stock return increases the market value of the �rm�s equity, thereby diminishing its
�nancial leverage ratio. The reduced leverage gear will result in a lower volatility of stock
returns. The empirical observations, however, do not support this leverage hypothesis. First,
it is not compatible with the observed asymmetry of the e¤ect in falling and rising markets.
Second, the leverage hypothesis predicts a stronger relationship on the individual �rm level
than the index level. This prediction is contrary to what is empirically observed (Bouchaud
et al. (2001)).1 In a US study, Figlewski/Wang (2000) conclude that the negative correlation
on the index level is far too strong to be explained by the leverage hypothesis (see also Aydemir
et al. (2006)).

The term �leverage e¤ect�is sometimes used in a broader sense for the general hypothesis that
the causality runs from stock return to volatility. In this paper, we call such a directional
relationship �return-driven�. In this terminology, the leverage e¤ect is only one possibility to
explain a return-driven negative correlation. Another explanation is that bad news might have
di¤erent implications for future uncertainty than good news (see, e.g., Glosten et al. (1993)
and Chen/Ghysels (2007)). For instance, price drops could induce more extensive portfolio
adjustments of risk-averse agents than price increases. Bouchaud et al. (2001) suggest that the
apparent return-driven relationship could be due to a retarded e¤ect. In their framework, the
scale for price updates does not depend on the instantaneous price but on a moving average of
past prices which means that current returns lead subsequent volatility returns.

The hypothesis of a volatility-driven negative relationship is known as the �feedback e¤ect�
(see, e.g., Pindyck (1984), French et al. (1987), Campbell/Hentschel (1992)). It rests on the
assumption that volatility is related to systematic risk and is therefore relevant for pricing. If
new information gives rise to an unanticipated increase in volatility, this will also increase risk-
adjusted discount rates. As long as cash �ow expectations are not a¤ected, stock prices will
go down. However, the empirical evidence on the impact of volatility on expected returns is
controversial. Some studies report a positive (French et al. (1987), Campbell/Hentschel (1992),
Scruggs (1998), Ghysels et al. (2005), Lundblad (2007), Bae et al. (2007)), others a negative
relationship (Campbell (1987), Nelson (1991)). Often, the link was found to be insigni�cant and
unstable over time (Glosten et al. (1993), Turner et al. (1989), Harvey (2001)).

1 This statement holds although new evidence suggests that the �rm level e¤ect might be stronger than previous
work has documented (see Ericsson et al. (2007) and Chelley-Steeley/Steeley (2005)).
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The return-driven and volatility-driven e¤ects might well coexist. For instance, an initial price
change could induce a volatility movement which in its turn ampli�es the price change with
yet another impulse on volatility (see the model of Bekaert/Wu (2000)). In e¢ cient �nancial
markets, the participants will try to anticipate these reactions. Therefore, the steps will evolve
almost simultaneously. This makes it di¢ cult to identify the di¤erent stages of the process. The
higher the return frequency of the data, the better the chances to gain insight into the origin of
the return-volatility correlation (see Bollerslev et al. (2006)).

Most empirical studies published during the last few years use a framework which incorporates
return-driven as well as volatility-driven e¤ects. The results are mixed. On the one hand, recent
studies by Bollerslev et al. (2006), Giot (2005), and Dufour et al. (2006) report evidence of a
return-driven relationship while the feedback e¤ect is found to be negligible.2 On the other hand,
Bekaert/Wu (2000) and Dennis et al. (2006) �nd support for the volatility feedback argument.

To date, there is hardly any evidence for European countries. Within Europe, the German
�nancial market appears to be particularly interesting for at least two reasons. First, during our
sample period, DAX futures and options have represented the highest trading volume among
all stock index derivatives in Europe. Thus, high-quality high-frequency transaction data are
available, which is of crucial importance for this study. Second, the negative relationship between
index and volatility returns has been particularly strong and stable at the German market over
the last decade (see Hafner/Wallmeier (2007)).

