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Abstract

In this article, we develop a model for the evolution of real estate prices with changes

in the market structure over time. A wide range of inputs, including stochastic interest

rates and demand for the asset, as well as random shocks to observe the sale process

at the micro level, are considered. The holder of the asset makes optimal decisions in

the face of changing market conditions by considering the level of interest rates and

demand and by keeping the asset in the sale market for the optimal amount of time

that maximizes expected utility. We analyze the patterns in the evolution of prices in

our discussion of the simulation results and we use our results to explain the recent

subprime lending crisis and meltdown in the housing market.
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1 Introduction

The recent turmoil in financial markets triggered by defaults on subprime mortgages has

revealed that market-related shocks affect risk appetite immediately and result in an expen-

sive credit and liquidity environment. Market prices move mostly with the orders of the

suppliers of liquidity (buyers) in these kinds of credit crunches compared to a competitive

market where demanders of liquidity (sellers) have tantamount power. Similarly, with hous-

ing market’s inherent illiquid nature, home prices are mostly driven by the demand from the

buyers. In early 2000s, they rose to record levels due to high demand for mortgages with

easy credit. The left-side graph in Figure 1 plots the Case-Shiller Composite-20 house-price

index, which shows that the prices peaked 2006, fluctuated at that level for a while, and be-

gan to decrease lately with another upward shock in borrowing rates with the increase in the

default rate of subprime borrowers. Similarly, Figure 1 also plots the level of mortgage rates

and the existing home inventory in the same period. During the house price appreciation

cycle (2000-2005), there is a sharp decrease in mortgage rates and a gradual or no increase

in the existing home inventory level. On the other hand, the recent period with decreasing

prices (2006-2007) corresponds to a sharp increases in mortgage rates and the existing home

inventory. If we consider a lower level of home inventory a measure of higher demand for real

estate properties, then these figures illustrate that price evolution in the housing market is

a function of interest rates and demand. In this paper, we propose a mathematical model to

explain this dependance from a market microstructure standpoint. We consider both market

and personal shocks in this framework as an analogy to the subprime crisis and analyze how

these shocks affect the individual owner’s decision and the resulting sale process. Our model

can also be employed to forecast the future price evolution of house prices under different

interest rate and demand scenarios.

Although very closely linked in this paper, our contribution can be studied in two dis-

tinct parts: optimal waiting time (OWT) and sale price evolution. Individually, both of

these topics have been studied extensively in the literature in various forms with nuances in

definitions.
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Figure 1: With the housing meltdown, the house-price index is falling, existing inventory is
piling up and current mortgage rate is significantly higher than its trough.

Time-on-the-market (TOM), time-to-sale, optimal marketing time, and selling time are

some of the frequently used terms that have similar connotations to OWT even though

their exact economic definitions may differ 1. The existing literature in this area mostly

focuses on the explanation and the sign of the correlation between the length of TOM

and the resulting sale price with empirical data. Earlier exemplary studies include Cubbin

(1974) and Miller (1978). Cubbin builds an econometric model to explain the relationship

between list price and selling time using sample data taken from Coventry housing market

between 1968 and 1970. Cubbin finds that if the list price were higher, the selling time was

quicker. Different from Cubbin, Miller cannot confirm his conclusion from 83 sample sales

data from Columbus, Ohio and his empirical study does not prove the existence of optimal

selling time. Kalra, Chan and Lai (1997) analyze 644 single-family houses sales records in

the Fargo-Moorhead metropolitan area to conclude that TOM and sale price are positively

related. Genesove and Mayer (1998) conclude from their empirical study from the Boston

condominium market that an owner with a high loan-to-value ratio has a longer time on the

market and sells his property for a higher price if he manages to sell. Taylor (1999) studies

the relationship between TOM and the quality of the property in a theoretical framework.

Knight (2002) examines how the changes in the listing price impact the resulting TOM and

1In our model, OWT is an upper bound for TOM and is an algorithmic measure which is set at the
beginning of the sale process.

3



sale price. Different from these articles, our paper does not explicitly test the relationship

between expected TOM and the model parameters, but it rather investigates the relationship

between OWT and list and reservation prices, and our findings partially match the results

of Cubbin. In addition, we specifically examine the relationships between OWT and interest

rates, order arrival and withdrawal intensities - which are not well-studied in the literature.

Many of the theoretical models studying TOM are based on information theory with

search and matching models. With their corresponding optimal stopping rules, these models

have been often used to explain the behaviors of the sellers and the buyers2. Buyers continue

to search until the marginal benefit is equal to marginal cost of an additional search and

similarly, sellers try to equate the marginal benefit to the cost of locating a bidder for his

property. Haurin (1988) applies this theory of search model to investigate the relationship

between the distribution of offers and the duration of marketing time. He concludes with his

empirical study that as the variance of the distribution of the offers increases, the expected

marketing time lengthens. Sarr (1988) examines the optimal list price adjustment under

demand uncertainty. Wheaton (1990) investigates the role of vacancy rates in determining

TOM, and reservation and sale prices with a search model. He finds that greater vacancy

will increase selling time, lower the seller’s reservation price, and will ultimately lead to

lower market prices. Although we do not input vacancy rates in our model, we have similar

findings with Wheaton (1990) for a seller with low reservation price. In this scenario, OWT

increases, and the seller expects less from the transaction. Forgey, Rutherford and Springer

incorporate a liquidity perspective to the search model. With the data collected from 3358

single-family housing transactions, they conclude that an optimal marketing period exists

and properties with higher liquidity will sell at a higher selling price. Yavas (1992), Krainer

and LeRoy (2002) and Williams (1995) also apply search and matching theory to analyze

the sale prices of illiquid assets. Our paper is fundamentally different from these papers

with its modeling approach and additional input parameters. We do not use a search and

2Earlier search and matching models are used in labor market research and go back to Lucas and Prescott
(1974) in which a worker departs from her job and searches for a new one. Housing market is an intuitive
application of such models.
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matching model, but instead employ a market microstructure approach by modeling offer

values and their timing. We incorporate most of the parameters used individually in these

papers (e.g., reservation price, list price, distribution of offers) in a single model with the

additional inputs of withdrawal rates for the buyers’ offers, deterministic and stochastic

interest rates, and demand as a function of the interest rate and list price. We introduce

a parameter for the seller’s motivation that affects his utility from the sale 3. We find the

optimal selling time that maximizes the expected utility of the seller, which is a function

expected profit discounted by the interest rate and the selling motivation parameter. OWT

in our model is set at the beginning of the sale process and does not tell the exact optimal

timing of the sale of the house. Optimal timing of investment has been studied in the case

of known asset price dynamics in Grenadier and Wang (2005) and Evans, Henderson and

Hobson (2007) but in these models, it is not possible to explain the price evolution for the

asset as the dynamics are already assumed. In our paper, we also do not study the risk

associated with the waiting period - which is well-documented by Lin and Vandell (2007).

