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Abstract

The estimation of the cost of equity capital (COE) is one of the most important tasks in

financial management. Existing approaches compute the COE using historical data, i.e.

they are backward-looking methods. This paper derives a method to calculate forward-

looking estimates of the COE using the current market prices of stocks and stock options.

Our estimates of the COE reflect the expectation of the market investors about the COE

during the life of the investment project. We test empirically our method and compare

it with the Fama/French (1993) three-factor model for the S&P 100 firms. The empirical

results indicate that our COE estimates (1) change with the investment horizon of the

project reflecting the fact that different degrees of risk are associated with projects of

different maturities, (2) are plausible and stable over the years as required by appropriate

discount rates for capital budgeting, (3) yield an equity risk premium close to the market

equity risk premium reported by Fama and French (2002), and (4) generate strong return-

risk relationships.



1. Introduction

The estimation of the cost of equity capital (COE) is an important issue for both practi-

tioners and academics. The COE is widely used in applications such as the valuation of

an investment project of a firm and the estimation of equity risk premiums. In particular,

the COE often affects how the services of a firm in the public sector are regulated by its

supervising commission. Therefore, the estimation precision of the COE has a significant

impact on a firm’s value. According to the survey of Bruner, Eades, Harris, and Higgins

(1998) and Graham and Harvey (2001), the most popular market-based methods for esti-

mating the COE in practice are the capital asset pricing model (CAPM) of Sharpe (1964)

and Lintner (1965), the average historical returns, and a multibeta CAPM (with extra risk

factors in addition to the market beta).1 Although these methods are simple to apply, they

all rely exclusively on historical data, i.e. they are backward-looking methods. Since the

COE estimates are usually aimed to serve as the discount rate for future cash flows of an

investment project, a backward-looking method may not perform well unless the patterns

of COE are known and stable over the years in the future. As a result, these estimates of

COE are usually imprecise, especially when they are applied to estimate the COE of an

industry. For example, Fama and French (1997) pointed out that the standard errors of the

COE estimates are typically above 3.0% per year.

In contrast to the above backward-looking methods, this paper provides a forward-looking

method to estimate the COE using the current market prices of equity and equity options.2

The option market prices are widely used to estimate implied volatility, which is commonly

found to be the best predictor for future volatility (see e.g. Poon and Granger (2003)

for a detailed survey on this issue).3 Many studies indicate that option market prices

1The risk factors include the fundamental factors (Fama and French, 1993), the momentum (Jegadeesh

and Titman, 1993), and the macroeconomic factors (Chen, Roll, and Ross, 1986; Ferson and Harvey, 1993).
2Some accounting-based models also utilize forward information such as analyst forecasts. But we focus

on the COE estimation using market-based models only.
3About the information content and forecasting performance of implied volatility based on option market

prices see also Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993),

Christensen and Prabhala (1998), Blair, Poon, and Taylor (2001), Pong, Shackleton, Taylor, and Xu (2004),
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contain incremental or superior information in addition to the information provided by

historical data because they reflect market expectations. Inspired by the implied volatility

literature, one can expect that the estimates of the COE based on option market prices

may contain incremental or superior information in addition to the information contained

in the traditional estimates of the COE obtained with historical data.

To obtain the COE implied by option market prices, we first develop an option pricing model

in which the expected return of the underlying asset is a tractable parameter. To the best

of our knowledge there are only two papers in the literature that discuss the estimation of

the expected return of assets using option market prices. Heston (1993) presented an option

pricing formula based on the log-gamma distribution under which the expected return of

the stock is determined by both the location and the volatility parameters. Unfortunately,

his pricing formula depends on the location parameter µ but is independent of the volatility

parameter, σ. Hence this option pricing model alone can not be used to estimate the COE.

McNulty, Yeh, Schulze, and Lubatkin (2002) also developed a forward-looking approach to

calculate the COE based on option market prices. Although their approach is interesting,

the method is ad hoc and lacks theoretical support. In contrast to Heston (1993) and

McNulty et al. (2002), our option pricing formula not only depends on the expected return

of the underlying asset or COE but is also derived in an equilibrium representative agent

economy. Hence, our COE estimates are obtained in a general equilibrium model. Moreover,

our option pricing formula is analytically tractable. Thus our option pricing model can be

easily applied to estimate the COE of a firm or industry.

We compare our estimates of the COE for the market and industry portfolios composed by

the component firms of the S&P 100 index with the estimates obtained with the Fama/French

three-factor model from January 1996 to December 2005.4 There are at least four inter-

esting findings from our empirical results. First, our estimates of the COE depend on the

Jiang and Tian (2005).
4Fama and French (1993, 1996) indicate that the three-factor model can describe the expected returns

of financial assets more appropriately than the CAPM. Therefore, in this paper the model is selected to

compare with.
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investment horizon of the project of investment while the Fama/French’s COE estimates

do not.5 When the investment period increases from 30-days to 1-year, our estimates of

the averaged COE decrease from around 22% to around 10%. Second, our option-implied

COE estimates are more reasonable and stable over the years than those obtained with

the Fama/French method, and thus are more reliable discount rates for capital budgeting.

The mean and volatility of our estimates of averaged annual COE over the sample period

is about 11% and 3%, respectively. In contrast, the mean level of the Fama/French’s esti-

mates is too high (14%), and their values sometimes are extremely high (e.g. 63%) or even

negative. Third, the equity risk premium of the market and industry portfolios calculated

from our COE estimates is consistent with the existing literature on equity risk premium.

For example, the equity premium of the market portfolio from our COE estimates is 6.96

percent which is close to the average equity premium reported by Fama and French (2002) of

7.43 percent. Finally, the return-risk relationship for various industry portfolios is stronger

using the option-implied COE estimates than using the Fama/French estimates.

With forward-looking information, option prices provide a reliable source for estimating the

COEs for both the market and industry portfolios. Therefore, this study contributes to the

literature not only by developing an option pricing model in which the expected return is

tractable, but also by providing a plausible and reliable alternative for the COE estimation.

