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Abstract

In this paper we show that marginal reservation option prices for risk-

averse investors with an existing option portfolio depend on the difference in

portfolio hedging costs with and without the marginal option position. If costs

increase as a result of the transaction, reservation ask (sell) prices are higher

and reservation bid (buy) prices lower; if they decrease reservation ask prices

decrease (bid prices increase), reflecting the cost savings. Optimal portfolio

hedging costs reflect the portfolio’s risk and increase more than proportion-

ally with portfolio size; thus marginal reservation per-option prices decrease

monotonically as the investor’s inventory holdings increase. This provides an

alternative partial explanation for the consistent empirical observation that

prices of covered warrants and other structured products are significantly

higher than the prices of corresponding traded options. The model generates

additional implications for option prices and bid-ask spreads, some consistent

with prior empirical evidence, others requiring further empirical testing.
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1 Introduction

Empirical studies of covered warrants1 have consistently found they trade at

prices higher than those of comparable exchange-traded options. In this paper

we show that the costs incurred by a covered warrant issuer/market-maker

in order to dynamically hedge their warrant position generate reservation

bid and ask warrant prices which are consistent with empirical evidence on

the values and bid-ask spreads of covered warrants. In addition, our model

has wider implications for characteristics of bid and ask prices for structured

products and other traded option-like securities.

Covered warrants are bank-issued vanilla options, generally traded on ex-

changes, where the issuer commits to making a market in the product it

has issued. They represent one of the simplest types of equity-linked struc-

tured product2, which became popular in the U.S. in the 1980s and have

subsequently spread internationally. Markets for covered warrants developed

rapidly in Europe and Asia in the 1990s and there are now active markets

in Germany, Amsterdam, Italy, Switzerland, Sweden, Spain, Luxembourg,

Australia and London (see Bartram & Fehle (2006)).3

Key features which distinguish covered warrants from exchange-traded op-

tions include the fact that they cannot be held short by the retail investors

to whom they are generally issued. Thus issuers have a net short position

at all times. Furthermore, in combination with the issuer’s commitment to

making a market, this means the issuer effectively sets both bid (redemption)

and ask (issue) prices for the warrants, since they take one side of virtually all

transactions in the warrants issued by them4. In contrast, trades on options

exchanges may be made with any of a number of competing market-makers

or directly with another investor. Additionally, terms in covered warrants’

prospectus5 suggest there is either an obligation on the issuer to hedge the

1Studies of other equity-linked structured products have similarly found evidence of systematic

overpricing relative to equivalent traded options.
2Structured products are bank-issued securities incorporating potentially complex derivative

structures sold to retail investors. For more details see e.g. Stoimenov & Wilkens (2005).
3The largest market for covered warrants and other equity-linked structured products is EuWaX.

For descriptions of covered warrant markets see Bartram & Fehle (2004), Horst & Veld (2003),Chan

& Pinder (2000), and Abad & Nieto (2007).
4Bartram & Fehle (2004) note that “discussions with market participants indicate ... that

orders are filled almost exclusively with the issuer’s market maker”.
5Bartram & Fehle (2004, 2006) note “the issuer is obligated (as stated in the prospectus) to

hedge”. Some more recent prospectus e.g. Goldman Sachs (2007) refer explicitly to the issuer’s

2



covered warrants issued or an expectation that such hedging will occur. Fi-

nally, the minimum trade size for covered warrants is generally much smaller

and the maturity of covered warrants is generally longer than exchange-traded

options on the same underlying asset.

Recently, a number of empirical studies have examined covered warrant

markets around the world. Comparison of covered warrant prices with the

prices of corresponding exchange-traded options has consistently shown that

covered warrant prices are higher than those of the corresponding exchange-

traded option (equivalently implied volatilities for covered warrants are higher).6

Most studies also find that bid-ask spreads are lower in covered warrant mar-

kets and that both the bid ask spread and the difference between prices of

covered warrants and equivalent traded options increase with time to matu-

rity.

Potential explanations for the relative overpricing of covered warrants in-

clude a liquidity premium (Chan & Pinder (2000)), investor clienteles (Bar-

tram & Fehle (2004)) and behavioural explanations (Horst & Veld (2003),

Abad & Nieto (2007)). However none of these explanations has found univer-

sal acceptance. For example, whilst Australian covered warrant markets are

more liquid than the corresponding traded options markets, consistent with

warrant prices incorporating a premium for liquidity (or reduction of cost

risk (Chan & Pinder (2000))), other covered warrants markets are not unam-

biguously more liquid than their corresponding traded options market (see

Bartram & Fehle (2004), Abad & Nieto (2007) for more detailed discussions).

Similarly, whilst the relative characteristics of German covered warrant and

traded option markets7 are consistent with investors in warrants having more

speculative motives and being more concerned with round trip transaction

costs than initial ask price levels, the evidence is not fully consistent with

this for e.g. the Spanish covered warrant and option markets (Abad & Nieto

(2007)).

hedging transactions but do not commit to the form these will take.
6Bartram & Fehle (2004, 2006) show this for covered warrant prices quoted on EuWaX compared

to traded option prices on EuReX. Similar results are found for the Australian covered warrant

market and options exchange (Chan & Pinder (2000)), the covered warrant market on Euronext

Amsterdam and Amsterdam options exchange (Horst & Veld (2003)) and the Spanish covered

warrants market and options exchange (Abad & Nieto (2007))
7Higher warrant prices combined with lower bid-ask spreads and lower trade sizes in the warrant

market.
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Moreover, whilst some empirical papers on covered warrants (e.g. Bartram

& Fehle (2004)) acknowledge that issuers will want to hedge, and that there

will be costs associated with this hedging, they do not model these costs or

incorporate them explicitly in their empirical tests. In this paper, we use a

theoretical model to demonstrate how such dynamic hedging costs will affect

the prices above which an issuer is willing to issue more covered warrants, and

below which they are willing to redeem warrants they have already issued (the

issuer’s reservation ask and bid prices respectively) and find results consistent

with the empirical evidence described above for covered warrants and other

structured products issued to retail investors.

Specifically, we build a general model of reservation bid and ask prices8 for

options for investors with an arbitrary portfolio of vanilla options written on

a single underlying asset with a single maturity date who hedges optimally,

thereby incurring transaction costs.9 Reservation prices are particularly rele-

vant to issuers of covered warrants and other structured products because of

the nature of the markets in these products. As argued above, covered war-

rant issuers effectively set both bid and ask prices offered to retail investors,

with potential for direct competition from other covered warrant issuers on

ask prices only.10 Hence reservation values for such issuers should have greater

relevance for the bid and ask prices they set than for options market-makers,

who need to take more account of direct competitive influences. Moreover,

hedging of covered warrant positions is either obligatory or expected, and will

necessarily incur costs, which should be incorporated in the bid and ask prices

offered.

We then apply this model specifically to covered warrants by taking into

account their primary feature: that issuers always have a net short position in

8The reservation ask price per option represents the price at which the investor is indifferent

between writing a number of such options and receiving that price per option, or keeping his

portfolio unchanged. Similarly the reservation bid price per option represent the price at which

the investor is indifferent between buying a number of such options at that price, or keeping his

portfolio unchanged.
9We summarise the literature on theoretical models valuing options in the presence of transac-

tion costs incorporating optimal hedging strategies in section 2.
10Since warrants from different issuers are not exchangeable, retail investors can generally sell

their warrants only back to the original issuer. Thus competition on bid prices is only indirect,

through the impact on original choice of issuer. Additionally issuers have no obligation to issue

covered warrants with a specific type or underlying asset, so there may not be competition from

an identical covered warrant issue on ask prices.
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the covered warrants. This allows us to show specifically that both reservation

bid and ask prices for covered warrants are strictly greater than the Black-

Scholes value and to draw other specific implications for covered warrant and

structured product prices. Finally, we compare the implications of the model

with the findings of prior empirical studies on covered warrants and bid-ask

spreads for options in general.

We find we can split reservation values for options into four components:

the Black-Scholes value and the certainty equivalent values of the initial, final

and lifetime optimal hedging costs. Initial and final costs represent one-off

transactions and both depend on the Delta. Lifetime costs represent the sum

of costs from many (infinitesimally) small transactions in order to maintain

the optimal hedging strategy during the lifetime of the option and depend

on a fractional power of the option portfolio’s Gamma, integrated over the

remaining life of the option.

Mid-reservation prices differ from the Black-Scholes value, and the differ-

ence is monotonically related to the magnitude of the Gamma of the investor’s

(market-maker’s) existing portfolio. For portfolios of vanilla options, the dif-

ference between mid prices and Black-Scholes prices is principally related to

the net size of the portfolio, with higher mid-prices for short positions and

lower mid-prices for long positions. Since issuers of covered warrants, who

quote prices to sell (ask) and buy back (bid) the warrants, generally have

a potentially sizeable net short position, whereas market-makers in options

markets will generally try to reduce the net size of their option portfolios,

this is consistent with the empirical evidence that covered warrant prices are

generally higher than corresponding prices in traded options markets.

