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Abstract 

In this paper, we proceed to estimate term structure of interest rate volatilities finding 

that these estimates depend significantly on the model used to estimate the term 

structure (Nelson and Siegel or Vasicek and Fong) and the heteroskedasticity structure 

of errors (OLS or GLS weighted by duration). We conclude in our empirical analysis 

that there are significant differences between these volatilities in the short (less than one 

year) and long term (more than ten years). Finally, we can detect that three principal 

components explain the 90 % of the changes in volatility term structure. These 

components are related with level, slope and curvature. 
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1. Introduction 

 We define the term structure of volatilities as the relationship between the 

volatility of interest rates and their maturities. The importance of this concept has been 

growing during the last decades particularly as interest rate derivatives have developed 

and interest rate volatility has become the key factor for the valuation of assets such as 

caplets, caps, floors, swaptions, etc. Moreover, interest rate volatility is one of the inputs 

needed to implement some term structure models such as Black, Derman and Toi 

(1990) or Hull and White (1987) which are particularly popular among practitioners. 

However, one of the main problems concerning the estimation of the volatility 

term structure arises from the fact that zero coupon rates are unobservable. So they must 

be previously estimated and this requires adopting a particular methodology. The 

problem of the term structure estimation is an old question widely analysed in the 

literature and several procedures have been suggested for the last thirty years. 

Probably, among the most popular methods are those developed by Nelson and 

Siegel (1982) and Vasicek and Fong (1982).1 In Spain, these methods have been applied 

in Núñez (1994) and Contreras et al. (1996) respectively. 

A large body of literature focus on the bond valuation ability of these alternative 

models without analysing the impact of the term structure estimation method on other 

moments of the zero coupon rates2. Nevertheless, in this paper we focus on the second 

moment of interest rates derived from alternative term structure methods. So, the aim of 

this paper is to analyze if there are significant differences between the estimates of the 

volatility term structure (VTS) depending on the model used for estimating the term 

structure of interest rates (TSIR). 

In this study we compare Nelson and Siegel (1987), NSO, Vasicek and Fong 

(1982), VFO, and both models using two alternative hypotheses about the error variance. 

First we assume homoscedasticity in the bond price errors and so do the term structure 

is estimated by OLS. Alternatively, a heteroskedastic error structure is employed 

estimating by GLS weighting pricing errors by the inverse of its duration, NSG and 

VFG.3 

                                                 
1 There is another kind of researches use, for instance, swap rates (Cejas and Morini, 1999, and Abad and 
Novales, 2005a and 2005b) or Legendre polinomials (Morini, 2003) to estimate the term structure of 
interest rates. 
2 Some examples concerning the Spanish market are Morini (2003) and Benito (2004). 
3 See, for example, Díaz and Skinner (2001), Díaz et al. (2006) and Díaz and Navarro (1997), (2002a) and 
(2002b) for a more detailed explanation. 
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In the literature, to minimize errors in prices is usual in order to optimize any 

model for estimating the TSIR. Nevertheless, this procedure tends to misestimate short 

term interest rates. This is because an error in a short term bond prices induces an error 

in the estimation of short interest rates greater than the error in long term interest rates 

produced by the same error in long term bond prices. In order to solve this problem, it is 

usual to weight pricing errors by the reciprocal of bond Macaulay’s duration.4 

Once estimates of TSIR are obtained, we proceed to estimate interest rate 

volatilities using conditional volatility models (GARCH models). 

In addition, we try to identify the three main components in the representation of 

the volatility term structure for each model. Some researchers have studied this subject, 

finding a small number of factors able to represent the behaviour of the term structure of 

interest rates (Núñez, 1994, Navarro and Nave, 1997, Domínguez and Novales, 2000, 

Benito, 2004, and Benito and Novales, 2007). Nevertheless, this analysis has not been 

applied, to a large extent, to the volatility term structure (except, e.g. Abad and Novales, 

2005a). 