The theoretical set up of our paper is closer to Brennan (1979), Stapleton and Subrah-

manyam (1984) and Camara (2003, 2005).6 In ours, like in these papers, there is a single-

period economy. It is assumed that the stock price has a continuous distribution at the end

of the period, and that dynamic trading does not exist. In such situation a riskless hedge

is not possible to construct and to maintain, and markets are incomplete. In order to price

options in this single-period economy, it is assumed that there is a nonsatiated, risk-averse

5As discussed by McNulty et al. (2002), one problem associated with the COE estimates of CAPM or

any other multifactor model is that a company usually calculates just one estimate of its discount rate and

applies it to all future projects regardless of the investment horizon. In contrast, the term structures of COE

estimates are taken into account in our method.

6See also the important papers by Rubinstein (1979) and Schroder (2004).
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representative agent who maximizes his expected end-of-period utility of wealth when he

selects his optimal portfolio. While in that research the authors looked for utility functions

and distributions of wealth that could be linked and produce preference-free option pricing

formulas, we search for utility functions and distributions of wealth that can be linked and

produce an option pricing formula dependent of the expected rate of return of the stock or

cost of equity capital (COE).

The remainder of this paper is organized as follows. Section 2 derives an equilibrium

option pricing model whose pricing formulae depends on the expected (mean) return or

COE. Section 3 discusses the empirical implementation procedures and describes the data.

Section 4 presents the empirical results for the component firms of the S&P 100 index. We

provide some concluding remarks in Section 5.

2. The Option Valuation Model

This section starts by presenting our assumptions on the preferences of the representative

agent and the stochastic behavior of aggregate wealth. Then we derive a pricing kernel

that avoids arbitrage opportunities to arise in the economy. Assuming that stock prices

under the actual probability measure are lognormally distributed, we obtain the equilibrium

probability density function that is used to price all the assets in the economy. We derive

closed-form solutions for call and put prices in this representative agent economy.

We assume that there is a representative agent with the following marginal utility function

of aggregate wealth:

U
′

(WT ) = Wα
T + β, (1)

where aggregate wealth, WT , is positive, and α < 0 and β ≥ 0 are preference parameters.

The representative agent is nonsatiated and risk-averse since U
′

(WT ) > 0 and U
′′

(WT ) < 0

respectively. It can easily be verified that the preferences of the investor are also character-

ized by decreasing absolute risk aversion (DARA) and decreasing proportional risk aversion
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(DPRA).7

Elton and Gruber (1995, p. 218) argue that “while there is general agreement that most

investors exhibit decreasing absolute risk aversion (DARA), there is much less agreement

concerning relative risk aversion”. Later, Zhou (1998, p. 1730) provides empirical evidence

that “justifies the assumption that consumer’s utility function exhibits DPRA”.

We assume that aggregate wealth, WT , has a lognormal distribution:

WT ∼ Λ
(

µwT, σ
2
wT
)

. (2)

This assumption precludes negative wealth, and allow us to obtain tractable results. We

start by obtaining the pricing kernel of the economy.

Lemma 1. (The pricing kernel) Assume that the marginal utility function of the repre-

sentative agent is given by equation (1) and that aggregate wealth has a lognormal distribu-

tion as in equation (2). Then the pricing kernel is given by:

φ(WT ) =
Wα

T + β

β + exp
(

αµwT + α2 σ2
w

2 T
) . (3)

Proof: By definition (see e.g. Camara (2003)), the pricing kernel is given by:

φ(WT ) =
U

′

(WT )

EP [U
′

(WT )]
. (4)

Since U
′

(WT ) = β + Wα
T , we have EP [U

′

(WT )] = β + EP [Wα
T ], where P is the actual

probability measure. Also, since WT ∼ Λ(µwT, σ
2
wT ) we have Wα

T ∼ Λ(αµwT, α
2σ2

wT )

by the properties of the standard lognormal distribution. Hence, using the formula of the

expected value of a lognormal random variable we write EP [Wα
T ] = exp

(

αµwT + 1
2α

2σ2
wT
)

.

Making the apropriate substitutions in equation (4) yields equation (3). 2

It is important to make some observations about the pricing kernel given by equation (3)

since this is the stochastic discount factor that adjusts all assets for risk, and rules out

7The utility function U(WT ) = 1

α+1
Wα+1

T + βWT is a monotonic transformation of the power utility

function. See e.g. Varian (1992) on obtaning utility functions as monotonic transformations of existing

utility functions.
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arbitrage opportunities to arise in the economy. The pricing kernel is positive since both

the numerator and the denominator are positive, it has a displaced lognormal distribution,

and has expectation E[φ(WT )] = 1. The novelty here is that the pricing kernel has a

displaced lognormal distribution. This contrasts with the pricing kernel implicit in the

Black-Scholes model obtained by Rubinstein (1976), Brennan (1979), Schroder (2004), and

others. These authors show that a necessary and sufficient condition for the Black-Scholes

model to hold in a representative agent economy is that the pricing kernel φ(WT ) has a

standard lognormal distribution. Hence, the Black-Scholes model does not hold in our

economy even if the stock price has a standard lognormal distribution as in Black-Scholes

(1973), unless β = 0 which is the special case studied by those authors.

In a representative agent economy, the price of the stock is given by the following standard

valuation equation (see e.g. Cochrane (2001) and Camara (2003)):

S0 = e−rTEP [φ(WT )ST ] . (5)

In our economy, the stock price has a lognormal distribution under the actual probability

measure P , as in the Black-Scholes model. The next proposition derives the distribution

of the stock price under the equivalent probability measure R. This distribution differs

from the lognormal distribution under the risk-neutral probability measure Q implicit in

the Black-Scholes model.

Proposition 2. (The R measure) Assume that the marginal utility function of the

representative agent is given by equation (1) and that aggregate wealth has a lognormal

distribution as in equation (2). Assume that the stock price has a lognormal distribution

under the actual probability measure P , i.e. ST ∼ Λ(ln(S0) + (µ− 1
2σ

2)T, σ2T ) under P .

Then:

S0 = e−rTEP [φ(WT )ST ] = e−rTER [ST ] , (6)

where the stock price has a mixture of lognormal distributions under the equivalent probability

measure R, i.e. ST ∼ x ·Λ(ln(S0) + (µ− 1
2σ

2)T, σ2T ) + (1− x) ·Λ(ln(S0) + (µ+ αρσwσ −
1
2σ

2)T, σ2T ) under R, the weight x, with 0 ≤ x < 1, is a preference function (defined in the
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proof of the Proposition), and ρ is the correlation between aggregate wealth and the stock

price.

Proof: See Appendix.