Our main contribution is to go beyond a correlation analysis by studying causality in intervals
su¢ ciently short to identify lead-lag-relationships. To the best of our knowledge, this is the
�rst study which applies causality tests to the interaction of index return and volatility in high-
frequency data. For our analysis it is important to accurately determine the point in time
when changes in volatility occur. Therefore, in contrast to previous related work, our volatility
measure is the at-the-money (ATM) implied volatility instead of realized volatility.3 We take
every e¤ort to measure volatility returns as precisely as possible taking microstructure frictions
into account. Our objectives are: (1) to analyze whether the lead-lag relationship is return-
driven or volatility-driven, (2) to quantify the impact of an innovation in return or volatility
and (3) to estimate how fast return-driven and feedback e¤ects evolve and to draw conclusions
for the information e¢ ciency of the markets involved.

We �nd that a lead-lag relationship only exists for returns at the highest sampling frequency
(5 minutes). This relationship is return-driven in the sense that index returns Granger cause
volatility returns. Impulse-response functions show that a one-time innovation on index return
has a signi�cant impact on implied volatility. The largest part of the implied volatility response
occurs immediately, but we also observe a smaller retarded reaction for up to one hour. A
volatility feedback e¤ect is not discernible. If it exists, it appears to be correctly anticipated by

2 Earlier studies include Christie (1982), Du¤ee (1995), Figlewski/Wang (2000) and Chan et al. (2003) (based
on regressions) and Nelson (1991), Cheung/Ng (1992), Engle/Ng (1993) and Glosten et al. (1993) (based on
modelling of conditional volatility through various GARCH speci�cations).

3 It is well known that ATM implied volatility is an upward-biased estimate of future realized volatility (see,
e.g., Jackwerth/Rubinstein (1996)). We assume that the bias is approximately constant through time and
therefore does not signi�cantly in�uence volatility returns.
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traders in the stock market, so that the initial DAX return already incorporates the feedback
from the expected volatility reaction.

In the next section, we describe our data and explain how we account for microstructure frictions.
Section 3 contains the causality tests, and section 4 concludes.

2 Data

2.1 Raw returns and the smile in option prices

Following the arguments of Jackwerth (2000), we infer DAX levels from DAX futures prices
instead of using the observed index levels. The �rst reason is that DAX futures are the relevant
instrument for hedging DAX option positions in practice. Other alternatives for trading the DAX
portfolio are less �exible and more costly. Second, the observed index level rests on last trade
prices of the index stocks. This means that the underlying stock prices are not simultaneous
(see Bollen/Whaley (2004), p. 737).

To obtain the index level St corresponding to an observed futures market price Ft at time t,
we solve the futures pricing model Ft = Ster(T�t) for St, where r is the risk-free rate of return
and T the futures contract maturity date. We only consider the contract most actively traded
on that day, which is normally the nearest available. Dividends do not have to be taken into
account since the DAX is a performance index (see Kempf/Bühler (1995) for more details). The
resulting �DAX futures implied�DAX values are used to calculate DAX returns and to estimate
implied volatilities of DAX options.

Our data come from the joint German and Swiss options and futures exchange, Eurex.4 The
Eurex is one of the world�s largest futures and options exchanges and is jointly operated by
Deutsche Börse AG and SWX Swiss Exchange. Our database contains all reported transactions
of DAX options and futures from January 1995 to December 2005. The average daily trading
volume of DAX options (ODAX) and futures (FDAX) in December 2005 was 166,886 and 117,388
contracts. The options are European style. At any point in time during the sample period, at
least eight option maturities were available. However, trading is heavily concentrated on the
nearby maturities. Trading hours changed several times during our sample period, but both
products were traded at least from 09:30 a.m. to 16:00.