 Litterman and Scheinkman (1991), Matzner-Løber and Villa (2004) and Piazzesi 

(2005) assert that standard principal component analysis provides much of the intuition 

for the dynamics of financial time series. Empirical analysis generally determines that 

three principal components are needed to almost fully explain the dynamics of the term 

structure of interest rates, but there are not a lot of evidences in case of VTS. The 

interpretation of these principal components in terms of level, slope, and curvature 

describes how the yield curve shifts or changes shape in response to a shock on a 

principal component. These principal components are extremely useful in thinking 

about the driving forces of the yield curve and they have important macroeconomic and 

monetary policy underpinnings. 

According to Matzner-Løber and Villa (2004), the latent factors implied by 

estimated affine term structure models behave like the first principal components 

(Duffee, 1996, and Dai and Singleton, 2000), and, in accordance with Diebold and Li 

(2003) and Matzner-Løber and Villa (2004), the parsimonious term structure model 

introduced by Nelson and Siegel (1987) can be reinterpreted as a modern three-factor 

model of level, slope and curvature (Bliss, 1997, and Diebold and Li, 2003). However, 

neither their approach nor their results are identical. Recently, Diebold, Ji and Li (2004) 

                                                 
4 This correction is usual in official estimations of the central banks (BIS, 2005). 
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have shown that the sensitivities (or loadings) of the financial time series to the level, 

slope and curvature state variables (or factors) explain very well these series and they 

capture systematic risk.5 

We apply our methodology to the Spanish volatility term structure (VTS) using 

the Spanish term structure of interest rates (TSIR). The data used in this empirical 

analysis are the Spanish Treasury bill and bond prices of actual transactions from 

January 1994 to December 2006. 

 We show statistically significant differences between estimates of the term 

structure of interest rate volatilities depending on the model used to estimate the term 

structure and the heteroskedasticity structure of errors (NSO, NSG, VFO and VFG), 

mainly in the short-term (less than one year) and in the large-term (more than ten years). 

This inspection could have significant consequences for a lot of issues related to risk 

management in fixed income markets. On the other hand, we find three principal 

components that can be interpreted as level, slope and curvature and they are not 

significantly different among our eight proposed models. 

 The rest of our paper is organized as follows: The next section describes the data 

used in this paper. The third section describes Nelson and Siegel (1987), NS, Vasicek 

and Fong (1982), VF, and both models weighted by duration, and conditional volatility 

models (GARCH models). The fourth section analyses the differences in the volatility 

term structure from our eight different models. Finally, the last two sections include a 

principal component analysis of volatility term structure and, finally, summary and 

concluding remarks. 
 

2. Data 

The database we use in this research consists of estimates that contains volume-

weighted average of all the spot transaction prices and yields in each day corresponding 

to each Spanish Treasury bill and bond traded and registered in the dealer market or 

Bank of Spain’s book entry system.6 They are obtained from annual files available at 

                                                 
5 Diebold and Li (2003) have pointed out that, despite the fact that their estimated factors are closed to the 
first three principal components, their approach improves standard principal component analysis. 
6 The secondary market for Spanish Treasury debt is known as “Mercado de Deuda Pública Anotada” or 
MDPA. 
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“Banco de España” website.7 We focus on 27 different maturities between 1 day and 15 

years. Our sample runs from January 1994 to December 2006. 

First of all, in order to refine our data, we have eliminated from the sample those 

assets with a trading volume less than €3 million (500 million pesetas) in a single day 

and bonds with term to maturity less than 15 days or larger than 15 years. Besides, in 

order to obtain a good adjustment in the short end of the yield curve, we always include 

in the sample the one-week interest rate from the repo market. 

From the price (which must coincide with the quotient between effective volume 

and nominal volume of the transaction) provided by market, we obtain the yield to 

maturity on the settlement day. Sometimes this yield diverges from the yield reported 

by the market.8 Controlling for these conventions,9 we recalculate the yield always 

using compound interest and the year basis ACT/ACT for both markets. 

We estimate the zero coupon bond yield curve using two alternative methods. 

The first one we use fits the Nelson and Siegel’s (1987) exponential model for the 

estimation of the yield curve.10 The second methodology is developed in Contreras et al. 

