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Abstract

This paper aims to investigate the impact of volatility long memory on European option
valuation. We compare two groups of GARCH models that allow for long memory: the com-
ponent Heston-Nandi GARCH model developed in the first chapter, in which the volatility
of returns consists of a long-run and a short-run component; and a fractionally integrated
Heston-Nandi GARCH model based on Baillie, Bollerslev and Mikkelsen (1996). We em-
pirically investigate the models using S&P 500 index returns and cross-sectional European
options data. The component GARCH model slightly outperforms the FIHNGARCH in
fitting return data but significantly dominates the FIHNGARCH in capturing option prices.
This is due to the shorter memory of the FIHNGARCH model, which, in turn, is attribut-
able to the artificially prolonged leverage effect resulting from fractional integration and
limitations of the affine structure.
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1 Introduction

It has been widely reported that many financial and macroeconomic time series have a highly
persistent volatility. See, for example, Briedt, Crato and de Lima (1998), Ding, Granger, and
Engle (1993), and Harvey (1993). Andersen, Bollerslev, Diebold and Labys (2003) confirmed
this finding using realized volatility. One approach to model persistent volatility, proposed by
Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996) is to incorporate
long-memory fractional differencing into the GARCH model. The ensuing model is called the
fractionally integrated GARCH model or the FIGARCH model. Comte and Renault (1998)
developed a fractionally integrated stochastic volatility model. The main characteristic of a
FIGARCH model is that conditional variances exhibit not only short-run dynamics of the
ARMA type, as in the standard GARCH model, but also long-run persistence that decays
slowly at hyperbolic rates.

The literature on GARCH variance component models is rapidly expanding. Component
GARCH models, which where first proposed by Engle and Lee (1993), constitute a conve-
nient method of incorporating long-memory-like features into a short-memory model, at least
for the horizons relevant for option valuation. Maheu (2002) presented Monte Carlo evidence
that a component model can capture long-range volatility dynamics. Adrian and Rosenberg
(2005) demonstrated the relevance of the component volatility structure for cross-sectional
asset pricing. The fact that GARCH component variance models are also related to stochas-
tic volatility component models has received empirical support; see Alizadeh, Brandt and
Diebold (2002), Chernov, Gallant, Ghysels and Tauchen (2003), and Taylor and Xu (1994)
for examples.

Given the empirical support for these volatility long-memory models in fitting S&P 500
index returns, it is natural to apply them to derivative pricing. Bollerslev and Mikkelsen
(1996, 1999) and Comte, Coutin and Renault (2001) investigated and discussed the implica-
tions of fractionally integrated volatility for option valuation. While they use Monte Carlo
simulation to illustrate the differences in European option prices for five alternative volatility
dynamics, no empirical evidence was presented regarding the performance of a FIGARCH
model in fitting option prices. Christoffersen, Jacobs and Wang’s working paper, which is
refered as CJW(2007) in the following context, found the component models significantly
superior to the GARCH(1,1) model in capturing European option prices even if the latter
model turns in a very solid empirical performance. Since both the FIGARCH model and
the component GARCH model are designed to capture the long memory of volatility, it is
of interest to compare both models theoretically and empirically.

In this paper, we develop a fractionally integrated Heston-Nandi GARCH model which
allows for easier valuation of European options. We derive an approximate closed form option
valuation formula and investigate the impact of long memory for option pricing. In addition,
we characterize key properties of the model, including the conditional term structure across
maturities, and conditional leverage and variance of variance paths. We discern important



differences between the fractionally integrated Heston-Nandi GARCH model and the com-
ponent Heston-Nandi GARCH model developed in CJW(2007). Please note that we refer
to the fractionally integrated Heston-Nandi GARCH model as FIHNGARCH, and refer to
the component Heston-Nandi GARCH as component GARCH. Both models are estimated
using maximum likelihood estimation on S&P 500 returns, and their empirical performance
is compared in terms of fitting historical returns and cross-sectional option data. Specifically,
we compare two structures that capture the long memory of volatility: hyperbolic decay and
exponential decay. Our results show that both the likelihood criterion and the option pricing
errors strongly favor the component models.

The remainder of the paper is structured as follows. In Sections 2 and 3 we introduce
the new FIHNGARCH model as well as the GARCH component models. Section 2 gives
a brief review of the component model in CJW(2007) and its related properties. Section 3
introduces the fractionally integrated Heston-Nandi GARCH model, derives a number of its
properties, and discusses option valuation for this component dynamic. Section 4 presents
empirical model comparisons based on both the maximum likelihood estimation of returns
and the root mean squared errors from valuing options on the S&P 500 index. Finally,
Section 5 concludes.

2 The Component Heston-Nandi GARCH Model

2.1 Return Dynamics

The component GARCH model is an extension of a Heston-Nandi GARCH (1,1) model.
The Heston-Nandi (2000) model is designed with option valuation in mind. Like the Heston
(1993) model, it contains a leverage effect, allows for volatility clustering, and leads to a
closed-form solution due to its affine structure. Heston and Nandi (2000) demonstrated how
their model performs satisfactorily relative to ad-hoc benchmarks for the purpose of option
valuation. This paper uses their model as an initial starting point. The model is

S,
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where S;,; denotes the underlying asset price, r the risk-free rate, A the price of risk, z; the
1.1.d. return innovation with zero mean and unit variance, and h;,, the daily variance on day
t + 1 which is known at the end of day ¢.

The unconditional variance is
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We can rewrite the conditional variance as
hiy = 0% +0(he = 0®) +a ((Zt —ev/h)? - (1+ 6202)) (2)

The component GARCH model is obtained by replacing the constant ¢ with a time-
varying long-run component ¢; ;. The conditional variance h;,; now varies around a long-
run component which is, itself, autoregressive of the first order. Using Greek letters for
component model parameters, we write

hivi = Q1+ B(he — qp) + ahyory (3)
Q1 = w+pq+ phvoy

where v;; = (22 — 1) — 27,2:v/h; for i = 1,2 can be viewed as zero-mean innovations to the
volatility components.