Price evolution in the real estate market is the second part of our paper in which we use

the OWT framework for multiple periods. Existing literature on estimating price evolution

relies mostly on econometric models. Since the housing market is very heterogeneous in

terms of the differences in the qualities of the properties in the market, most of the papers

in the existing literature are devoted to developing statistical techniques to overcome this

heterogeneity and forming a price index for a given geographical area. Earlier well-known

models of this approach include Bailey, Muth and Nourse (1963), Case K. and Shiller (1987),

Case K. and Shiller (1990), Case B. and Quigley (1991), and Poterba, Weill and Shiller

(1991). Recent articles with similar econometric models are Goetzmann and Peng (2006) and

McMillen and Thorsnes (2006). There is another stream of literature which uses equilibrium

theory to estimate house price dynamics. Stein (1995) explains the large swings in prices by

introducing an equilibrium model with the down-payment effects. Similarly, Ortalo-Magne

and Rady (2006) present a recursive equilibrium model that accounts for income shocks

3The existence of such a parameter is shown by Glower, Haurin and Hendershott (1998).
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and credit constraints. Capozza, Hendershott and Mack (2004) estimate the parameters of

mean reversion and serial correlation to explain the house price dynamics in equilibrium.

Our model differs from these papers significantly as we apply the derived analytics in OWT

framework and extend them into multiple selling periods to estimate the expected price

evolution. Since there is an inherent economic linkage between the seller and the buyer in

each sale (e.g., the transaction price becomes the reservation price of the buyer when he

posts the property for sale), we can construct an expected price evolution for that property

by tracking the expected sale price in each selling process. Since our OWT framework is very

rich with the modeling of stochastic interest rates and demand, our price evolution model

enables us to examine the price movements in the housing market in different rate and

demand scenarios. We model the timing of the decision of sale for each owner with random

income or personal shocks or with an optimality criterion that induces the seller to sell the

asset for a profit opportunity. Simulation results of the model show that the fluctuation in

prices are mostly driven by interest rates, demand for the asset, and reservation prices.

This paper is organized as follow. Section 2 introduces the model within the OWT

framework. We start with an auxiliary model, and then extend it to more realistic cases

and analyze the comparative statistics of OWT with respect to model parameters. Section

3 applies our model to price evolution in the real estate market. Section 4 provides the

simulation of the price evolution of a property in the real estate market and analyzes the

subprime lending crisis in the light of our simulation results. Finally, Section 5 concludes.

2 Model

Sellers of illiquid real assets often face a difficult decision regarding how long they should

keep the asset in the market if they do not receive any offers matching the value of the list

price. If the asset is highly desirable, the seller might remain undecided even in the case

of having received an offer at the list price. He may want to wait an additional amount

of time so that he allows the possibility of receiving an offer greater than the list price. If
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he chooses to wait longer, he faces the risk of losing the current offer since the prospective

buyer may withdraw his offer during the additional waiting time. As this scenario implies,

the determination of waiting time becomes complicated when there is a mutual decision

process with seller considering waiting for additional offers and the buyer withdrawing his

offer as a response to the seller’s waiting decision. In this section, we analyze the optimal

amount of time that a seller should wait in this mutual decision process in order to maximize

his expected payoff before making his final decision on the sale of the asset.

We consider two scenarios regarding our optimal waiting time (OWT) analysis. In the

first case, the seller does not specify his final list price and accepts the highest available

offer exceeding his reservation price, R, at the end of OWT. In the second case, he publicly

announces the list price, L, and keeps R private. He sells the asset immediately if he receives

an offer greater than L; otherwise, he waits until the end of OWT and chooses the best offer

greater than R at that time4.

We assume that buyers make their offers at random times with random magnitudes arising

from their own valuations of the asset. Buyers may lose interest in the asset according to a

known random process. The seller wants to set a waiting time such that he receives enough

offers from which to choose. This waiting time should not be very long since he does lose

too many offers with buyers’ withdrawals or realize a large discount due to interest rates

by waiting too long. Under these assumptions, the optimal waiting time turns out to be a

function of the distribution of arrival and departure rate of offers as well as general market

conditions such as interest rates.

We begin with the mathematical formulation of an auxiliary model, which will be handy

during the analysis of our cases. We provide the details of the derivation of the OWT for

this auxiliary model in the appendix. We then explain our models by first analyzing the case

in which the reservation and list prices are private information, and then analyzing the case

in which the seller announces a pre-determined list price.

4The last case is a typical scenario in the real estate market, which we will specifically analyze in the
next section.
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2.1 Auxiliary model

In the auxiliary model, we assume that the seller’s reservation price is pmin and that is public

information (i.e., all of the offers that the seller receives are higher than pmin). Furthermore,

arrival times of the buyers’ offers follow a one-dimensional Poisson point process with pa-

rameter λ, and the magnitudes of their offers are distributed uniformly with U(pmin, pmax)

where pmax is finite. After making an offer, a buyer may withdraw his offer and the time to

withdrawal follows the exponential distribution with parameter µ. Lastly, interest rates are

constant and equal r. The seller wants to maximize expected payoff with respect to waiting

time, T . With these assumptions, let the expected payoff function be u(T, λ, µ, pmin, pmax, r).

Lemma 2.1

u(T, λ, µ, pmin, pmax, r) =

(
−g(T, λ, µ, r)(pmax − pmin)

(1− f(T, µ))2

)
×(

f(T, µ)eλTf(T,µ) − 1

λT
(eλTf(T,µ) − 1)− eλTf(T,µ) +

1

λT
(eλT − 1)

)
+
pmaxg(T, λ, µ, r)(eλT − eλTf(T,µ))

1− f(T, µ)
(2.1)

where f(T, µ) = 1− 1
µT

(1− e−µT ) and g(T, λ, µ, r) = (1− f(T, µ))e−rT e−λT .

Proof. See Appendix A. �

2.2 Case without a List Price

In this scenario, we analyze the case in which the seller has a reservation price, R, which

may be unknown to the public. The seller does not post a specific list price, but considers

all offers up until the end of the waiting time. This scenario is very realistic in the sense that

the seller has a minimum expectation from the sale, but does not limit the upside payoff.

All of the assumptions in the auxiliary model still hold with the additional reservation

price information. Using the thinning principle for Poisson processes, Resnick (1992), the

expected payoff, v(T, λ, µ,R, pmin, pmax, r), in this case can easily be found.

8



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Time

D
is

co
un

te
d 

P
ay

of
f

Analytic solution
Simulation results

Figure 2: Expected discounted payoff in the case without a list price.

Corollary 2.1 v(T, λ, µ,R, pmin, pmax, r) = u(T, λthinned, µ, R, pmax, r) where λthinned = λ pmax−R
pmax−pmin

.

Figure 2 plots the expected discounted payoff with respect to the waiting time in the

case of no list price. Default values of the parameters used in the graph are presented in the

appendix.

Our expected payoff function equals zero at T = 0, and starts to increase. It attains its

maximum value and then starts to decrease with the effect of discounting term. This plot

asserts that there is an optimal waiting time that would maximize the resulting payoff.

2.3 Case with an Announced List Price

In this case, the seller announces a public list price, L, and has a reservation price, R, which

is private information. All of the assumptions in the auxiliary model still hold. This case

can be simplified using our auxiliary model by dividing the payoff function into two parts.

We know from Corollary 2.1 that, if the seller does not receive any offers higher than L,
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the payoff becomes u(T, λ L−R
pmax−pmin

, µ, R, L, r). Thus, we need to find the payoff function,

w(T, λ, µ,R, L, pmin, pmax, r), by taking into account the possibility that there can be an offer

greater than L.

Theorem 2.1

w(T, λ, µ,R, L, pmin, pmax, r) =
(
1− e−λTy

)(pmax + L

2

)(
λy

λy + r

)
+ e−λTyu(T, λx, µ,R, L, r) (2.2)

where x = L−R
pmax−pmin

and y = pmax−L
pmax−pmin

.