(1996) where the Vasicek and Fong (1982) term structure estimation method (VFO) is 

adapted to the Spanish Treasury market. VFO uses a non-parametric methodology based 

on exponential splines to estimate the discount function. From the original method, 

Contreras et al. (1996) drop one of the parameters as the Spanish Treasury does not 

issue callable bonds and redefine another one according to the Spanish tax system. It 

takes the present value of the coupon cash flows discounted by the actual yield to 

maturity in the case of coupon bearing bonds and zero otherwise. A unique variable 

knot is used to adjust exponential splines, knot which is located to minimize the sum of 

squared residuals. 

With respect to the estimation methodology we apply both OLS and GLS. In the 

second case we adjust the bond price errors by the inverse of the bond Macaulay 

duration in order to avoid to penalise more interest rate errors in the short end of the 

term structure. 

                                                 
7 http://www.bde.es/banota/series.htm. Information reported is only about traded issues. It contains the 
following daily information for each reference: number of transactions, settlement day, nominal and 
effective trading volumes, maximum, minimum and average prices and yields. 
8 These divergences are due to simple or compound interest and 360-day or 365-day year basis depending 
on the security term to maturity. 
9 http://www.bde.es/banota/actuesp.pdf  
10 See, for example, Díaz and Skinner (2001), Díaz et al. (2006) and Díaz and Navarro (1997), (2002a) 
and (2002b) for a more detailed explanation. Also, a number of authors have proposed extensions to NS 
model that enhance flexibility, for example, Svensson (1994) and Bliss (1997b). 
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Figure 1.- TSIR estimated by NSO and NSG (01.07.1994) 

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 2 4 6 8 10 12 14 16
term to maturity

NS(O) NS(G)  
 

Figure 2.- TSIR estimated by VFO and VFG (01.07.1994) 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16
term to maturity

VF(O) VFP(G)  
 

In figure 1 we illustrate the resulting estimations of the term structure in a single 

day depending on the weighting scheme applied to the error terms. It can be seen how 

assuming OLS or GLS affects mainly to the estimates to the short and long ends of the 

more differences in the short- and long- term 

more differences in the short - term 
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term structure of interest rates even though in both cases we use Nelson and Siegel 

model. In case of using Vasicek and Fong model (figure 2), these differences are mainly 

shown in the short-term. 

Finally, in figure 3 we show some of the differences that can be observed 

depending on the model employed (VF or NS) even when the same error weighting 

scheme is used. 

In summary, we use four different estimation models: Nelson and Siegel (1987), 

NSG, and Vasicek and Fong (1982), VFG, which take into account residuals weighted by 

the reciprocal of maturity, and NSO and VFO, that is, with non weighted residuals. These 

alternative estimation procedures provide the input of the subsequent functional 

principal component analysis. 
 

3. GARCH models 

 Volatility term structure is an essential issue in Finance, so it is important to 

have good volatility forecasts, which are based on the fact that volatility is time-varying 

in high-frequency data. In general, we can think that there are several reasons to model 

and forecast volatility. First of all, it is necessary to analyze the risk of holding an 

asset11 and the value of an option which depends crucially of the volatility of the 

underlying asset. Finally, more efficient estimators can be obtained if heteroskedasticity 

in the errors is handled properly. 

 In order to achieve these forecasts, extensive previous literature has used 

autoregressive conditional heteroskedasticity (ARCH) models, as introduced by Engle 

(1982) and extended to generalized ARCH (GARCH) in Bollerslev (1986).12 These 

models normally improve the volatility estimates, to a large extent, compared with a 

constant variance model and they provide good volatility forecasts, so they are widely 

used in various branches of econometrics, especially in financial time series analysis. In 

fact, it is usually assumed that interest rate volatility can be accurately described by 

GARCH models. 

Autoregressive Conditional Heteroskedasticity (ARCH) models are specifically 

designed to model and forecast conditional variances. The variance of the dependent 

variable is modeled as a function of past values of the dependent variable and 

independent or exogenous variables. 