We will assume that the i.i.d. return innovation z; follows the standard normal dis-
tribution. We also derive a number of properties; these are key for understanding both
Heston-Nandi GARCH(1,1) and the component counterpart’s ability to capture the salient
features of speculative returns and to fit option prices. To save space, we only illustrate the
properties for the component GARCH model. Please see CJW(2007) for more details.

2.2 Variance Term Structures

Following CJW(2007), we define two measures of the variance term structure. One con-
venient measure denotes a cumulative k-days ahead forecast of variances divided by the
unconditional variance.
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where o2 is the unconditional variance. This measure succinctly captures important informa-
tion about the model’s potential to explain the variation of option values across maturities.
We can also learn about the dynamics of the variance term structure through impulse re-
sponse functions, which are defined as

Ca(l=nVR/m) 1= 50 (1= vhi/a) 1 pf
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The latter equation measures the effect of a shock at time t, z; on the expected k-days ahead
variance. Both measures estimate the persistence of variances.



2.3 Conditional Leverage and Variance of Variance

To assess the asymmetric response of volatility to positive versus negative return shocks, we
derive the conditional covariance, C'ov; (R 1, hyt2), and refer to it as the conditional leverage
effect. For the component model, the conditional leverage effect is given by

Covy (Rit1, hiyo) = =2 (ayy + 072) hea (6)

We define the conditional variance of variance as Var; (hy12), which is given by
Vary (hess) = 2(a + ¢)* + 4 (110 + 729)° By (7)

Given the simple structure of the component model, it is easy to see that the magnitudes of
both the conditional leverage and variance of variance are positively related to the leverage
parameters v, v, and c¢. The relationship suggests that the leverage effect built in the model
not only introduces negative skewness but also a more volatile variance dynamic.

3 An Affine FIGARCH Model

3.1 Return Dynamics

Just like fractionally integrated ARFIMA models generalize the standard ARIMA models,
Baillie, Bollerslev and Mikkelsen (1996) introduced a new class of fractionally integrated
GARCH models that generalize GARCH models. Analogous to the ARFIMA class of models
for the conditional mean, a shock to the conditional variance in the FIGARCH model is
transitory, in the sense that the influence on the forecast of the future conditional variance
recedes at a slow hyperbolic rate of decay. The authors further extended the basic FIGARCH
model to FIEGARCH to allow for the leverage effect. However, neither of the two models
yields an analytical form for European option prices. To simplify the valuation of European
options, we develop a new FIHNGARCH model based on the Heston-Nandi structure, which
accommodates approximate closed formulae for European options.
First, we rewrite the Heston-Nandi GARCH(1,1)

S
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into
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where v, = (zt — fyl\/h_t)z — (1+~2hy) and ¢; = 8; + y2a;. Please note that, to avoid
notational confusion, we use 7 to represent the risk price in the fractional integration GARCH
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model. Equation (8) is readily interpreted as an ARMA model for (z;—v;v/¢)?. Analogously
to the ARFIMA (k,d,l) process, a FIHNGARCH(p,d,q) process is naturally defined by

(ze = 1 Vhe)? (L= L) (1 = L) = 1+ 73wy — By + (1 = B1L) v, (9)

An alternative representation is

(1=8L) (1+71h) = (L+7iwi—By) + ... (10)
+(1=BL == L) (1= L)) (2 = 1V/e)?

The fractional differencing operator is defined by its Maclaurin series expansion. In or-

der to better comprehend the statistical properties of this model, we rewrite the FIHN-

GARCH(p,d,q) model in terms of the observationally equivalent infinite ARCH representa-
tion,

1— (1—§O1L)(1—L)d
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where W = -, A(L) = AL + A L? + .... Please note that, in this model, 7, is not
only the leverage parameter, but also appears in the denominator of the infinite ARCH
coefficients that adjusts the magnitude of innovations impacting on conditional variance.
The ARCH parameters in the lag polynomial A (L) can be written as

Moo= (o= B +d) =ani+d
e = By + ((/f —1-d)k ! — <p1) dgp—1 for k> 2 (12)

where

daq1 = d (13)
5d,k: = 5d,k—1k_1 (/{7 —-1- d) fOI‘ k Z 2

[e.e]
(1 — %) evaluated at L = 1 equals zero, so that Z A; = 1. The second moment

i=1
of the unconditional distribution in the FIHNGARCH(p,d,q) model, therefore does not exist
in the case of a positive w, and R;y; is not covariance-stationary. This feature is shared
by an integrated GARCH (IGARCH) model when d = 1. Neither (11) nor an IGARCH

model satisfy the sufficient conditions developed by Giraitis, Kokoszka and Leipus (2000)
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for covariance stationarity. However, Nelson (1990) showed that the IGARCH(1,1), which
was extended to the general IGARCH(p,q) by Bougerol and Picard (1992), is strictly sta-
tionary and ergodic. Baillie, Bollerslev and Mikkelsen (1996) posited that the high-order lag
coefficients in the infinite ARCH representation of any FIGARCH model may be dominated
in an absolute value sense by the corresponding IGARCH coefficients. Therefore, a direct
extension of the proofs for the IGARCH case can reveals that the FIGARCH(p,d,q) and
FIHNGARCH models in our case are strictly stationary and ergodic for 0 < d < 1. Please
see Nelson (1990) for more details.

In the ARFIMA class of models, the short-run behavior of the time series is captured by
the conventional ARMA parameters, while the long-run dependence is conveniently modeled
through the fractional differencing parameter d. A similar result may well hold when model-
ing conditional variances. A shock to the optimal forecast of the future conditional variance
decays at an exponential rate for the covariance-stationary GARCH(p,q) model, and remains
important for forecasts of all horizons for the IGARCH(p,q) model. In contrast, in the FI-
GARCH(p,d,q) model, the effect of a shock to the forecast of the future conditional variance
will die out at a slow hyperbolic rate. The fractional differencing parameter is therefore
identifiable by the decay rate of a shock to the conditional variance, and not by the ultimate
impact on the forecast for the long-run conditional variance.