For covered warrants and structured products, the issuer always holds a

net short position, so the mid-price is always strictly greater than the Black-

Scholes price11 and the difference between them increases with the net abso-

lute size of the issuer’s portfolio, though at a decreasing rate. This implies

the difference should decrease if traded options are available and are used by

the issuer for hedging purposes to decrease his overall net position. To date

there is unfortunately no empirical evidence on this issue.

The difference has two components, one relating to initial/final costs and

proportional to the asset price multiplied by the Delta, and the other to life-

11Equivalently, the implied volatility from covered warrants is always strictly greater than the

implied volatility from the Black-Scholes price
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time costs of dynamic hedging. Whilst the first is generally independent of the

existing portfolio,12 the second depends nonlinearly on the Gamma of the ex-

isting portfolio as well as the marginal change in the Gamma and increments

through time. Thus controlling for the initial/final costs, the difference above

the Black-Scholes value increases with time to maturity. Covered warrant

studies have found significant positive relationships between time to maturity

and the ratio of ask prices in the covered warrant market to corresponding

traded option prices (Bartram & Fehle (2004)) and to the relative price dif-

ference between corresponding covered warrants and traded options (Abad &

Nieto (2007)), consistent with this.

The model also has implications for bid-ask spreads for options in general

and covered warrants in particular. Firstly, it predicts a bid-ask spread com-

prised of two strictly positive components: again one relating to initial/final

costs and proportional to the marginal Delta, and the other to lifetime costs

and a nonlinear function of the Gamma during the life of the option. This

second component increases with the lifetime of the option and also increases

with the quote depth (the number of options for which the bid or ask quote

is valid). Hence controlling for Delta, absolute bid-ask spreads13 in options

markets should increase with the bid-ask spread in the underlying market,

the quote depth, time to maturity and the per-option Gamma and should

decrease as the net magnitude of the investor’s position in options increases.

Empirical evidence14 generally supports the existence of both initial and life-

time or bandwidth cost components and is consistent with comparitive static

results, althouth the model’s predictions with respect to the quote depth and

inventory size have not been addressed specifically inthe existing empirical

literature.

The underlying intuition for these results relies on two points: firstly that

the reservation value of a portfolio of hedged options (or warrants) incorpo-

rates the certainty equivalent value of the transaction costs incurred in hedging

the portfolio optimally during its lifetime and secondly that the reservation

value of a marginal option position to an investor with an existing option port-

folio is given by the difference between the reservation value of the portfolio

12This is true providing the Deltas of the porfolio before and after the trade have the same sign

for all S.
13Numerical simulations show proportional options bid-ask spreads decrease with moneyness

and time to maturity, consistent with empirical findings.
14See section 3.2 for more detailed discussion.
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including the marginal option position (incorporating the transaction costs

involved in hedging this new portfolio optimally) and the reservation value

of the optimally hedged existing portfolio.15 We also need to distinguish be-

tween the marginal reservation value, which can be either positive or negative

(for long or short marginal option positions respectively) and the marginal

reservation price per option,16 which is always positive.

Transaction costs always reduce the reservation value of a portfolio of

options. Thus, for an investor with no existing option holdings, transaction

costs decrease the (maximum) price the investor is willing to pay for a long

option position and increase the (minimum) price they are willing to accept

to take a short position. If the investor already has a portfolio of options on

the underlying asset, the effect of transaction costs on the value they place on

a change in their portfolio depends on the change in the certainty equivalent

value of the transaction costs involved in the optimal hedging. If the costs of

hedging the new portfolio are greater than the costs of hedging the existing

portfolio (as above for the investor with no existing portfolio), transaction

costs reduce the marginal value of the change in the portfolio, decreasing the

maximum purchase price per incremental long option bought and increasing

the minimum writing price per incremental option sold short. If, however,

the costs of hedging the new portfolio are lower than the costs of hedging

the existing portfolio (for example, on liquidating the option portfolio, so the

new portfolio incurs zero hedging costs), the effect of transaction costs is to

increase the marginal value of the change in the portfolio, because of the

effective saving of transaction costs. This increases the maximum purchase

price per incremental long option bought and decreases the minimum writing

price per incremental option sold short.

Since the incremental future transaction costs saved by liquidating an

option portfolio equal the future costs incurred in hedging the portfolio if it is

retained, ignoring initial costs17 the marginal reservation price for purchasing

n options for an investor who has an existing holding of −n identical options (n

options held short) is the same as the marginal reservation price for writing

n such options for an investor with zero initial holdings, i.e. greater than

15Note reservation values are non-linear so marginal values depend on the investor’s existing

portfolio.
16The marginal reservation price per option is given by the marginal reservation value of the

option position divided by the number of options in the marginal portfolio.
17The effect of initial costs will be incorporated fully in section 2
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the perfect market price. The investor with zero initial holdings requires a

minimum price greater than the perfect market price in order to compensate

for the future transaction costs involved in hedging the short position they are

entering into; the investor with an existing short position is willing to pay up

to a maximum price which is greater than the perfect market price because

of the saving in future transaction costs the deal will bring. Writing V (n|N)

for the marginal reservation price per option for an increment of n options for

an investor with an existing portfolio of N identical options and V BS for the

Black-Scholes price of the option, we thus have

V (−m|0) > V BS > V (m|0) ∀m > 0

and

V (m| − N) > V BS > V (−m|N) ∀N ≥ m > 0

The leading order component of the effect of transcation costs on option

portfolio values depends on a fractional power of the magnitude of the option

portfolio’s Gamma. These lifetime costs will increase with a change in the

option portfolio if the Gamma of the marginal option position has the same

sign as the Gamma of the existing option portfolio. In this case, overall costs

will increase, decreasing the reservation value of the marginal option position.

On the other hand, if the Gamma of the marginal option position has the

opposite sign to the Gamma of the existing option portfolio, then including

the marginal option position in the investor’s portfolio reduces the magnitude

of the Gamma and thus reduces costs, increasing the reservation value of the

marginal option position. Thus the sign of the effect of transaction costs

on the value of a marginal option position is determined by the relationship

between the signs of the Gamma of the existing portfolio ΓP , and of the

marginal option position, ΓQ:

Issuers of covered warrants always have a net short position, so the Gamma

of their existing portfolio is always negative ΓP < 0. Thus if the issuer

issues additional warrants (i.e. increases their short position), the Gamma of

the additional position has the same sign. The transaction costs involved in

hedging the new portfolio are greater than the costs in hedging the existing

portfolio; thus the issuer requires a minimum price strictly greater than the

perfect market value in order to compensate them for these additional costs18.

18The effect of transaction costs on the value to the investor of the marginal short transaction in

warrants is to decrease the value of the transaction. Since the value of a short position is negative,

this increases the price per warrant.
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If the issuer buys back some of the warrants they have already issued (i.e.

decreases the magnitude of their short position), the Gamma of the additional

position has the opposite sign to the existing Gamma. Overall transaction

costs are reduced by the repurchase; the maximum price the issuer is willing

to pay reflects this saving and is thus also greater than the perfect market

price19. Thus both ask reservation prices (the price at which the issuer is

willing to write an additional covered warrant) and bid reservation prices

(the price at which the issuer is willing to buy back a covered warrant already

issued) are strictly greater than the perfect market price due to transaction

costs of optimal hedging.

This argument is shown more formally in section 2, which considers the

mid reservation price and the reservation bid-ask spread rather than reserva-

tion bid and ask prices explicitly. The leading order non-linear component of

prices arising from transaction costs, due to costs of lifetime optimal dynamic

hedging, affects both the mid prices and bid-ask spreads. Lifetime costs for

an option portfolio depend on the magnitude of its Gamma to the power 4/3,

i.e. as the magnitude of the portfolio increases, lifetime costs also increase at

an increasing rate. Hence the value of a marginal change in the portfolio also

increases with the magnitude of the portfolio’s Gamma (it depends to leading

order on the magnitude of the portfolio’s Gamma to the power 1/3), whereas

the bid-ask spread increases with the magnitude of the marginal Gamma but

decreases with the magnitude of the Gamma of the original portfolio. As the

quote depth increases, it has a relatively larger effect and the size of the exist-

ing portfolio has a relatively smaller effect on the overall size and Gamma of

the new portfolio. The mid price for a marginal option position also incorpo-

rates the initial costs incurred for any change in the option portfolio, i.e. the

change in the number of the hedging asset, which to leading order is propor-

tional to the magnitude of the Delta of the marginal option position, whereas

the bid-ask spread includes twice the difference in expected final costs, again

proportional to the magnitude of the Delta of the marginal option position

to leading order.20 Initial costs are incurred whether the marginal transac-

tion is a purchase or sale and are thus included in the mid price; in contrast

19The effect of transaction costs on the value of the marginal long transaction is to increase the

value of the position, increasing the reservation price per warrant.
20This is becuase expected final costs proportional to S|∆| have current certainty equivalent

value also proportional to S|∆| providing the Deltas before and after the transaction have the

same sign for all asset prices.
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expected final costs may be greater, if the transaction increases the overall ab-

solute Delta, or there may be a cost saving if the transaction reduces absolute

Delta, so expected final costs increase the bid-ask spread.