The stock price follows a standard lognormal distribution under P (as in the Black-Scholes

model), but it follows a mixture of standard lognormal distributions under R. The expected

return of the asset under P is the cost of equity capital, µ. In our economy, asset prices

are also given by the expectation of the asset payoffs under the equivalent measure R, and

then discounted at the riskless rate of return. Therefore, the expected rate of return of

any asset under R is the riskless rate of return. There is only one difference between the

measure R and the risk-neutral measure Q implicit in the Black-Scholes model. While the

risk-neutral measure Q is independent of preference parameters the measure R depends on

a preference parameter x. The density function of the stock price at time T under the

equivalent measure R is (as we show in the proof of Proposition 2) given by:

fR(ST ) = xf(ST ; ln(S0) + µT − 1

2
σ2T, σ2T )

+(1− x)f(ST ; ln(S0) + (µ+ αρσwσ)T − 1

2
σ2T, σ2T ), (7)

which is a mixture of two lognormal densities. This density depends on preference param-

eters. Option prices are uniquely determined by the evaluation of the expectation of their

payoffs under R, and then discounted at the riskless return.

Proposition 3. (Asset prices) The evaluation of the current prices of the stock, S0, call,

Pc, and put, Pp, yields the following equations:

1 = e−rT
[

xeµT + (1− x)e(µ+αρσwσ)T
]

, (8)

Pc = e−rTx
[

S0e
µTN (d1) −KN (d2)

]

+e−rT (1− x)
[

S0e
(µ+αρσwσ)TN (d3) −KN (d4)

]

, (9)

Pp = e−rTx
[

KN (−d2) − S0e
µTN (−d1)

]

+e−rT (1− x)
[

KN (−d4) − S0e
(µ+αρσwσ)TN (−d3)

]

, (10)
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where:

d1 =
ln
(

S0

K

)

+ (µ+ σ2

2 )T

σ
√
T

,

d2 =
ln
(

S0

K

)

+ (µ− σ2

2 )T

σ
√
T

,

d3 =
ln
(

S0

K

)

+ (µ+ αρσwσ + σ2

2 )T

σ
√
T

,

d4 =
ln
(

S0

K

)

+ (µ+ αρσwσ − σ2

2 )T

σ
√
T

,

N (.) is the cumulative distribution function of the standard normal, K is the strike price,

and T is the maturity date of the options.

Proof: Proposition 2 shows that, in our economy, the prices of the stock, call, and put are

given by:

S0 = e−rTEP [φ(WT )ST ] = e−rTER [ST ] ,

Pc = e−rTEP [φ(WT )(ST −K)+
]

= e−rTER [(ST −K)+
]

,

Pp = e−rTEP
[

φ(WT )(K − ST )+
]

= e−rTER
[

(K − ST )+
]

,

where the stock price has a mixture of lognormal distributions under the equivalent prob-

ability measure R, i.e. ST ∼ x · Λ(ln(S0) + (µ − 1
2σ

2)T, σ2T ) + (1 − x) · Λ(ln(S0) + (µ +

αρσwσ − 1
2σ

2)T, σ2T ) under R. Hence, evaluating the expectations under R, yields the

desired results.2

We obtain the next result when we use the equilibrium relation given by equation (8) into

options prices to eliminate a set of preference parameters from option prices.

Proposition 4. (Call and put option prices) The current prices of the call and put are

given by:

Pc = e−rTx
[

S0e
µTN (d1) −KN (d2)

]

+e−rT (1− x)

[

S0

(

erT − xeµT

1 − x

)

N (d3) −KN (d4)

]

, (11)
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Pp = e−rTx
[

KN (−d2)− S0e
µTN (−d1)

]

+e−rT (1− x)

[

KN (−d4) − S0

(

erT − xeµT

1 − x

)

N (−d3)

]

, (12)

where:

d1 =
ln
(

S0

K

)

+ (µ+ σ2

2 )T

σ
√
T

,

d2 =
ln
(

S0

K

)

+ (µ− σ2

2 )T

σ
√
T

,

d3 =
ln
(

S0

K

(

erT
−xeµT

1−x

))

+ σ2

2 T

σ
√
T

,

d4 =
ln
(

S0

K

(

erT
−xeµT

1−x

))

− σ2

2 T

σ
√
T

,

N (.) is the cumulative distribution function of the standard normal, K is the strike price,

and T is the maturity date of the options.

Proof: Write equation (8) as 1
T ln

(

erT
−xeµT

1−x

)

= µ+ αρσwσ. Then use this expression in

equations (9) and (10) to eliminate the term µ+ αρσwσ. 2

Corollary 5. (The Black-Scholes model) If β = 0 then the Black-Scholes (1973)

valuation equations obtain.

Proof: If β = 0 then, by equation (24) of the Appendix, we obtain that x = 0. If x = 0 in

equations (11) and (12) then we have the Black-Scholes call and put prices. 2

Equations (11) and (12) show that, in our economy, option prices depend on the stock price

S0, the strike price K, the time to maturity T , the interest rate r, the stock volatility σ,

the preference function x, and the rate of return required by stockholders or cost of equity

capital (COE), µ. The parameters S0, K, T , and r are observable. Then equations (11) and

(12) can be solved for the three unknowns x, σ, and µ by minimizing the sum of squared

differences between market prices and theoretical prices of options. This tell us what is the

cost of equity capital (COE), µ, implied by market prices including option prices.
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3. Implementation Procedures and Data

3.1 Implementation Procedures

Assume that we are in an n-firm economy. As shown in equation (11) or (12), the unknown

parameters include x, µi, and σi (for i=1,2,. . . ,n). Several loss functions can be considered

when estimating the parameters with option prices. As is common in the literature, we

minimize the sum of squared differences between the market and theoretical prices of options

with the same time-to-maturity. In theory, for a time point the risk preference parameter x is

unique across n assets, and all parameters (x, µi, and σi) should be estimated simultaneously

by minimizing the following loss function:

n
∑

i=1

mi
∑

j=1

(Ci(Kj) − ci(Kj|x, µi, σi))
2, (13)

where Ci(.) and ci(.) denote the market and theoretical call prices, respectively, and mi

is the number of option contracts with different strike prices Kj for firm i. However, the

problem of the dimension curse will occur for a multi-asset estimation. For example, we

need to estimate 201 parameters in an optimization procedure when having 100 assets.