3.2 Variance Term Structures

We again define the variance term structure

h 11 &
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and the impulse response functlons are
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3.3 Conditional Leverage and Variance of Variance
For the FIHNGARCH model, the conditional variance of variance and the conditional lever-

age effect are given by

Varhiya) = Eylhiya — By (b)) (16)
2

A
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71
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In contrast to the component GARCH model, the magnitudes of the conditional leverage
and the variance of variance are both nonlinear in the leverage parameter ;.

3.4 The Autocorrelation Function for the Squared Innovation

We also provide the ACF of squared innovations for the FIHNGARCH model. In essence, this
measure recounts the same story as the variance term structures about volatility persistence.

COUt(5§+1> hiir)
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3.5 Risk Neutralization and Option Valuation

As in CJW(2007), we assume Duan (1995)’s Locally Risk-Neutral Valuation Relationship
assumption. In the risk-neutral world, the asset price S; follows

In(Sir1) = In(Sy) +7r —0.5hi1 + Iy (20)
A(L
R )

1

where 2 is standard normally distributed in a risk-neutral world, and 77 = v, + 0.5 + 7.
Given the risk-neutral dynamics, option valuation is straightforward. A European call option
with strike price K that expires at time 7', is worth

Call Price = e "IV E*[Maz(Sy — K, 0)]

1 e T(I=1) oo K= f*(t,T;ip + 1)
— 5St +— /0 Re { i } de... (21)
e (11 [ K= f*(t,T;i¢)
—Ke (T )(54—;/0 Re[ Z¢ }déb)

where f; (¢) = E; [S;é is the generating function, which is also the moment-generating

function of the logarithm of Sr. Let f; (¢) denote the conditional-generating function of the
asset price in the risk-neutral world, In the Appendix, we show that the generating function
takes the form

fi = Eiexp(¢In(Sr)) (22)
= exp (¢xt + Ay + Bihir + Ay (L) (th - le/ht+1)2)

where x; = In (S;) . The coefficients {A;, By, Ay1, Ar2, Avs, ...} depend on the parameters of
the model. Appendix A displays that the coefficients in the moment-generating function are

1 _
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where Xi = %, and n goes to infinity. The terminal conditions are
1
Ar=Br=Ar; =0

One important feature is that the MGF can also be written as an infinite-weighted combi-
nation of shocks. In the evaluation of European options, a truncation of 1000 is employed
as in the maximum likelihood estimation.

4 Empirical Results

This section presents the empirical results. While a formal proof of consistency and asymp-
totic normality of the MLE estimates of the FIGARCH process remains an outstanding issue,
Baillie, Bollerslev and Mikkelsen (1996) assessed the practical applicability and small sam-
ple performance of the MLE procedure for the estimation of FIGARCH processes through a
detailed simulation study. The simulations indicate that MLE is reasonably accurate.! Al-
though no numerical or analytical investigation has been undertaken on FIGARCH models
with leverage effects, it is still worthwhile attempting maximum likelihood estimation in our
settings. To better understand the performance of FIHNGARCH, we add one additional
benchmark, the Heston Nandi GARCH(1,1) model, for purpose of comparison.? We carry
out maximum likelihood estimation for the three models on a long time series of S&P 500
return data. Then, we discuss the parameter estimates and their implications for the salient
properties of the models.

4.1 Parameter Estimates from Daily Return Data

Panel A of Table 2 presents the maximum likelihood estimation results obtained using daily
return data from June 1966 through December 31, 2001. The return data are obtained from
CRSP. Standard errors are calculated from the outer product of the gradient and are given
in parentheses. Since the fractional differencing operator is designed to capture the long-
memory features of the process, truncating at too low a lag may destroy important long-run
dependencies. For the estimation results reported here, we fixed the truncation lag at 1000,
about four years’ observations.

First, almost all parameters are estimated significantly different from zero at conventional
significance levels. In terms of fit, the log likelihood values indicate that the fit of the
component model is slightly superior to that of the FIHNGARCH model, which in turn fits
better than the GARCH(1,1) model. We compute the test statistics in Vuong (1989), which

IThe accuracy is evaluated through the simulated bias, root mean squared error, average estimated
standard error of the QMLE, and the simulated rejection frequencies for the t-tests across 500 replications.
2For related properties of the Heston-Nandi GARCH(1,1) model, please see Chapter 1.
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are designed to compare the goodness of fit of models when neither competing model is
nested into the other. In our case, the standard normal statistic of 0.522 suggests that the
component GARCH does not significantly dominate FIHNGARCH.

In the FIHNGARCH model, the estimate of (3, is 0.664, lower than the 0.766 measured
in the component model. This lower [3;, in turn, induces a lower short-run persistence
0, = 1 +a1v? = 0.5355. We know that the short-run parameter ¢; measures the persistence
of the shocks over a relative short horizon, while the parameter d governs the long memory
of shocks. Therefore, it is intuitive that with the introduction of the fractional differencing
parameter d, volatility persistence is mostly governed by the long-run persistence parameter
and, hence, the short-run persistence need not be as high as before. This finding is consistent
with the previous literature. In contrast, the d value given by the model is lower than the
estimates obtained in earlier research which are usually over 0.4.

Another interesting feature is that the estimate of «y is —1.240F — 05. Although a
positive g is sufficient to guarantee the non-negativity of the conditional variance, this is
not necessary the case when the parameters \; are positive for all .

Panel A of Table 2 also presents unconditional summary statistics for different models.
For the component model, the unconditional variance of variance is computed using the
estimate for the unconditional variance in the expressions for the conditional moments (7).
For the FIHNGARCH model, the unconditional volatility and the unconditional volatility
of variance are undefined. To facilitate a comparison, we take the average of the conditional
variance and then compute the standard deviation of variance based on the conditional mo-
ment in (16). To allow a comparison of the unconditional leverage for models, we report the
moments in (6) and (17) divided by hyy;. Overall, the leverage and the volatility of variance
of the component GARCH model are greater in absolute value than those of the GARCH(1,1)
model, while the FIHNGARCH model generates more leverage and more volatile variance
than the component model.