                                                 
11 In fact, VaR estimates need as the main input the volatility of portfolio returns. 
12 See Bollerslev et al. (1992) for a review of the GARCH models family. 
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In developing a GARCH model, it is necessary to provide two distinct 

specifications: for the conditional mean and variance. The representation of the GARCH 

(p, q) specification is the following: 

Conditional mean equation:  ttt xy εφ += '     [1] 

x’
t is a exogenous variable vector and εt is the error term. 

Conditional Variance: ∑∑
=

−
=

− ++=
q
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iti
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2

1

22   εασβωσ   [2] 

where p is the order of the GARCH terms and q is the order of the ARCH term. 

 The conditional variance equation specified is a function of three terms: the 

mean (ω), news about volatility from the previous periods, measured as the lag of the 

squared residual from the mean equation (ε2
t-i, the ARCH term), and last period’s 

forecast variance (σ2
t-j, the GARCH term). 

 

ARCH-M models 

If we introduce the conditional variance into the mean equation, we get the 

ARCH-in-Mean (ARCH-M) model (Engle et al., 1987):13 

  tttt xy εσγφ ++= 2'        [3] 

The ARCH-M model is often used in financial applications where the expected 

return on an asset is related to the expected asset risk. The estimated coefficient on the 

expected risk is a measure of the risk-return tradeoff. A variant of the ARCH-M 

specification uses the conditional standard deviation in place of the conditional 

variance. 

 

 Asymmetric ARCH models 

For equities, it is often observed that downward movements in the market are 

followed by higher volatilities than upward movements of the same magnitude. To 

account for this phenomenon, Engle and Ng (1993) describe a News Impact Curve with 

asymmetric response to good and bad news. 

We can estimate two models that allow for asymmetric shocks to volatility: 

TGARCH and EGARCH. 

                                                 
13 Note that [3] substitutes [1] in the definition of GARCH-M. 
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TGARCH or Threshold GARCH was introduced independently by Zakoïan 

(1994) and Glosten et al. (1993). The specification for the conditional variance is the 

following:14 

∑∑
=

−
=

−−− +++=
q

i
iti

p

j
ttjtjt d

1

2

1
1

2
1

22    εαεγσβωσ    [4] 

where dt-1 = 1 if εt-1 < 0, and 0 otherwise. 

In this model, good news, εt > 0, and bad news, εt < 0, have differential effects 

on the conditional variance. In particular, good news has an impact of αi, while bad 

news has an impact of (αi + γ). If γ > 0, we say that a “leverage effect” exists in that bad 

news increases volatility. If γ ≠ 0, the news impact is asymmetric. 

 

The EGARCH or Exponential GARCH model was proposed by Nelson (1991). 

The specification for the conditional variance is: 

  
1

1

1

12
1

2 2loglog
−

−

−

−
− +−++=

t

t

t

t
tt σ

εγ
πσ

εασβωσ    [5] 

Note that the left-hand side is the log of the conditional variance. This implies 

that the leverage effect is exponential, rather than quadratic, and that forecasts of the 

conditional variance are guaranteed to be nonnegative. The presence of leverage effects 

can be tested by the hypothesis that γ > 0. The impact is asymmetric if γ ≠ 0. 

 

 Taking into account this variety of models, we identify the best one for each 

estimate of the term structure of interest rates: Nelson and Siegel (NSO), Vasicek and 

Fong (VFO) and both models weighted by duration (NSG and VFG), using Schwarz and 

Akaike Information Criterion (SIC and AIC respectively).15 Table 1 collects the selected 

model for each maturity and estimation model of the term structure of interest rates 

(TSIR). 

 In particular, GARCH models fit very well when we use NSO and VFG. 