As we use time-stamped tick-by-tick data, matching of option and futures prices is straightfor-
ward. We extract implied volatilities from DAX option prices using the Black/Scholes (1973)
pricing model. We apply the method of Hafner/Wallmeier (2001) to ensure put-call-parity
consistent estimates of implied volatilities and remove option prices which violate well-known
arbitrage bounds.

Due to the smile in option prices, di¤erences in implied volatilities of subsequent option prices
can be due to di¤erent levels of moneyness de�ned as the quotient of strike price and forward
price. To restrict the in�uence of the smile, we only keep ATM options with a moneyness

4 We are very grateful to the Eurex for providing the data.
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between 0:975 and 1:025. Since a small in�uence of moneyness might still exist, we estimate the
smile structure each day following the cubic regression approach described in Hafner/Wallmeier
(2001) and Hafner/Wallmeier (2007). We then use the �tted smile function to remove the impact
of moneyness on implied volatilities in the relevant moneyness range of 0:975 to 1:025. More
speci�cally, let K denote the strike price of an option with time to maturity T � t. Each trade
is assigned a moneyness according to:

M(t; T;K) =
ln
�

K
Ft(T )

�
p
T � t

;

where Ft(T ) is the forward price at time t for maturity T . Thus, ATM options are characterized
by a moneyness of 0. Suppressing the arguments of moneyness, we chose the cubic regression
function:

� = �0 + �1M + �2M
2 + �3D �M3 + "; (1)

where � is the implied volatility, �i; i = 0; 1; 2; 3 are regression coe¢ cients, " is a random error,
and D is a dummy variable de�ned as:

D =

(
0 ; M � 0
1 ; M > 0

:

The dummy variable accounts for an asymmetry of the pattern of implied volatilities around
the ATM strike (M = 0).

Let �imp(M; t) denote the implied volatility of an option with moneyness M traded at time t.
Then, the corresponding ATM implied volatility �ATMimp (t) is calculated as

�ATMimp (t) = �imp(M; t)�
hb�1M + b�2M2 + b�3D �M3

i
;

where b�i are the estimated regression coe¢ cients.
We classify all observations into two maturity groups. The �rst contains options with a time-to-
maturity between 10 and 30 calendar days, the second contains all observations with an option�s
time-to-maturity between 31 and 60 days. Options with longer maturities are not considered due
to thin trading. Very short maturities below 10 days are also excluded to leave out expiration-day
e¤ects and to avoid biases due to inaccurate estimates of implied volatilities.

Implied volatility returns (Rv) and raw returns of the underlying stock index (RS) over the time
period from ti to tj are calculated as:

Rv(ti; tj) = ln
�
�ATMimp (tj)

�
� ln

�
�ATMimp (ti)

�
and RS(ti; tj) = lnStj � lnSti ;

where S denotes the index level underlying the corresponding futures price. The values �ATMimp (t)

and St are set equal to the last implied volatility and index level observed before t. If the last
trade occurred more than 60 seconds before t, the return is not calculated. The results do not
change if we further restrict the maximal distance to 30 seconds. We consider four di¤erent
sampling frequencies tj � ti, namely 5 minutes, 15 minutes, hourly and daily. We are primarily
interested in the high-frequency 5-minute intervals. Results for the longer intervals serve as a
means of comparison.
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2.2 Microstructure frictions

For data sampled at high frequency, market microstructure frictions have to be taken into
account, particularly �uctuating trading activity, infrequent trading and the bid-ask bounce.

Intraday pattern of trading activity

Trading activity in DAX stocks and DAX options often follows an intraday pattern with three
di¤erent periods: (1) in the morning, trading is typically at its maximum at the opening and
then decreases until lunch; (2) the period after lunch is generally characterized by a peak of
trading activity around the opening of the US stock exchanges; (3) during the last few hours,
activity usually stays at a high level. This intraday pattern may have consequences for the
modelling of conditional volatility. For example, it can produce biases in GARCH speci�cations
(see Andersen et al. (1999)). Due to the varying conditional volatility, returns in low-activity
intervals are not directly comparable to returns in periods with high trading activity.