Therefore, to make the estimation plausible, we adjust the above procedure to a two-step

procedure.

In the first step, given a fixed x, x0, we can easily estimate µi and σi for all firms by

minimizing their individual loss functions:

Li(x0; µi, σi) =
mi
∑

j=1

(Ci(Kj) − ci(Kj|µi, σi, x = x0))
2, (14)

where Li(x0; µi, σi) is the loss function of firm i given that x = x0, where i = 1, 2, . . . , n.

For each x0, we obtain a set of estimates of µ̂i(x0) and σ̂i(x0) for n firms. By changing

x0 recursively from 0 to 0.99 with the interval of 0.01, we have 100 sets of estimates of

µ̂i(x0) and σ̂i(x0) (i = 1, 2, . . . , n), respectively. We then choose x0 with which we have the

least sum of all individual loss functions and use the corresponding µ̂i(x0) and σ̂i(x0) as the
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optimal estimates, i.e. choosing x0 that minimizes the following function:

n
∑

i=1

Li(x0; µ̂i(x0), σ̂i(x0)). (15)

3.2 Data

An empirical implementation is conducted for the component firms (on December 31, 2005)

of the S&P 100 index.Therefore, the primary data are the market prices of options written

on the stocks of these firms. As both option pricing theories and option trading experiences

indicate that the marginal risk of an investment declines as a function of the square root

of time and the falling marginal risk reduces the annual discount rate, the cost of equity

capital that serves as the discount rate for capital budgeting depends on the investment

duration.8 In order to estimate the cost of equity capital for a fixed horizon and make

an appropriate comparison with the conventional estimates generated from an asset pricing

model, we have to use the market prices of options with a fixed time-to-maturity at a regular

frequency (e.g. monthly). Therefore, in this study we use the month-end market volatility

surfaces of options on the stocks of the component firms of the S&P 100 index for the period

from January 1996 to December 2005.

The volatility surfaces are collected from the database of OptionMetrics. For every month-

end trading day, we have the Black-Scholes implied volatility surfaces made up of 13 strike

prices reported as deltas for both call and put options with 4 different time-to-maturities (30,

91, 182, and 365 days).9 The calculation of volatility surfaces is based on a kernel smoothing

algorithm and an interpolation technique. The database also provides the month-end closing

prices of the underlying stocks.

The risk-free interest rates are calculated from the OptionMetrics zero curves formed by a

collection of continuously-compounded zero-coupon interest rates with various maturities.

We use the linear interpolation method to generate the interest rates whose horizons exactly

8This point is also emphasized by McNulty et al. (2002).

9The delta ranges between 0.2 (-0.2) and 0.8 (-0.8) with the interval of 0.05 for call (put) options.
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match the time-to-maturities of options.

As the underlying stocks pay discrete dividends, we use the OptionMetrics projected divi-

dend amounts and ex-dividend dates that are based on the securities’ usual payments and

frequencies in order to compute the present values of the projected dividend payments prior

to the maturity dates. We then deduct the present values of projected dividend payments

from the market prices of underlying stocks and then value the options as though the stocks

pay no dividends.

With the adjusted prices of underlying assets and the matched risk-free rates, all volatility

surfaces are converted to their Black-Scholes (European) option prices of non-dividend-

paying stocks. As out-of-money options are usually traded more heavily than in-the-money

ones, in-the-money options are excluded, and all put prices are converted to call prices using

the put-call parity for the computation of the loss functions.10

To compare our estimates of the costs of equity capital with those estimated by a con-

ventional method, the Fama/French three-factor model, we also collect the monthly time

series of the three factors - the market portfolio return minus the risk-free interest rate

(RmRf), a small-size portfolio return minus a big-size portfolio return (SMB), and a high-

book-to-market-equity portfolio return minus a low-book-to-market-equity portfolio return

(HML) - from the website of Kenneth R. French for the sample period from January 1993

to December 2005.11

4. Empirical Results

First, the general properties of the estimates of the risk-preference, expected-return or

COE, and volatility parameters (x, µ and σ, respectively) in our option pricing formulae

10This procedure for data selection has been employed by many studies such as Bliss and Panigirtzoglou

(2004) and Jiang and Tian (2005).
11As a long period of historical prices is necessary for the COE estimation using the Fama/French factor

model, the sample period for the historical data is three year longer than that for the option data.
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are presented for the market portfolio with the values averaged across the component firms

of the S&P 100 index. We follow up to compare the costs of equity capital (COEs) implied

in our option pricing model with those estimated from the Fama/Fench three-factor model

for both the market and six industrial portfolios composed by the component firms of the

S&P 100 index.

4.1 General Properties of Option-implied Estimates

We use the end-of-the-month prices of options written on the component stocks of the S&P

100 index with four different time-to-maturities - 30, 91, 182, and 365 days - and follow

the two-step procedure detailed in Section 3.1 to estimate the parameters, x, µ, and σ, for

the period from January 1996 to December 2005 (120 months). This research reports both

value-weighted and equally-weighted results of the market portfolio composed by the 100

component stocks.

Table 1 and Figure 1 respectively show the summary statistics and processes of x estimates

for various time-to-maturities. For any time point, this parameter is fixed across firms and

thus no average is required. Both the processes and distributions of x estimates are very

similar across time-to-maturities. The estimates of x range from 0.70 to 0.99 and their

mean level is about 0.85. As mentioned in Section 2, our option pricing model converges

to the Black-Scholes model when x approaches 0. The estimates clearly indicate that the

market prices of equity options are very different from the Black-Scholes prices. Moreover,

the estimates of x do not change very much with time and their volatility is only about

0.05. The first-order autocorrelation coefficients range from 0.4 to 0.69.

Table 2 and Figure 2 respectively present the summary statistics and processes of the COE

estimates µ for the market portfolio. As the properties of the valued-weighted and equally-

weighted estimates are almost the same, the following discussion applies to both. The most

remarkable finding is that the estimate of µ decreases as the time-to-maturity increases. For

example, the mean level for the 30-day maturity is about 22%, while it is down to about 10%

13



for the 365-day maturity. This finding is consistent with the general argument in option

pricing theories and option trading experiences. As the marginal risk of an investment

declines as a function of the square root of time and the falling marginal risk reduces the

annual discount rate, the cost of equity capital that serves as the discount rate for capital

budgeting should depend on the horizon of investment. In addition, the estimates of µ

become less volatile as the time-to-maturity increases. For example, volatility decreases from

0.12 to 0.03 when the time-to-maturity increases from 30 to 365 days. In other words, the

option-implied COE estimates are less volatile for longer investment horizons. In contrast,

the skewness and kurtosis of µ estimates do not exhibit obvious differences across time-to-

maturities. Moreover, the estimates of µ have a high first-order autocorrelation that ranges

from 0.75 to 0.87, which is consistent with the general sense that the COE for a firm should

not change much with time.