Proof. If the seller does not receive any offer higher than L, the payoff equals

u(T, λ x, µ,R, L, r). Given that there is an offer higher than L, our payoff equals pmax+L
2

E
[
e−rβ

]
where β is a random variable representing the arrival time of the first offer greater than L. If

y = pmax−L
pmax−pmin

, then E
[
e−rβ

]
equals the moment-generating function of an exponential random

variable with parameter λy. Thus, E
[
e−rβ

]
= λy

λy+r
. To find the resulting expected payoff,

we only need the probability of receiving an offer greater than L, which equals
(
1− e−λTy

)
.

As a result, our expected payoff function is the sum of these two parts multiplied by their

corresponding probabilities. �

Figure 3 plots the expected discounted payoff with respect to the waiting time in the

case of a pre-announced list price. Default values of the parameters used in the graph are

presented in the appendix.

The resulting expected payoff function is a strictly increasing function with an asymptote:

lim
T→∞

w(T, λ, µ,R, L, pmin, pmax, r) =

(
pmax + L

2

)(
λy

λy + r

)
(2.3)

When T increases, the payoff function is driven by the payoff of the case in which the seller

receives an offer greater than L. Different from the first model, the payoff in the asymptotic

case does not turn out to be a function of waiting time, T , and therefore, does not diminish

with respect to T . By setting a longer waiting time, he can almost surely get an offer greater

10
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Figure 3: Expected discounted payoff in the case with an announced list price

than L because the discount factor, E
[
e−rβ

]
, does not depend on T . This is due to the

properties of exponential distribution which drives the first offer greater than L. This figure

does not encourage the seller in any means to wait infinite amount of time to sell the asset.

It only tells the seller to make a very conservative estimate of maximum waiting time before

the sale process starts.

We can build the optimal waiting time framework on top of the maximum waiting time by

introducing utility perspective. The reason why the discounted payoff function is increasing

with respect to T is that there is no specific utility function associated with seller’s motivation

to sell the asset. In other words, if the seller is very motivated to sell the asset, his utility

should be lower in the case of long waiting time. Glower, Haurin and Hendershott (1998)

show that the seller’s motivation is a significant parameter that affect selling time and sale

price.

We need to incorporate the utility effect by maximizing the utility of the seller. Define

the utility function, U(.), as follows.
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Definition 2.1 U(D,T ) = De−γT where D is the discounted payoff, T is the waiting time,

and γ ≥ 0 is the measure of selling motivation of the seller.

As γ increases, the seller is more motivated to sell the asset and the seller has less

utility from a sale event with significant waiting. Such a parameter does also exist in real

world: If the seller needs solvency immediately for some reason, he will not have the same

selling incentives as a seller who is trying to sell his asset for pure investment reasons.

This parameter has functional properties comparable to risk averseness, which is a well-

known term for risk appetite. Like risk averseness, selling motivation helps the model to be

customized for different individuals, which would differentiate the sale process even in the

same market conditions as long as the sellers are different.

With this assumption of utility, the expected utility function, z(.), can be written as

follows.

Corollary 2.2

z(T, λ, µ,R, L, pmin, pmax, r, γ) = E
[
U(.)

]
(2.4)

= e−γTw(T, λ, µ,R, L, pmin, pmax, r) (2.5)

Figure 4 plots the expected utility with respect to the waiting time in the case of an

announced list price. Default values of the parameters used in the graph are presented in

the appendix.

2.4 Analysis of OWT

In this section, we formally define OWT and analyze its comparative statistics with respect

to model parameters. We also discuss the intuitive implications of the graphs. We use the

case with the announced list price in Section 2.3 as our underlying model.
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Figure 4: Expected utility in the case of an announced list price

Definition 2.2 Let T ∗ denote OWT that maximizes expected utility. Then, it is equal to

T ∗ = arg max {T ≥ 0 : z(T, λ, µ,R, L, pmin, pmax, r, γ)}. (2.6)

Remark 1 The expected utility function is continuous and its first derivative has a unique

sign change from positive to negative. Since its derivative never attains positivity from

thereon, the global maximum exists.

We plotted T ∗ as a function of model parameters in Figures 5 through 7. Default values

of the parameters used in the graphs are presented in the appendix.

The left-side graph in Figure 5 shows the change in T ∗ with respect to arrival intensity

of the offers, λ, and interest rates. As λ increases, we expect the seller to declare a smaller

waiting time because he expects that he will get sufficiently many offers from which to choose

and, thus, he does not want to realize a large loss in utility by waiting longer. This plot

confirms this expectation with a decreasing concave-up function when interest rates are low.
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Figure 5: Optimal waiting time as a function of arrival intensity and interest rate (left) and
optimal waiting time as a function of withdrawal intensity and interest rate (right)

However, when interest rates are very high, we see from the graph that T ∗ actually increases

when λ is small and increasing. This implies that in that region, the amount of additional

offers created with higher demand in the long-run is worth to wait even if the seller will face

a higher discount.

The right-side graph in Figure 5 shows the change in T ∗ with respect to the withdrawal

intensity of the buyers, µ, and interest rates. As µ increases, we expect the seller to declare a

longer waiting time because he wants to increase the number of offers from which to choose,

as in the case of increasing arrival intensity. Figure 5 shows that, in the cases of high interest

rates, there is a period of constant optimal waiting time. Since the discount is very high,

small changes in the withdrawal intensity do not affect T ∗.

Both of these graphs show that interest rates are indirectly proportional with T ∗. This

is an intuitive result, as the seller does not want to lose potential payoff in the high interest

environment by waiting longer.

The trade-off between λ and µ is also interesting to discuss from a theoretical perspective,

noting that it is very difficult to measure these rates in the real world. Figure 6 illustrates

that they do not always create the opposite impact on T ∗. For small values of λ and µ, T ∗
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Figure 6: Optimal waiting time as a function of arrival intensity and withdrawal intensity

increases when they both rise to a certain threshold. Only after this point, they begin to

create the opposite effect. This suggests that when the demand is low, T ∗ is highly affected

by small positive changes in the demand and this does not change even if the demand is

uncertain with the high probability of withdrawals.

The left-side graph in Figure 7 shows the change in T ∗ with respect to the list price and

interest rates. When we increase the list price incrementally, we can also afford waiting a

little longer as, in this case, we receive higher payoff with the sale. However, as Figure 7

illustrates, if our list price is already high, increasing the list price further diminishes the

probability of receiving an offer greater than this new value and, thus, there is no incentive

to wait longer.

The right-side graph in Figure 7 shows the change in T ∗ with respect to the reservation

price and interest rate. As R increases, the seller wants to wait longer because, using the

thinning principle in Poisson processes, this case theoretically implies decreasing λ. As we

have seen earlier, decreasing the arrival intensity results in a larger T ∗.
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Figure 7: Optimal waiting time as a function of list price and interest rate (left) and optimal
waiting time as a function of reservation price and interest rate (right)

3 Modeling Price Evolution in the Real Estate Market

In the previous sections of the paper, we characterized the optimal waiting time to set when

selling an illiquid asset, and how it changes with various market parameters such as arrival

and departure intensities of the buyers and interest rates. In the rest of the paper, we try

to understand the time evolution of the sale prices of an asset in the real estate market

when sellers maximize their payoff by considering optimal amount of waiting time. We

first explain our market structure assumptions, and then propose our model governing the

decision process of the holder of a real asset.