4.2 Dynamic Model Properties

Figure 1 plots the conditional variances for the period 1990-1996. This period includes the
dates for the option valuation exercise that are presented in Section 4.3. Notice that the
conditional variance patterns across the three GARCH models display numerous similarities;
the models all capture the low variances during the equity market run-up in 1993-1996,
preceded by higher volatility during the first Gulf War and the 1990-1991 recession. However,
Figure 1 also reveals differences between the models. The FIHNGARCH model appears to
display slightly more variation in the conditional variance in the more recent past. We plot
the conditional variance of variance path, Var; (hyyo) for each model. Figure 2 confirms the
findings in Figures 1. The FIHNGARCH model displays a larger variance of variance than
the component GARCH and the GARCH(1,1). Figure 3 plots the conditional leverage path,
Covy (Ryy1, hyy o) for each model under consideration. Note that the FIGARCH model has a
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larger (more negative) and more volatile leverage effect than the other two models. This is
consistent with the higher unconditional levels presented in Table 2.

Figures 4a and Figure 4b plot the impulse responses to the term structure of variance
for hy = 0% and z; = 2 and z; = —2, respectively, as defined in (5). The figures present the
variance term structure for up to 250 days, which corresponds approximately to the number
of trading days in a year, and, therefore, captures the empirically relevant term structure for
option valuation. In both figures, the effects of shocks prove significantly more persistent in
the component model than in either the FIHNGARCH model or the GARCH(1,1) model.
However, although a negative shock in the FIHNGARCH model persists longer than in the
GARCH(1,1) model, the FIHNGARCH model does not sufficiently distinguish itself from
the GARCH(1,1) following a positive shock. Comparing across Figures 4a and Figure 4b, it
is also clear that the term structure of the leverage of the component model is more flexible.
As a result, current shocks and the current state of the economy potentially have a more
profound impact on the pricing of options across maturities in the component model than in
the FIHNGARCH and the GARCH(1,1). To save space, we do not plot the autocorrelation
functions of squared innovations which confirm the patterns in Figure 4.

These findings differ somewhat from those contained in the existing literature. Maheu
(2002) found that the simple FIGARCH model generates a decay pattern for the autocor-
relation function of the absolute value of return series for S&P 500 data, similar to that of
a component model. Both autocorrelation functions diminish to zero around 2000. This
shorter memory is reflected by a relative low fractional differencing parameter d. As doc-
umented by Bollerslev and Mikkelsen (1996), d is estimated at 0.447 for S&P 500 index
returns from January 2, 1953 through December 31, 1990. We get d = 0.2032. To see how
closely the d value relates to memory, we present Figure 5, which is an altered Figure 4a
with d varying from 0.1 to 0.4, while keeping all other estimates fixed. It is evident that the
impulse response of the variance term structure to a positive shock tends to decay slowly
with an increasing d, while it tends to decay fast with a decreasing d. The same thing is
true for a negative shock.

One possible explanation is the leverage effect, as imposed to the long lags, in this model.
Fractional integration imposes hyperbolic decay pattern for shocks while, at the same time,
it extends the memory for the leverage effect. Moreover, the squared innovations tend to
put higher weights on large negative shocks, hence enhancing the leverage effect. It is widely
documented that the leverage effect introduced by Black (1976) and Christie (1982) merely
comprises temporary behavior for the S&P 500 index.> From an economic point of view,
the debt-equity ratio may be hard to adjust in the short run, but there is no reason that a
firm will not be able to adjust its capital structure over time in order to correct the overly
strong leverage effect. Generally, this side effect is inevitable for many fractionally integrated
models that allows for leverage effect, such as the fractionally integrated EGARCH, fraction-

3Engle and Lee (1992), Gallant, Rossi, and Tauchen (1993), and Giraitis, Leipus, and Robinson (2003).
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ally integrated TGARCH or fractionally integrated NGARCH. In contrast, the component
GARCH separates the variance into two components: long-run and short-run, each of which
has its own leverage effect governed by the level of v, and v, respectively. That the lever-
age effect is modeled more flexibly as two parts, helps to avoid the dilemma of fractional
integration.

Overall, understanding all implication of the affine structure turns out to be more compli-
cated than expected. Affine models are convenient because they lead to closed-form solutions
for prices of European options. CJW(2007) and Christoffersen, Jacobs, and Mimouni (2005)
documented the limitations of the affine structure in terms of fitting returns as well as fit-
ting European options. In order to address the limitations of the affine structure, the Heston
(1993) model, which is a continuous-time limit of the Heston-Nandi GARCH(1,1) model,
is often combined with models of jumps in returns and volatility. However, relatively little
is known about the empirical biases that result from imposing the affine structure. How-
ever, the fairness of the comparison in our context is not compromised as long as the affine
structure is also employed for the component model.

To shed more light on the driving forces behind the shorter memory or lower d value,
we estimate another two models by maximum likelihood. One is a simple FIGARCH model
which is free from leverage effects

W C(-en) (-0
A 1—ﬁ+<1 (1-50) ) t
hy = U—i—)\(L)&‘?

Our aim is to ascertain whether in the absence of a leverage effect, we obtain longer memory
than that obtained in the benchmark FIGARCH model. The other model that we develop
is a fractionally integrated nonlinear GARCH model with leverage effect (NGARCH)

(1 - ptarnr’)

w 1— 2

ht = 1_5+ 1+72 h’t(zt_f)/)
A(L)

he = T+ Lhy(z — )

t w + 1 +’}/2 t(zt 7)

By switching to a nonlinear structure with leverage effect, we wish to establish the impact
of the affine structure on memory. In both cases, A (L) has the same structure as in the
FIHNGARCH model. Table 3 presents the MLE and the log likelihood function values for
these two models. d is the parameter most directly related to memory. For the FIGARCH
model, d = 0.442; in the case of the FIHNGARCH model, d = 0.480. Figure 6 illustrates
impulse responses for a positive shock 2 for all three models. Consistent with the estimated
values of d, the non-affine model yields the slowest decay or the highest memory, while
the affine model yields the fastest decay. The simple FIGARCH model lies somewhere in
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between. To some extent, this confirms our conjecture that both the leverage effect and
the affine structure reduce the model’s memory and that the affine structure constitutes the
dominant determinant.