Section 3 relates the implications of the model for covered warrant prices

and for bid-ask spreads for options in general to prior empirical evidence

Section 4 concludes.

2 Model

In this section we first find the value of a marginal option position to an

investor with an existing portfolio of options on the same underlying asset.

The investor is assumed to hedge his option portfolio dynamically using the

underlying asset in order to maximise his expected utility (net of the costs

the dynamic hedging strategy incurs). Initially in section 2.2 we consider only

portfolios of different numbers of options of a single type (European call or

put with a single strike price and maturity); later in section 2.4 we extend

our analysis to cover more general portfolios of European vanilla options on

the same asset. We start in section 2.1 with a recap of the value of a general

portfolio of options in the presence of transaction costs.

2.1 Setting: transaction cost models

There is a large and growing literature on the valuation of options incorpo-

rating transaction costs. This can be divided in to papers which assume an

exogenous hedging strategy and value the option given that hedging strategy

and a valuation methodology21 and papers which derive an endogenous opti-

mal hedging strategy and resulting option value by maximising the investor’s

utility22. Whilst utility-based models are more conceptually appealing, they

are also generally more complicated and require computationally intensive

21For example Leland (1985), the first paper to recognise that transaction costs necessitated a

change from the continuous Black-Scholes hedging strategy, assumed hedging occurs at fixed points

in time. Other papers incorporating exogenous hedging strategies include Bensaid, Lesne, Pages

& Scheinkman (1992), Boyle & Vorst (1992), Hoggard, Whalley & Wilmott (1992), Edirisinghe,

Naik & Uppal (1993), Henrotte (1993), Whalley & Wilmott (1993), Grannan & Swindle (1996)

and Avellaneda & Paras (1996).
22This strand of the literature was started by Hodges & Neuberger (1989). Other papers using

utility-based methods include Davis, Panas & Zariphopoulou (1993), Hodges & Clewlow (1997),

Whalley & Wilmott (1997, 1999), Damgaard (2003) and Zakamouline (2006).
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numerical solution. However Whalley & Wilmott (1997, 1999) provided an

asymptotic expansion solution to the generally-used exponential utility23 form

of the problem which is considerably easier to solve. We thus use this formu-

lation in the remainder of the paper and summarise the set-up of their model

and their main results below. Note however that apart from the assumption

of small transaction costs, the basic formulation of the problem is the same as

that in Hodges & Neuberger (1989) and most subsequent utility-based papers;

the particular formulation allows us to derive simple formulae which illustrate

explicitly the effects we describe rather than relying exclusively on numerical

simulations.

An investor holds a portfolio of options with payoff ΛP and maturity T

written on an underlying asset which follows Geometric Brownian Motion

dS = µSdt + σSdz

The investor hedges optimally using the underlying asset, taking into account

the transaction costs associated with the optimal hedging strategy, in order

to maximise his expected utility of wealth at some date after maturity of

the option portfolio. We consider only transaction costs proportional to the

amount traded,24

k(S, dy) = kS|dy|,

where k is the percentage transaction cost fee, including the proportional

component of the underlying asset’s bid-ask spread, S is the value of one unit

of the underlying asset and dy is the change in the number of the underlying

asset held in the issuer’s portfolio.

Assuming the investor has an exponential utility function with absolute

risk aversion γ and that the level of transaction costs is small, k ≪ 1, Whalley

& Wilmott (1997) and Whalley (1998)25 showed that

23Hodges & Neuberger (1989) used exponential utility to help reduce the dimensionality of the

problem, since in this case the option value and hedging strategy are independent of the investor’s

overall wealth. However the resulting problem is still three-dimensional and requires numerical

calculation of two free boundaries to determine the hedging strategy and hence option value.
24Whalley & Wilmott (1999) showed the hedging strategy can be characterised explicitly when

only one type of costs (fixed or proportional) are considered, but must be found as the root of a

ninth order polynomial function when both fixed and proportional costs are present. As the size

of an option portfolio increases, proportional costs become increasingly important in comparison

to fixed costs in determining both the hedging strategy and the reservation price.
25Whalley & Wilmott (1997) showed the leading order correction was Pb(S, t) and also included
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Proposition 1 (Whalley & Wilmott (1997), Whalley (1998))

The reservation value of an optimally hedged option portfolio with final

payoff ΛP (S, T ) held by such an investor can be approximated by

P (ΛP ) ≈ PBS(S, t) + Pb(S, t) + Pf (S, t) (1)

where

1. PBS(S, t) is the Black-Scholes value associated with final payoff ΛP (S, T ),

2. Pb satisfies

Pbt
+ rSPbS

+
σ2S2

2
PbSS

− rPb =
γ̂(t)σ2S2

2

(

H∗
2

P − H∗
2

0

)

(2)

s.t. Pb(S, T ) = 0 where γ̂ ≡ γe−r(T−t) and H∗

P (S, t), H∗

0 (S, t) represent

the optimal ‘hedging semi-bandwidths’ associated with an option portfolio

with final payoff ΛP and with no option holdings respectively defined

below

3. Pf satisfies

Pft
+ rSPfS

+
σ2S2

2
PfSS

− rPf = 0

s.t. Pf (S, T ) = −k(|SPBS
S (S, T ) + ξ(T )| − |ξ(T )|) where ξ(t) = λ

γ̂(t)σ .

The optimal hedging strategy is to transact only when the actual number of

the underlying asset held differs by more than the ‘hedging semi-bandwidth’,

H∗

P , from the ideal number, y∗P (S, t), and to trade the minimum required in

order to bring the actual number back within this no-transaction band

[y∗P − H∗

P , y∗P + H∗

P ]

where

y∗P (S, t) = PBS
S +

ξ(t)

S
(3)

H∗

P (S, t) =

(

3kS

2γ̂
(t)

)
1

3

∣

∣

∣

∣

∂y∗P
∂S

∣

∣

∣

∣

2

3

=

(

3kS

2γ̂

)
1

3

∣

∣

∣

∣

PBS
SS −

ξ

S2

∣

∣

∣

∣

2

3

(4)

The optimal hedging semi-bandwidth, H∗

P , is the outcome of the tradeoff

between the reduction in risk or hedging error resulting from trading and the

transaction costs incurred in doing so26 and depends on the Gamma of the

inital costs (see later). Whalley (1998) extended the expansion to higher orders; the next term is

Pf (S, t).
26See Rogers (2000) for a heuristic derivation of the size of the no-transction band
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option portfolio being hedged, ΓP ≡ PBS
SS , to a fractional power.27 So Pb,

which represents the leading order component of portfolio value capturing

the effects of ‘bandwidth hedging’ (transacting in order to remain within the

no-transaction band) during the lifetime of the option portfolio reflects the

optimal residual risk or hedging error the investor chooses to bear as the

outcome of this tradeoff. It thus represents the certainty equivalent cost of

bandwidth hedging, incorporating the effects of both transaction costs and

residual risk.

The fractional powers in the equations for H∗

P and hence the certainty

equivalent cost of bandwidth hedging, Pb, mean the hedging strategy and

overall option value is nonlinear. Hence option values are not additive and

portfolios must be valued and hedged as a whole. This also means the value of

a given option position differs depending on the composition of the investor’s

existing portfolio, since they value it at its marginal reservation value, i.e.

the difference in the value of their portfolio overall due to the change in the

portfolio’s composition.2829

Corollary 1 The marginal reservation value of an option portfolio with final

payoff ΛQ(S, T ) to an investor with an existing portfolio of options on the

same underlying asset with final payoff ΛP (S, T ) is given by

Q(ΛQ|ΛP ) ≈ QBS(S, t) + Qb(S, t) + Qf (S, t) + Qi(S, t) (5)

where

1. QBS(S, t) is the Black-Scholes value associated with final payoff ΛQ(S, T ),

2. Qb satisfies

Qbt
+ rSQbS

+
σ2S2

2
QbSS

− rQb =
γ̂(t)σ2S2

2

(

H∗
2

P+Q − H∗
2

P

)

(6)

s.t. Qb(S, T ) = 0 where H∗

P+Q, H∗

P are the semi-bandwidths associated

with portfolios with final payoffs ΛP + ΛQ and ΛP respectively.

