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Abstract

In this paper we consider a utility function that has a kink at the
reference point and exhibits loss aversion. First we obtain an approx-
imation of the expected utility of a loss averse decision maker. Then,
in the spirit of Arrow and Pratt, we derive the expression for a risk
premium. Finally we find an approximate solution to the optimal cap-
ital allocation problem and derive the expression for a portfolio per-
formance measure. Our analysis generalizes the mean-variance utility
of Tobin and Markowitz, the Arrow-Pratt measure of risk, and the
Sharpe ratio. We show that a loss averse decision maker distinguishes
between three sources of risk. Consequently, the characterization of
the risk attitude of a loss averse decision maker involves three types
of aversions, namely, aversion to loss, aversion to uncertainty in gains,
and aversion to uncertainty in losses. We illustrate that if the deci-
sion maker exhibits a risk-seeking behavior in the domain for loss as in
prospect theory, then neither the standard deviation nor the downside
deviation can be used as a proper risk measure.
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1 Introduction

Expected utility theory of von Neumann and Morgenstern has long been
the main workhorse of modern financial theory. A von Neumann and Mor-
genstern’s utility function is defined over the decision maker’s wealth. The
properties of a von Neumann and Morgenstern’s utility function have been
studied in every detail. The concept of “risk aversion” was analyzed by
Friedman and Savage (1948) and Markowitz (1952). They show that the
realistic assumption of diminishing marginal utility of wealth explains why
people are risk averse. Measurements of risk aversion was developed by
Pratt (1964) and Arrow (1965). These authors analyze the risk premium in
case risk is small and introduce a measure which is widely known now as
the “Arrow-Pratt measure of risk aversion”. The celebrated modern port-
folio theory of Markowitz and the use of mean-variance utility function can
be justified by approximating a von Neumann and Morgenstern’s utility
function by a function of mean and variance, see, for example Samuelson
(1970) and Levy and Markowitz (1979). In this sense, the use of the Sharpe
ratio (see Sharpe (1966)) as a measure of performance evaluation of risky
portfolios is also well justified.

However, not very long ago after expected utility theory was formulated
by von Neumann and Morgenstern (1944) questions were raised about its
value as a descriptive model of choice under uncertainty. Allais (1953) and
Ellsberg (1961) were among the first to challenge expected utility theory.
Influential experimental studies have shown the inability of expected util-
ity theory to explain many phenomena and reinforced the need to rethink
much of the theory. Kahneman and Tversky (1979) propose an alternative
descriptive model of choice under uncertainty that they call prospect theory.
Prospect theory can predict correctly individual choices even in the cases
in which expected utility theory is violated (for a brief description see, for
example, Camerer (2000)). In prospect theory, utility function is defined
over gains and losses relative to some reference point, as opposed to wealth
in expected utility theory. The utility function has a kink at the origin,
with the slope of the loss function steeper than the gain function. This
is what is called loss aversion which is an important element of prospect
theory. The marginal value of both gains and losses decreases with their
size. All these properties give rise to an asymmetric S-shaped utility func-
tion, concave for gains and convex for losses. Moreover, in prospect theory
the decision maker transforms the objective probability distribution into a
subjective probability distribution.

The utility function of prospect theory was inspired by the results of
numerous experimental studies where people were asked to make a choice
among a few alternatives. In this sense, this utility is a behavioral utility
which was obtained by “calibrating” the results of experiments to a util-
ity function with a loose parametric specification. However, very little is
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known about general implications of this behavioral utility for financial de-
cision making. What are the principal differences, if any, between the risk
attitudes of a decision maker in prospect theory and a decision maker in
expected utility theory? Up to now there are only some guesses. For exam-
ples, one usually believes that loss aversion in prospect theory plays the role
of risk aversion in expected utility theory (see Bernartzi and Thaler (1995),
pages 85-86) and investors are not averse to the variability of returns, only
to losses (see Camerer (2000), page 290). If we approximate the expected
utility in prospect theory, what will distinguish it with the mean-variance ap-
proximation of the von Neumann-Morgenstern expected utility? Moreover,
to the best of the authors knowledge, no one has studied the implications
of behavioral utility for the standard capital allocation problem and com-
parison of performances of different risky portfolios. The solutions of these
problems involve not just the choice of the best alternative among several
ones, but the search of the optimal decision in the continuum of possible
choices. The goal of this paper is to provide some answers to these ques-
tions as well as some new insights on the decision maker’s attitude toward
risk and risk measurement.

In this paper we consider a generalized behavioral utility function. This
utility has a kink at the reference point and different functions for losses and
gains. We require only that the behavioral utility function is increasing and
exhibits loss aversion. The first contribution of this paper is to obtain an
approximation of the expected utility of a loss averse decision maker. Our
approximation of the expected (behavioral) utility generalizes the Tobin-
Markowitz mean-variance approximation of the von Neumann-Morgenstern
expected utility. We show that in contrast to a decision maker with the
mean-variance utility for whom the only source of risk is the variance, a
loss averse decision maker distinguishes between three sources of risk: the
expected loss, the uncertainty in losses, and the uncertainty in gains. A
decision maker with loss aversion puts more weight to the uncertainty in
losses than to the uncertainty in gains.

The second contribution of this paper is, in the spirit of Pratt (1964) and
Arrow (1965), to derive an expression for a risk premium in case risk is small.
We show that a utility function with loss aversion allows a much richer and
detailed characterization of a risk premium. For a decision maker with a von
Neumann-Morgenstern utility the risk premium is completely described by
the Arrow-Pratt measure of risk aversion and the variance, which serves as
a measure of risk. Since a decision maker with a von Neumann-Morgenstern
utility does not exhibit loss aversion (that is, this decision maker treats
equally infinitesimal losses and gains), we argue that the Arrow-Pratt mea-
sure of risk aversion should be properly denoted as the measure of “aversion
to uncertainty”. In contrast, our analysis shows that a decision maker with a
behavioral utility exhibits three types of aversions: aversion to loss, aversion
to uncertainty in gains, and aversion to uncertainty in losses (if the function
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for losses is concave, otherwise, if the function is convex as, for example, in
prospect theory, a decision maker appreciates the uncertainty in losses). Un-
certainties in gains and losses are measured by the second upper and lower
partial moments of the probability distribution of risk. Besides the second
partial moments, to compute the risk premium one needs to compute the
first upper and lower partial moments which measure the expected gain and
loss. The presence of loss aversion results in the fact that losses and gains
have different weights in the computation of the risk premium.

The third contribution of this paper is to derive an approximate solution
to the optimal capital allocation problem of an investor. In this setting the
investor wants to allocate the wealth between a risk-free and a risky asset. It
is well known that in the framework of expected utility theory the investor’s
utility function in such an analysis reduces to mean-variance utility function
with a single measure of risk aversion. We show that a behavioral utility
function reduces in this case to a “mean-partial moments” utility function
with three sources of risk and, consequently, three measures of risk aversion.
These measures of risk aversion are the same as in the expression for the risk
premium of a decision maker with behavioral utility: one loss aversion and
two uncertainty aversions. It is widely known that a mean-variance utility
maximizer will always want to allocate some wealth to the risky asset if the
risk premium is non-zero, no matter how small it might be. We discover
here that a loss averse investor will want to allocate some wealth to the
risky asset only when the perceived risk premium is sufficiently high (how
high depends on the level of loss aversion). Otherwise, if the risk premium is
small, a loss averse investor will invest only in the risk-free asset. This result
has a potential to explain for why many investors do not invest in equities
(see, for example, Agnew, Balduzzi, and Annika (2003) who report that
about 48% of participants of retirement accounts do not invest in equities),
this behavior clearly contradicts expected utility theory.