3.1 Stochastic demand and interest rates

The price evolution in the real estate market is strongly affected by changes in the broader

economy such as recessionary or expansionary cycles and by shocks in the interest rates. In

our model, we will track the recessionary or expansionary cycles with the stochastic demand

function, λ(t). We will also take stochastic interest rates, r(t), as an input to the model. We

then investigate the impact of the evolution of these inputs on the sale process of individual
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assets.

In our model, the demand for the asset, λ(t), will be a function of interest rates, r(t),

and the announced list prices, L(t). L(t) is non-random for the seller.

λ(t) = g
(
r(t), L(t)

)
. (3.7)

It is assumed that L(t) is non-increasing and L(t) ≥ R > 0 for all t ≥ 0, where R is the

seller’s reservation price. Offers arrive according to a non-homogenous Poisson process with

stochastic arrival intensity, λ(t). Let Ft be the σ-algebra generated by {r(s)}0≤s≤t, and N(t)

be the number of arrivals in [0, t]. Then, the following are true:

P{N(t) = n} = E
[
Λ(t)n

exp(−Λ(t))

n!

]
, and

P{N(t) = n|Ft} = Λ(t)n
exp(−Λ(t))

n!
(3.8)

where Λ(t) =
∫ t

0
λ(s)ds.

The value of the offers come from a known distribution, Fξ, independently, where ξ

represents the intensity of a generic offer. It is assumed that Fξ has the density fξ. ξi and

Ai, i ≥ 1, represent the intensity and the arrival time of the ith offer respectively. Given Ft
and the number of offers in [0, t], then arrival times of all offers are independently distributed

over [0, t] with conditional density

fA|{Ft,N(t)=n}(a) =
λ(a)

Λ(t)
.

After an offer arrives, it is withdrawn after a random waiting time with distribution

function Fτ , where τ is the waiting time of a generic offer. For the sake of analytical

simplicity, Fτ is assumed to be continuous. However, it is not hard to extend the analysis

below to more general offer waiting time distributions. τi, for i ≥ 1, represents the waiting

time of the ith offer. All τi’s are assumed to be independent from one another.
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We set ξ0 = A0 = τ0 = 0. Let β be the arrival time of the first offer greater than the list

price. Then,

β = inf{Ai : ξi ≥ L(Ai), i ≥ 1}. (3.9)

We provide three theorems characterizing the expected payoff of the seller for three cases

separately. In the first case, the seller announces a time-dependent list price for the asset. In

this case, the asset is sold whenever there is an offer greater than the ask price of the asset.

This is the most general case containing others as subcases. The second case is similar to the

first one, but the list price of the asset does not change with time. Finally, in the third case,

the seller does not limit his upside payoff by announcing a list price. He waits an optimal

amount of time and chooses the best available offer greater than the reservation price to sell

the asset. Let us start with the first case. In this case, the discounted payoff function, X(t),

at time t is written as follows:

X(t) = exp
(
−
∫ t

0

r(s)ds
)
·
(

max
0≤i≤N(t)

ξi · 11{ξi≥R} · 11{τi≥t−Ai}
)
· 11{β>t}

+ exp
(
−
∫ β

0

r(s)ds
)
ξi(β)11{β≤t} (3.10)

where ξi(β) is the offer value at β. The first term in (3.10) accounts for the case that all offers

until time t are smaller than the list price. The second term corresponds to the case that

there is an offer greater than the list price before time t. We have the following theorem for

the expected discounted payoff at time t.

Theorem 3.1 Let P (t) = E[X(t)] and P (t|Ft) = E[X(t)|Ft]. Then, P (t) = E[P (t|Ft)], and

P (t|Ft) = e−
∫ t
0 r(s)dseΛ(t)(ϕ(t)−1)

(
L0 −

∫ L0

0

e−Λ(t)ψ(t,y)dy
)

+
(
1− eΛ(t)(ϕ(t)−1)

) ∫ t

0

∫ ∞
L(a)

λ(a) exp
(
−
∫ a

0
r(s)ds

)
Λ(t)

(
1− Fξ

(
L(a)

)) fξ(x)xdxda (3.11)

where ψ(t, y) = 1
Λ(t)

∫ t
0
λ(a)

(
1 − Fτ (t − a)

)(
Fξ
(
L(a) ∨ y

)
− Fξ

(
R ∨ y

))
da and ϕ(t) =
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1
Λ(t)

∫ t
0
λ(a)Fξ

(
L(a)

)
da.

Proof. See Appendix B. �

The difficulty in proving Theorem 3.1 is that the changing list price introduces a coupling

between the offer intensity and its arrival time. Theorem 3.1 can be further simplified if L(t)

is constant, which is what we analyze next.

In the second case, the seller’s payoff can also be written exactly as in (3.10). Theorem

3.2 gives us the seller’s expected payoff at time t for this case. We do not provide its proof

as it is similar to that of Theorem 3.1.

Theorem 3.2 Let P (t) = E[X(t)] and P (t|Ft) = E[X(t)|Ft]. If L(t) = L ≥ R > 0 is

constant, then P (t) = E
[
P (t|Ft)

]
and

P (t|Ft) = e−
∫ t
0 r(s)dseΛ(t)(Fξ(L)−1)

(
L−

∫ L

0

e−Λ(t)ψ(t,y)dy
)

+
(
1− eΛ(t)(Fξ(L)−1)

) ∫ t

0

∫ ∞
L(a)

λ(a) exp
(
−
∫ a

0
r(s)ds

)
Λ(t)

(
1− Fξ

(
L(a)

)) fξ(x)xdxda (3.12)

where ψ(t, y) =
(
Fξ(L ∨ y)− Fξ(R ∨ y)

)(
1− 1

Λ(t)

∫ t
0
λ(a)Fτ (t− a)da

)
.

Finally, in the third case, the seller does not restrict the upside payoff by announcing a

list price. In this case, his payoff process at time t can be written as

X(t) = exp
(
−
∫ t

0

r(s)ds
)
·
(

max
0≤i≤N(t)

ξi · 11{ξi≥R} · 11{τi≥t−Ai}
)
. (3.13)

The simplicity of (3.13) compared to (3.10), results in a corresponding simplicity in the

expected payoff formula at time t, which is given in Theorem 3.3 below. Again, we do not

provide the proof for this theorem either since it is similar to the proof of Theorem 3.1.

Theorem 3.3 Let P (t) = E [X(t)] and P (t|Ft) = E [X(t)|Ft]. If the seller does not an-

nounce any list price (i.e., L =∞), then P (t) = E [P (t|Ft)] and

P (t|Ft) = exp

(
−
∫ t

0

r(s)ds

)∫ ∞
0

(1− exp (−Λ(t)ψ(t, y))) dy, (3.14)
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where ψ(t, y) = (1− Fξ(R ∨ y))
(

1− 1
Λ(t)

∫ t
0
λ(a)Fτ (t− a)da

)
.

Further reductions to Theorems 3.1, 3.2 and 3.3 are possible depending on the distribu-

tion of the offer intensities, the distribution of offer waiting times, and the distribution of

the stochastic process governing the offer arrival times. In the next section, based on our

analytical analysis in this part, we provide a simulation-based study to show how the list

price of a real asset changes over time if the seller sets an optimal amount of time to sell it.

3.2 Microstructure of holding a real asset

In this section, we focus on a single asset in the real estate market and track its price

evolution for a desired period of time. During this fixed time period, the asset may be sold

a number of times and the resulting sequence of sale prices constitute the price evolution.