Table 3 and Figure 3 respectively show the summary statistics and processes of σ estimates

for the market portfolio. Again, the properties of the valued-weighted and equally-weighted

estimates are almost identical. Different from the findings for x and µ estimates, all prop-

erties of σ estimates do not depend on the time-to-maturity, which can be clearly seen in

Figure 3 as all lines being very close - that is, the distributions and processes of σ estimates

are almost the same across time-to-maturities. This could be driven by the stylized fact that

equity prices follow a random walk, because the similar annualized volatilities for different

horizons indicate that the sum of short-term volatilities equals the long-term volatility. The

mean level of σ estimates is about 0.25 and the estimates are spread between 0.14 and 0.42.

Similar to the finding for µ estimates, the volatility of σ estimates is also very small, at

about 0.06. Moreover, σ is highly persistent as the first-order autocorrelation is even as

high as 0.96, which is consistent with the stylized fact, volatility clustering, observed in the

market prices of financial assets.

In summary, our empirical properties of the estimates for x, µ, and σ are in line with the

theoretical assumptions. In particular, with different time-to-maturities of option prices,

we can estimate the COE that properly matches the required investment duration. Even

when the options with the time-to-maturity that perfectly matches a particular investment
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horizon are not traded in the market, we still can utilize an interpolation technique with the

COEs estimated from other maturities of option prices to appropriately generate the COE

with the desirable maturity. By contrast, the COEs estimated from many conventional

methods with historical equity prices do not consider the investment duration.

4.2 Estimating Costs of Equity Capital with Alternative Methods

The conventionally standard approach for estimating the COE is the capital asset pricing

model (CAPM) of Sharpe (1964) and Lintner (1965). As an alternative, Fama and French

(1993) propose another two pricing factors, SMB and HML.12 However, the COEs estimated

by both models rely on historical data and are indifferent to the holding period. In con-

trast, our COE estimates from option market prices are forward-looking and depend on the

investment horizon. As recent evidence (Fama and French, 1993 & 1996) suggests that the

Fama/Fench three-factor model is better than the CAPM in describing expected returns,

in this study we compare our COE estimates with those estimated from the Fama/Fench

three-factor model for the most common investment duration of capital budgeting, which

is one year. First of all, we look at the market portfolio COE by comparing the COE esti-

mates averaged across all component firms of the S&P 100 index. We then investigate the

industrial COEs by comparing the COE estimates of various industrial portfolios composed

by the component stocks of the S&P 100 index. To avoid forming an industrial portfolio

with too few firms, only those industries including at least 10 component firms are selected.

As our previous findings indicate that the general properties of value-weighted and equally-

weighted COE estimates are almost the same, we only take the value-weighted estimates to

compare with in this section.

As it is necessary to use a long period of historical data to obtain a smooth time series of

COE estimates for the Fama/Fench three-factor model, we use a three-year sample period

12Some studies, such as Blanchard (1993), Claus and Thomas (2001), Gebhardt, Lee, and Swaminathan

(2001), and Fama and French (2002), use valuation models with fundamentals to estimate expected returns.

In this study we focus on the comparisons with the market-based estimates only.
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for the estimation. We first estimate the factor loadings with the three-year historical data

and then use the averages of the historical factor values with the estimated factor loadings

to generate the COE estimate for the time point. By rolling over the sample period month

by month, we form the time series of COE estimates for the period from January 1996 to

December 2005.

The first column of Table 4 and Figure 4 displays the summary statistics and processes of

alternative COE estimates for the market portfolio, respectively. It clearly presents that our

option-implied COE estimates are much more stable, while the Fama/French estimates are

very volatile and roughly range from 0.4 to -0.15. Moreover, the level of our option-implied

estimates for the market is much more reasonable for serving as the discount rate for capital

budgeting. The mean value is about 11% with a small volatility (0.03), which is similar

to the previous evidence of Fama and French that the average return of the component

stocks of the S&P 500 index is 9.62% for 1951 to 2000. In contrast, the mean level of the

Fama/French COE estimates is about 14% and the estimates sometimes are extremely high

or even negative. Basically, our findings are consistent with the argument of Fama and

French (1997) and Pástor and Stambaugh (1999) in that the COE estimates from both the

CAPM and the three-factor models are surely imprecise due to the uncertainty about true

factor risk premiums and imprecise estimates of the factor loadings.

To further investigate the differences between the option-implied and the historical-data-

generating COE estimates, we follow the ICB industry classifications to construct six in-

dustrial portfolios from the component stocks of the S&P 100 index. Only those industries

including at least 10 firms are selected. Six industries are selected and they are Industrials,

Consumer Services, Consumer Goods, Health Care, Financials, and Information Technol-

ogy. Table 4 and Figure 5 offer the summary statistics and processes of the portfolio COEs

for various industries from alternative approaches. The results show the same pattern as

we have found in the COE estimates of the market portfolio. The common findings include

that the option-implied COE estimates are much more stable and reasonable, while the

Fama/French estimates are very volatile and sometimes unreasonable. For example, the

range for the option-implied COEs of Information Technology is 5.63% to 22.9%, while
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that for the Fama/French COEs is -36.23% to 63.02%. On average, the volatilities of the

Fama/French estimates are more than five times of those of the option-implied ones.

In terms of the equity premium (defined as the difference between the portfolio expected

return and the risk-free interest rate), the average equity premium for the market portfolio

calculated from our option-implied COEs is 6.96 percent, which is close to the estimate of

Fama and French (2002) for 1951 to 2000, 7.43 percent. In contrast, the average equity

premium of Fama/French model for the market portfolio is 10.71 percent, which is about 3

percent more than its actual value. Moreover, as shown in Table 5, although the premiums

estimated from both approaches indicate that the COEs for Financials and Information

Technology are higher than the market averages, the levels of equity premiums estimated

by the Fama/French model are too high. For example, the equity premiums for Financials

and Information Technology are 11.44% and 16.69%, respectively.