Our fourth contribution is to derive an expression for the performance
measure of a loss averse investor. Instead of the mean and variance in the
Sharpe ratio, in the performance measure of a loss averse investor one needs
to use the (upper and lower) first and second partial moments of the return
distribution of a risky asset. We show that in some specific cases the perfor-
mance measure of an investor with behavioral utility reduces to the perfor-
mance measure suggested by Sortino and Price (1994) and Ziemba (2005)
who replace standard deviation in the Sharpe ratio by downside deviation.
As compared with the Sharpe ratio where the investor’s risk preferences
completely disappear, to compute the performance measure of a loss averse
investor one generally needs to take into account the investor’s preferences.
This means that this performance measure is not unique for all investors,
but rather an individual performance measure. The explanation for this is
the fact that a loss averse investor distinguishes between several sources of
risk. Since each investor may exhibit different preferences to each source of
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risk, investors with different preferences might rank differently the same set
of risky assets. In the paper we present a couple of examples that illustrate
this.

The fifth contribution of this paper is to provide some new insights on risk
measurement. In modern financial theory most often one uses the standard
deviation as a risk measure. This is justified by the mean-variance analysis
of the von Neumann-Morgenstern expected utility provided by Tobin and
Markowitz. Our approximation results justify the use of downside deviation
as a risk measure in some cases. It is worth noting that the idea of measuring
the risk by downside deviation was expressed already by Markowitz (1959).
In particular, Markowitz also proposes to use the (downside) semi-variance
as an alternative measure for risk. Semi-variance is a deviation measure that
differs from ordinary variance in one aspect, namely, it considers only returns
below some target level. Technically, aggregating semi-variances from assets
to portfolios is extremely difficult. That is probably why this idea was not
pursued further. Afterwards the notion of a downside semi-variance was
generalized by Fishburn (1977) and Bawa (1978) who introduce the notion
of a lower partial moment as a risk measure. However, we discover that if
the investor is equipped with the S-shaped utility function as in prospect
theory, then neither the standard deviation nor the downside deviation can
be used as a proper risk measure. This is the consequence of the fact that the
investor with the S-shaped utility exhibits uncertainty-loving behavior with
respect to losses (because the function for losses is convex). That is, such
an investor appreciates uncertainty in losses. Usually, downside deviation
serves as a risk measure meaning that the higher the downside deviation
the greater the risk. But for an investor with a convex utility for losses the
higher the downside deviation the lesser the risk. In this paper we present
two examples that illuminate the point that a decision maker/investor with
the S-shaped utility may prefer a more riskier (in a usual sense) lottery/asset
to a less riskier lottery/asset.

The rest of the paper is organized as follows. In Section 2 we provide
definitions and introduce notation. In Section 3 we perform the approxi-
mation of the decision maker’s expected utility. In Section 4 we analyze
the risk premium of a loss averse decision maker. In Section 5 we analyze
the optimal capital allocation problem of a loss averse investor and derive
the expression for a portfolio performance measure. Section 6 concludes the
paper.

2 Preliminaries

Utility function. A von Neumann-Morgenstern utility function is defined
over the decision maker’s wealth, w, as a single function U(w). In contrast,
in prospect theory a utility always has a reference point, w0, with respect to

5



which one defines losses and gains, see, for example, Kahneman and Tversky
(1979). That is, the utility function is defined as

U(w) =

{
U+(w − w0) if w ≥ w0,

U−(w − w0) if w < w0,

where U−(·) is the utility function for losses, and U+(·) is the utility function
for gains. In the framework of prospect theory, decision makers are more
sensitive to losses than to gains. This implies that the utility function of
a loss averse decision maker should be steeper for losses than for gains.
Observe that U(w) has a kink at w0. Observe also that at the reference
point w0 the utility function is zero and, hence, by the continuity condition

U(w0) = U−(0) = U+(0) = 0. (1)

Moreover, in prospect theory the utility function U(w) is concave for gains
(that is, U+(w−w0) is concave) to reflect risk aversion, but U(w) is convex
for losses (that is, U−(w − w0) is convex) to reflect risk seeking. In our
analysis we will also consider the case where U(w) is concave for both losses
and gains.

Reference point. The current level of the decision maker’s wealth (the
so-called “status quo”) serves usually as the reference point w0. However,
as Khaneman and Tversky point out “gains and losses can be coded relative
to an expectation or aspiration level that differs from the status quo” (see
Kahneman and Tversky (1979) page 286).

Loss Aversion. Denote the left-sided derivative of U(w) at point w0

by1 U ′−(0). That is,

U ′
−(0) = lim

w→w0−
U−(w)− U−(w0)

w − w0
.

Similarly, denote the right-sided derivative of U(w) at point w0 by U ′
+(0)

U ′
+(0) = lim

w→w0+

U+(w)− U+(w0)
w − w0

.

In our analysis we assume that both U ′−(0) and U ′
+(0) exist and are positive

and finite. Loss aversion does only hold when

U ′
−(0) > U ′

+(0).

The measure of loss aversion is given by

λ =
U ′−(0)
U ′

+(0)
. (2)

1To be more precise, we need to denote the left derivative as U ′−(0−), but this would
enlarge the notation.
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This measure of loss aversion was proposed by Bernartzi and Thaler (1995)
and formalized by Köbberling and Wakker (2005). Observe that loss aver-
sion implies λ > 1.

Transformation of probability distribution. In prospect theory
one uses not the objective probability distribution, but a transformation of
the objective probability distribution. In prospect theory of Kahneman and
Tversky (1979), which is applicable only to cases with a discrete probabil-
ity distribution, the objective probability p of an outcome is replaced with a
transformed probability ϕ(p) also known as a decision weight. The weighting
function ϕ(·) overweights low probabilities and underweights high probabil-
ities. In cumulative prospect theory of Tversky and Kahneman (1992) the
transformed probability distribution function q(x) of a random variable x
is obtained using the objective cumulative probability distribution function
F (x) in the following manner

q(x) =
d

dx
ϕ (F (x)) .

In our analysis we denote by Q(x) the cumulative probability distribution
function of random variable x. This cumulative distribution function repre-
sents the beliefs of a decision maker. That is, it is generally a transformed
distribution function. The distinction between the objective and the subjec-
tive beliefs does not influences the results presented in this paper. However,
the reader should keep in mind this distinction and realize that the compu-
tation of the partial moments of the distribution of x might be done in the
subjective world of a decision maker.

Lower and upper partial moments. Fishburn (1977) and Bawa
(1978) introduced the notion of a lower partial moment as a measure of
risk. Suppose that x is some random variable and Q(x) is the cumulative
distribution function of x. The definition of a lower partial moment of order
n at some level l

LPMn(x, l) =
∫ l

−∞
(l − x)ndQ(x).

Observe that the integral above is a Lebesque-Stieltjes integral. Similarly,
we define an upper partial moment of order n at some level l

UPMn(x, l) =
∫ ∞

l
(x− l)ndQ(x).

Examples of utility functions with loss aversion. A possible gen-
eral form of a utility function with loss aversion is proposed by Köbberling
and Wakker (2005)

U(w) =

{
u(w − w0) if w ≥ w0,

−λu(w0 − w) if w < w0.
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Here there is a single function u for both losses and gains. Parameter λ > 1
makes the utility function U be steeper for losses than for gains.

Kahneman and Tversky (1979) propose the following utility function

U(w) =

{
(w − w0)α if w ≥ w0,

−λ(w0 − w)β if w < w0.
(3)

This function has extreme (0 or ∞) derivatives at w0 whenever the powers α
and β are not 1. This complicates the definition of loss aversion. Khaneman
and Tversky estimate the parameters to be: α = β = 0.88 and λ = 2.25. In
this exceptional case, the value of the parameter λ can still be interpreted
as a measure of loss aversion.

The utility function of Khaneman and Tversky is motivated by power
utility. Köbberling and Wakker (2005) propose the following utility function
which is motivated by negative exponential utility

U(w) =





1−e−γ(w−w0)

γ if w ≥ w0,

λ
(

eη(w−w0)−1
η

)
if w < w0.