For each holder of the asset, the model evolves similarly with common subperiods:

1. Occupation period

2. Exogenous shocks: personal crisis and profit opportunity

3. Sale process with optimal waiting time

4. Updating reservation and list prices.

3.2.1 Occupation period

Occupation starts after the sale of the asset. The buyer (now owner) knows how much he

paid for the asset and this constitutes his reservation price, R. Thus, the owner will try to

sell the asset for at least this amount when he posts the asset for sale. We assume that each

owner needs the asset for at least a certain amount of time, O years, which may vary from

individual to individual. Within this period, he does not want to sell the asset unless there

is an inevitable shock (such as relocation necessity, unsuitability of the asset after a change

in the size of his family, personal insolvency or bankruptcy, etc.). If the holder of the asset
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does not face any of these unpredictable shocks, he will not try to sell the asset until O years

has passed.

3.2.2 Exogenous shocks: Personal crisis and profit opportunity

There are two types of exogenous shocks to the holder of the asset in the model:

• Personal crisis: If the holder of the asset encounters an external shock that is not

market-related (such as losing his job, family- or job-related relocation necessity, per-

sonal insolvency, etc.), he will try to sell the asset as soon as possible without con-

sidering how many years he has held the asset. In our model, the holder of the asset

receives a random shock in this nature and he posts the asset for sale at the moment

that this shock occurs whether or not he has owned the asset more than O years.

• Market related profit opportunity: After using the asset for X years, the holder of the

asset begins to seek an optimal market environment to post the asset for sale. While

waiting for the optimal market environment, he can still face a personal crisis after

which he must post the asset for sale immediately. In our model, the holder posts

the asset for sale whenever the interest rates fall below a certain threshold, φ. At this

level, the relative demand to the asset compared to the high interest rate environment

becomes higher and the holder of the asset expects to receive many offers exceeding

his reservation price.

As a result, the asset will eventually be put on the sale market in our model, but it may

be due to either a personal crisis or a possible profit opportunity that occurs after time O. If

we denote time to personal crisis by ω and time to a possible profit opportunity by π, then

time to posting the asset for sale, υ, becomes

υ = min(ω, π) where π = inf(t ≥ X : r(t) ≤ φ). (3.15)

Consequently, υ becomes the total occupation period after which the holder decides to sell

the asset. He now posts the asset for sale with an initial list price, L0, which must satisfy
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L0 ≥ R. He does not disclose his reservation price, R, to the market and may adjust the list

price until the asset is sold.

3.2.3 Sale process with optimal waiting time analysis

After the asset is posted for sale, the seller sets an optimal waiting time, OWT, which would

maximize his expected utility from the sale. During the OWT, he will collect offers from

prospective buyers and will sell the asset immediately if he receives an offer greater than the

current list price. Everyone in the market knows the list price, L(T ) after T waiting time,

but they do not know the seller’s reservation price, R. In our model, list price is a function

of T , and gradually converges to R:5

Definition 3.1 L(T ) = R+(L0−R)e−ζT where L0 is the initial list price and ζ is a positive

real number.

Let p1(T1), ..., pk(Tk) be the offers received during waiting time where pk(Tk) is the kth

offer received at time Tk. The holder sells the asset immediately at time Tk where k satisfies:

pk(Tk) ≥ L(Tk) and pm(Tm) < L(Tm) ∀m < k (3.16)

If the holder of the asset does not receive any offers greater than the list price but receives

offers exceeding R, then the holder sells the asset to the buyer with the highest available

offer, p, at the end of OWT.

Definition 3.2 If ∃m such that m ∈ {1, 2, ..., n − 1, n}, pm(Tm) ≥ R and pm(Tm) is not

withdrawn, then p = max (pk1(Tk1), ..., pki(Tki)) where i is the number of the available offers

that are not withdrawn until the end of OWT (Assume i ≥ 1).

If there is no offer exceeding R at the end of OWT, then the holder must decrease his

reservation and list price, and has to re-post the asset for sale with the updated list price.

5Note that T represents waiting time and t is actual time.
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In our price evolution analysis, the framework introduced in Section 2.3 is used. We

assume that the buyers make their offers at random times according to a non-homogeneous

Poisson distribution whose intensities are defined by the demand function, λ(t, r(t), L(T )).

At these random times, they offer a random price distributed uniformly arising from their

own valuations of the asset. Buyers may also lose their interest in the asset according to a

known random process.

Different from the model described in Section 2.3, the arrival intensity of the offers

becomes a function of time and waiting time, λ(t, T ), which equals λ(t, r(t), L(T )). Interest

rates in this analysis are no longer constant, but follow a stochastic process. If we denote the

expected utility function by Y(T, λ(t, T ), µ, R, L(T ), pmin, pmax, r(t), γ), then OWT is defined

as follows.

Definition 3.3 T ∗ = arg max{T ≥ 0 : Y(T, λ(t, T ), µ, R, L(T ), pmin, pmax, r(t), γ)}.

3.2.4 Updating reservation and list prices

There are two different scenarios for updating the list and reservation prices for the next

period. If the seller achieves selling the asset before the end of the OWT, the new reservation

price for the next period equals the agreed sale price in this period (as the buyer of the asset

would not want to sell the asset for a price less than he paid). The initial post price in this

case, L0, becomes the maximum value that an offer could be arbitrarily close to with positive

probability. If the distribution of the offers lies between pmin and pmax, then L0 equals pmax

and L(T ) gradually decreases from L0 to R during the sale process.

If the seller does not succeed in selling the asset, a new period starts for this sale process

with lowered reservation and list prices. The seller chooses a new reservation price which is

between R and pmin and sets L0 to R. With these adjustments, he increases the probability

of selling the asset in the next period.
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4 Simulation

In this section, we first explain the parameters in our model and then discuss the simulation

results of the price evolution process.

4.1 Model parameters

We assume that interest rates evolve according to a Cox-Ingersoll-Ross (1985) process:

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t). (4.17)

We define λ(t, r(t), L(T )) such that it satisfies the general relationship between demand,

interest rates, and list price. Keeping list price constant, we assume that the demand for

the asset decreases as the interest rate rises; if we keep the interest rate level, the demand

for the asset decreases as the list price increases:

λ(t, r(t), L(T )) =
K1

r(t)
+

K2

L(T )
, (4.18)

where K1 and K2 are constants.

We first simulate occupation periods, exogenous shocks and check whether there is

market-related profit opportunity that the owner can take advantage of. The sale pro-

cess starts either with a personal shock or a profit opportunity with low interest rates. For

each sale process, we numerically calculate T ∗ and model the arrival times of the offers by

using the demand function as a non-homogeneous Poisson process. At the arrival times, we

produce independent values for the offers using a uniform distribution around pmin and pmax.

For the possible withdrawal of the offers, we use exponential distribution with parameter µ.

At the end of the period, we update our reservation and list prices depending on the outcome

of the sale process. If there is a sale, the new reservation price equals R and L0 became pmax.

If there is no sale, then the new reservation price equals R+pmin

2
and L0 takes the value of R.

A new period starts with these new parameters, current level of interest rates and demand.
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Figure 8: Evolution of optimal waiting time in a single realization of interest rates and a
stochastic demand function

The appendix includes all the parameters used in the simulation.

4.2 Simulation results

Figure 8 shows the evolution of the OWT in a four-year period and illustrates its reac-

tion against demand intensity and interest rates in a single realization of interest rates and

demand function. This graph is fundamentally different from Figure 5 as it captures the

evolution of all the parameters of the model. The horizontal axis no longer represents the

waiting time, but instead shows the actual simulation time.