The properties illustrated in the above section are interesting. They suggest that, on
the one hand, the leverage effect in the model restrains the long memory, which mitigates
the model’s ability in fitting derivatives prices; On the other hand, incorporating a leverage
parameter v; helps to generate more volatile higher moments. It is undeniable that under
our settings, a lower 7, generates more negative skewness as well as higher variance of
variance by taking the derivatives of (17) and (16) with respect to v,. We know that higher
moments such as skewness and kurtosis play important roles in determining option prices.
Consequently, the model’s ability to capture higher moments determines the ability of the
FIHNGARCH model in fitting European option data.

4.3 Out-of-Sample Performance with Option Data

We use six years of S&P 500 call option data covering the period 1990-1995. Starting from
the raw data from the Berkeley Option data base, we apply standard filters following Bakshi,
Cao and Chen (1997). We only use options with more than seven days to maturity. Also,
we only use Wednesday options data because Wednesday is the day of the week least likely
to be a holiday. It is also less likely than other days (such as Monday and Friday) to be
affected by day-of-the-week effects. If Wednesday is a holiday, we use the next trading day.
Using only Wednesday data allows us to study a fairly long time series, which is useful in
considering the highly persistent volatility processes.

Table 1 presents descriptive statistics for the options data for 1990-1995 by moneyness
and maturity. Panel A reports the number of contracts available after filtering. Our sample
consists of 21,752 options that span a wide range of moneyness and maturity. Panel B shows
the average call price in each of the bins in Panel A. Quite predictably, the average price
increases significantly as the moneyness increases (moving down the rows) and as maturity
increases (moving from left to right). The average overall price is $27.91.

In Panel C of Table 1, we report the average Black-Scholes implied volatility for the option
contracts in each bin. Panel C clearly documents the volatility smirk evident in quoted equity
index option prices. The average implied volatility tends to increase as we move down the
rows in each column of Panel C, the effect being most dramatic for the short maturities in
the left-hand columns. This empirical regularity illustrates that the Black-Scholes option
valuation formula, which assumes a constant per-period volatility across time, maturity and
strike prices, will generate systematic pricing errors. This motivates the use of stochastic
volatility and GARCH models for option valuation.

When calculating option prices, we risk neutralize the MLE estimates in Table 1. The
risk-neutral parameters are used to compute the conditional variance based on the structure
of (20). Variances on Wednesday are then selected, together with other inputs such as
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strike, maturity, interest rate, and equity price, to compute the European option prices. As
illustrated in the previous section, the variance has the analytical form of (21).

Panel B of Table 2 reports the RMSEs for the two GARCH models from 1990 to 1995.
The RMSE is computed as

RMSE = % 3 (CMET - oganc)? (24)
it

GARCH
Cii

where is the market price of option 7 at time ¢, is the model price, and

CMKT
T’
NT = Z N;. T is the total number of days included in the sample, and N; the number of

t=1
options included in the sample at date .

We present the absolute values of the RMSEs as well as the normalized RMSEs, defined
as the ratio of RMSEs of the component GARCH and the FIHNGARCH model, devided by
the GARCH(1,1) RMSEs. It is discernible that the FIHNGARCH model yields the high-
est RMSEs ranging from 1.801 to 3.583. While the component model generates the lowest
RMSEs ranging from 1.263 to 2.559, the GARCH(1,1) model lies in between with RMSEs
ranging from 1.608 to 3.239. We also display the RMSEs by moneyness and maturity in Table
4. In general, the component GARCH model performs the best across moneyness and ma-
turity, but especially for options with maturities between 20 days and 180 days. In addition,
slightly longer memory for the FIHNGARCH model cannot guarantee the superiority of its
out-of-sample performance over that of the GARCH(1,1) model. In fact, the FIHNGARCH
framework may boost the likelihood function for daily returns without improving much the
conditional density function for returns that are relevant for option valuation. To confirm
this, we compute option prices of the FIHNGARCH model by Mont Carlo simulation and
derive similar RMSEs.

Figure 7 presents the average weekly biases from 1990 to 1995. The biases seem to be
highly related across the three models: all give negative biases from 1990 through 1991, and
positive biases from 1992 through 1995. We plot the CBOE volatility index (VIX) in Figure
8b. Since the VIX shows the expected market volatility for a 30 day horizon in Figure 8a,
we plot the cumulative 30-day ahead forecasted conditional variance for all three models as
defined in 4. When comparing Figures 8a and 8b, we observe that, during the entire period of
1990 to 1995, the variances from the three models are much flatter than that of the VIX.* For
the 1990 and 1991 recessions, the modeled variances are considerably lower than the implied
variances and, therefore, all models generate much lower option prices than the real prices.
On the other hand, since 1992, the market started to recover and became increasingly less
volatile through 1992 to 1995. Although Figure 8a illustrates that the models can capture this

4Please note that, under Duan’s Locally Risk-Neutral Valuation Relationship assumption, the risk-
neutralized variance is supposed to be identical to the physical variance.
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trend in sample, the out-of-sample performances are poorer; the models cannot fully forecast
the downward trend of volatility, and, hence, generate higher option prices. Nevertheless, the
component GARCH yields better forecasts of future volatility than do the GARCH(1,1) and
the FIHNGARCH, and, consequently, achieves the best out-of-sample performance. We also
plot the average weekly RMSE over the same period in Figure 9. One important conclusion
which may be drawn from Figure 9 is that the improved performance of the component
GARCH does not stem from any particular subsample.