According to the literature in volatility forecasting, implied volatility is the best predictor

for future volatility. Using the implied volatilities of various industrial portfolios as their

total risk proxies and assuming that the systematic risk is proportional to the total risk

with the same ranking across industries, we look at the cross-section trade-off relationships

between alternative COEs and their risk proxies. The rank correlation coefficient between

option-implied COEs and risk (0.89) is much higher than that between Fama/French’s COEs

and risk (0.43). This means the return-risk relationship is stronger using the option-implied

estimates although both approaches show that the Information Technology industry is the

most risky industry with the highest COEs among all six industries.

In summary, with forward-looking information, option prices provide a reliable source for

estimating the COEs for both the market and industrial portfolios. Compared with the

COEs estimated from historical data with a conventional asset pricing model, the option-

implied estimates are much more stable and reasonable. Moreover, with option prices we

can obtain the COE estimates corresponding to any desirable investment duration, which

is particularly valuable for the practical implementation of capital budgeting. Therefore,

in terms of both plausibility and reasonability, our option pricing model provides a reliable
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alternative for estimating COEs.

5. Conclusions

The expected return of the stock or cost of equity capital (COE) does not affect most existing

modern option pricing models. Then it is in general impossible to estimate the COE using

such models. This paper contributes to the literature by deriving equilibrium option pricing

formulae which explicitly depend on the expected return of the stock or COE. Thus, we are

able to provide a forward-looking equilibrium estimate of the COE using our option pricing

model and current market prices. Our empirical tests for the component firms of the S&P

100 index for the period 1996-2005 indicate that our COE estimates are superior to those

obtained with the Fama/French (1993) three-factor model. For example, our COE estimates

depend on the investment horizon of the projects of investment. We also found that our

COE estimates are reasonable and stable over the years, and thus can be used as discount

rates for capital budgeting. They also generate an equity risk premium close to the average

equity premium reported by Fama and French (2002). Moreover, our option-implied COEs

show that a strong return-risk relationship is observed with our estimates.

Future research can apply our estimates of expected returns to test the validity of asset

pricing models such as the CAPM. Many issues can be reinvestigated with our method. For

example, one can ask if the expected returns of the assets are linearly related to their betas?

In contrast to all existing literature which uses historical returns to test CAPM, empirical

tests based on our forward-looking estimates of expected returns and betas13 would be

ex-ante tests. Therefore it should be possible to derive new results and insights using our

option-implied expected return.

13Forward-looking betas estimated from option prices are now possible, see Christoffersen, Jacobs, and

Vainberg (2006)
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Appendix

Proof of Proposition 2: The proof is in two steps. In the first step, we derive the asset-

specific pricing kernel, ψ(ST ), by conditioning the pricing kernel, φ(WT ), on the asset payoff

ST . The asset specific pricing kernel is a positive random variable with EP [ψ(ST )] = 1.

The asset-specific pricing kernel precludes arbitrage opportunities to arise between a specific

underlying asset and derivatives written on that asset. In the second step, we derive the

density function of the asset payoff ST under the equivalent measure R, i.e. fR(ST ), by

multiplying the asset-specific pricing kernel, ψ(ST ), and the actual density of the stock,

fP (ST ) = f(ST ; ln(S0) + (µ − 1
2σ

2)T, σ2T ), under the actual measure P . We verify that

fR(ST ) is a true density since fR(ST ) > 0 and
∫ +∞

−∞
fR(ST )dST = 1. Then we conclude

that current prices (including option prices) in this economy are given by the expectation

of asset payoffs with respect to the density fR(ST ), and then discounted at the riskless rate

of return.

First step: The asset-specific pricing kernel is given by:

ψ(ST ) = EP [φ(WT ) | ST ]

=
EP [U

′

(WT ) | ST ]

β + exp
(

αµwT + α2 σ2
w

2 T
)

=
β + EP [Wα

T | ST ]

β + exp
(

αµwT + α2 σ2
w

2 T
) , (16)

where we have used the pricing kernel given by equation (3).

Since ln(ST ) ∼ N (ln(S0) + µT − 1
2σ

2T, σ2T ) and αln(WT ) ∼ N (αµwT, α
2σ2

wT ), we have:

αln(WT ) | ln(ST ) ∼ N

(

αµwT + ρ
ασw

σ

(

ln(ST )−
(

ln(S0) + µT − 1

2
σ2T

))

, α2σ2
wT (1 − ρ2)

)

due to the properties of the bivariate and conditional normal distributions. Then:

Wα
T | ST ∼ Λ

(

αµwT + ρ
ασw

σ

(

ln(ST ) −
(

ln(S0) + µT − 1

2
σ2T

))

, α2σ2
wT (1− ρ2)

)

.

Using the definition of expectation of a lognormal random variable, the asset-specific pricing
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kernel given by equation (16) can be written as:

ψ(ST ) =
β + exp

(

αµwT + ρασw

σ

(

ln(ST )−
(

ln(S0) + µT − 1
2σ

2T
))

+ 1
2α

2σ2
wT (1− ρ2)

)

β + exp
(

αµwT + α2 σ2
w

2 T
) ,

(17)

which is positive since both the numerator and denominator are positive. We also conclude

that:

EP [ψ(ST )] =
β + exp

(

αµwT + α2 σ2
w

2 T
)

β + exp
(

αµwT + α2 σ2
w

2 T
) = 1. (18)

Equation (18) can be obtained by noting that we have implicitly in equation (17) the

following relation:

EP [Wα
T | ST ] = exp

(

αµwT + ρ
ασw

σ

(

ln(ST ) −
(

ln(S0) + µT − 1

2
σ2T

))

+
1

2
α2σ2

wT (1 − ρ2)

)

,

(19)

which is a lognormal random variable. Hence:

ln
{

EP [Wα
T | ST ]

}

= αµwT +ρ
ασw

σ

(

ln(ST ) −
(

ln(S0) + µT − 1

2
σ2T

))

+
1

2
α2σ2

wT (1−ρ2)

is a normal variate. Evaluating the mean and variance of this normal random variable

yields:

EP
[

ln
{

EP [Wα
T | ST ]

}]

= αµwT +
1

2
α2σ2

wT (1 − ρ2), (20)

V arP
[

ln
{

EP [Wα
T | ST

]}

] = ρ2α2σ2
wT. (21)

Using the relation between the normal and the lognormal random variables yields:

EP [{EP [Wα
T | ST ]}] = exp

(

αµwT + α2σ
2
w

2
T

)

. (22)

Summing up these previous remarks yields equation (18).