In order to correct DAX returns for the intraday trading activity, we follow Andersen et al. (2001)
and model the pattern with a Fourier Flexible Form (FFF ). The main assumption underlying
this approach is that an intraday return can be expressed as the product of a Gaussian white
noise, a daily (or long-term) volatility component and an intraday pattern e¤ect. Using this
decomposition, it is then possible to estimate and �lter out the intraday pattern e¤ect using a
FFF regression (see Taylor (2006) and Andersen et al. (2001) for more details).

Following Andersen et al. (2001), we only use the polynomial part of the FFF and break it
up into three third order sub-polynomials to account for three di¤erent trading regimes during
the day. Since the intraday pattern is not supposed to be constant over the 11-year period, we
treat each year separately. We apply this �ltering only to return data sampled at the highest
frequencies (5 and 15 minutes). While conceptually relevant, a robustness check shows that the
�ltering is not important empirically. Filtered returns turn out to be very similar to raw returns
and all results remain valid when the �ltering is omitted.

Infrequent trading

The problem of infrequent trading arises if intervals without market transactions occur. There
are several ways to handle this problem. Some authors simply set the missing value equal to
the last transaction price (e.g. Stephan/Whaley (1990) or Dennis et al. (2006)), while others
interpolate between the last and the next price to �ll the gap (see, e.g., Corsi et al. (2001) for
a discussion). However, the �rst method has the shortcoming that it leads to a bias in vector
autoregressions, whereas the second approach generates spurious autocorrelations. We therefore
restrain from generating �ctitious values to replace non-available market prices. Instead, in each
part of the study we control for the presence of a su¢ cient number of available lags and discard
data which do not satisfy this requirement.
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Bid-ask bounce

As is well known, the bid-ask bounce leads to a negative �rst order autocorrelation of returns
(Roll (1984)). This spurious autocorrelation comes from successive trades, where one is executed
at the bid, the other at the ask price. The bid-ask bounce e¤ect is more pronounced for DAX
options with their relatively large bid-ask spreads than for DAX futures and the underlying
index. We use the standard method to remove spurious autocorrelation from returns, which
consists in �ltering the returns with a MA(1) process (see, e.g., Stephan/Whaley (1990), Easley
et al. (1998) and Gwilym/Buckle (2001)):

Rt = �+ et � �et�1,

where Rt is the observed return, � the unconditional mean of the return series, � the moving
average coe¢ cient, and et the innovation of the process. Since the innovations from the MA(1)
process are uncorrelated, we can use them as bid-ask bounce corrected returns. Through the
FFF �ltering and the MA(1) correction, raw returns Rv and RS are transformed into adjusted
rv and rS which are used in the empirical tests.

2.3 Descriptive return statistics

Descriptive statistics for DAX and volatility 5-minute log returns (raw returns RS and Rv as
well as adjusted returns rS and rv) are given in Table 1. The returns of implied volatilities
are reported for a time to maturity of 31 to 60 days. Results for the shorter maturity are
very similar. For better comparison, all statistics are given on a daily basis. We compute the
summary statistics for di¤erent time-windows: each year, the whole 11-year period (All) and
three subperiods corresponding to the long bullish market of the late nineties (P1: 01/01/1995
to 03/07/2000), the bearish market that followed the end of the tech bubble and the 9/11 attacks
(P2: 03/08/2000 to 03/12/2003) and the bullish market that took place after the beginning of
the Iraq War (P3: 03/13/2003 to 12/31/2005).

In most years, skewness of DAX returns is slightly negative and kurtosis widely exceeds three.
P -values of the Jarque-Bera test (not reported in the table) unambiguously reject normality on
the 1% level. The bearish market (P2) is characterized by a negative mean, high variance and
kurtosis and strongly negative skewness. Volatility returns have a much higher variance than
DAX returns. The sign of skewness of volatility return varies. Kurtosis typically exceeds three,
so that the null of normality is rejected for all subsamples. The adjustments of raw returns
to account for intraday patterns and microstructure e¤ects have only marginal e¤ects on DAX
returns, whereas the MA(1) correction for variance returns noticeably modi�es (unconditional)
variance and skewness.