Another point worth of mention is that the RMSEs are computed from the maximum
likelihood estimates. So far, the theoretical property of the maximum likelihood estimations
of any FIGARCH model have not been established. Baillie, Bollerslev and Mikkelsen (1996)
justified the usage of the approximate maximum likelihood procedure for a simple FIGARCH
model by Mont Carlo simulations. The consistency and other asymptotic properties of
the MLE estimates of other fractionally integrated GARCH models including FIEGARCH
remain unverified. In Figure 10, we simulate the log-likelihood function and the RMSEs by
varying v and d in reasonable ranges, while leaving other parameters unchanged as MLEs.
It appears that RMSE reaches its minimum when v = 120 and d = 0.35, compared to the
maximum of the likelihood function at v = 100 and d = 0.20. The change of ~ is trivial,
while the larger d from the minimum of RMSEs confirms that a longer memory will enrich
the volatility dynamic and, therefore, better capture the option prices. The goodness-of-fit
of the FIHNGARCH model could clearly be improved by using NLS to yield a larger d.
The discrepancy existing in the optimal estimates between MLE and NLS sheds light on the
latent inconsistency between the MLE estimates and nonlinear least square estimates.

5 Conclusion

Bollerslev and Mikkelsen (1996, 1999) and Comte, Coutin and Renault (2001) investigated
and discussed some of the implications of long memory for option valuation. However, their
work merely illustrated the implication of long memory on European option prices through
Monte Carlo simulations, and little empirical work in fitting options data has been done.
This paper compares two groups of GARCH models that allow for long memory in volatil-
ity: the component Heston-Nandi GARCH model developed by CJW(2007), and the frac-
tionally integrated Heston-Nandi GARCH model based on Baillie, Bollerslev and Mikkelsen
(1996). We investigate the models using S&P 500 index returns and cross-sectional European
options data. The component GARCH model is slightly better than FIHNGARCH in fitting
S&P 500 returns, and significantly outperforms FIHNGARCH in fitting the option prices.
In return, the FIHNGARCH model dominates the GARCH(1,1) in terms of log-likelihood
function while yielding higher option price RMSEs than does the GARCH(1,1) model. This
superiority is mainly due to the shorter memory of the FIHNGARCH model, which, in turn,
can be attributed to either an artificially prolonged leverage effect created during the pro-
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cedure of fractional integration or an undesired property of the affine structure. Although
FIGARCH models are not quite uncommon in the literature, our findings are novel.

Our paper inspires many directions for further research. To avoid the affine structure,
we could develop a fractionally integrated nonlinear GARCH model (NGARCH), introduced
by Engle and Ng (1993), and compare it to a component NGARCH model. The better
performance of the NGARCH model is reported widely in the existing literature, such as
Christoffersen, Jacobs, and Mimouni (2005), and Duan (1995). The downside is that no
analytical form of option pricing formula exists and one has to use Monte Carlo simulations.

Figure 10 shows potential to improve the memory of FIHNGARCH by doing NLS es-
timation. Accordingly, we compare models using information contained in options data.
Moreover, we avoid the latent inconsistency between approximate MLE estimates and NLS
estimates.

This paper focuses on discrete-time models. Another approach would be to use continuous-
time models that allow for long memory, such as the model proposed by Comte, Coutin and
Renault (2001), and the continuous-time variance component model of Duffie, Pan and Sin-
gleton (1999). It would be an interesting experiment to investigate and compare the abilities
of this model to generate long memory with that of the component GARCH model.
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6 Appendix

6.1 The FIHNGARCH MGF
Define A (L) = ML 4+ M\ L? + ...and \; = %, we guess that the moment-generating function
1

has the log-linear form®
2
ft = Et exp (gb 11’1 (ST>) = exp <¢l’t + At + Btht—i—l + At (L) (Zt+1 — ’71\ / ht+1> )
and At (L) = At71L + At,2L2 + ...+ Atan

We have the terminal condition Ay = By = Ap; =0, ¢ = 1,2,3...1000. Applying the law
of iterated expectations to fi.r 4, we obtain

2
ft = By [fis1] = Erexp (¢$t+1 + Api1 + Biirhiro + Avya (L) (Zt+2 — Y1V ht+2> )

Substituting the dynamics of x; gives
5= E (r +x¢) — 0.50h 11 + O/ higrze01 + At+21 + Biy1hiot
= FE;exp
' ' Avya (L) (Zt+2 — NV ht+2)
(xe + 1) = 0.50hi 11 + O/ higrze01 + A+
2
= Ejexp Biq (w +A(L) (Zt+2 — 71V ht+2> ) +
2
Apia (L) (Zt+2 — 71V ht+2>
(xe + 1) = 0.50hi 11 + O/ higrze01 + A+
_ 2 _ 2
= Et exp Bt+1 (w + )\1 (Zt+1 - 71 \ ht+1> + )\QL (Zt+1 — ’)/1\ / ht+1> + )
2 2
Appin (Zt+1 — 71V ht+1) + App10L (Zt+1 ARY ht+1) + ...

¢(xy + 1) — 0.50h 11 + Ay + B

2
(Bt+1)\1 + At+1,1) (Zt+1 - (71 - 2(Bt+1xj:”[\t+1‘1)> Vi ht+1> + ..

_ _ ¢
— Et exp (Qb'yl 4(Bt+1X1+At+171)) ht+1 + ...

_ 2
(Bt+1)\2 + At+1,2) L (Zt+1 — Y1V ht+1> + ...
— 2
(Bt+1)\3 + At+1,3) L? (Zt+1 — Y1V ht+1> + ...

®Please note that the MGF developed here is for the physical process. A risk neutralized MGF can be
developed in a similar way by risk neutralizing correspondent parameters first.
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¢(l‘t + T') + At+1 + Bprlw - % In (]. -2 (Bt;lxl + At+171))

(Bt+1X1+At+l,1) <’71—2(3+>
. t+1h+1\t+1,1) . o
5 ¢ ( 0.5 + 71) + 1—2(Bt+1X1+At+1,1) 4(Bt+1X1+At+l,1) t+1
= Ly exp
_ 2
+ (Bt+1)\2 + At+1,2) L <2t+1 — 71V ht+1> + ..
_ 2
(Bt+1)\3 + At+1,3) L? (Zt+1 — 71V ht+1) + ..
where we apply
2 1 a/b2
E [exp (a(z+b)°)] = exp —§1n(1—2a)+ o (A2)

Therefore, equating two sides of (A2), we have
1 _
Ay =¢r+ A1 + Bro — 5 In (1 =2 (B + Avgr1))

(Bt+1X1 + A1) i+ %2 — oM
1-2 (Bt—|—1)‘1 + At+171)