3. Qf satisfies

Qft
+ rSQfS

+
σ2S2

2
QfSS

− rQf = 0 (7)

27Recall the hedging error due to discrete rebalancing is a function of the portfolio’s Gamma

(Boyle & Emanuel (1980)).
28Relevant proofs are in an appendix available from the author on request.
29This concept was used by Whalley & Wilmott (1999), who derived the leading order effect on

the marginal value given an existing option portfolio in the case of a single marginal option. They

did not consider initial or final costs and did not derive reservation bid and ask prices.
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s.t. Qf (S, T ) = −k(|S(PBS
S (S, T )+QBS

S (S, T ))+ ξ|− |SPBS
S (S, T )+ ξ|)

4. Qi = −kS|QBS
S |

The marginal reservation value includes the effect of initial as well as life-

time (bandwidth) and final costs, since it represents the cash amount for

which the investor is indifferent between doing nothing (keeping their exist-

ing portfolio) or paying/receiving the marginal reservation value in cash and

taking on the new option position as well as their existing portfolio, thereby

incurring one-off costs Qi associated with changing the number of the under-

lying asset initially as well as future costs represented by Qb and Qf . If the

reservation value is negative, the investor requires payment of at least that

amount in order to be willing to alter their option portfolio; if it is positive,

they are willing to pay up to the marginal reservation value in order to make

the change.

To leading order, the initial change in the number of the underlying asset

held is given by the (Black-Scholes) Delta of the marginal option portfolio,

QBS
S , so initial costs are simply the proportional transaction cost, k, multiplied

by the value of the transaction S|QBS
S |.

If sgn[S(PBS
S (S, T )+QBS

S (S, T ))+ξ(T )] = sgn[SPBS
S (S, T )+ξ(T )]∀S then

the final condition for Qf reduces to Qf (S, T ) = −sgn[S(PBS
S + QBS

S (S, T ) +

ξ(T )]kSQBS
S and there is an explicit solution for Qf . Final costs are then also

a multiple of kSQBS
S :

Qf (S, t) = −sgn[S(PBS
S (S, T ) + QBS

S (S, T ))) + ξ(T )]kSQBS
S (S, t).

Thus whereas initial costs are always negative, the effect of final costs can be

either positive or negative depending on whether sgn[QBS
S (S, t)(SPBS

S (S, T )+

ξ(T ))] is negative or positive. For example, if P represents N long call options,

each with Black-Scholes value CBS > 0 and Q is m < N short identical

options, then Qf (S, t|ΛP ) = kmSCBS
S > 0, representing the saving in final

costs as a result of the reduction in the overall magnitude of the position.

The bandwidth cost term for the marginal reservation value, Qb, reflecting

costs incurred over the lifetime of the option portfolio, can also be either posi-

tive or negative, as it represents the difference between the certainty equivalent

value of the bandwidth costs incurred in hedging the new portfolio and those

of bandwidth hedging the existing portfolio. Thus whilst these lifetime costs

reduce the value of each portfolio (Pb ≤ 0 ∀ΛP ), the change in the portfo-

lio’s composition can either increase or reduce the magnitude of these costs,
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depending on the relative magnitude of ΓP +ΓQ−ξ/S2 and ΓP −ξ/S2. Specif-

ically, if sgn(ΓQ) 6= sgn(ΓP − ξ/S2) ∀(S, t), (e.g. if P represents a holding of

N short call options and Q represents a portfolio of m < N long identical op-

tions) incorporating the new option position will reduce lifetime bandwidth

hedging costs so Qb will be positive. We shall investigate these effects in more

detail for specific cases in sections 2.2 and ??.

In order to simplify the expositions below, we may make the assumptions

hereafter that the existing option portfolio P is large relative to the marginal

option portfolio, Q and the optimal holding of the underlying asset in the

absence of any option position, ξ/S. This ensures we concentrate on effects

due to option hedging rather than optimal investment. Specifically, we may

assume

Assumption 1

|ΓP + ΓQ| ≫
ξ

S2
and |ΓP | ≫ |ΓQ| ∀S, t

where ΓP , ΓQ are the Black-Scholes Gammas for the option portfolios with

payoffs ΛP , ΛQ respectively.

Assumption 2

|∆P + ∆Q| ≫
ξ

S
and |∆P | ≫ |∆Q| ∀S, t

where ∆P , ∆Q are the Black-Scholes Deltas for the option portfolios with

payoffs ΛP , ΛQ respectively.

2.2 Special case: portfolios of a single option type

To illustrate the main ideas in the simplest fashion, we initially consider the

special case where both P and Q consist of positions of various magnitudes in

a single European vanilla option. Specifically, for this section we assume

ΛP = NΛV , ΛQ = nΛV , |n| ≪ |N |

where ΛV represents the payoff to a single long European vanilla option.

Q(nΛV |ΛP ) represents the marginal reservation value of an incremental

option position and can be positive (if n is positive, so the incremental trans-

action for the investor is to buy options) or negative (if n is negative, so the

marginal transaction for the investor involves writing or selling options). The

marginal reservation prices quoted are however always positive. We thus de-

fine the marginal bid reservation price per option for a marginal purchase of
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m > 0 options to an investor with an existing position of N identical options

as

V bid(m|N) =
Q(mΛV |NΛV )

m
> 0 (8)

and the marginal ask reservation price per option for taking a short position

in m > 0 options (so ΛQ = −mΛV ) for an investor with an existing position

of N identical options as

V ask(m|N) = −
Q(−mΛV |NΛV )

m
> 0 (9)

It is easier to work with the reservation mid price, V mid(m|N), and the

reservation bid-ask spread, B(m|N) (for a quote depth of m > 0 and an

existing position of N options) rather than marginal bid and ask reservation

prices directly. These are defined as

V mid(m|N) =
V bid(m|N) + V ask(m|N)

2
(10)

B(m|N) = V ask(m|N) − V bid(m|N) (11)

Then expanding (5) in |m/N | ≪ 1 and taking leading order terms, we find

Proposition 2 The reservation mid price per option for a quote depth of m

for an investor with an existing position of N identical options is to leading

order given by

V mid(m|N) ≈ V BS −
4

3
sgn(N)|N |

1

3 k
2

3 Lb(|Γ|) − sgn(N)kS|∆| (12)

where Lb(|Γ|) > 0 satisfies

Lbt
+ rSLbS

+
σ2S2

2
LbSS

− rLb = −
γ̂(t)σ2S2

2

(

3S

2γ̂(t)

)
2

3

|Γ|
4

3 (13)

s.t. Lb(S, T ) = 0 and Γ = V BS
SS and ∆ = V BS

S are the Black-Scholes Gamma

and Delta of a single long option respectively.

The reservation bid-ask spread per option for a quote depth of m for an

investor with an existing position of N identical options is to leading order

given by

B(m|N) ≈
4

9
m|N |−

2

3 k
2

3 Lb(|Γ|) + 2kS|∆| (14)

16



2.3 Discussion - empirical implications

These simple expressions for the reservation mid price and bid-ask spread al-

low us to draw inferences about the determinants of the signs and magnitudes

of each. These are summarised in Corollaries 2 and 3 below:

Corollary 2 1. The reservation mid price per option for a quote depth

of m for an investor with an existing position of N identical options,

V mid(m|N), is lower than the Black-Scholes price if the investor already

has a long position, and is greater than the Black-Scholes price if the

investor’s existing position is a net short one

sgn[V mid(m|N) − V BS ] = −sgn[N ]

i.e. V mid(m|N) > V BS if N < 0 and V mid(m|N) < V BS if N > 0.

2. The magnitude of the difference between the reservation mid price and

the Black-Scholes price increases with the size of the investor’s existing

portfolio and is independent of the quote depth

∂|V mid(m|N) − V BS |

∂|N |
> 0,

∂|V mid(m|N) − V BS |

∂m
= 0

3.

∂Lb(|Γ|)

∂(T − t)
> 0

so the magnitude of the lifetime or bandwidth cost component of the

reservation mid price increases with the option’s remaining life.

Corollary 3 1. The reservation bid ask spread per option for a quote depth

of m for an investor with an existing position of N identical options,

B(m|N) is strictly positive for all m, N :

B(m|N) > 0 ∀(S, t)

2. The magnitude of the bid ask spread increases with the quote depth and

decreases with the magnitude of the investor’s existing portfolio and is

independent of the

∂B(m|N)

∂|N |
< 0,

∂B(m|N)

∂m
> 0
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3.

∂Lb(|Γ|)

∂(T − t)
> 0

so the magnitude of the lifetime or bandwidth cost component of the bid

ask spread increases with the option’s remaining life.