Nevertheless, T-GARCH and E-GARCH seem to be the best models for VFO and NSG 

estimations, respectively.16 

 

 
                                                 
14 Equation [4] supplements the equation for the conditional mean. 
15 We use the minimum average error criterion. 
16 Although we could simplify our analysis using a GARCH (1, 1) model in all cases (because, in general, 
this is the best model), we finally apply the best particular model for each estimate. 
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Table 1.- The best fitted GARCH model for each maturity 
Maturity (years) NSO NSG VFO VFG 

0.0001 GARCH (2,1) GARCH (2,4)-M GARCH (2,2) GARCH (1,1) 
0.08333333 T-GARCH (1,1) GARCH (1,1) E-GARCH (1,1)-M GARCH (1,1) 
0.16666667 E-GARCH (3,2) E-GARCH (2,1) E-GARCH (1,1)-M GARCH (1,1) 

0.25 T-GARCH (1,1) E-GARCH (2,1) T-GARCH (2,1)-M GARCH (1,1) 
0.33333333 T-GARCH (1,1) E-GARCH (2,1) T-GARCH (2,1) GARCH (2,1) 
0.41666667 T-GARCH (1,1) GARCH (2,3) T-GARCH (2,1)-M T-GARCH (2,1) 

0.5 GARCH (1,1) E-GARCH (2,1) T-GARCH (2,1) T-GARCH (2,2) 
0.58333333 GARCH (2,1) E-GARCH (2,1) T-GARCH (2,1) T-GARCH (2,2) 
0.66666667 GARCH (2,1) E-GARCH (2,1) T-GARCH (2,1) T-GARCH (2,2)-M 

0.75 GARCH (2,2) E-GARCH (2,1) T-GARCH (2,2) T-GARCH (2,2) 
0.83333333 GARCH (2,2) E-GARCH (2,1) T-GARCH (2,2) T-GARCH (2,2) 
0.91666667 T-GARCH (2,2)-M E-GARCH (2,1) T-GARCH (2,2) GARCH (2,2) 

1 GARCH (2,2)-M E-GARCH (2,1) T-GARCH (2,2) T-GARCH (2,2) 
2 GARCH (2,2)-M E-GARCH (2,2) GARCH (2,2) GARCH (2,2)-M 
3 GARCH (1,1)-M GARCH (2,2) GARCH (2,1) GARCH (2,2) 
4 GARCH (1,1) GARCH (2,1) GARCH (2,2) GARCH (2,2) 
5 E-GARCH (2,2)-M GARCH (2,2)-M GARCH (2,2) GARCH (2,2)-M 
6 E-GARCH (2,2)-M GARCH (2,2)-M GARCH (2,2) E-GARCH (2,2) 
7 GARCH (1,1) GARCH (2,2)-M GARCH (2,2) E-GARCH (2,2) 
8 GARCH (1,1) GARCH (4,3) GARCH (2,2)-M GARCH (2,2) 
9 GARCH (2,2) GARCH (2,2) GARCH (1,1) E-GARCH (2,1) 

10 GARCH (2,2)-M GARCH (2,3) GARCH (2,2) E-GARCH (2,2) 
11 E-GARCH (2,2)-M E-GARCH (2,3) GARCH (2,1) GARCH (2,2) 
12 E-GARCH (2,2)-M E-GARCH (1,1) GARCH (2,1)-M GARCH (2,2)-M 
13 GARCH (2,2) E-GARCH (1,1) E-GARCH (2,1)-M GARCH (2,2)-M 
14 GARCH (2,1) E-GARCH (1,1) GARCH (1,2)-M GARCH (1,1) 
15 GARCH (2,1) E-GARCH (1,1) E-GARCH (2,1) GARCH (2,2) 

 

4. Differences in the volatility from different models 

 In this section we study the differences between the volatility term structure 

from different estimation models of the TSIR (NSO, VFO, NSG and VFG) and 

conditional volatility models (GARCH models in each previous case). In the first type 

of models, we obtain the historical volatility using 30-, 60-, and 90- day moving 

windows and the standard deviation measure. We show the results with a 30-days 

moving window. 