Ay = Biiihe + A1y Mo = Biiids + Nyis, oo
Atn = Biidasr + Mvin

By =¢(=05+7)+

22



7 Figures and Tables

Figure 1. Conditional Variance
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Note to Figure: In Figure 1, we plot the variance paths from the GARCH(1,1),

the component GARCH, and the FIHNGARCH model.
obtained from the MLE estimates on returns in Table 2.
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Figure 2. Conditional Variance of Variance
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Note to Figure: In Figure 2, we plot the conditional variance of next day’s
variance as implied by the GARCH(1,1), the component GARCH and the FIH-
NGARCH models. The scales are identical across panels to facilitate comparison

across models. The parameters are obtained from the MLE estimates on returns
in Table 2.
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Figure 3. Conditional Leverage Effect
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Note to Figure: In Figure 3, we plot the conditional leverage between the
return and the next-day variance as implied by the component GARCH, and
FIHNGARCH models and refer to it as conditional leverage. The scales are
identical across panels to facilitate comparison across models. The parameters

are obtained from the MLE estimates on returns in Table 2.
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Figure 4a. Term Structure Impulse Response to a Positive Return Shock (z = 2)
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Note to Figure: In Figure 4a, we plot the variance term structure response
to a z; = 2 shock in the GARCH(1,1), the component GARCH model and the
FIHNGARCH model. The parameters are obtained from the MLE estimates in
Table 2. The current variance is set equal to its unconditional value. All values
are normalized by the unconditional variance.
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Figure 4b. Term Structure Impulse Response to A Negative Return Shock (z; = —2)
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Note to Figure: In the Figure 4b, we plot the variance term structure response
to a zz = —2 shock in the component GARCH model, and in the FIHNGARCH
model. The parameters are obtained from the MLE estimates in Table 2. The
current variance is set equal to the unconditional value. All values are normalized
by the unconditional variance.
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Figure 5. Term Structure Impulse Response to a Positive Return Shock (z; = 2) under
Different Values of d
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Different Models
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Note to Figure: In Figure 5. we plot the variance term structure impulse re-
sponse to a shock z; = 2 in the FIHNGARCH model by varying d, while keeping
all other MLE parameters unchanged as in Table 2. In Figure 6. we plot the
variance term structure impulse response to a shock z; = 2 for three different
GARCH models. All values are normalized by the unconditional variance. The
parameters are obtained from the MLE estimates in Table 2. The current vari-
ance is set equal to the unconditional value. All values are normalized by the
unconditional variance.

28



Figure 7. Weekly Average Dollar Bias
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Note to Figure: We plot the average weekly RMSE (modeled prices less mar-
ket prices) for the GARCH(1,1), the component GARCH, and the FIHNGARCH
during the option data sample (1990-1995). The parameters are obtained from
the MLE estimates on returns in Table 2
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Figure 8a. The Cumulative 30-day Ahead Forecasted Conditional Variance
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Note to Figure: In panel a, we plot the cumulative 30-day ahead forecasted
variance paths from the GARCH(1,1), the component GARCH and the FTHN-
GARCH model. The parameters are obtained from the MLE estimates on returns
in Table 2. In Panel b, we plot the VIX index from the CBOE for comparison.
The scales are identical across panels to facilitate comparison across models.
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Figure 9. Weekly Average Dollar RMSE
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Note to Figure: We plot the average weekly bias (modeled prices less market
prices) for the component GARCH and FIHNGARCH during the option data
sample (1990-1995). The parameters are obtained from the MLE estimates on
returns in Table 2.
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varying d and 7, keeping other MLE estimates unchanged as in Table 2
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Table 1: S&P 500 Index Call Option Data (1990-1995)

Panel A. Number of Call Option Contracts

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 101 1,884 1,931 1,769 5,685
0.975<S/X<1.00 283 1,272 706 477 2,738
1.00<S/X<1.025 300 1,212 726 526 2,764
1.025<S/X<1.05 261 1,167 654 409 2,491
1.05<S/X<1.075 245 1,039 582 390 2,256
1.075<S/X 549 2,345 1,679 1,245 5,818
All 1,739 8,919 6,278 4,816 21,752

Panel B. Average Call Price

DTM<20  20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.88 2.30 6.25 11.94 6.62
0.975<S/X<1.00 2.29 6.83 15.19 27.50 12.12
1.00<S/X<1.025 8.35 13.60 22.48 34.41 19.32
1.025<S/X<1.05 17.57 22.00 30.11 42.14 26.97
1.05<S/X<1.075 27.11 30.84 38.14 48.83 35.43
1.075<S/X 20.67 92.79 58.99 68.34 27.70
All 24.32 23.66 28.68 36.07 27.91

Panel C. Average Implied Volatility from Call Options

DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

S/X<0.975 0.1625 0.1269 0.1350 0.1394 0.1342
0.975<S/X<1.00 0.1308 0.1296 0.1449 0.1562 0.1383
1.00<S/X<1.025 0.1527 0.1459 0.1558 0.1606 0.1520
1.025<S/X<1.05 0.1915 0.1647 0.1665 0.1656 0.1681
1.05<S/X<1.075 0.2433 0.1828 0.1775 0.1739 0.1865
1.075<S/X 0.3897 0.2356 0.1961 0.1868 0.2283
All 0.2434 0.1703 0.1622 0.1607 0.1717

Notes to Table: We use European call options on the S&P 500 index. The prices are taken from
quotes within 30 minutes from closing on each Wednesday during the January 1, 1990 to
December 31, 1995 period. The moneyness and maturity filters used by Bakshi, Cao and Chen
(1997) are applied here as well. The implied volatilities are calculated using the Black-Scholes
formula.