This function does not encounter the problem with the existence of deriva-
tives at w0. In this function γ > 0 controls the concavity of utility for gains,
η controls the convexity (if η > 0) of utility for losses, and λ is loss aversion.

3 Approximation of the Decision Maker’s Expected
Utility

In this paper we perform the approximation analysis of financial decision
making with a generalized behavioral utility function. This utility has a
kink at the reference point and different functions for losses and gains. We
require only that the behavioral utility function is increasing in wealth and
exhibits loss aversion. Our approximation analysis is based on the following
technique. Suppose that w is the decision maker’s random wealth, Q(w)
is the cumulative distribution function of w, and w0 is the reference point.
Then the decision maker’s expected utility is given by

E[U(w)] =
∫ w0

−∞
U−(w − w0)dQ(w) +

∫ ∞

w0

U+(w − w0)dQ(w).
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We apply Taylor series expansions for U−(w −w0) and U+(w −w0) around
0 which yields

E[U(w)] =
∫ w0

−∞

( ∞∑

n=1

1
n!

U
(n)
− (0)(w − w0)n

)
dQ(w)

+
∫ ∞

w0

( ∞∑

n=1

1
n!

U
(n)
+ (0)(w − w0)n

)
dQ(w)

=
∞∑

n=1

1
n!

U
(n)
− (0)

∫ w0

−∞
(−1)n(w0 − w)ndQ(w)

+
∞∑

n=1

1
n!

U
(n)
+ (0)

∫ ∞

w0

(w − w0)ndQ(w)

=
∞∑

n=1

1
n!

U
(n)
− (0)(−1)nLPMn(w,w0) +

∞∑

n=1

1
n!

U
(n)
+ (0)UPMn(w, w0),

(4)

where U (n) denotes the nth derivative of U and supposing that the Taylor
series converge and the integrals exist. Observe that the summations in the
equation above start with n = 1 due to the fact that the utility is zero at
the reference point (see property (1)). To simplify expression (4) we assume
that

w = w0 + x,

where x is a random variable whose probability distribution belongs to the
family of “compact” or “small risk” distributions (for the definition, see, for
example, Samuelson (1970)). This allows us to assume that all the terms
in (4) with LPM3(w,w0), UPM3(w,w0), and other higher partial moments
are of smaller order than the second partial moments. If we neglect all the
lower and upper partial moments of higher order than 2, then

E[U(w)] ≈
2∑

n=1

1
n!

U
(n)
− (0)(−1)nLPMn(w,w0)+

2∑

n=1

1
n!

U
(n)
+ (0)UPMn(w,w0).

(5)
Since utility functions are equivalent up to a positive linear transformation,
we find an equivalent expected utility by dividing the left- and right-hand
sides of (5) by U ′

+(0) > 0. This yields

E[Û(w)] ≈ −U ′−(0)
U ′

+(0)
LPM1(w,w0) +

1
2

U ′′−(0)
U ′−(0)

U ′−(0)
U ′

+(0)
LPM2(w, w0)

+ UPM1(w, w0) +
1
2

U ′′
+(0)

U ′
+(0)

UPM2(w,w0),
(6)
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where Û(·) is the equivalent utility function. Note that
U ′−(0)

U ′+(0)
= λ by the

definition of loss aversion (2). Denote in addition

γ− = −U ′′−(0)
U ′−(0)

,

γ+ = −U ′′
+(0)

U ′
+(0)

.

(7)

Using this notation, the equivalent expected utility can be written as

E[Û(w)] ≈ UPM1(w, w0)− 1
2
γ+UPM2(w, w0)

− λ

(
LPM1(w, w0) +

1
2
γ−LPM2(w,w0)

)
.

(8)

The question now is how to interpret correctly the values of γ− and γ+. It
is tempting to interpret these values, in the spirit of Arrow and Pratt, as
measures of risk aversions to losses and gains respectively. However, it is
hard to make economic sense of the expression “risk aversion to gains”. We
argue that γ− should be interpreted as the measure of aversion to uncertainty
in losses. Similarly, γ+ should be interpreted as the measure of aversion to
uncertainty in gains.

Indeed, if the decision maker has a von Neumann-Morgenstern utility,
then λ = 1 and γ− = γ+ = γ = −U ′′(w0)

U ′(w0) . In this case the equivalent
utility (8) reduces largely to the mean-variance utility (the Tobin-Markowitz
approximation of the expected utility)

E[Û(w)] ≈ E[w − w0]− 1
2
γVar[w − w0], (9)

if, for example, either E[x] = 0 or x is Wiener’s Brownian motion where the
mean and variance grow linearly with time interval ∆t, and ∆t is small (the
illustrations will be provided in the subsequent sections).

As compared with a von Neumann-Morgenstern utility where the deci-
sion maker’s risk attitude is completely described by only one parameter,
the aversion to uncertainty, with a loss averse utility the decision maker’s at-
titude toward risk needs to be described by three parameters. To illuminate
the difference between (8) and (9), observe that

E[w − w0] = UPM1(w, w0)− LPM1(w, w0).

Thus, the equivalent utility (8) can be rewritten as

E[Û(w)] ≈ E[w − w0]− (1− λ)LPM1(w, w0)

− 1
2
γ+UPM2(w, w0)− 1

2
λγ−LPM2(w,w0).

(10)

10



In contrast to the decision maker with the mean-variance utility for whom
the only source of risk is the variance, the decision maker with loss aversion
distinguishes between three sources of risk: the lower partial moment of
order 1 which is related to the expected loss, the lower partial moment of
order 2 which is related to the uncertainty in losses, and the upper partial
moment of order 2 which is related to the uncertainty in gains. Observe that
a decision maker with loss aversion puts more weight to the uncertainty in
losses than to the uncertainty in gains.

Observe that the results of our approximation of the decision maker’s
expected utility (either (8) or (10)) are exact irrespective of the distribution
of x when both the loss and gain functions are quadratic. To illustrate our
results and highlight the differences in decision making for different shapes
of the decision maker’s utility function, we will employ the following utility

U(w) =

{
(w − w0)− 1

2γ+(w − w0)2 if w ≥ w0,

λ
(
(w − w0)− 1

2γ−(w − w0)2
)

if w < w0.
(11)

In this function γ+ ≥ 0 controls the concavity of utility for gains, whereas
γ− controls either the concavity (if γ− > 0) or the convexity (if γ− < 0) of
utility for losses. Some possible shapes of this utility function are presented
in Figure 1.

Quadratic: The shape of this utility is given by λ = 1 and γ− = γ+ = γ >
0. This utility largely corresponds to the quadratic utility in the ex-
pected utility theory framework. Note that this function is increasing
in the interval

w − w0 <
1
γ

.

Behavioral I: The shape of this utility is given by λ = 1, γ− > 0, and
γ+ = 0. This is the utility function of Fishburn (1977) and Bawa
(1978) where one uses the lower partial moment of order 2. The deci-
sion maker with this utility exhibits no loss aversion, risk neutrality in
the domain for gains, and risk aversion in the domain for losses. Note
that this function is increasing for all values of w − w0.

Behavioral II: The shape of this utility is given by λ > 1, γ− < 0, and
γ+ > 0. This utility largely corresponds to the utility function in
prospect theory. The decision maker with this utility exhibits loss
aversion, risk aversion in the domain for gains, and risk seeking in the
domain for losses. Note that this function is increasing in the interval

1
γ−

< w − w0 <
1

γ+
.
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(a) Quadratic (b) Behavioral I

(c) Behavioral II (d) Behavioral III

Figure 1: Alternative shapes of the utility function.

Behavioral III: The shape of this utility is given by λ > 1, γ− > 0, and
γ+ > 0. The decision maker with this utility exhibits loss aversion,
and risk aversion in the domains for losses and gains. Observe that
the difference in the shapes of the Behavioral II and Behavioral III
utilities results from the different signs of γ−. Note that this function
is increasing in the interval

w − w0 <
1

γ+
.