Figure 1 shows how the difference between marginal mid reservation price

and the Black-Scholes price varies with the number of options the investor

already owns. The top graph shows how the at-the-money bandwidth com-

ponent varies with N : reservation mid prices decrease monotonically with

the number of options in the investor’s existing portfolio. The bottom graph

shows how this, combined with the initial cost component, varies with the

moneyness of a call option: the number of options in the investor’s existing

portfolio affects the bandwidth component only, and thus has greatest impact

close to the money.

Figure 2 shows how the the difference between the reservation mid price

and the Black-Scholes price per option (left graphs) and the per-option bid-

ask spread (right graphs) are affected by time to maturity. The lifetime or

bandwidth terms are shown separately in the top graphs. These increase

monotonically with time to maturity, confirming the results in corollaries 2

and 3. They are combined with the final or initial cost terms in the lower

graphs to give the overall effect. However, since the effect of time to maturity

on the option’s delta can be either positive or negative depending on the

stock price, the overall effect of time to maturity is ambiguous. Note the mid

reservation price is greater than the Black-Scholes price in these figures (this

is also the case for the bottom graph in Figure 1 and Figure 3), reflecting the

assumption of an existing net short position. These are thus appropriate for

covered warrants issuers.

Figure 3 shows the effect of asset volatility on the difference between the

reservation mid price and Black-Scholes and the per-option bid-ask spread.

Again the lifetime or bandwidth terms, in the top graphs, increase monoton-

ically with the volatility of the underlying asset, but no unambiguous state-

ment is possible for the combined terms, as it depends on the relative sizes of

the lifetime and initial/final cost terms and also the moneyness level. How-

ever, controlling for the initial/final cost level S|∆| (i.e. isolating the lifetime

or bandwidth components) the effect of optimal hedging costs has greater ef-

fect on both mid prices and bid-ask spreads, the longer the time to maturity

and the higher the asset volatility.

18



2.4 Generalisations and robustness

In this section we present the more general model for a portfolio of European

vanilla options with the same maturity date on the same underlying asset

without any assumptions on the relative magnitude of portfolio terms. We

then specialise under assumptions 1 and 2) to provide approximations when

the marginal portfolio change is relatively small. The latter generalises the

formulae from section 2.2 whilst retaining some simplifications.

2.4.1 Results for general option portfolio holdings

The generalised form of the reservation mid-prices and bid-ask spread for a

quote to buy or sell m European vanilla options, each with payoff ΛW at

maturity T is given by

Proposition 3 The reservation mid price per option for a quote depth of m

options, each with payoff ΛW at maturity T for an investor with an existing

position of options on the same underlying asset with payoff ΛP and maturity

T is to leading order given by

Wmid(m|ΛP ) ≈ WBS − Wb(m|ΛP ) − Wf (m|ΛP ) (15)

where WBS is the Black-Scholes value of an option with payoff ΛW , Wb(m|ΛP )

satisfies

Wbt
+ rSWbS

+
σ2S2

2
WbSS

− rWb = (16)

−
γ̂(t)σ2S2

4m

(

3kS

2γ̂(t)

)
2

3

(

∣

∣

∣

∣

ΓP + mΓW −
ξ

S2

∣

∣

∣

∣

4

3

−

∣

∣

∣

∣

ΓP − mΓW −
ξ

S2

∣

∣

∣

∣

4

3

)

s.t. Wb(S, T ) = 0

and Wf (m|ΛP ) satisfies

Wft
+ rSWfS

+
σ2S2

2
WfSS

− rWf = 0

s.t. Wf (S, T ) = k
2m (|S(∆P + m∆W ) + ξ| − |S(∆P + m∆W ) + ξ|)

where ΓW = WBS
SS and ∆W = WBS

S are the Black-Scholes Gamma and Delta

of a single long marginal option respectively and ΓP = PBS
SS , ∆P = PBS

S

are the Black-Scholes Gamma and Delta of the existing option portfolio with

Black-Scholes value PBS.

The reservation bid-ask spread per option for a quote depth of m options,

each with payoff ΛW at maturity T for an investor with an existing position
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of of options on the same underlying asset with payoff ΛP and maturity T is

to leading order given by

B(mΛW |ΛP ) ≈ Bb(mΛW |ΛP ) + 2kS|∆W | (17)

where Bb(mΛW |ΛP ) > 0 satisfies

Bbt
+ rSBbS

+
σ2S2

2
BbSS

− rBb =

−
γ̂(t)σ2S2

2m

(

3kS

2γ̂(t)

)
2

3

(

∣

∣

∣

∣

ΓP + mΓW −
ξ

S2

∣

∣

∣

∣

4

3

+

∣

∣

∣

∣

ΓP − mΓW −
ξ

S2

∣

∣

∣

∣

4

3

−2

∣

∣

∣

∣

ΓP −
ξ

S2

∣

∣

∣

∣

4

3

)

(18)

s.t. Bb(S, T ) = 0.

Corollary 4 Under assumptions 1 and 2 the reservation mid price simplifies

to

Wmid(m|ΛP ) ≈ WBS −
4

3
sgn(ΓW ΓP )Wb(|ΓW |, |ΓP |) − sgn(∆W ∆P )kS|∆W |(19)

where Wb(|ΓW |, |ΓP |) > 0 satisfies

Wbt
+ rSWbS

+
σ2S2

2
WbSS

− rWb = −
γ̂(t)σ2S2

2

(

3kS

2γ̂(t)

)
2

3

|ΓW ||ΓP |
1

3

s.t. Wb(S, T ) = 0.

Under assumptions 1 and 2 the reservation bid-ask spread simplifies to

B(m|ΛP ) ≈
4

9
mBb(|ΓW |, |ΓP |) + 2kS|∆W | (20)

where Bb(|ΓW |, |ΓP |) > 0 satisfies

Bbt
+ rSBbS

+
σ2S2

2
BbSS

− rBb = −
γ̂(t)σ2S2

2

(

3kS

2γ̂(t)

)
2

3

|ΓW |2|ΓP |
−

2

3

s.t. Bb(S, T ) = 0.

From (19) and (20) the conclusions of corollaries 2 and 3 continue to hold

in a generalised form. Specifically, the reservation mid price is greater than

the Black-Scholes price if sgn(ΓW ΓP ) = sgn(∆W ∆P ) = −1, i.e. if both

the Gamma and Delta of the marginal option position have the opposite

signs to the Gamma and Delta of the investor’s existing portfolio respectively

and is less than the Black-Scholes price if both Gammas and Deltas have

the same signs sgn(ΓW ΓP ) = sgn(∆W ∆P ) = +1. For vanilla options, and

20



recalling ΓW > 0 since it is the Black-Scholes Gamma of a single long option,

this implies that reservation mid-prices exceed the Black-Scholes price if the

investor’s existing portfolio has a negative Gamma30 and are less than the

Black-Scholes price if the existing Gamma is positive. Also the magnitude of

the difference between the reservation mid-price and the Black-Scholes price

is independent of the quote depth to leading order and increases with the

Gamma of both the new and existing option positions. Similarly, the bid-ask

spread is always positive and increases with the quote depth, and with the

magnitude of the new option’s Delta, Gamma and time to maturity (holding

all else constant) and decreases with the magnitude of the Gamma of the

investor’s existing portfolio.

3 Applications

3.1 Covered warrants

The model presented in section 2 suggests that if prices of covered warrants31

are set by issuers to take into account the cost effects of the issuer’s optimal

hedging strategies,32 then warrant prices will be greater than the perfect mar-

ket value of the warrant, by more the larger the issuer’s warrant portfolio, the

larger the bid-ask spread in the underlying asset market, the larger the initial

costs, or equivalently the larger the proportional cost level and the current

exposure to stock price risk (measured by S|∆|) and, holding the initial cost

30This ensures the bandwidth component of the difference between reservation mid-prices and

Black-Scholes is positive. The condition on the Deltas sgn(∆W ∆P ) = −1, which ensures the

second term is also positive is automatically satisfied if all options are either calls or puts. In fact,

this second term arises from initial costs of changing the hedging portfolio and may in practice be

smaller if the amount of the underlying asset which needs to be traded in order to move to the

edge of the new hedging band is less than the change in the mid-points of the band. If the amount

of the underlying asset held is already within the new band, no transaction would be required and

this term would be zero. Thus in general this is a less important component of the mid reservation

price than the bandwidth component. Thus whilst the initial cost term may in isolated cases lead

to exceptions to this result, these are rare and small in magnitude.
31Note the term ‘covered’ would traditionally imply a constant hedge ratio of 1 per covered

call warrant, in which case the model in this paper would not be relevant. There may be such

obligations in some markets (e.g. Australia), but in other markets there is no obligation in exchange

rules or in prospectuses e.g. Goldman Sachs (2007) to cover in the traditional sense.
32Given covered warrant issuers’ net short positions, issuers’ reservation warrant prices if they

optimally hedge dynamically in the underlying market will be higher than the Black-Scholes value.
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level constant, the larger the volatility of the underlying asset, the absolute

Gamma per option of the issuer’s portfolio and the longer the time to ma-

turity. In this section we briefly review the empirical literature on covered

warrant prices and relate them to these predictions.