2.4 Correlation with lagged returns

To examine the lead-lag relationship between index and volatility returns, we calculate the
correlation coe¢ cient of DAX returns in a 5-minute interval t with implied volatility returns
in 5-minute interval t + j, where j 2 f�250; : : : ; 250g. As one trading day typically comprises
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about 100 intervals of 5 minutes, the number of 250 leads and lags corresponds to 5 trading days
around t. Calculations are based on all t during the total sample period. Figure 1 shows that the
correlation coe¢ cient is near zero for lagged volatility (j < 0). Thus, the DAX return does not
seem to be systematically related to the preceding implied volatility return. However, we �nd
a signi�cantly negative correlation of DAX returns not only with contemporaneous volatility
returns (j = 0), but also with volatility returns in the next few 5-minute periods. About 1
hour after the stock price shock (j > 12), the correlation goes back to zero. This observation
supports the hypothesis that implied volatility is adjusted to changes in the index level, so that
the relationship seems to be primarily return-driven. It is important to note that the retarded
reaction of volatility cannot be explained by thin trading and missing volatility returns, because
the return in period t+ j is calculated only if transaction prices at the beginning and the end of
the period are available. If the return in t+ 2 is available while the t+ 1 return is missing, the
implied volatility at the beginnning of period t+2 (which is available) should already re�ect the
price innovation in t: Thus, the return in t + 2 should not be in�uenced regardless of whether
the t+ 1 return is available or not.
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Figure 1: Correlations for the �rst maturity and 5-minute returns over the to-
tal sample period from 1995 to 2005. The upper panel reports correlations for j =
�250; : : : ; 250 while the bottom panel focuses on correlations for j = �12; : : : ; 12.

Following Bollerslev et al. (2006), we also examine the correlation between rS;t and the absolute
return jrS;t+j j. In this speci�cation, absolute returns serve as an alternative measure of realized



3 Causality analysis 10

volatility. It is apparent from Figure 1 that there is no noticeable correlation of absolute returns
before t with DAX return in t. The contemporaneous correlation in t is negative, which means
that negative returns are typically larger in magnitude than positive returns. After t, absolute
returns are negatively correlated with rS;t. This relationship gets weaker the larger the lag, but
it is recognizable for all j 2 f1; : : : ; 250g. These observations are similar to the US results in
the study of Bollerslev et al. (2006). The correlation series for absolute returns shows that
negative DAX returns typically increase subsequent return dispersion. Again, this is compatible
with a return-driven e¤ect. However, the analysis focuses on total cross-autocorrelations only
and leaves out partial cross-autocorrelations. It could be the case that correlations computed
for lags j � 2 are completely due to the correlation at lag j = 1. A more detailed study is thus
necessary to identify causality and the number of lagged DAX returns which have an impact on
contemporaneous volatility returns.

3 Causality analysis

3.1 Granger causality test

We carry out a Granger causality test, i.e. each variable is regressed on a constant and p of
its own lags as well as on p lags of the other variable in terms of the following VAR(p) vector
autoregression:

Rt = c+

pX
i=1

�(i) �Rt�i + "t; (2)

whereRt is the (2�1) vector of DAX and volatility returns, c is the (2�1) vector of constants and
�(i) is the (2� 2) matrix of autoregressive slope coe¢ cients for lag i. We call the two equations
of system (2) the index return regression (IRR) and volatility return regression (VRR). The
matrices �(i), i = 1; : : : ; p are lower triangular if the relationship is return-driven and upper
triangular if it is volatility-driven. The two explanations cohabit if some matrices �(i) are full.