This figure illustrates that, as the interest rates decrease, demand intensity and OWT

show opposite trends. With the increase in demand intensity and the decrease in the interest

rates level, OWT decreases since, in these circumstances, the seller will get more offers and

his payoff will be discounted with a lower factor. Therefore, the seller sets a smaller OWT

because he knows that he will get enough offers to choose from in a smaller time period. This
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Figure 9: Single price evolution of a real asset in a realization of interest rates and a stochastic
demand function

figure summarizes that changing market conditions has a broad impact on the sale process

of the real asset, and they even affect the behavior of the seller. In a low-interest rate and

high-demand environment, the seller keeps the asset in the sale market for a shorter amount

of time than he would do in a high-interest and low-demand environment.

Figure 9 illustrates the agreed sale price of the real asset with the corresponding functions

of interest rates and demand intensity in a fifty-year period. The graph of the price evolution

in the third row specifically shows the random occupation periods, moments of exogenous

shocks due to personal crises or convenient market conditions for the seller to make a probable

profit. It also includes whether or not the price process results in success with the appropriate

labels shown in the legend of Figure 10. This figure expands the plot of the price evolution

shown in Figure 9.

Figure 10 specifically focuses on the decision process of the seller. All of the subperiods,

occupation period, decision of sale, time on the market, and time of the sale are illustrated

in the figure. Until the moment of sale, all of these different time periods are shown at the
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Figure 10: Single price evolution of a real asset with illustration of subperiods and sale or
no sale outcomes

same price level which constitutes the price that the seller paid at his initial purchase of the

asset.

In Figure 10, pink circles represent the occupation period in which the seller has not

decided to sell the asset yet. Pink circles are always followed by a black or red dot which

represents the decision of sale due to a either probable profit opportunity or personal crisis,

respectively. At this time of sale decision, the seller sets an OWT by taking the market

conditions as of that moment into account. The waiting period is shown by the blue circles.

After this waiting time, a green or magenta dot follows, signifying the event of sale and

no-sale respectively. If there is a sale, a new period starts with the occupation period of the

new holder of the asset.

If the seller does not succeed in selling the asset, he lowers his reservation and list price

and sets a new OWT by using the new parameters and considering market conditions. Blue

circles follow the magenta dot in this case of no-sale. In this second attempt of sale, he may
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still sell the asset for a price higher than his initial reservation price, but this probability is

less than the probability of such a result he had in the first attempt. Our results support this

conclusion, as in the figure, four cases result in no-sales out of which only one is sold for a

higher price compared to the initial reservation price. The seller may not achieve selling the

asset in this attempt either. In this case, he will be further required to lower his reservation

and list prices. However, this probability is also lower: Out of four cases of no-sale, only one

seller encountered two successive failed attempts.

Figure 11 illustrates the expected price evolution of the real asset without considering

occupation periods or exogenous shocks. This figure shows the mean sale price to expect if

the seller posts the asset for sale at a given time. This figure still assumes that the seller

sets an optimal waiting time for the sale process and has his own reservation price. In this

example, the asset is sold in every small time period, and the model parameters are updated

after the sale. This figure supports our conclusions from the results of the single simulation.
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The expected sale price declines (increases) with the decrease (increase) in the demand and

the rise (fall) in interest rates.

Simulation results show that the fluctuation in the prices are mostly driven by interest

rates, demand, and time-on-the-market (TOM). In Figure 9, interest rates increase drasti-

cally approximately between the 25th and 40th year and this increase results in two unsuc-

cessful attempts of sale in Figure 10. During this period, the reservation price of the real

asset is very close to its maximum and, with the high-interest and low-demand environment,

the seller could not succeed in selling the house in two trials. Eventually, the seller sells the

asset in the third trial with a significant discount compared to his reservation price because

the long time on the market adversely affected the final sale price.

4.3 Analysis of the recent Subprime Lending Crisis

Our simulation results coincide with what the housing market observed with the subprime

lending crisis. The historically record low borrowing rates during 1999-2004 increased hous-

ing affordability with the corresponding up-trend in home prices as shown in Figure 1. When

the borrowing rates increased and the rate of home buyers’ mortgage contracts began to re-

set to these higher rates, low credit borrowers had a difficult time making their monthly

payments back and are forced to put their homes for sale. This coincides exactly with our

modeling of personal crisis scenario. Due to this personal shock, the home buyer had to put

his asset for sale in a very unfavorable market condition: high interest rates and low demand.

As shown in our simulation results, the expected price in such a market environment is lower

compared to other scenarios and, as the home equity value of his asset decreased, the home

owner was not be able to pay back his debt and defaulted.

Another catalyst for the defaults in the meltdown was the significantly higher reservation

prices locked in during the bull period. Although demand for the real estate market should

have been down during this period, borrowers still succeeded in financing - helped by the

lower standards of mortgage originators. When borrowing rates began to increase, the low-

credit environment was lost. Depressed by this shock, mortgage originators began to lower
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their lending standards to keep their market share. As an indication of this, during 2002-

2006, Combined Loan to Value (CLTV) ratio increased for the collateral. In the subprime

category, it rose to 88% from 81% and in Alt-A category, it rose to 85% from 73%6. When

the subprime borrowers had to put their homes for sale to pay back their mortgages, they

could not get any offers matching their list price. As we discussed in our simulation results,

in a high-interest and low demand environment, it is very difficult to sell your property if you

have a high reservation price in the first place. Since most of the subprime borrowers paid

their homes the historically record value, they had to lower their reservation prices during

the sale process. This result is quite similar to our analysis of the successive no-sale events

when the reservation of the owner was very close to the pmax. Subprime borrowers ended up

lowering their reservation prices to sell their asset and, since the mortgage debt exceeded the

resulting sale price, they could not cover all their debt. On the other hand, if they could not

sell their asset, then they defaulted and the property is sold for a discount in the foreclosure.

5 Conclusion

In this article, we propose a new model to describe how shifts in market conditions affect

the evolution of real asset prices. We subdivide the seller’s holding period into realistic

components and enable exogenous shocks to the system that may be the result of a profit

opportunity or an inevitable personal crisis that requires the seller to sell the asset immedi-

ately.

We extensively investigate the sale process by introducing a new model for analyzing

time-on-the-market (TOM) with a new construct, optimal waiting time (OWT), which is

generally larger than TOM but still has similar characteristics. When the asset is posted

for sale, the seller sets a deterministic OWT that maximizes his expected utility. He may

not wait the full OWT when there is an offer that matches the list price. While calculating

OWT, he takes all market conditions into account which makes OWT time-dependent and

6Source: UBS Mortgage Research
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useful to apply to price evolution in the real estate market.

We study the comparative statistics of OWT with respect to different model parameters

such as arrival intensity, withdrawal (cancelation) rates of the offers, and interest rates. We

specifically look at the pairwise impact of these parameters and how they affect the resulting

OWT in the different regions of the surface. We observe that arrival intensity and interest

rates are indirectly proportional to OWT, but the withdrawal rate is directly proportional.

The pairwise impact of arrival intensity and withdrawal rate against the interest rate shows

that the sensitivity of the model is different in high-interest and low-interest environments.

We incorporate the derived theory of OWT into our price evolution framework that also

includes occupation period, personal crisis or profit-taking opportunity, and the determin-

istic updating of model parameters with the occurrence of the sale. The seller first has a

random occupation period, during which he does not consider selling the asset for investment

purposes. However, he may still face a personal crisis due to which he has to post the asset

for sale. After the occupation period, he may sell the asset to undertake a probable profit.