Table 2: Panel a. MLE Estimates and Properties
Sample: Daily Returns, 1966-2001

GARCH(1,1) Component GARCH FIHNGARCH
Parameter Estimate Std. Error Parameter Estimate Std. Error Parameter Estimate  Std. Error
b 0.977 0.012 VZ; 7.659E-01 0.163 yis 6.636E-01 3.414E-07
a 3.210E-06 2.810E-06 a 1.770E-06 1.110E-06 d 2.032E-01 5.778E-04
c 88.192 15.623 Y1 3.129E+02 108.430 71 1.016E+02 1.430E-02
A 1.815 0.224 V2 5.904E+01 30.196 @, 5.355E-01 7.147E-04
0.054 7 1.960E-06 3.720E-07 n 1.945E+00 3.358E-03
P 9.888E-01 0.002
A 1.809E+00 5.26E-01
Annual Vol 0.147 Annual Vol 0.145 Annual Vol 0.145
Vol of Vol 4.574E-06 Vol of Vol 1.329E-05 Vol of Vol 1.700E-05
Leverage -5.662E-04 Leverage -1.339E-03 Leverage -1.481E-03
Ln Likelihood 30059.800 Ln Likelihood 30112.480 Ln Likelihood 30104.500

Notes to Table: We use daily total returns from July 1, 1966 to December 31, 2001 on the S&P 500 index to estimate the three GARCH
models using Maximum Likelihood. Robust standard errors are calculated from the outer product of the gradient at the optimum parameter
values. Annual Vol refers to the annualized unconditional standard deviation as implied by the parameters in each model. Var of Var refers
to the unconditional variance of the conditional variance in each model. For FIGARCH models where the unconditional varaince does not
exist, we use the average of the conditional variance. Leverage refers to the unconditional covariance between the return and the conditional
variance. Ln Likelihood refers to the logarithm of the likelihood at the optimal parameter values.



Table 2: Panel b. RMSE of MLE Estimates
Sample: Option Data, 1990-1995

GARCH(1,1) Component GARCH FIHNGARCH
RMSE(90-95) 2.461 RMSE(90-95) 2.040 RMSE(90-95) 2.787
Normalized 1 Normalized 0.829 Normalized 1.133
RMSE(90 1.920 RMSE(90 1.859 RMSE(90) 2.804
Normalized 1 Normalized 0.968 Normalized 1.461
RMSE (91) 1.608 RMSE (91) 1.630 RMSE (91) 1.871
Normalized 1 Normalized 1.014 Normalized 1.164
RMSE (92) 1.433 RMSE (92) 1.263 RMSE (92) 1.801
Normalized 1 Normalized 0.881 Normalized 1.256
RMSE (93) 2.584 RMSE (93) 2.045 RMSE (93) 2.891
Normalized 1 Normalized 0.791 Normalized 1.119
RMSE (94) 2.786 RMSE (94) 2.245 RMSE (94) 2.852
Normalized 1 Normalized 0.806 Normalized 1.024
RMSE (95) 3.239 RMSE (95) 2559 RMSE (95) 3.583
Normalized 1 Normalized 0.790 Normalized 1.106

Notes to Table: Option RMSE refers to the fit of the models on the 21,752
contracts quoted from 1990 to 1995 in Table 1. The RMSEs are computated at
the MLE in Panel a, Table 1.



Table 3: MLE Estimates
Sample: Daily Returns, 1966-2001

FIGARCH FINGARCH
Parameter Estimate  Std. Error  Parameter Estimate  Std. Error
Y24 6.731E-01 9.989E-02 Y3 7.20E-01  1.81E-02
d 4.424E-01 5.585E-02 o 481E-01 1.83E-02
Q@ 3.487E-01 9.025E-02 y4 5.85E-01  2.84E-02
| 4961E+00 9.785E-01 Q@ 3.80E-01 2.12E-02
w 6.491E-06 8.192E-07 A 4.35160324 1.63E-01
@ 1.23E-12 1.16E-12
Ln Likelihood 30093.000 Ln Likelihood 30143.9

Notes to Table: We use daily total returns from July 1, 1966 to December 31, 2001 on the
S&P 500 index to estimate the two GARCH models using Maximum Likelihood. Robust
standard errors are calculated from the outer product of the gradient at the optimum
parameter values. Ln Likelihood refers to the logarithm of the likelihood at the optimal
parameter values.



Table 4: RMSE and Ratio RMSE by Moneyness and Maturity

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

Panel A. GARCH(1,1)
DTM<20 20<DTM<80 80<DTM<180 DTM>180 All

0.438
0.661
0.597
0.580
0.744
0.758
0.674

1.825
2.059
1.549
1.102
0.931
0.988
1.467

3.305
3.289
2.648
2.043
1.663
1.211
2.544

5.060
4.363
3.676
3.071
2.354
1.697
3.842

Panel B. Ratio of Component to GARCH(1,1) RMSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

DTM<20 20<DTM<80 80<DTM<180 DTM>180

0.766
0.789
0.898
0.977
0.995
0.999
0.947

0.808
0.784
0.774
0.861
1.012
1.046
0.843

0.824
0.771
0.747
0.774
0.881
1.048
0.820

0.849
0.786
0.758
0.744
0.772
0.930
0.829

Panel C. Ratio of FIHNGARCH to GARCH(1,1) RMSE

S/X<0.975
0.975<S/X<1.00
1.00<S/X<1.025
1.025<S/X<1.05
1.05<S/X<1.075

1.075<S/X

All

DTM<20 20<DTM<80 80<DTM<180 DTM>180

1.370
1.750
1.483
1.076
0.921
1.011
1.228

1.449
1.458
1.431
1.342
1.269
1.163
1.402

1.180
1.157
1.169
1.198
1.283
1.391
1.194

1.003
0.958
0.914
0.962
1.069
1.329
1.008

3.310
2.633
2.139
1.618
1.346
1.182
2.240

All
0.833
0.781
0.764
0.800
0.896
1.008
0.833

All
1.145
1.224
1.178
1.166
1.192
1.272
1.180

Notes to Table: We use the MLE estimates from Table 2 to compute the root

mean squared option valuation error (RMSE) for various moneyness and

maturity bins during 1990-1995. Panel A shows the RMSEs for the
GARCH(1,1) model. Panel B shows the ratio of the Component GARCH MSEs

to the GARCH(1,1) RMSEs from Panel A. Panel C shows the ratio of the

FIHNGARCH RMSEs to the GARCH(1,1) RMSEs.