Second step: We set fR(ST ) = ψ(ST ) · fP (ST ). Then EP [φ(WT )ST ] = EP [EP [φ(WT )ST |
ST ]] = EP [ψ(ST )ST ]] = ER[ST ]. We write equation (17) as:

ψ(ST ) = x+ (1− x)exp

(

ρ
ασw

σ

(

ln(ST ) −
(

ln(S0) + µT − 1

2
σ2T

))

− 1

2
α2σ2

wTρ
2
)

, (23)

where:

x =
βexp

(

−αµwT − 1
2α

2σ2
wT
)

1 + βexp
(

−αµwT − 1
2α

2σ2
wT
) , (24)
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with 0 ≤ x < 1. Multiplying the asset specific pricing kernel given by equation (23) and

the actual density of the stock, fP (ST ) yields:

fR(ST ) = xf(ST ; ln(S0) + µT − 1

2
σ2T, σ2T )

+(1− x)f(ST ; ln(S0) + (µ+ αρσwσ)T − 1

2
σ2T, σ2T ). (25)

Since f(ST ; ln(S0 + µT − 1
2σ

2T, σ2T ) and f(ST ; ln(S0) + (µ + αρσwσ)T − 1
2σ

2T, σ2T ) are

two lognormal densities, we see that
∫ +∞

−∞
fR(ST )dST = 1. Also, since that fR(ST ) is

a mixture of lognormal densities and fP (ST ) is a lognormal density then P and R are

equivalent measures since both give the same probabiliy to the set (0,+∞) and therefore

to its complement (−∞, 0] This completes the proof of proposition 1. 2
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Table 1: Summary Statistics of x Estimates 

This table presents the summary statistics of the estimates of x: the risk preference parameter in the option pricing 
formula. The estimates are generated from the month-end prices of options written on the component stocks of the 
S&P 100 index with alternative time-to-maturities. The sample period is from 1996 to 2005.     
 
Time-to-maturity 30 days 91 days 182 days 365 days 
Mean 0.9024 0.8580 0.8486 0.8500 
Median 0.9000 0.8550 0.8500 0.8500 
Maximum 0.9900 0.9800 0.9600 0.9800 
Minimum 0.7700 0.7500 0.7000 0.7100 
Std. Dev. 0.0531 0.0472 0.0527 0.0624 
Skewness -0.2372 0.4491 0.0423 0.0697 
Kurtosis 2.0960 2.9768 2.4913 2.3425 
Jarque-Bera Prob. 0.0738 0.1329 0.5143 0.3221 
AR(1) 0.4300 0.4000 0.6900 0.6000 
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Table 2: Summary Statistics of μ Estimates 
This table presents the summary statistics of the estimates of μ: the expected-return parameter in the option pricing 
formula for the market portfolio composed by the component firms of the S&P 100 index. The estimates are generated 
from the month-end prices of options written on the component stocks of the S&P 100 index with alternative 
time-to-maturities. The averages are either value-weighted or equally-weighted. The sample period is from 1996 to 
2005.  
 
Panel 1: Value-weighted Average 
Time-to-maturity 30 days 91 days 182 days 365 days 
Mean 0.2295 0.1781 0.1398 0.1055 
Median 0.2020 0.1642 0.1292 0.0955 
Maximum 0.6252 0.3515 0.2511 0.1979 
Minimum 0.0571 0.0952 0.0697 0.0606 
Std. Dev. 0.1265 0.0600 0.0409 0.0292 
Skewness 0.7170 0.6292 0.5486 0.7034 
Kurtosis 2.7041 2.4490 2.4287 2.7340 
Jarque-Bera Prob. 0.0047 0.0089 0.0218 0.0059 
AR(1) 0.7500 0.8400 0.8700 0.8400 
Panel 2: Equally-weighted Average 
Time-to-maturity 30 days 91 days 182 days 365 days 
Mean 0.2111 0.1699 0.1342 0.1016 
Median 0.1805 0.1515 0.1270 0.0939 
Maximum 0.5578 0.3261 0.2229 0.1712 
Minimum 0.0657 0.0907 0.0630 0.0468 
Std. Dev. 0.1116 0.0556 0.0370 0.0266 
Skewness 0.8266 0.6769 0.5451 0.4097 
Kurtosis 2.8442 2.4538 2.4313 2.2992 
Jarque-Bera Prob. 0.0010 0.0049 0.0228 0.0547 
AR(1) 0.7600 0.8500 0.8500 0.8400 
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Table 3: Summary Statistics of σ Estimates 
This table presents the summary statistics of the estimates of σ: the volatility parameter in the option pricing formula 
for the market portfolio composed by the component firms of the S&P 100 index. The estimates are generated from 
the month-end prices of options written on the component stocks of the S&P 100 index with alternative 
time-to-maturities. The averages are either value-weighted or equally-weighted. The sample period is from 1996 to 
2005.    

 
Panel 1: Value-weighted Average 
Time-to-maturity 30 days 91 days 182 days 365 days 
Mean 0.2588 0.2489 0.2456 0.2474 
Median 0.2547 0.2452 0.2420 0.2423 
Maximum 0.4192 0.4121 0.3913 0.3867 
Minimum 0.1459 0.1382 0.1370 0.1415 
Std. Dev. 0.0664 0.0664 0.0653 0.0635 
Skewness 0.4687 0.4431 0.3500 0.3462 
Kurtosis 2.5322 2.4048 2.1789 2.1861 
Jarque-Bera Prob. 0.0643 0.0579 0.0545 0.0576 
AR(1) 0.8900 0.9400 0.9600 0.9600 
Panel 2: Equally-weighted Average 
Time-to-maturity 30 days 91 days 182 days 365 days 
Mean 0.2766 0.2669 0.2602 0.2625 
Median 0.2680 0.2568 0.2537 0.2564 
Maximum 0.4292 0.4145 0.3922 0.3924 
Minimum 0.1711 0.1597 0.1572 0.1616 
Std. Dev. 0.0649 0.0658 0.0633 0.0615 
Skewness 0.3841 0.3658 0.3259 0.3520 
Kurtosis 2.2499 2.1328 2.0736 2.1426 
Jarque-Bera Prob. 0.0560 0.0400 0.0405 0.0461 
AR(1) 0.9000 0.9400 0.9600 0.9600 
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Table 4: Summary Statistics of Costs of Equity Capital for Various Industries 
This table presents the summary statistics of the costs of equity capital (COE) for the market and various industrial 
portfolios composed by the component stocks of the S&P 100 index. Only those industries including at least 10 firms 
are selected. The COEs are estimated with either our option pricing formula or the Fama/French 3-factor model. The 
option-implied COEs are estimated from the prices of options with one year to expire. The Fama/French COEs are 
estimated with three-year historical stock prices. The averages are value-weighted. The sample period is from 1996 to 
2005. 
 