4 Risk Premium with Loss Aversion

In this section we consider a risk averse decision maker with (deterministic)
wealth w and a utility function U which exhibits loss aversion. Let x be
some uncertain amount. Since the decision maker is risk averse, then

U(w + E[x]) > E[U(w + x)].

12



This says that for a risk averse decision maker the expected utility of w + x
is less than the utility of w + E[x]. Observe that this is the most general
definition of risk aversion. It is a standard in economics to characterize
the risk aversion in terms of the risk premium, π, which is defined by the
following indifference condition

U(w + E[x]− π) = E[U(w + x)]. (12)

This says that the decision maker is indifferent between receiving x and
receiving a non-random amount of E[x]−π. In the spirit of Pratt (1964) we
will derive an expression for the risk premium π. A Taylor series expansion
for U(w + E[x]− π) around the reference point w0 gives us

U(w + E[x]− π) =
∞∑

n=0

1
n!

U (n)(w0)(w + E[x]− π − w0)n. (13)

Observe that U (n)(w0) does not exist in a strict sense since the utility func-
tion U is not differentiable at the kink point. It is either U

(n)
− (0) or U

(n)
+ (0)

depending on the sign of w + E[x]− π − w0. Now consider

E[U(w + x)] =
∫ ∞

−∞
U(w + x)dQ(x)

=
∫ w0−w

−∞
U−(w + x− w0)dQ(x) +

∫ ∞

w0−w
U+(w + x− w0)dQ(x),

where Q(x) is the cumulative probability distribution function of x. Taylor
series expansions for U−(w + x− w0) and U+(w + x− w0) around 0 give

E[U(w + x)] =
∫ w0−w

−∞

( ∞∑

n=0

1
n!

U
(n)
− (0)(w + x− w0)n

)
dQ(x)

+
∫ ∞

w0−w

( ∞∑

n=0

1
n!

U
(n)
+ (0)(w + x− w0)n

)
dQ(x)

=
∞∑

n=0

1
n!

U
(n)
− (0)

∫ w0−w

−∞
(−1(w0 − w − x))ndQ(x)

+
∞∑

n=0

1
n!

U
(n)
+ (0)

∫ ∞

w0−w
(x− (w0 − w))ndQ(x)

=
∞∑

n=0

1
n!

U
(n)
− (0)(−1)nLPMn(x, w0 − w)

+
∞∑

n=0

1
n!

U
(n)
+ (0)UPMn(x,w0 − w).

(14)
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Now suppose that E[x] = 0, that is, x is a pure risk, and the reference
point is w0 = w, that is, the “status quo”. Since the decision maker dislikes
risk, the risk premium is positive, π > 0, and, thus, U (n)(w0) = U

(n)
− (0) in

equation (13). As in the seminal paper of Pratt (1964) we assume that the
risk is small that allows us to neglect all the terms in (13) with π2 and higher
powers of π. Moreover, since the risk is small, the probability distribution
of x belongs to the family of “compact” or “small risk” distributions. This
allows us to neglect all the lower and upper partial moments of higher order
than 2. More formally, we suppose that

U(w + E[x]− π) ≈ −U ′
−(0)π,

and

E[U(w+x)] ≈
2∑

n=1

1
n!

U
(n)
− (0)(−1)nLPMn(x, 0)+

2∑

n=1

1
n!

U
(n)
+ (0)UPMn(x, 0).

Given these assumptions, the indifference equation (12) becomes

−U ′
−(0)π =

2∑

n=1

1
n!

U
(n)
− (0)(−1)nLPMn(x, 0) +

2∑

n=1

1
n!

U
(n)
+ (0)UPMn(x, 0).

(15)
To shorten the subsequent notation, denote

µ− = LPM1(x, 0),
µ+ = UPM1(x, 0),

σ2
− = LPM2(x, 0),

σ2
+ = UPM2(x, 0).

Then the solution for the risk premium, π, can be written as follows

π = µ− − 1
2

U ′′−(0)
U ′−(0)

σ2
− −

U ′
+(0)

U ′−(0)
µ+ − 1

2
U ′′

+(0)
U ′

+(0)
U ′

+(0)
U ′−(0)

σ2
+.

Note that
U ′+(0)

U ′−(0)
= 1

λ by the definition of loss aversion (2). Using the same
notation as in (7), the expression for the risk premium can be written

π =
(

µ− +
1
2
γ−σ2

−

)
− 1

λ

(
µ+ − 1

2
γ+σ2

+

)
. (16)

Observe that if the decision maker has a von Neumann-Morgenstern utility,
then λ = 1 and γ− = γ+ = γ = −U ′′(w0)

U ′(w0) . In this case the equation for π
reduces to the famous result of Arrow-Pratt

π =
1
2
γσ2

− +
1
2
γσ2

+ =
1
2
γσ2, (17)
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since µ− = µ+ and σ2− + σ2
+ = σ2 (due to E[x] = 0). Since a decision

maker with a von Neumann-Morgenstern utility exhibits no loss aversion,
both (infinitesimal) losses and gains are treated similarly as it is clearly
seen from equation (17). Consequently, the Arrow-Pratt measure of risk
aversion is a measure of aversion to variance, or a measure of aversion to
uncertainty. In other words, when risk is small, a decision maker with a
von Neumann-Morgenstern utility exhibits only aversion to uncertainty. In
addition, when risk is small, the risk premium is fully characterized by a
measure of uncertainty aversion and the variance, which is a measure of
uncertainty itself.

A utility function with loss aversion allows a much richer and detailed
characterization of risk aversion. According to equation (16) a decision
maker exhibits three different types of aversion: aversion to loss, aversion
to uncertainty in gains, and aversion to uncertainty in losses. Uncertainties
in gains and losses are measured by the second upper partial moment of
x and the second lower partial moment of x respectively. If LPM3(x, 0),
UPM3(x, 0), and higher partial moments of x are not of smaller order than
the second partial moments, we need all the partial moments of x to char-
acterize the risk premium. If π2 ¿ π and we keep all the partial moments
of x in equation (14), then the expression for the risk premium becomes

π =

(
µ− +

∞∑

n=2

1
n!

U
(n)
− (0)

U ′−(0)
(−1)nLPMn(x, 0)

)

− 1
λ

(
µ+ −

∞∑

n=2

1
n!

U
(n)
+ (0)

U ′
+(0)

UPMn(x, 0)

)
.

In this case
U

(n)
− (0)

U ′−(0)
must be interpreted as a measure of aversion to the nth

lower partial moment, and
U

(n)
+ (0)

U ′+(0)
as a measure of aversion to the nth upper

partial moment.
Finally we present a brief comparative static analysis of the expression

for the risk premium (16). First observe that since for a loss averse decision
maker 1

λ < 1, losses and gains have different weights in the computation of
the risk premium. In particular, losses are λ times more important than
gains. In the limit as λ →∞

lim
λ→∞

π = µ− +
1
2
γ−σ2

−,

which means that the upper partial moments become irrelevant for the com-
putation of the risk premium. Then note that generally γ− 6= γ+, that is,
the decision maker has different degrees of uncertainty aversions to losses
and gains. As we suppose that the utility function U is always concave for
gains, thus γ+ > 0 which means that the greater the aversion to uncertainty
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in gains, the higher the risk premium. If the utility function is also concave
for losses, then γ− > 0 which means that the greater the aversion to uncer-
tainty in losses, the higher the risk premium. In prospect theory, however,
the utility function U is convex for losses, thus γ− < 0. In this case the deci-
sion maker actually appreciates the uncertainty in losses and the higher the
absolute value of γ−, the lesser the risk premium. If the decision maker is
completely neutral to uncertainties, then γ− = γ+ = 0 and the risk premium
is computed in accordance

π = µ− − 1
λ

µ+.