After the decision of sale, the seller sets OWT by considering interest rate, demand for the

asset, reservation price, withdrawal intensity, selling averseness, and list price. This OWT

maximizes his expected utility. Different from the OWT framework, our price evolution

model uses stochastic interest rates and demand. Interest rates and demand are merely

inputs for our model, thus, in this paper, we do not try to explain the time evolution of

these functions.

Our model specifically considers the occurrence of sale and no sale conditions and how

the seller responds to the no sale scenario. When the asset is not sold during the sale process,

the seller decreases his reservation price and initial list price. With this dynamic update,

the probability of sale increases whereas the expected payoff from the sale decreases. Our

simulation results show us that it becomes more difficult to sell the real asset in the high-

interest, low-demand environment and these conditions may require the seller to sell the

asset below his initial reservation price.

We employ a deterministic method to update our parameters that are aligned with real-
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world applications. The new seller has a different reservation price than the previous holder

of the asset and faces different market conditions that shape his decision process. Current

market conditions and the level of prices constitute the most effective factors in the de-

termination of the evolution process. We combine these external factors with the seller’s

individual choices and, as a result, have a dynamic, time-dependent, and stochastic price

process.
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A Appendix: Auxiliary Model

We will derive the auxiliary model in this appendix. Buyers make offers with exp(λ) and

their offers are distributed uniformly with U(pmin, pmax). The seller’s reservation price is pmin.

After making an offer, a buyer may withdraw his offer with distribution exp(µ). Interest

rate is constant and equals r. The seller wants to maximize expected payoff with respect to

waiting time, T . Let N(T ) be the number of offers received by time T and ξi be the offer

from buyer i, Bi, at the arrival time, Ai, and ξ(i) be the ith minimum offer received by the

seller. With these assumptions, the discounted expected payoff, u(.), is a function of T , λ,

µ, pmin, pmax, and r.

u(.) = E [E [X|N(T ) = n]]

=
∞∑
n=0

E
[
ξ(n)e

−rT11[Bn is still interested] + ξ(n−1)e
−rT11[Bn−1 is still interested and ξ(n) is withdrawn]

. . .+ ξ(1)e
−rT11[B1 is still interested and ξ(n)...ξ(2) are withdrawn]|N(T ) = n

]
P (N(T ) = n)

=
∞∑
n=0

n∑
i=1

E
[
ξ(n−i+1)e

−rT11[Bn−i+1 is still interested and ξ(n)...ξ(n−i+2) are withdrawn]|N(T ) = n
]
×

P (N(T ) = n)

=
∞∑
n=0

n∑
i=1

E
[
ξ(n−i+1)|N(T ) = n

]
× E

[
e−rT11[Bn−i+1 is still interested]|N(T ) = n

]
×

E
[
11[ξ(n)...ξ(n−i+2) are withdrawn]|N(T ) = n

]
P (N(T ) = n) .
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Each of the components of the sum is as follows

E
[
ξ(i)|N(T ) = n

]
= pmin +

(pmax − pmin)i

n+ 1
,

E
[
11[Bi is still interested]|N(T ) = n

]
=

∫ T

0

1

T
e−µxdx =

1

µT
(1− e−µT ) := 1− f(T ),

E
[
11[ξ(n)...ξ(n−i+2) are withdrawn]|N(T ) = n

]
= [f(T )]i−1,

P (N(T ) = n) =
(λT )ne−λT

n!
.

Using these components, expected payoff becomes

u(.) =
∞∑
n=0

n∑
i=1

(
pmin +

(pmax − pmin)(n− i+ 1)

n+ 1

)
e−rT (1− f(T ))(f(T ))i−1

(
(λT )ne−λT

n!

)
= g(T )

∞∑
n=0

(λT )n

n!

n∑
i=1

(
pmax(f(T ))i−1 − (pmax − pmin)

n+ 1
i(f(T ))i−1

)
,

where g(T ) = (1− f(T ))e−rT e−λT . We use the following facts in the final computation.

n∑
i=1

ixi−1 =
d(
∑n

i=1 x
i)

dx
=
d(1−xn+1

1−x )

dx
=
nxn+1 − (n+ 1)xn + 1

(1− x)2

and
n∑
i=1

xi−1 =
1− xn

1− x
.

Finally, the discounted expected payoff equals

u(T, λ, µ, pmin, pmax, r) = g(T )
∞∑
n=0

(λT )n

n!

[ pmax − pmin

(n+ 1)(1− f(T ))2

(
nf(T )n+1 − (n+ 1)f(T )n + 1

)
+ pmax

1− f(T )n

1− f(T )

]
=
−g(T )(pmax − pmin)

(1− f(T ))2
(f(T )eλTf(T ) − 1

λT
(eλTf(T ) − 1)− eλTf(T )

+
1

λT
(eλT − 1)) +

pmaxg(T )(eλT − eλTf(T ))

1− f(T )
,
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where f(T ) = 1− 1
µT

(1− e−µT ) and g(T ) = (1− f(T ))e−rT e−λT .
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B Appendix: Theorem 3.1

We first establish some auxiliary results that will be used while proving Theorem 3.1. Lemma

B.1 gives us the formula for the conditional probability, which is conditioned on Ft and

N(t) = n, that an offer value is smaller than the announced list price at its arrival time.

Lemma B.1 Let ϕ(t) = P{ξ1 < L(A1)|Ft, N(t) = n} for n ≥ 1. Then,

ϕ(t) =
1

Λ(t)

∫ t

0

λ(a)Fξ
(
L(a)

)
da.

Proof. Given A1 = a, the event {ξ1 < L(A1)} is independent of Ft and N(t). Thus,

ϕ(t) =

∫ t

0

fA|{Ft,N(t)=n}(a)P{ξ1 < L(a)}da

=
1

Λ(t)

∫ t

0

λ(a)Fξ
(
L(a)

)
da.

�

The following lemma provides the formula for the conditional probability, which is con-

ditioned on Ft and N(t) = n, that none of the offers arrived in the time interval [0, t] is

greater than the announced sale at their arrival times.

Lemma B.2 P{β > t|Ft, N(t) = n} = ϕ(t)n for n ≥ 1.

Proof.

P{β > t|Ft, N(t) = n} = P
( n⋂
i=0

{ξi < L(Ai)}|Ft, N(t) = n
)

= P{ξ1 < L(A1)|Ft, N(t) = n}n = ϕ(t)n.

�

Now, we calculate the conditional density of β, fβ|{Ft,N(t)=n,β≤t}(s), conditioned on Ft,

N(t) = n, and β ≤ t.
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Lemma B.3 fβ|{Ft,N(t)=n,β≤t}(s) = λ(s)
Λ(t)

.

Proof. Let i(β) be the index of the offer at time β. Then,

P{β ≤ s|Ft, N(t) = n, β ≤ t} = P{Ai(β) ≤ s|Ft, N(t) = n, β ≤ t}.

Since β ≤ t, we know that i(β) ≤ n. Given N(t) = n and Ft, all offer arrival times are

independently distributed over [0, t] according to density λ(s)
Λ(t)

. Thus,

P{β ≤ s|Ft, N(t) = n, β ≤ t} =
Λ(s)

Λ(t)
.

Thus, fβ|{Ft,N(t)=n,β≤t}(s) = λ(s)
Λ(t)

. �

In Lemma B.4, we derive the conditional probability, conditioned on Ft and N(t) = n,

of an offer, which is not withdrawn up to time t and greater than the reservation price but

not exceeding the list price at its arrival time, to be greater than a positive real number y.