Panel 1: Option-implied 
Sector Market Industrials Consumer 

Services 
Consumer 

Goods 
Health 
Care 

Financials Information 
Technology

Mean 0.1055 0.1060 0.1080 0.1003 0.1012 0.1079 0.1189 
Median 0.0955 0.0958 0.1026 0.0947 0.0952 0.0984 0.1077 
Maximum 0.1979 0.2064 0.2109 0.1871 0.1717 0.2098 0.2290 
Minimum 0.0606 0.0557 0.0433 0.0475 0.0411 0.0486 0.0563 
Std. Dev. 0.0292 0.0313 0.0315 0.0264 0.0281 0.0316 0.0367 
Skewness 0.7034 0.7194 0.5825 0.7015 0.3715 0.6705 0.7515 
Kurtosis 2.7340 2.8223 3.0777 3.0054 2.4767 2.8649 2.7416 
Panel 2: Fama/French Model 
Sector Market Industrials Consumer 

Services 
Consumer 

Goods 
Health 
Care 

Financials Information 
Technology

Mean 0.1430 0.1274 0.1159 0.1195 0.1355 0.1503 0.2027 
Median 0.1732 0.1787 0.1107 0.1084 0.1984 0.1536 0.2916 
Maximum 0.3991 0.3197 0.5713 0.3017 0.3750 0.3989 0.6302 
Minimum -0.1367 -0.1627 -0.2685 -0.0508 -0.1181 -0.0942 -0.3623 
Std. Dev. 0.1636 0.1498 0.2032 0.1033 0.1660 0.1361 0.2834 
Skewness -0.1896 -0.5089 0.2426 0.2113 -0.0868 0.0498 -0.3264 
Kurtosis 1.5752 1.8647 2.2762 1.5434 1.3702 1.7859 1.7290 
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Table 5: Equity Premiums 
This table presents the equity premiums of the market and various industrial portfolios composed by the component 
stocks of the S&P 100 index. Only those sectors including at least 10 firms are selected. The risk premium is defined 
as the difference between the portfolio’s expected return and the risk-free interest rate. The expected returns are 
estimated with either our option pricing formula or the Fama/French 3-factor model. The option-implied expected 
returns are estimated from the prices of options with one year to expire. The Fama/French expected returns are 
estimated with three-year historical stock prices. The averages are value-weighted. The sample period is from 1996 to 
2005. 
 

Sector Market Industrials Consumer 
Services 

Consumer 
Goods 

Health 
Care 

Financials Information 
Technology 

Option-
implied 

0.0696 0.0702 0.0722 0.0644 0.0654 0.0721 0.0831 

Fama/ 
French 

0.1071 0.0915 0.0801 0.0837 0.0997 0.1144 0.1669 

 



Figure1: Processes of x Estimates 
This figure presents the processes of the estimates of x: the risk preference parameter in the option pricing formula. 
The estimates are generated from the month-end prices of options written on the component stocks of the S&P 100 
index with alternative time-to-maturities. The sample period is from 1996 to 2005. 
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Figure 2: Processes of μ Estimates 
This figure presents the processes of the estimates of μ: the expected-return parameter in the option pricing formula 
for the market portfolio composed by the component firms of the S&P 100 index. The estimates are generated from 
the month-end prices of options written on the component stocks of the S&P 100 index with alternative 
time-to-maturities. The averages are either value-weighted or equally-weighted. The sample period is from 1996 to 
2005.   
 
Panel 1: Value-weighted Average 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

01
/96

05
/96

09
/96

01
/97

05
/97

09
/97

01
/98

05
/98

09
/98

01
/99

05
/99

09
/99

01
/00

05
/00

09
/00

01
/01

05
/01

09
/01

01
/02

05
/02

09
/02

01
/03

05
/03

09
/03

01
/04

05
/04

09
/04

01
/05

05
/05

09
/05

Date

M
u

30d 91d 182d 365d

 
Panel 2: Equally-weighted Average 
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Figure 3: Processes of σ Estimates 

This table presents the processes of the estimates of σ: the volatility parameter in the option pricing formula for the 
market portfolio composed by the component firms of the S&P 100 index. The estimates are generated from the 
month-end prices of options written on the component stocks of the S&P 100 index with alternative time-to-maturities. 
The averages are either value-weighted or equally-weighted. The sample period is from 1996 to 2005.    
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Panel 2: Equally-weighted Average 
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Figure 4: Processes of Costs of Equity Capital 
This figure presents the processes of the costs of equity capital (COE) for the market portfolio composed by the 
component firms of the S&P 100 index. The COEs are estimated with either our option pricing formula or the 
Fama/French three-factor model. The option-implied COEs are estimated from the prices of options with one year to 
expire. The Fama/French COEs are estimated with three-year historical stock prices. The averages are value-weighted. 
The sample period is from 1996 to 2005.     
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Figure 5: Processes of Costs of Equity Capital for Various Industries 
This figure presents the processes of the costs of equity capital (COE) for various industrial portfolios composed by 
the component stocks of the S&P 100 index. Only the industries including at least 10 firms are selected. The COEs are 
estimated with either our option pricing formula or the Fama/French three-factor model. The option-implied COEs are 
estimated from the prices of options with one year to expire. The Fama/French COEs are estimated with three-year 
historical stock prices. The averages are value-weighted. The sample period is from 1996 to 2005. 
 
 

－: Option-implied    --:Fama/French Model  
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