Note that we have conducted the analysis assuming that E[x] = 0 and
w0 = w. This is a particular case of a more general assumption w0 =
w + E[x]. Observe that our result (16) remains valid for w0 = w + E[x]
when the computation of the lower and upper moments is done with respect
to the level l = E[x]. Recall that w does not need to be the reference point.
The choice of w0 = w + E[x] is sensible in the meaning that for any a > 0
the lower and upper partial moments of the uncertain amount y = ax have
a very nice homogeneity property

LPMn(y, E[y]) = anLPMn(x,E[x]),
UPMn(y, E[y]) = anUPMn(x,E[x]).

If, for example, the risk is measured by a lower partial moment (as, for
example, in Behavioral I utility function), it is natural to require that the
risk measure satisfies the homogeneity property, see, for example2, Artzner
et al. (1999) or Rockafellar et al. (2006). Observe that if a decision maker
has a von Neumann-Morgenstern utility and a Taylor series expansion is
done around w0 = w + E[x], then the homogeneity property is also satisfied
for all moments of the distribution of y

E[(y −E[y])n] = anE[(x− E[x])n].

Finally we provide an example that is constructed to illustrate a possible
counter-intuitive decision making in prospect theory. Recall that in prospect
theory one assumes that the decision maker’s utility function is convex for
losses, thus, the decision maker appreciates the uncertainty in losses. The
data for the example are provided in Table 1. In short, we would like to
find out which lottery, A or B, is considered to be more risky. Observe that
the probabilities of the states are alike so that the presented results do not

2The lower partial moment is not a “risk measure” in the sense proposed by Artzner,
Delbaen, Eber, and Heath (1999) in their landmark paper. In the sense of Artzner et al.
(1999) the coherent risk measure of x based on a lower partial moment of order n is
ρ(x) = −E[x]+a n

p
LPMn(x, E[x]) for a > 0. This was proved by Fisher (2003) and later

by Rockafellar, Uryasev, and Zabarankin (2006). We thank Tom Fisher for this remark.
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State 1 2 3 4
Probability 0.25 0.25 0.25 0.25
Payoff lottery A -10 -5 5 10
Payoff lottery B -12 -3 5 10

Table 1: Probability distributions of the two lotteries.

Parameter Lottery A Lottery B
Expected payoff 0 0

Standard deviation, σ 7.91 8.34
µ+ 3.75 3.75
µ− 3.75 3.75
σ+ 5.59 5.59
σ− 5.59 6.18

Table 2: Descriptive parameters of the distributions of the two lotteries.

depend on the probability transformation that is used in prospect theory.
Table 2 presents the descriptive parameters of the distributions of the two
lotteries. Note that the two lotteries differ in their probability distributions
of payoffs below zero so that their measures σ+ are equal and since the
expected payoffs are zero, so µ+ = µ− for both the lotteries.

Example 1 (A more risky (in a usual sense) lottery can have a
smaller risk premium than a less risky lottery). In this example we
use the same general utility function (11) which can result in different shapes
and preferences depending on the set of parameters (λ, γ−, γ+). We consider
the risk premiums of four different decision makers where each of them has
a distinct shape of the utility function. Observe that the higher the risk pre-
mium of a lottery, the more riskier the lottery for a particular decision maker
(given that the lotteries under question have the same expected payoff).

• For the decision maker with Quadratic utility with λ = 1 and γ− =
γ+ = 0.04

πQuadratic
A = 1.25 < πQuadratic

B = 1.39.

• For the decision maker with Behavioral I utility for which λ = 1,
γ− = 0.04, and γ+ = 0

πBehavioral I
A = 0.63 < πBehavioral I

B = 0.77.

• For the decision maker with Behavioral II utility for which λ = 2,
γ− = −0.04, and γ+ = 0.04

πBehavioral II
A = 1.56 > πBehavioral II

B = 1.42.
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• For the decision maker with Behavioral III utility for which λ = 2,
γ− = 0.04, and γ+ = 0.04

πBehavioral III
A = 2.81 < πBehavioral III

B = 2.95.

In the computation of the risk premiums we make sure that the values of
γ− and γ+ are chosen to satisfy the condition of positive marginal utility of
a decision maker in all states. Observe that the decision maker with convex
loss function considers lottery B to be less risky than lottery A, whereas for
all the other decision makers lottery A is less risky than lottery B. This result
seems to be counter-intuitive because we are used to think that the higher
the standard deviation or the downside deviation, the more risky the lottery.
That is, the standard deviation or the downside deviation are considered to
be the measures of risk. However, if the investor has a utility function as in
prospect theory, neither the standard deviation or the downside deviation
is a proper risk measure! ¦

5 Optimal Capital Allocation with Loss Aversion

5.1 Set Up

In this section we consider an investor who wants to allocate the wealth
between a risk-free and a risky asset. The returns of the risky asset over a
small time interval ∆t are

x = µ∆t + σ
√

∆tε,

where µ and σ are, respectively, the mean and volatility of the risky asset
return per unit of time, and ε is some (normalized) stochastic variable such
that E[ε] = 0 and Var[ε] = 1. We assume that Q(x) is the cumulative
probability distribution function of x. The returns on the risk-free asset
over the same time interval equal

rf = r∆t,

where r is the risk-free interest rate per unit of time.
We further suppose that the investor has a wealth of w and invests a

into the risky asset and, consequently, w − a into the risk-free asset. Thus,
the investor’s wealth after ∆t is

w̃ = a(x− rf ) + w(1 + rf ).

The investor’s expected utility

E[U(w̃)] = E[U(a(x− rf ) + w(1 + rf ))]. (18)

18



The investor’s objective is to choose a to maximize the expected utility

E[U∗(w̃)] = max
a

E[U(w̃)]. (19)

Before turning to the solution of the optimal capital allocation problem,
we would like to derive a detailed general expression for the investor’s ex-
pected utility as a function of a. It is important to observe here that, since
the utility function is defined over losses and gains, the resulting expression
for the investor’s expected utility depends on whether the value of a is posi-
tive or negative. First we consider the case where a > 0, that is, the investor
buys the risky asset. In this case

E[U(w̃)|a > 0] =
∫ rf− δw

a

−∞
U−(a(x− rf ) + δw)dQ(x)

+
∫ ∞

rf− δw
a

U+(a(x− rf ) + δw)dQ(x),

where
δw = w(1 + rf )− w0.

The next step is to apply Taylor series expansions for U−(a(x − rf ) + δw)
and U+(a(x− rf ) + δw) around 0

E[U(w̃)|a > 0] =
∫ rf− δw

a

−∞

( ∞∑

n=1

1
n!

U
(n)
− (0)(a(x− rf ) + δw)n

)
dQ(x)

+
∫ ∞

rf− δw
a

( ∞∑

n=1

1
n!

U
(n)
+ (0)(a(x− rf ) + δw)n

)
dQ(x)

=
∞∑

n=1

1
n!

U
(n)
− (0)

∫ rf− δw
a

−∞
(−a)n

(
rf − δw

a
− x

)n

dQ(x)

+
∞∑

n=1

1
n!

U
(n)
+ (0)

∫ ∞

rf− δw
a

an

(
x−

(
rf − δw

a

))n

dQ(x)

=
∞∑

n=1

1
n!

U
(n)
− (0)(−1)nanLPMn

(
x, rf − δw

a

)

+
∞∑

n=1

1
n!

U
(n)
+ (0)anUPMn

(
x, rf − δw

a

)
.

(20)

Similarly, for the case where a < 0 (that is, the investor sells short the risky
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asset) we obtain

E[U(w̃)|a < 0] =
∫ rf− δw

a

−∞
U+(a(x− rf ) + δw)dQ(x)

+
∫ ∞

rf− δw
a

U−(a(x− rf )− δw)dQ(x)

=
∞∑

n=1

1
n!