A number of papers have investigated the relationship between prices of

covered warrants and those of closely matching or equivalent traded options.

Chan & Pinder (2000) investigated the relative pricing of electronically traded

equity warrants with exchange traded equity options in Australia over the

period January 1997 - June 1998 which spanned the time of a change in

the trading method for equity options. Over the whole period they found

the warrants to be ‘systematically over priced relative to matched options’,

but they also found evidence of a structural change when the option market

began trading electronically which reduced the overpricing significantly. Chan

& Pinder interpret their results as evidence of a liquidity premium: investors

are willing to pay a higher price for a warrant in the relatively more liquid

Australian warrant market than a corresponding exchange traded option.

Horst & Veld (2003)used the implied volatility from comparable long term

call options (traded on the Euronext Derivatives Market of Amsterdam) to

value covered warrants listed on Euronext Amsterdam, part of the Amsterdam

stock exchange during the first five days of trading for issues between January

1999 and December 2001 and found relative overpricing of more than 25% on

average, with 99% of the warrants overvalued on issue. They consider various

possible explanations and suggest that whilst the relative trading costs and

flexibility faced by potential investors in each market can explain some of the

overpricing (for low warrant prices), some of the willingness of investors to buy

more costly warrants has a behavioural explanation: ‘financial institutions

have managed to create an image for call warrants that is different from call

options.’

Bartram & Fehle (2004) examine relative pricing between the German cov-

ered warrants market, EuWax, and the EuRex options exchange during 2000

and found both ask and bid prices on EuWax were consistently and signifi-

cantly higher than comparable ask (bid) prices on EuRex. Furthermore bid

prices differed relatively more than ask prices, so bid-ask spreads on EuWax

were significantly smaller than on EuRex. They suggest a clientele effect,

where covered warrants are held by more speculative investors, who are more

likely to reverse their position before expiry and are thus more concerned with

the bid-ask spread than the initial level of the ask price. The lower bid-ask
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spread in covered warrant markets is thus more importhant than the initially

higher ask price. Using the same data, Bartram & Fehle (2006) further find

that bid-ask spreads on either market were lowered by competition from the

other market.

Abad & Nieto (2007) investigate price differences between the Spanish

covered warrants and traded options markets during 2003. They find that

Spanish warrants are systematically overpriced, to a greater extent than other

studies, and that the data does not fully support either the liquidity or clien-

tele explanations. They also find differences between the level of overpricing

between different issuers, which cannot be explained by liquidity, clientele or

credit risk arguments.

3.1.1 Relative overpricing of warrants

As indicated above, the empirical stuides of covered warrant markets around

the world have consistently found that both ask and bid prices for warrants

issued by banks are significantly higher than the prices of comparable traded

options. For the largest covered warrant market, EuWaX, Bartram & Fehle

(2004) found ask prices were on average 4.7% and bid prices 9.9% higher

than prices for comparable options traded on the EuReX options exchange

during 2000, a statistically significant difference. For the Australian market,

Chan & Pinder found significant median pricing differences of 3 − 4% and

mean pricing differences of 6−7%. Horst & Veld’s results for the Amsterdam

market (relative overpricing of more than 25% on average) are not completely

comparable, as they are measured over only the first five days of trading, but

are of similar magnitude to the Spanish case (Abad & Nieto) which had a

median overpricing of 17% for warrants with similar volumes to those traded

on the options market (and between 19 and 25% median overpricing more

generally).

Several potential explanations for the overpricing have been put forward.

Chan & Pinder’s liquidity premium hypothesis is supported for the Australian

markets, where the covered warrant market is more liquid than the exchange-

traded options market. However, as noted by Bartram & Fehle (2004), the

EuWax covered warrant market generally has lower volume and liquidity than

the corresponding EuRex traded options market, so a liquidity premium would

suggest relative underpricing of warrants, the opposite of what occurs. For

the Spanish case Abad & Nieto find that the relative price difference is larger
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when the bid-ask spread for warrants is relatively smaller, which they inter-

pret as a liquidity effect, but which is also consistent with the model in this

paper (see below). Abad & Nieto also test for Bartram & Fehle (2004)’s

clientele hypothesis and find that whilst characteristics of the Spanish war-

rant market suggest investors are predominantly speculators, bid-ask spreads

in both markets are similar in size, providing only weak grounds to explain

why investors would be willing to pay higher prices to buy warrants rather

than corresponding options. Bartram & Fehle (2004) consider transaction

costs for investors trading on each market and find that whilst these are lower

for warrant trades the difference is very small (less than 1% of the trade

value). Similarly, Horst & Veld’s examination of relative transaction costs

for investors found they were not large enough to explain the relative pricing

difference. Bartram & Fehle (2004) considered the issue of hedging costs for

warrant issuers. They argue that issuers who are also market-makers on the

corresponding options market may face cost advantages in reducing hedging

risk but suggest, without developing a formal model, that whilst this would

decrease bid-ask spreads it will not necessarily change the location of the mid

price.

This paper considers the issuer’s perspective and shows that under opti-

mal hedging both reservation bid and ask prices for an issuer with a net short

position are both necessarily above the perfect market price in order to com-

pensate the issuer for the transaction costs involved in hedging the warrants

they have written. Actual prices quoted by covered warrant issuers may, of

course, differ from the reservation prices we calculate33. However ask prices

should be no lower than (and bid prices no higher than) the calculated reser-

vation ask and bid prices respectively, otherwise the issuer would prefer not

to transact.Since covered warrants can only be held long by retail investors,

holdings (inventory) of the warrant issuer/market-maker will necessarily be

short and is thus likely to be much larger in magnitude than the inventory

position of a market-maker in the options market,34 even if the relative size

per contract is greater in the options market. Options market-makers will

generally prefer to reduce the magnitude of their inventory positions which,

in contrast to covered warrant market-makers/issuers, can be either positive

33Bid and ask quotes could be calculated by assuming some trading intensity along the lines of

Avellaneda & Stoikov (2006). 5[2]. This is beyond the scope of this paper.
34The warrant issuer/market-maker’s inventory holdings represent the total number of warrants

outstanding, in contrast to an options market-maker.
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or negative. Overall therefore we would expect covered warrant issuers’ po-

sitions to be significantly more negative (i.e. have larger |N | with N < 0)

than options market-makers. This drives the prediction that covered warrant

prices are rationally set higher than the price of equivalent traded options in

order to compensate the issuer for their hedging costs and risk.

The model predicts some of the determinants of ‘overpricing’: the mid

price should be higher (relative to Black-Scholes) the larger the magnitude

of the issuer’s net position in warrants and options, the larger the bid-ask

spread in the primary market, (k), the larger the initial costs of setting up

the hedge (proportional to S|∆|) and, controlling for initial costs, the longer

the time to maturity, the larger the magnitude of the portfolio’s Gamma35

and the more risk averse the issuer. Many of these predictions have not

been tested explicitly in prior empirical studies; however we now examine the

correspondence between these and results found in earlier papers.

3.1.2 Determinants of relative overpricing

To our knowledge no study has investigated the effects of the magnitude of

the issuer’s net position in warrants and options directly.

Abad & Neito regress the relative price difference between warrant and

option markets36 on the ratio of the bid-ask spreads in the option market

to those in the warrant market, relative volume in the two markets, time to

maturity and moneyness amongst other characteristics and find that warrants

are more expensive when the bid-ask spread in the warrants market just before

the transaction is smaller. They interpret the bid-ask spread ratio as a proxy

for the relative liquidity of the two markets. However, this finding can also

be viewed as consistent with the effects of optimal hedging costs.

As argued above, covered warrant markets are characterised by market

makers with larger short positions (larger |N |, N < 0). The model predicts

that for N < 0 mid prices increase with N whereas bid-ask spreads decrease

with N . Thus smaller bid-ask spreads may correspond to issuers’ larger short

positions, which in turn implies relatively higher (mid) warrant prices.

Several of the above studies have however included time to maturity in

their regressions. Bartram & Fehle (2004) regress the ratio of ask prices in

35Strictly, the larger the magnitude of the integrated absolute Gamma over the option’s lifetime
36Relative price difference is measured as V W

−V O

V O where V W is the warrant price and V O the

price of the corresponding traded option.
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the warrant market to the option market (AR) on, amongst other charac-

teristics, the corresponding ratio of bid prices, time to maturity, moneyness,

asset volatility and the number of competing EuWax warrants (on the same

underlying asset). Once cross-sectional variation has been removed they find

a positive relationship between the ask ratio and the time to maturity, which

they regard as consistent with the idea that prices on warrant and options

markets move closer as the expected holding period decreases. Similarly Abad

& Nieto find the relative price difference is significantly positively related to

the time to maturity. These positive relationships are consistent with the

model of optimal hedging costs for covered warrant issuers: controlling for

inital hedging costs, the magnitude of difference between the reservation mid

price and the Black-Scholes price increases with time to maturity (see Corol-

lary 2).