Table 4 summarizes the results of the Wald F -test for the eleven-year sample period and each
sampling frequency for up to �ve lags (p = 5).5 We report the p-value of the F -test (�rst
line) and the number of observations included in the regression (second line). When more lags
are considered, the number of complete return series and therefore the number of observations
sharply decreases.6 This is why we focus our attention primarily on the case of p = 1. We
regard the rejection of an e¤ect as more reliable if the p-values for both option maturities are
signi�cant.

The results provide evidence in favour of a return-driven relationship. At the highest sampling
frequency, the null hypothesis that past index returns do not contribute to the explanation of
current implied volatility return is always rejected at least at the 1% signi�cance level. This

5 According to the Akaike and Schwartz information criteria, the optimal number of lags varies between 2 and
5 for sampling frequencies of 5 and 15 minutes and is equal to 1 for hourly and daily data.

6 The volume of hourly data is relatively low, because we calculate hourly returns only if a transaction price is
available from the last 60 seconds (see Section 2).
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causality is discernible for intervals of up to 60 minutes. The same results hold true in yearly
subsamples except for hourly data. The return-driven relationship for hourly data only comes
from the subperiod 03/08/2000 to 03/12/2003. The test statistics do not give evidence for a
volatility-driven e¤ect. Past volatility returns do not signi�cantly add to the explanatory power
of past index returns in explaining current index returns.7 Results for periodical subsamples
are similar to those for the total sample period.8 The only notable di¤erence is that we �nd a
causality running in both directions in the bearish market from 2000 to 2003 when considering
volatility computed from options with the second nearest time-to-maturity. In fact, the signi�-
cant daily return-driven relationship that we �nd for the total sample comes entirely from this
period. In all, we conclude that the lead-lag relationship of DAX returns and implied volatility
returns is compatible with Granger causality running from index return to volatility.

The results achieved so far do not rule out the possibility that a feedback-e¤ect was not detected
because it occurs in a more subtle fashion. For instance, one may suspect that only large volatility
returns have an impact on index returns. To investigate if such non-linear feedback e¤ects exist,
we performed a non-parametric causality test introduced by Baek/Brock (1992) and extended
and improved by Hiemstra/Jones (1994) and Diks/Panchenko (2005). This test examines if the
probability distribution of future index returns is di¤erent if the information set contains either
the history of both DAX and volatility returns or the history of DAX returns alone. The test
statistics of the test by Diks/Panchenko (2005) (not shown here) do not provide evidence in
favour of a non-linear feedback e¤ect.

3.2 Contemporaneous versus lagged relationship

The �nding of a return-driven e¤ect in high-frequency data leaves open the question of how
important this lead-lag relationship is compared to the strong contemporaneous correlation of
index and volatility return. To enable this comparison, we extend the volatility return regression
by adding contemporaneous DAX returns (rS;t) as explanatory variable for volatility returns
(r�;t):

r�;t = c
� +

pX
i=1

��i;1 � rS;t�i +
pX
i=1

��i;2 � r�;t�i + ��rS;t + "�t : (3)

We compare the unrestricted model (3) with two restricted versions:

� restricted model 1, characterized by �� = 0; and

� restricted model 2, characterized by ��i;1 = 0 8i = 1; : : : ; p:

Restricted model 1 is identical to the volatility return regression of the last section, whereas
restricted model 2 replaces lagged index returns by the contemporaneous index return as ex-
planatory variable. Using OLS with Newey/West (1987) standard errors, we estimate the three

7 There is weak evidence in favour of a volatility-driven e¤ect when considering 5-minute returns. However, this
result depends on the number of lags and the time-to-maturity. Therefore, its economic signi�cance seems
questionable.