U
(n)
+ (0)(−1)nanLPMn

(
x, rf − δw

a

)

+
∞∑

n=1

1
n!

U
(n)
− (0)anUPMn

(
x, rf − δw

a

)
.

(21)

5.2 Solutions of the Optimal Capital Allocation Problem

Prior to proceeding to the analysis of the investor’s optimal capital alloca-
tion decision, we need to choose the investor’s reference point w0 to which
gains and losses are compared. One possible reference point is the “sta-
tus quo”, that is, the investor’s initial wealth w. Unfortunately, with this
choice it is possible to arrive to a closed-form approximate solution of the
optimal capital allocation problem only when w = 0. However, according
to Khaneman and Tversky, the investor’s initial wealth does not need to
be the reference point. Following Barberis, Huang, and Santos (2001) we
assume that the reference point is w0 = w(1 + rf ). This is the investor’s
initial wealth scaled up by the risk-free rate. This level of wealth serves as
a “benchmark” wealth. Consequently, gains and losses for the investor are
coded relative to the benchmark. The idea here is that the investor is likely
to be disappointed if the risky asset provides a return below the risk-free rate
of return. Moreover, the choice of w0 = w(1 + rf ) is also justified if we re-
quire that all partial moments should exhibit the homogeneity property in a
(recall the discussion in the previous section). For example, if the investor is
equipped with Behavioral I utility function, the risk of investing the amount
of a > 0, as measured by downside deviation, equals to a

√
LMP2(x, rf ),

which seems to be very natural.
Now we proceed to the analysis of the optimal capital allocation problem.

First we consider the case where the optimal a is positive. In this case,
given the choice w0 = w(1 + rf ) which results in δw = 0, we can rewrite the
equation (20) as

E[U(w̃)|a > 0] =
∞∑

n=1

1
n!

U
(n)
− (0)an(−1)nLPMn(x, rf )

+
∞∑

n=1

1
n!

U
(n)
+ (0)anUPMn(x, rf ).

(22)
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Note that the first and the second (either lower or upper) partial moments
are of order ∆t, the third partial moments are of order ∆t

3
2 , the fourth

partial moments are or order ∆t2, etc. To proceed further, we assume
that the time interval ∆t is rather small such that in equation (22) we can
disregard all the terms but those which are of order ∆t. Further denote

p− = LPM1(x, rf ) =
∫ rf

−∞
(rf − x)dQ(x),

p+ = UPM1(x, rf ) =
∫ ∞

rf

(x− rf )dQ(x),

σ2
− = LPM2(x, rf ) =

∫ rf

−∞
(rf − x)2dQ(x),

σ2
+ = UPM2(x, rf ) =

∫ ∞

rf

(x− rf )2dQ(x).

That is, p− is the lower partial moment of order 1 at level rf and σ2− is
the lower partial moment of order 2 at level rf . Similarly, p+ is the upper
partial moment of order 1 at level rf and σ2

+ is the upper partial moment
of order 2 at level rf . With this assumption and notation we can rewrite
equation (22) as

E[U(w̃)|a > 0] ≈ a
(−U ′

−(0)p− + U ′
+(0)p+

)
+

1
2
a2

(
U ′′
−(0)σ2

− + U ′′
+(0)σ2

+

)
.

(23)
Note that if we divide the left- and right-hand sides of the equation above
by U ′

+(0) > 0, we arrive to the equivalent expected utility

E[Û(w̃)|a > 0] ≈ a(p+ − λp−)− 1
2
a2(γ+σ2

+ + λγ−σ2
−), (24)

where λ is loss aversion and γ− and γ+ are aversions to uncertainties in
losses and gains as in (7). Observe that the investor’s equivalent expected
utility (24) is a quadratic function in a. To guarantee the existence of a
maximum, the investor’s utility should be concave in a, which means that
the following conditions should be satisfied:

γ+σ2
+ + λγ−σ2

− > 0 if a > 0, (25)

The first-order condition of optimality of a in equation (24) gives us

(p+ − λp−)− a(γ+σ2
+ + λγ−σ2

−) = 0.

The solution with respect to a yields

a =
p+ − λp−

λγ−σ2− + γ+σ2
+

if a > 0. (26)
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Inserting expression (26) for the optimal value of a into (24), we obtain the
solution for the investor’s maximum expected utility

E[Û∗(w̃)|a > 0] ≈
(

p+ − λp−
λγ−σ2− + γ+σ2

+

)
(p+ − λp−)

− 1
2

(
p+ − λp−

λγ−σ2− + γ+σ2
+

)2 (
λγ−σ2

− + γ+σ2
+

)

=
1
2

(p+ − λp−)2

λγ−σ2− + γ+σ2
+

.

(27)

We postpone the discussion of the investor’s optimal capital allocation.
Next we consider the case where the optimal a is negative. In this case we
can rewrite the equation (21) as (disregarding again all the terms but those
which are of order ∆t)

E[U(w̃)|a < 0] ≈ a
(−U ′

+(0)p− + U ′
−(0)p+

)
+

1
2
a2

(
U ′′

+(0)σ2
− + U ′′

−(0)σ2
+

)
.

(28)
Note that if we again divide the left- and right-hand sides of the equation
above by U ′

+(0) > 0, we arrive to the equivalent expected utility

E[Û(w̃)|a < 0] ≈ −a(p− − λp+)− 1
2
a2(γ+σ2

− + λγ−σ2
+). (29)

Again observe that the investor’s equivalent expected utility (29) is a quadratic
function in a. To guarantee the existence of a maximum, the investor’s util-
ity should be concave in a, which means that the following conditions should
be satisfied:

γ+σ2
− + λγ−σ2

+ > 0 if a < 0. (30)

Using the first-order condition of optimality of a and solving the resulting
equation with respect to a we obtain

a =
λp+ − p−

γ+σ2− + λγ−σ2
+

if a < 0. (31)

Afterwards we insert expression (31) for the optimal value of a into (28) and
obtain the solution for the investor’s maximum expected utility

E[Û∗(w̃)|a < 0] ≈ 1
2

(p− − λp+)2

γ+σ2− + λγ−σ2
+

. (32)

Finally observe that not for all possible sets of parameters (λ, γ−, γ+) the
optimal capital allocation problem has a solution. Since σ2

+ > 0 and σ2− > 0,
the conditions (25) and (30) are always satisfied if the investor dislikes either
both uncertainties or at least one uncertainty and is neutral to the other.
For example, these conditions are violated if the investor appreciates the
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uncertainty in losses, γ− < 0, but neutral to the uncertainty in gains, γ+ = 0.
The other example when the conditions are violated is if γ− = γ+ = 0, that
is, the investor is neutral to both uncertainties. In this case the investor’s
utility can be represented by so-called “bilinear” utility. If, for example,
a > 0 and p+ − λp− > 0, then the investor’s expected utility (24) is strictly
increasing in a which means that the investor is willing to borrow an infinite
amount at the risk-free rate and invest all in the risky asset. For bilinear
utility the solution of the optimal capital allocation problem generally does
not exist, this was noted by Sharpe (1998).

5.3 Discussion of Economic Implications

Observe that for a von Neumann-Morgenstern utility the solution for a re-
duces to the well-known result

a =
µ− r

γσ2
, (33)

since with no transformation of probability p+ − p− = (µ− r)∆t and σ2− +
σ2

+ = σ2∆t up to the leading terms of order ∆t. Observe from (33) that for
the investor with a von Neumann-Morgenstern utility it is always optimal
to undertake a risky investment when

µ 6= r.

If µ > r, it is optimal for the investor to buy some amount of the risky asset,
whereas if µ < r, it is optimal for the investor to sell short some amount
of the risky asset. However, if the investor has a utility function with loss
aversion then it is optimal for the investor to buy some amount of the risky
asset only in case

p+ > λp−. (34)

Similarly, it is optimal for the investor sell short some amount of the risky
asset only under condition that

p+ <
1
λ

p−. (35)

Both conditions, (34) and (35), say that the risk premium provided by the
risky asset must be rather high to induce the investor to undertake a risky
investment. With loss aversion, combining conditions (34) and (35), we
conclude that the investor does not invests if

1
λ

p− < p+ < λp−.