 As a whole we can see a repeating pattern in the shape of the VTS: initially 

decreasing, then it increases until one to two years term and finally we can observe a 

constant or slightly decreasing interest rate volatility as we approach the long term of 

the curve. This is consistent with Campbell et al. (1997), who argue that the hump of the 

VTS in the middle-run can be explained by reduced forecast ability of interest rate 

movements at horizons around one year. They argue that there is some short-run 

forecastability arising from Federal Reserve operating procedures, and also some long-

run forecastability from business-cycle effects on interest rates. 
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Figure 3.- Volatility Term Structure (VTS) among different models (1994) 
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 Figure 3 describes volatility estimates for 1994 for the different models used to 

estimate the interest rate term structure. It shows, at first glance, how the methodology 

hump 
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employed to estimate zero coupon bonds may have an important impact, both in level 

and shape, on the subsequent estimate of the VTS. 

 This can be more clearly seen in figure 4, where we show the VTS for our 8 

cases in some particular days: 

 
Figure 4.- Volatility Term Structure (VTS) among different models 
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Historical Volatility (29.12.2006)  Conditional Volatility (29.12.2006) 
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 In order to improve our analysis, we proceed to measure the average differences 

between volatility estimates using two alternative and different methods. We can see 

that these differences seem to be higher in the short-term (less than one year) and in the 

long-term (more than ten years). We can corroborate these results in figure 5. 

more differences in the 
short-term 

more differences in 
the long-term 
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Figure 5.- Average differences in VTS between each model 
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Panel B: Conditional Volatility 
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G-before the name of the model indicates that we have used a GARCH model 
 
 
 Finally, we use some statistics to test whether volatility series have the same 

mean, median and variance (table 2). In order to do this analysis, we obtain Anova-F 

Test for the mean analysis, Kruskal-Wallis and van der Waerden Test for the median 

analysis and, finally, Levene and Brown-Forsythe Test for analysing the significance of 

the VTS variance. 
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Table 2.- Tests of equality of means, medians and variances among different models for 
each maturity 

 Maturity (years) 
TEST 0.0001 0.0833333 0.1666667 0.25 0.3333333 0.4166667 0.5 0.5833333 0.6666667 

F 469.2349c 650.5977 c 591.6347 c 477.8088 c 383.9666 c 323.2406 c 254.7131 c 196.0654 c 141.1546 c 
K-W 3710.024 c 4902.543 c 4724.034 c 4349.893 c 3754.263 c 3285.614 c 2636.512 c 2083.659 c 1565.177 c 
vW 4031.904 c 5261.365 c 4937.412 c 4454.727 c 3818.899 c 3296.418 c 2607.419 c 2038.510 c 1521.237 c 
L 650.0991 c 428.2810 c 296.2978 c 194.7067 c 140.8215 c 108.8034 c 80.67102 c 56.18532 c 35.35199 c 

B-F 345.5845 c 306.6132 c 221.2285 c 145.3684 c 104.0462 c 80.13080 c 58.94565 c 40.60811 c 25.05816 c 
 

 Maturity (years) 
TEST 0.75 0.8333333 0.9166667 1 2 3 4 5 6 

F 97.67177 c 65.88030 c 43.22459 c 27.64625 c 1.618184 0.653847 0.393028 0.305357 0.211659 
K-W 1151.682 c 842.5733 c 608.9702 c 433.3387 c 19.05171 c 7.505526 4.937434 3.589879 2.603751 
vW 1100.201 c 787.4118 c 554.6464 c 379.1995 c 20.32857 c 8.914100 6.539913 4.463184 2.947742 
L 20.38274 c 11.18151 c 6.302970 c 4.522192 c 0.204407 0.106095 0.072056 0.259973 0.554394 

B-F 14.20114 c 7.421875 c 3.705566 c 2.158965 b 0.043454 0.092483 0.067191 0.217367 0.379985 
 

 Maturity (years) 
TEST 7 8 9 10 11 12 13 14 15 

F 0.346454 0.779177 1.420462 2.175614 b 3.657369 c 5.938809 c 19.66521 c 67.75681 c 175.7461 c 
K-W 2.921245 3.336836 4.567510 6.862232 15.29165 b 44.18141 c 167.8568 c 481.3393 c 1141.098 c 
vW 3.426414 5.068104 8.060296 11.93060 25.36176 c 55.15105 c 183.2679 c 508.3304 c 1170.865 c 
L 1.217599 2.339045 b 3.528918 c 4.682544 c 6.565824 c 6.543890 c 15.40305 c 61.29457 c 165.7889 c 