Lemma B.4 Let ψ(t, y) = P{ξ111{R≤ξ1<L(A1)}11{τ1≥t−A1} > y|Ft, N(t) = n} for n ≥ 1. Then,

ψ(t, y) =
1

Λ(t)

∫ t

0

λ(a)
(

1− Fτ (t− a)
)(
Fξ
(
L(a) ∨ y

)
− Fξ

(
R ∨ y

))
da. (2.19)

Proof. Conditioned on A1 = a, events {τ1 ≥ t − A1} and {R ≤ ξ1 < L(A1)} are

independent of each other as well as being independent of Ft and N(t). Thus,

ψ(t, y) =
1

Λ(t)

∫ a

0

λ(a)P{τ1 ≥ t− a}P{ξ111{R≤ξ1<L(a)} > y}

=
1

Λ(t)

∫ t

0

λ(a)
(

1− Fτ (t− a)
)(
Fξ
(
L(a) ∨ y

)
− Fξ

(
R ∨ y

))
da.

�

Let pn(t) = P{N(t) = n|Ft}. The following summation formula will also be used in the

proof of Theorem 3.1, and gives us the conditional moment generating function of a Poisson

process with stochastic intensity.
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Lemma B.5 For q > 0, the following holds.

∞∑
n=0

pn(t)qn = exp
(
Λ(t)(q − 1)

)
.

We now start proving Theorem 3.1. Let X1(t) be the first term in (3.10), and X2(t) be

the second term in (3.10). Let us define P1(t|Ft) = E[X1(t)|Ft], and P2(t|Ft) = E[X2(t)|Ft].

We first calculate P1(t|Ft).

P1(t|Ft) =
∞∑
n=0

pn(t)E
[
X1(t)|Ft, N(t) = n

]
.

Put M(t) = max0≤i≤N(t) ξi11{ξi≥R}11{τi≥t−Ai}. Then,

E[X1(t)|Ft, N(t) = n] = e−
∫ t
0 r(s)dsE

[
M(t)11{β>t}|Ft, N(t) = n

]
. (2.20)

The expectation in (2.20) can be calculated by conditioning on the event {β > t}.

E
[
M(t)11{β>t}|Ft, N(t) = n

]
= P{β > t|Ft, N(t) = n}E

[
M(t)|Ft, N(t) = n, β > t

]
= ϕ(t)nE

[
M(t)|Ft, N(t) = n, β > t

]
.

Since M(t) is positive, its conditional expectation can be calculated by integrating

P{M(t) > y|Ft, N(t) = n, β > t} with respect to y over [0,∞]. Let us calculate P{M(t) >

y|Ft, N(t) = n, β > t}.

P{M(t) > y|Ft, N(t) = n, β > t}

= 1−
(

1− P
{
ξ111{ξ1≥R}11{τ1≥t−A1} > y|Ft, N(t) = n, ξ1 < L(A1)

})n
= 1−

(
1−

P{ξ111{R≤ξ1≤L(A1)}11{τ1≥t−A1} > y|Ft, N(t) = n}
P{ξ1 < L(A1)|Ft, N(t) = n}

)n
= 1−

(
1− ψ(t, y)

ϕ(t)

)n
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Integrating P{M(t) > y|Ft, N(t) = n, β > t} over y, we obtain E[M(t)|Ft, N(t) = n, β >

t].

E[M(t)|Ft, N(t) = n, β > t] =

∫ ∞
0

P{M(t) > y|Ft, N(t) = n, β > t}dy

=

∫ ∞
0

(
1−

(
1− ψ(t, y)

ϕ(t)

)n)
dy. (2.21)

Noting that ψ(t, y) = 0 a.s. when y > L0, we can further simplify (2.21) to

E[M(t)|Ft, N(t) = n, β > t] = L0 −
∫ L0

0

(
1− ψ(t, y)

ϕ(t)

)n
dy.

As a result, E[X1(t)|Ft, N(t) = n] is equal to

E[X1(t)|Ft, N(t) = n] = e−
∫ t
0 r(s)ds

(
L0ϕ(t)n −

∫ L0

0

(
ϕ(t)− ψ(t, y)

)n
dy
)
.

Now, we average E[X1(t)|Ft, N(t) = n] over N(t). By using Fubini’s theorem and Lemma

B.5, we obtain

P1(t|Ft) = e−
∫ t
0 r(s)dseΛ(t)(ϕ(t)−1)

(
L0 −

∫ L0

0

e−Λ(t)ψ(t,y)dy
)
.

Let us now calculate P2(t|Ft). It is equal to

P2(t|Ft) =
∞∑
n=0

pn(t)E[X2(t)|Ft, N(t) = n].

where E[X2(t)|Ft, N(t) = n] is calculated as

E[X2(t)|Ft, N(t) = n] = E
[
e−

∫ β
0 r(s)dsξi(β)11{β≤t}|Ft, N(t) = n

]
= P{β ≤ t|Ft, N(t) = n}E

[
e−

∫ β
0 r(s)dsξi(β)|Ft, N(t) = n, β ≤ t

]
=

(
1− ϕ(t)n

) ∫ t

0

fβ|{Ft,N(t)=n,β≤t}(a)e−
∫ a
0 r(s)dsE

[
ξi(a)

]
.
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The last equality follows from the fact that the magnitude of ξi(β) is independent of Ft and

N(t), and only depends on a given the event {β = a}. Note also that

E[ξi(a)] = E[ξ1|ξ1 ≥ L(a)]

=

∫∞
L(a)

xfξ(x)dx

1− Fξ
(
L(a)

)
Thus,

E[X2(t)|Ft, N(t) = n] =
(
1− ϕ(t)n

) ∫ t

0

∫ ∞
L(a)

fβ|{Ft,N(t)=n,β≤t}(a)
exp(−

∫ a
0
r(s)ds)

1− Fξ
(
L(a)

) xfξ(x)dxda

=
(
1− ϕ(t)n

) ∫ t

0

∫ ∞
L(a)

λ(a) exp
(
−
∫ a

0
r(s)ds

)
Λ(t)

(
1− Fξ

(
L(a)

)) fξ(x)xdxda.

P2(t|Ft) is obtained by averaging E[X2(t)|Ft, N(t) = n] over N(t). By using Lemma B.5, we

obtain

P2(t|Ft) =
(
1− eΛ(t)(ϕ(t)−1)

) ∫ t

0

∫ ∞
L(a)

λ(a) exp
(
−
∫ a

0
r(s)ds

)
Λ(t)

(
1− Fξ

(
L(a)

)) fξ(x)xdxda.

This completes the proof since P (t|Ft) = P1(t|Ft) + P2(t|Ft).
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C Appendix: Parameter Assumptions

Parameter Value
Arrival intensity (λ) 5
Withdrawal intensity (µ) 5
Interest rate (r) 0.1
Reservation price (R) 140
List price (L) 180
Selling motivation (γ) 0.1
pmin 100
pmax 200

Table 1: Default parameter values in OWT analysis in Section 2

Parameter Value
Withdrawal intensity (µ) 10
Occupation period (O) U(4, 6)
Rate of personal crisis Exp(10)
Initial reservation price(R0) 140
Initial list price (L0) 200
Selling motivation (γ) 0.8
Interest rate threshold (φ) 0.06
pmin 100
pmax 200
K1 0.5
K2 1000
θ 0.1
σ 0.08
κ 0.25
r0 0.09

Table 2: Default parameter values in the simulation
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