In other words, the absolute value of the risk premium3, |p+ − p−|, must
exceed some threshold amount to induce the investor to undertake a risky

3Observe that without a probability transformation it means that the absolute value
of µ− r should be rather high.
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investment. If the perceived risk premium provided by the risky asset is
below some threshold, the investor avoids the risky asset and invests all
in the risk-free asset only. Observe that loss aversion provides a possible
explanation for why many investors do not invest in equities. For example,
Agnew et al. (2003) study nearly 7,000 retirement accounts and report that
about 48% of participants do not invest in equities. Note that according to
expected utility theory this behavior is not rational.

Finally we present a brief comparative static analysis of the expressions
(26) and (31) for the optimal amount invested in the risky asset, a. If
the utility function is linear in the domain for gains, thus γ+ = 0 which
means that uncertainty in gains plays no role in investment decisions. As
we suppose that the utility function is always concave for gains, thus γ+ >
0 which means that the greater the aversion to uncertainty in gains, the
lesser the amount invested in the risky asset. If the utility function is also
concave for losses, then γ− > 0 which means that the greater the aversion
to uncertainty in losses, the lesser the amount invested in the risky asset.
Observe that in prospect theory the utility function is convex for losses, thus
γ− < 0. In this case the investor appreciates the uncertainty in losses and
the higher the absolute value of γ−, the larger the amount invested in the
risky asset. Observe that when γ− < 0 and a > 0 the greater the value of
σ− the larger might be the amount invested in the risky asset. This seems
to be counter-intuitive. That is, if it is optimal for the investor to buy the
risky asset, then the value of σ−, which is the downside deviation below the
risk-free alternative, is often used as a risk measure. However, if the investor
has a utility function as in prospect theory, either the standard deviation or
the downside deviation is not a proper risk measure! In the next subsection
we provide an example that illustrates this point.

When it comes to the dependence of the optimal amount invested in the
risky asset on the loss aversion parameter λ, the higher the value of λ, the
lesser the amount invested in the risky asset. To illustrate this, we consider
only the case when a > 0. We find the derivative of a with respect to λ

da

dλ
= −p−γ+σ2

+ + p+γ−σ2−
(λγ−σ2− + γ+σ2

+)2
.

Let us consider the numerator in the fraction above. Using condition (34)
we conclude

p−γ+σ2
+ + p+γ−σ2

− > p−(γ+σ2
+ + λγ−σ2

−) > 0,

where the last inequality is due to condition (25) and the positiveness of p−.
Consequently, we conclude that

da

dλ
< 0.

The illustration for the case a < 0 can be done similarly.
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5.4 Performance Evaluation

Suppose the investor wants to invest the wealth into a risk-free asset and
a single risky asset that should be chosen among a universe of different
risky assets (meaning that the risky assets are mutually exclusive investment
alternatives), or to construct the optimal risky portfolio consisting of these
risky assets. How to do this? The standard approach in financial theory
and practice is to employ some portfolio performance measure to rank the
various risky investments. Each portfolio performance measure calculates
a score for each asset using its probability distribution of returns. The
best asset to invest to is the asset with the highest score. For example, it
is well known that if the investor exhibits quadratic preferences then the
appropriate performance measure is the Sharpe ratio. But what about a
loss averse investor?

Observe that in case the investor has a utility with loss aversion and
γ+ > 0, the maximum (equivalent) expected utilities can be written as (see
equations (27) and (32))

E[Û∗(w̃)|a > 0] ≈ 1
2γ+

(p+ − λp−)2

λθσ2− + σ2
+

, (36)

E[Û∗(w̃)|a < 0] ≈ 1
2γ+

(p− − λp+)2

σ2− + λθσ2
+

, (37)

where
θ =

γ−
γ+

.

Note that for any investor the higher the value of

max

[
(p+ − λp−)2

λθσ2− + σ2
+

,
(p− − λp+)2

σ2− + λθσ2
+

]
,

the higher the maximum expected utility. By analogy with the Sharpe
ratio, the investor’s (individual) performance measure of the risky asset can
be written as

PM = max


 p+ − λp−√

λθσ2− + σ2
+

,
p− − λp+√
σ2− + λθσ2

+


 . (38)

Observe that the conditions for the existence of the solution of the optimal
allocation problem (25) and (30) guarantee that the denominators in (38)
are non-complex numbers. Easy to check that if the investor has a von
Neumann-Morgenstern utility (for which λ = θ = 1) then the performance
measure PM (38) reduces to the Sharpe ratio

SR =
E[x]− rf√
E[(x− rf )2]

=
E[x]− rf√

Var[x]
, (39)
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since E[(x − rf )2] = Var[x] with an accuracy up to the leading terms of
order ∆t.

If γ+ = 0, that is, the investor is neutral to uncertainty in gains, the
conditions for the existence of the solution of the capital allocation problem
give us γ− > 0. In this case the maximum (equivalent) expected utilities
can be written as

E[Û∗(w̃)|a > 0] ≈ 1
2λγ−

(p+ − λp−)2

σ2−
, (40)

E[Û∗(w̃)|a < 0] ≈ 1
2λγ−

(p− − λp+)2

σ2
+

, (41)

and, consequently, the performance measure might be given by

PM = max
[
p+ − λp−

σ−
,
p− − λp+

σ+

]
. (42)

Observe that if λ = 1 (this is the case for the Behavioral I utility) then
this measure reduces (if the risk premium is positive) to the performance
measure suggested by Sortino and Price (1994) and Ziemba (2005) who
replace standard deviation in the Sharpe ratio by downside deviation

DSR =
E[x]− rf

σ−
. (43)

There are some cases when the performance measure (42) produces the
same ranking of risky assets as that of (43) irrespective the value of the
loss aversion parameter λ. To illustrate this, suppose, for example, that the
investor wants to rank two investment funds. Suppose in addition that both
funds have positive risk premiums, and when λ = 1 the first fund is better
than the second fund meaning that

p1+ − λp1−
σ1−

>
p2+ − λp2−

σ2−
for λ = 1. (44)

It is easy to show that the ranking of the funds remains the same for any
λ > 1 under condition that

p1−
σ1−

≤ p2−
σ2−

.

To show this, rewrite inequality (44) as

p1+

σ1−
>

p2+

σ2−
− λ

(
p2−
σ2−

− p1−
σ1−

)
. (45)

As the quantity in the brackets on the right-hand side of inequality (45) is
nonnegative, it is clear that the inequality will not be violated for any λ > 1.
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State 1 2 3 4
Probability 0.25 0.25 0.25 0.25
Return asset A -10% 0% 20% 30%
Return asset B -15% 4% 20% 30%
Return asset C -5% 4% 10% 20%
Risk-free return 4% 4% 4% 4%

Table 3: Probability distributions of three risky assets.

Parameter Asset A Asset B Asset C
Expected return, E[r] 10% 9.75% 7.25%
Standard deviation, σ 16.91% 17.98% 9.66%

p+ 10.5% 10.5% 5.5%
p− 4.5% 4.75% 2.25%
σ+ 15.26% 15.26% 8.54%
σ− 7.28% 9.5% 4.5%

Table 4: Descriptive parameters of the return distributions of the three risky
assets. Note that σ is computed with respect to rf so that σ2 = σ2− + σ2

+.

Recall that a loss averse investor invests only when the perceived risk
premium is rather high. When neither of conditions (34) and (35) are sat-
isfied, the investor avoids the risky asset and invests all into the risk-free
asset. This means that when

PM < 0,

the investor avoids the risky asset.
As compared with the Sharpe ratio where the investor’s risk preferences

completely disappear, to compute the performance measure PM one gen-
erally needs to define the values of λ and θ (and, possible, the rule for the
transformation of the objective probability distribution). This means that
the performance measure PM is not unique for all investors, but rather an
individual performance measure. That is, investors with different preferences
might rank differently the same set of risky assets.