Existing studies thus offer some support to the idea that the effects of

transaction costs under optimal hedging as modeled in this paper influence

the relative pricing of covered warrants by issuers to traded options by market-

makers. Empirical studies on the relative pricing of other structured prod-

ucts,37 which show these are also consistently over-priced relative to corre-

sponding exchange traded options for structured products with both convex

and concave38 payoffs, are also consistent with the model. However, the model

also has implications for the bid-ask spread of covered warrant markets and

options markets more generally.

3.2 Bid-ask spreads

The predictions of the model in section 2 for reservation bid-ask spreads for

options are that they increase with the quote size, the bid-ask spread of the

underlying asset, the initial costs (or current exposure to stock price risk

S|∆|) and, controlling for initial costs, the market maker’s per-option Gamma,

the option’s time to maturity and the volatility of the underlying asset, and

37See, for example Stoimenov & Wilkens (2006).
38See e.g. Burth, Kraus & Wohlwend (2001) for empirical evidence on a structured product

with a concave payoff. The dependence of the reservation mid price on terms which depend on the

absolute value of the warrant’s Gamma or Delta, combined with the sign of the (net) number of

options held in the portfolio, means the issuers of structured products (SPs), who also generally

have a net short position, will have a reservation mid-price for any SP which is higher than the

SP’s perfect market value (since sgn(N) = −1) irrespective of the sign of the Gamma of a single

long SP.
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decrease as the size of the market maker’s portfolio increases.

Most empirical studies of bid-ask spreads in options markets consider how-

ever the percentage bid-ask spread rather than the absolute value of the bid-ask

spread. In the model this corresponds to B/V mid. To gain some insight into

the effect of this, consider the case when the market maker’s portfolio consists

of a single issue of options. The percentage bid-ask spread can be written as

B(m|N)

V mid(m|N)
≈

4
9m|N |−

2

3 k
2

3 Lb(|Γ|) + 2kS|∆|

V BS − 4
3sgn(N)|N |

1

3 k
2

3 Lb(|Γ|) − sgn(N)kS|∆|
(21)

Figure 4 plots this for call options differing times to maturity. In contrast

to the absolute reservation bid-ask spread, the proportional reservation bid-

ask spread decreases rapidly as moneyness increases and decreases as time

to maturity increases. However it still increases with the bid-ask spread of

the underlying asset and the quote depth and decreases as the size (absolute

value) of the investor’s existing portfolio increases.

Empirical studies of bid-ask spreads in options markets include Jameson

& Wilhelm (1992), George & Longstaff (1993), Cho & Engle (1999), Kaul, Ni-

malendran & Zhang (2004) and, for covered warrant markets, Petrella (2004).

Jameson & Wilhelm (1992) recognise that option market-makers face risk

because they are only able to rebalance their portfolios at discrete points in

time and hence are exposed to a level of stock price risk which varies stochasti-

cally as the stock price itself varies. They use the option’s Gamma as a proxy

for this rebalancing risk and in regressions of the proportional bid-ask spread

on proxies for stock price risk exposure, expected holding period, asymmet-

ric information, discrete rebalancing risk and stochastic volatility risk find all

are statistically significant, with discrete rebalancing risk contributing around

8% to the overall proportional bid-ask spread. Their results provide evidence

that ‘the inability to costlessly and continuously rebalance an option port-

folio imposes undiversifiable risks on market participants that may influence

the theoretical bounds on option prices’ and conclude that it is important

to account for discrete rebalancing risk (proxied by Gamma) and stochastic

volatility risk (proxied by Vega) when studying options bid-ask spreads as

they represent an important additional dimension of market-makers risk for

option portfolios not present in the risk for market-makers in stocks. George &

Longstaff (1993) investgate inter alia the relationship between bid-ask spreads

across options and find that spreads on call options are positively related to

the spreads on corresponding put options and vice versa, consistent with a
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Gamma-related component, since the Gammas for European call and put

options are identical.39

Cho & Engle (1999) propose a ‘derivative hedge theory’ of options market

microstructure. This predicts that ‘option market percentage spreads will be

inversely related to the option market-makers ability to hedge his position

in the underlying market, as measured by the liquidity of the latter.’ They

suggest initially that options market makers are able to hedge their options

positions perfectly in the underlying market. Perfect hedging means neither

inventory risk nor the presence of informed traders in the options markets will

affect the option spread, whereas informed trading in the underlying asset

market will affect the option spread through the illiquidity of the underlying

market (asset bid-ask spread). This perfect version of ‘derivative hedge the-

ory’ is supported by their findings that asset spreads, implied volatility and

the option’s Delta all have significantly positive coefficients and, crucially, that

options volume is insignificant in regressions of proportional bid-ask spreads

on these and other characteristics. However, their finding that proportional

bid-ask spreads are a U-shaped function of duration between trades, consistent

with the effect of asymmetric information at short durations and inventory

risk considerations at long durations, provides evidence that options market

activity as well as underlying market activity affects option spreads, suggest-

ing that options market-makers may only be able to hedge imperfectly. As

cost determinants they include the option’s Delta but not the Gamma in their

regressions, effectively considering only initial hedging costs and not ongoing

rebalancing costs.

Kaul, Nimalendran & Zhang (2004) investigate the impact of hedging costs

and adverse selection on the bid-ask spread for individual stock options on

CBOE in February 1995. They regress absolute bid-ask spreads on proxies

for initial costs (kS∆), kVega, which they interpret as a proxy for rebalancing

costs, trading volume, which they interpret as capturing the effects of a fixed

component to order processing costs, volatility skew, to account for the inac-

curacy of the volatility estimate, and adverse selection. They find that whilst

proportional bid-ask spreads decrease as moneyness increases, absolute bid-

ask spreads increase with moneyness. Initial costs have a positive and very

significant effect on option spreads, representing up to 64% (for well in-the-

39They also find the bid-ask spread for S&P100 index options in 1989 is positively related to the

option value and the length of time between trades and negatively related to the time to maturity

and the squared Delta.
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money options) of the option’s bid-ask spread. The rebalancing cost proxy

also has a positive and significant effect but represents only 6.9% of option

spreads. Kaul et al interpret this as ‘suggesting that options market-makers

hedge their positions but do not have to incur large rebalancing costs, either

because they may not hold positions very long or because they can effectively

diversify their portfolios.’ They also find that adverse selection in the options

markets explains 6 − 22% of option spreads, which they interpret as indicat-

ing that option market makers are not able to delta hedge perfectly (and thus

eliminate the risk arising from trading with informed agents completely).

Petrella (2006) considers the market-making cost determinants of propor-

tional bid-ask spreads on the Italian covered warrants market during De-

cember 2000 - January 2001. He finds that initial costs (proxied by kS∆),

rebalancing costs (given by a measure of stock price variability multiplied

by the option’s Gamma) and a ‘reservation proportional bid-ask spread’, or

minimum spread required to avoid scalping40 (proportional to the tick-size

×m∆/V where m is the number of assets underlying one warrant contract) are

all significantly positively related to the warrant proportional bid-ask spread.

He interprets his results as showing that options market makers hedge their

positions by rebalancing to keep their portfolio delta-neutral and suggests

that thus ‘representative market maker does not fear to trade with informed

traders, because his position is hedged’. However he does not test for adverse

selection explicitly, and does not recognise that discrete rebalancing results in

imperfect hedging and hence residual risk.

Together, these studies suggest a modified version of Cho & Engle’s theory

may be more appropriate, allowing for imperfect and costly dynamic hedging.

Options market makers trade off the costs and benefits of dynamic hedging

and choose to hedge imperfectly, using e.g. the hedging strategy underlying

the models in section 2. The value of their portfolios is thus affected by the

magnitude of the portfolio Gamma.41 Moreover, informed trading on either

market can affect the option spread: in the options market as a result of the

options market-maker’s inability to hedge perfectly, and in the underlying as-

set market through the effect on the asset spread, k, which in turn increases

40If the warrant’s bid price after a one tick upward movement in the underlying asset would be

greater than the warrant’s current ask price short term unhedged speculators can make a short

term profit from small movements in the underlying
41Both the rebalancing costs they expect to incur and the hedging error they choose to retain

are proportional to a power of the absolute Gamma of their option portfolio
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the costs of optimal dynamic hedging for the options market-maker and in-

creases option spreads. Options market-makers’ inventory costs are reduced

by the dynamic hedging they pursue, but cannot be eliminated and are thus

reflected in bid-ask spreads.