8 The results for the three subsamples P1 to P3 are available on request.
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regressions for all sampling frequencies and the two times-to-maturity. We also decompose the
variance V of volatility returns according to:

V (r�;t) = V (

pX
i=1

��i;1 � rS;t�i +
pX
i=1

��i;2 � r�;t�i + ��rS;t + "�t )

= V (r�;t) � (V L+ V CR+ COV + V E), (4)

where

V L = V (

pX
i=1

��i;1 � rS;t�i +
pX
i=1

��i;2 � r�;t�i)=V (r�;t);

V CR = V (��rS;t)=V (r�;t);

COV = 2Cov(

pX
i=1

��i;1 � rS;t�i +
pX
i=1

��i;2 � r�;t�i; ��rS;t)=V (r�;t);

V E = V ("�t )=V (r�;t):

V L, V CR, COV and V E measure the percentage of the overall variance of r�;t explained by
lagged DAX and volatility returns (V L), contemporaneous DAX returns (V CR), covariance
between lagged DAX and volatility returns and contemporaneous DAX returns (COV ) and
variance of the residuals (V E).

In the �rst three columns of Table 5, we report the sampling frequency, the number of lags
employed9 and the number of valid observations. The p-values 1 and 2 refer to a test of the
hypothesis that the MSE of a forecast of r�;t based on the unrestricted model is the same as
the MSE based on restricted models 1 and 2, respectively. In the case of restricted model 1,
this hypothesis is always rejected at the 99% con�dence level. Thus, adding rS;t to the set
of regressors improves the explanatory power of the model. This �nding con�rms that part
of the relationship occurs contemporaneously. In the second comparison we test whether the
model with lagged and contemporaneous returns (unrestricted model) has additional explanatory
power above restricted model 2 which only uses contemporaneous index returns. Again, with
one exception, all p-values are below 1%. Thus, even after controlling for contemporaneous
returns, a signi�cant part of volatility returns can be traced back to leading index returns. For
high-frequency data, a substantial part of the variance of r�;t can be attributed to leading returns
(V L). At lower frequencies, the lead-lag-relationship is negligible, and the variation of r�;t is
primarily attributed to contemporaneous index returns (V CR):

3.3 Impulse-response functions

As a natural extension of the Granger causality analysis, we use impulse-response functions
(IRFs) to illustrate the dynamic relations between DAX and implied volatility returns. They

9 The number of lags is taken to be alternatively p = 1 or the optimal choice indicated by the Akaike and
Schwartz criterion. For hourly and daily data, the latter choice is equal to p = 1.
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allow us to assess how important the impact of a one-time impulse in one variable on future
values of the other variable is and how long the impact lasts. Let subscripts i and j refer to
DAX and volatility returns. We denote by s a forecast period starting from date t (forecast
horizon t + s) and assume that the state of the system as of date t is known. Then, IRF is a
function of s whose values correspond to the revision in the forecast of ri;t+s induced by the
information that the value of rj;t+s is higher than expected ("j;t > 0). We orthogonalize the
impulses to ensure that direct and indirect e¤ects of an impulse are considered (for details, see
Hamilton (1994), pp. 318-323).

Figures 2 and 3 illustrate the orthogonalized IRFs for DAX and volatility return innovations. The
magnitude of the shock is �xed at one standard deviation of the uncorrelated (orthogonalized)
innovation. We add two standard error bands from Monte Carlo simulations with 100,000
paths. The horizon s varies from 4 to 12 intervals depending on the sampling frequency. This
corresponds to a range of one hour (5-minute data) to 5 days (daily data). The units on the
vertical axis are in DAX or volatility return standard deviations.

The IRFs for responses of volatility return to an impulse of DAX return are typically negative
(see Figure 2). For 5- and 15-minute data, the responses directly after a shock have a magnitude
of about�0:1 to�0:2 standard deviations. The IRFs then remain signi�cantly negative for about
15 to 45 minutes. As expected, the responses are less important for lower frequencies. Figure 3
shows that the impact of a volatility shock on DAX returns is very limited. This observation is
compatible with our �ndings of Section 3.1.