Finally we provide two illustrating examples. The data for both examples
are provided in Table 3 which presents the probability distribution of three
risky assets. Observe that the probabilities of the states are alike so that
the presented results do not depend on the probability transformation as in
prospect theory. Table 4 presents the descriptive parameters of the return
distributions of the risky assets.

Example 2 (A more risky (in a usual sense) asset can be more
attractive than a less risky asset). In this example we consider the
investor’s choice between assets A and B. Note that the two risky assets
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differ in their probability distributions of returns below the risk-free rate of
return so that their measures p+ and σ+ are equal. In this example we use
the same general utility function (11) which can result in different shapes
and preferences depending on the set of parameters (λ, γ−, γ+). We consider
the performance measures of four different investors where each of them has
a distinct shape of the utility function.

• For the investor with Quadratic utility for whom the performance mea-
sure is computed according to (39)

PMQuadratic
A = 0.3548 > PMQuadratic

B = 0.3198.

• For the investor with Behavioral I utility for whom the performance
measure is computed according to (43)

PMBehavioral I
A = 0.8242 > PMBehavioral I

B = 0.6053.

• For the investor with Behavioral II utility for whom the performance
measure is computed according to (38) with λ = 2 and θ = −1

PMBehavioral II
A = 0.1331 < PMBehavioral II

B = 0.1380.

• For the investor with Behavioral III utility for whom the performance
measure is computed according to (38) with λ = 2 and θ = 1

PMBehavioral III
A = 0.0815 > PMBehavioral III

B = 0.0492.

In the computation of the performance measures we make sure that in
the optimal allocation the investor’s marginal utility is positive in all states.
This is essential because otherwise it is very easy to arrive to some spurious
results. Observe that the investor with convex loss function considers asset
B to be more attractive than asset A, whereas for all the other investors
asset A is more attractive than asset B. This result seems to be counter-
intuitive because asset B provides lesser expected return and has greater
risk (in a usual sense) as compared with asset A (E[rB] < E[rA], σB > σA,
and σB− > σA−). Standard intuition says that one should prefer asset A to
asset B. ¦
Example 3 (Ranking of risky assets depends on the investor’s in-
dividual preferences). In the previous example we illustrated that the
choice of the best risky asset might depend on whether the investor exhibits
aversion to the uncertainty in losses or appreciates the uncertainty in losses.
That is, the ranking of assets might be different depending on the sign of the
preference parameter θ. The purpose of this example is to illustrate that
the ranking of assets might be different even if the sign of the preference
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parameter θ is the same. In particular, in this example we consider the
investor’s choice between assets A and C. Observe that, as compared with
asset C, asset A is more risky, but more rewarding too. First we assume
that the investor is equipped with Behavioral III utility and the value of
the preference parameter θ = 1. We consider the ranking of these assets for
two different levels of loss aversion. The computation of the performance
measures for assets A and C yields

PMBehavioral III
A = 0.2396 > PMBehavioral III

C = 0.2334 when λ = 1.4,

PMBehavioral III
A = 0.1324 < PMBehavioral III

B = 0.1386 when λ = 1.8.

Observe that when the loss aversion is relatively low, the investor prefers
more riskier asset A to less riskier asset C. However, when the loss aversion
is relatively high, the investor prefers less riskier asset C to more riskier asset
A. In contrast, if the investor has either Quadratic or Behavioral I utility
function, the investor prefers asset A to C:

PMQuadratic
A = 0.3548 > PMQuadratic

C = 0.3366.

PMBehavioral I
A = 0.8242 > PMBehavioral I

C = 0.7222.

For the purpose of comparison, the investor with Behavioral II utility and
θ = −1 prefers asset C to A for any level of loss aversion for which the
investment in any risky asset is sensible (that is, the performance measures
of any asset is greater than zero)

PMBehavioral II
A = 0.3333 < PMBehavioral II

C = 0.3517 when λ = 1.4,

PMBehavioral II
A = 0.2046 < PMBehavioral II

C = 0.2398 when λ = 1.8.

¦
Let us elaborate more on the result illustrated in the last example be-

cause it is important to realize that investors with different degrees of loss
aversion might rank differently risky assets. Similarly, if an investor is sup-
posed to construct an optimal portfolio of several risky assets, then the
composition of the optimal risky portfolio might depend on the investor’s
loss aversion. To illustrate this, we suppose that all risky assets have positive
risk premiums so that the investor’s performance measure is

either
p+ − λp−√
λθσ2− + σ2

+

or
p+ − λp−

σ−

depending on whether the investor exhibits aversion or neutrality to the
uncertainty in gains. Observe, however, that when the investor is averse to
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the uncertainty in gains and λ is rather large, then σ− is more important
than σ+ and

p+ − λp−√
λθσ2− + σ2

+

≈ p+ − λp−
σ−
√

λθ
≡ p+ − λp−

σ−
,

since a performance measure is invariant to a positive affine transformation4.
The problem of choosing the best risky asset can be formulated either as
the maximization of the investor’s expected utility or, alternatively, as the
maximization of the investor’s performance measure. In the latter case the
investor’s objective

max
p+ − λp−

σ−
= max

(
p+

σ−
− λ

p−
σ−

)
,

which can be interpreted as a double objective: (1) maximization of p+

σ−
and (2) minimization of p−

σ− . Besides, the second objective is λ times more
important than the first one. That is, when the investor’s loss aversion
increases, the minimization of p−

σ− becomes more and more important5 than
the maximization of p+

σ− . Consequently, the investors with rather high loss
aversion prefer risky assets with low p−

σ− . This explains why in Example 3
asset C becomes more attractive than asset A when we increase the level of
loss aversion. Indeed

pC−
σC−

= 0.5 <
pA−
σA−

= 0.62.

6 Summary and Conclusions

In this paper we considered a generalized behavioral utility function that has
a kink at the reference point and different functions for losses and gains. We
obtained an approximation of the expected utility of a loss averse decision
maker. In the spirit of Arrow and Pratt we derived the expression for a risk
premium. We showed that in contrast to a decision maker with the mean-
variance utility for whom the only source of risk is the variance, a loss averse
decision maker distinguishes between three sources of risk: the expected
loss, the uncertainty in losses, and the uncertainty in gains. Consequently,
a decision maker with a behavioral utility exhibits three types of aversions:
aversion to loss, aversion to uncertainty in gains, and aversion to uncertainty
in losses.

4That is, if PM is some performance measure then the affine transformation PM ′ =
c+d PM , d > 0, is an equivalent performance measure to PM in the sense that they both
produce equal ranking of alternative investments.

5Note that to minimize
p−
σ−

one needs mainly to minimize the expected loss p− because

increasing σ− is in conflict with the first objective since it decreases
p+
σ−

.
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We have also found an approximate solution to the optimal capital allo-
cation problem and derived the expression for a portfolio performance mea-
sure. We discovered here that a loss averse investor will want to allocate
some wealth to the risky asset only when the perceived risk premium is suf-
ficiently high. Otherwise, if the risk premium is small, a loss averse investor
avoids the risky asset and invests only in the risk-free asset. As compared
with the Sharpe ratio where the investor’s risk preferences completely dis-
appear, we showed that the performance measure of a loss averse investor is
not unique, but rather an individual performance measure. The explanation
for this is the fact that a loss averse investor distinguishes between several
sources of risk. Since each investor may exhibit different preferences to each
source of risk, investors with different preferences might rank differently the
same set of risky assets. Moreover, we have shown that if the investor ex-
hibits a risk-seeking behavior in the domain for loss as in prospect theory,
then neither the standard deviation nor the downside deviation can be used
as a proper risk measure.
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