In this light, the model in section 2 can be viewed in the spirit of an inven-

tory cost model for options market-makers42: inventory costs (i.e. the effect of

the number of options held, N) are reflected in reservation bid and ask prices

indirectly through the effect on the optimal hedging bandwidth and hence

the residual risk the market-maker optimally incurs. Since the optimal total

hedging bandwidth increases less than proportionally with the net number of

options in the portfolio, total risk increases more than proportionally with the

net size of the market-maker’s portfolio. Thus, as in inventory cost models of

underlying asset markets (e.g. Ho & Stoll (1981)), the mid-price is negatively

related to the inventory level (for options this relationship is non-linear) and

both bid-ask spread and mid price are positively related to the risk of the

marginal (existing portfolio) position (recall the bandwidth component of the

effect of hedging costs can be viewed as the integral of the squared bandwidth

over the option’s life).

We now consider how the detailed predictions of the model are related to

the existing empirical evidence.

The general principle that dynamic hedging costs affect bid-ask spreads

has relatively wide-spread support. Several studies43 have found the option

proportional bid-ask spread to be significantly positively related to a measure

of the initial hedging costs kS∆, and hence to the bid-ask spread in the

underlying market, k and the initial hedging amount S|∆| (it is generally

assumed ∆ is positive). Proxies for rebalancing costs have been considered

42The model gives reservation prices, at whcih a market-maekr would be indifferent between

selling (ask price) or buying (bid price) the quoted number of options and hedging optimally, or

not. Hence it does not incorporate expected order flow or maximise the market-maker’s profit.

We also do not consider adverse selection issues. A fuller model is beyond the scope of this paper;

however, since we would expect utility-maximising ask and bid prices to incorporate the same

factors which underlie reservation prices based on inventory considerations, these are thus likely

to lie outside the reservation bid-ask spread.
43Cho & Engle (1999), Kaul et al (2004), Petrella (2006)
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explicitly by Jameson & Wilhelm (1992)44, Kaul et al (2004),45 and Petrella

(2006). All found the proxies to be positively and statistically significantly

related to spreads. Similarly, regressions which have included proxies for

option or underlying asset price risk as (a component) of explanatory variables

have found results consistent with a positive impact of asset price volatility

on option spreads.46

The more detailed predictions relating to quote depth and market-maker’s

inventory have not been tested directly, but some partial support can be

gained from related variables. The model predicts that absolute and propor-

tional bid-ask spreads per option should increase with the quote depth. Whilst

they do not include quote depth in their regressions, Cho & Engle note that

out-of-spread transactions have higher average volume per transaction i.e.

higher transaction depth. Bartram & Fehle (2004) find that proportional bid

ask spreads are significantly smaller than those for corresponding traded op-

tions (2.8% vs 7.1% on average, with the bid-ask spread differences almost

all significant at the 1% level or better). They also note that minimum trade

sizes are much smaller for covered warrants than exchange traded options

and that trading volume is also lower. If trade sizes and quote sizes (m)

are smaller for covered warrants, the model in section 2 implies that bid-ask

spreads per option should also be smaller. Similarly, model bid-ask spreads

will be smaller if the overall magnitude of the market-maker’s inventory posi-

tion (|N |) is larger for warrants than options due to the nature of the warrant

market. Bartram & Fehle (2006) also find proportional bid-ask spreads are

statistically significantly lower for covered warrants than traded options and

suggest the difference could be due to the greater depth offered by EuRex

market-makers as compared to EuWax issuers. The theoretical costly hedg-

ing model in this paper demonstrates this directly. Finally Petrella finds a

44Jameson & Wilhelm (1992) showed the option’s Gamma was a significant positive explanatory

factor in the proportional bid-ask spread. They interpreted this as a proxy for discrete rebalancing

risk; however it is also consistent with the effect of lifetime bandwidth costs.
45They proxy this using k times the option’s Vega, rather than Gamma as would be more

appropriate. Note however that for European vanilla options, Vega = σS2TΓ.
46Jameson & Wilhelm include a proxy for stock price risk exposure of σ2S× the option’s squared

elasticity and find this is positive and significant. Cho & Engle find a positive and significant

relationship between proportional bid-ask spread and the option’s implied volatility. Petrella’s

rebalancing cost variable incorporates the difference between the maximum and minimum daily

asset price, which is related to asset price volatility; the coefficient on rebalancing cost is positive

and significant.
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significant and positive relationship between the proportional bid ask spread

and the ‘reservation proportional bid-ask spread’, proportional to the tick-size

×m∆/V where m is the number of assets underlying one warrant contract.

The imperfect hedging model predicts a larger m should be associated with

a larger proportional bid-ask spread. Thus whilst these results do not show

directly the positive relationship between quote depth and per-option spreads,

they provide some support.

Even fewer regressions have included variables linked to the size of the

market maker’s inventory. As mentioned above the finding by Abad & Nieto

that Spanish covered warrants were relatively more ‘overpriced’ relative to

equivalent traded options when the bid-ask spreads before the transactions

were smaller is consistent with the predictions of the model: bid-ask spreads

decrease with |N | whereas the difference between covered warrants reservation

prices and perfect market prices increase with |N |. Similarly, Bartram & Fehle

(2004)’s results on the relative size of bid-ask spreads on covered warrants and

traded options markets are consistent with the predictions of the model for

the effects of issuers holding larger (short) positions in warrants than market-

makers in options markets.

Finally, consistent with our discussion of the difference in characteristics

between absolute and proportional bid-ask spreads (B vs B/V mid) above,

empirical studies have consistently found that proportional bid-ask spreads

decrease with moneyness and time to maturity47. Kaul et al (2004), the only

study to use absolute bid-ask spread, showed empirically that whilst average

absolute bid-ask spreads increase across moneyness groupings, proportional

bid-ask spreads generally decrease across the same moneyness groups, and

that at- and out-of-the-money bid-ask spreads decreased with time to matu-

rity, whereas at-the-money bid-ask spreads increased with time-to-maturity,

well out-of-the-money spreads decreased, and the results for in-the-money

spreads were ambiguous. These results are broadly consistent with Figures 2

and 4 respectively.

47Cho & Engle (1999), Bartram & Fehle (2006) and Petrella (2006) all find significantly negative

coefficients in their regressions of proportional bid-ask spreads on moneyness. Jameson & Wilhelm

(1992) do not include moneyness but do include elasticity S∆/V , which is strictly decreasing in

moneyness for call options and find a significant negative coefficient. Similarly George & Langstaff

(1993), Cho & Engle (1999) and Petrella all find significantly negative coefficients for time-to-

maturity.
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4 Conclusion and further work

In this paper we have developed a model for the reservation bid and ask

prices of options, taking into account hedging costs and an investor’s portfolio

composition and risk aversion and applied it to covered warrant markets and

bid-ask spreads in options markets more generally.

The existing empirical evidence on the relative pricing of covered warrants

and exchange traded options and on bid-ask spreads in options markets is

broadly supportive of the implications of the model. Further work needs to

be done to investigate some novel implications of the model, e.g. the effects of

the magnitude of a covered warrant issuer’s overall position in warrants on the

relative overpricing of covered warrants and of a market-maker’s inventory on

bid and ask prices, as these have not been addressed explicitly in the literature

thus far.
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Figure 1: Top graph: Bandwidth cost component of reservation mid price vs size of

existing portfolio for at-the-money options with 2 years to expiry.

Bottom graph: Difference between reservation mid price and Black-Scholes price vs

moneyness for different sizes of existing portfolio using (??) for options with 2 years

to expiry. Base case has an existing short position of N = −1× 106 options. Other

parameter values: σ = 0.32, r = 0.05, γ = 1 × 10−3 and k = 0.01.
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Figure 2: Bandwidth component (top) and total (bottom) of the difference between

the per-option reservation mid price and the Black-Scholes price (left) and the bid-

ask spread (right) all vs moneyness, S/K for a portfolio of European call options for

different times to maturity. Parameter values where not stated: σ = 0.32, r = 0.05,

γ = 1 × 10−3, |N | = 1 × 106, m = 1 × 103 and k = 0.01.
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Figure 3: Bandwidth component (top) and total (bottom) of the difference between

the per-option reservation mid price and the Black-Scholes price (left) and the bid-

ask spread (right) all vs moneyness, S/K for a portfolio of European call options

for different asset volatilities. Parameter values where not stated: T = 2, r = 0.05,

γ = 1 × 10−3, |N | = 1 × 106, m = 1 × 103 and k = 0.01.
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Figure 4: Proportional bid-ask spread B/V mid
vs moneyness S/K for different times

to maturity. Parameter values where not stated: T = 2, σ = 0.32, r = 0.05,

γ = 1 × 10−3 |N | = 1 × 106, m = 1 × 103 and k = 0.01.
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