3.4 E¤ect of liquidity and net buying pressure

Bollen and Whaley (2004) �nd that implied volatility returns of S&P500 options are directly
related to net buying pressure for index puts. The results suggest that this buying pressure,
which is typically decreasing with moneyness, drives the downward sloping shape of the implied
volatility function. In a related paper, Chan et al. (2005) argue that net buying pressure and
liquidity a¤ect the response of implied volatility to returns. The response seems to be distorted
by net buying pressure for low moneyness options and thin trading of medium moneyness options.
Chan et al. (2003) report similar results for options on the Hang Seng Index (HSI).

In order to avoid distortions due to varying degrees of net buying pressure in this study, we only
include ATM options. In our sample, call option trades are more numerous and voluminous
than put option trades, which indicates that buying pressure is presumably not substantial in
this moneyness range. In addition, ATM DAX options used in our study represent the highest
transaction number (about 40% of all options) and trading volume (about 45% of all options)
among di¤erent moneyness classes. Liquidity in out-of-the-money options is not su¢ ciently high
to carry out our high frequency analysis.

To ensure that the remaining e¤ect of net buying pressure and thin trading is small, we subdivide
all trading days of our sample period in 3 quantiles of low, medium and high liquidity days and
separately in 3 quantiles of days with low, medium and high buying pressure. Combining both
criteria, we obtain nine groups of trading days. We use trading volume (in Euro per day) as
liquidity measure and the ratio of trading volume of puts to the trading volume of calls (per
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Figure 2: Orthogonalized impulse responses of volatility returns (VR) to DAX
returns (DR). The panels on the left (respectively on the right) display the IRFs for the
volatility computed from options with the time-to-maturity (TtM) ranging from 10 to 30 days
(30 to 60 days).
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returns (VR). The panels on the left (respectively on the right) display the IRFs for the
volatility computed from options with the time-to-maturity (TtM) ranging from 10 to 30 days
(30 to 60 days).
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day) as a measure of net buying pressure. We repeat our empirical analyses for each of the
nine subgroups. While signi�cance levels of the Granger causality tests are partly lower due to
the smaller number of observations, we do not �nd any substantial di¤erences across groups.
Graphs of the lead-lag relationships within subgroups are almost identical to the structure in
Figure 1.10 Thus, it seems safe to conclude that our results are not driven by net buying pressure
or liquidity e¤ects.

4 Conclusion

It is well known that index returns are inversely related to volatility returns. The relationship is
so strong that it constitutes an important stylized fact in �nance. Nevertheless, the origin and the
causes of the e¤ect are not yet well understood, which is particularly true for �nancial markets in
Europe. In this paper, we analyze the return-volatility relationship at the German market. We
calculate return series for 5-minute intervals from tick-by-tick DAX option and futures data over
the time period from 1995 to 2005. We also consider lower return frequencies for the purpose of
comparison. Our volatility measure is the implied volatility of at-the-money options. This allows
us to more accurately detect changes in volatility than previous studies which use measures of
realized volatility. In addition, as ATM implied volatilities can be determined independently
of the underlying asset return, index and volatility returns can be modelled jointly in a VAR
model. This provides a �exible framework for running Granger causality tests and computing
impulse-response functions.

We �nd that a lead-lag relationship exists only in high-frequency data. The relationship is
return-driven in the sense that index returns Granger cause volatility returns. This causal
relationship is statistically and economically signi�cant and can be clearly separated from the
contemporaneous correlation. A volatility feedback e¤ect does not show up. Either it does not
exist, or the market promptly incorporates all direct and indirect impulses into market prices
so that the feedback e¤ect fully evolves within the 5-minute intervals.

Our paper does not account for jumps either in the index level or the (implied) volatility process.
The relationship around such discontinuities could o¤er further insight into the nature of the
e¤ect. The behaviour of the relationship through time could also be of interest, because it is
closely related to the pricing of volatility and the dynamics of the volatility risk premium. But
the most important topic for further research still seems to be the question why this strong e¤ect
exists and which economic fundamentals are e¤ectively driving it.
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