B-F 0.688643 1.243352 1.874787 a 2.481528 b 3.008177 c 3.134396 c 7.535485 c 32.52243 c 91.89411 c 
a p < 0.10, b p < 0.05, c p < 0.01 
F: Anova-F Test, K-W: Kruskal-Wallis Test, vW: van der Waerden Test, L: Levene Test, B-F: Brown-Forsythe Test 
 

 On the one hand, statistics offer evidence against the null hypothesis of 

homogeneity for the shorter maturities (below to 1 year) and also for the longer 

maturities (more than 10 years), in mean and median. 

 On the other hand, statistics to test for whether the volatility produced by the 

eight models has the same variance show the same results than mean and median 

analysis, that is, we find evidence against the null hypothesis for the shorter and longer 

maturities. 

 To summarize, this analysis shows that volatility estimates using different 

models and techniques display statistically significant differences, mainly in the shorter 

and longer maturities, as it would be expected. 

 

5. A principal component analysis of volatility term structure (VTS) 

 In this section, we try to reduce the dimensionality of the vector of 27 time series 

of historical/conditional volatilities,17 working out their principal components, because 

this analysis is often used to identify the key uncorrelated sources of information. 

                                                 
17 Note that we analyze volatility changes (see, for example, Benito and Novales, 2007). 
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This technique decomposes the sample covariance matrix or the correlation 

matrix computed for the series in the group (see tables 3 and A1). The row labeled 

“eigenvalue” in table 3 reports the eigenvalues of the sample second moment matrix in 

descending order from left to right. We also show the variance proportion explained by 

each principal component. This value is simply the ratio of each eigenvalue to the sum 

of all eigenvalues. Finally, we collect the cumulative sum of the variance proportion 

from left to right, that is, the variance proportion explained by principal components up 

to that order. 

Also, table A1 displays the eigenvectors corresponding to each eigenvalue. The 

first principal component is computed as a linear combination of the series in the group 

with weights given by the first eigenvector. The second principal component is the 

linear combination with weights given by the second eigenvector and so on. 

 

Table 3.- Main results of the principal component analysis 
 NSO NSG VFO VFG GNSO GNSG GVFO GVFG 

 Historical 
Volatility 

Historical 
Volatility 

Historical 
Volatility 

Historical 
Volatility 

Conditional 
Volatility 

Conditional 
Volatility 

Conditional 
Volatility 

Conditional 
Volatility 

FIRST PRINCIPAL COMPONENT 
Eigenvalue 14.47963 14.42727 12.50790 14.95705 15.11595 14.52248 13.30651 15.23433 
Var. prop. 0.536283 0.534343 0.463255 0.553965 0.559850 0.537870 0.492834 0.564234 

Cum. prop. 0.536283 0.534343 0.463255 0.553965 0.559850 0.537870 0.492834 0.564234 
SECOND PRINCIPAL COMPONENT 

Eigenvalue 8.191949 7.305261 7.484512 6.623200 7.767501 7.520611 7.930251 6.769219 
Var. prop. 0.303406 0.270565 0.277204 0.245304 0.287685 0.278541 0.293713 0.250712 

Cum. prop. 0.839688 0.804909 0.740460 0.799268 0.847535 0.816411 0.786547 0.814946 
THIRD PRINCIPAL COMPONENT 

Eigenvalue 2.440719 2.549777 2.997161 2.321565 2.149763 2.366136 2.400861 2.120942 
Var. prop. 0.090397 0.094436 0.111006 0.085984 0.079621 0.087635 0.088921 0.078553 

Cum. prop. 0.930085 0.899345 0.851466 0.885252 0.927156 0.904045 0.875467 0.893499 
FOURTH PRINCIPAL COMPONENT 

Eigenvalue 1.216678 1.318653 2.161253 1.388741 1.234067 1.270866 1.866241 1.237788 
Var. prop. 0.045062 0.048839 0.080046 0.051435 0.045706 0.047069 0.069120 0.045844 

Cum. prop. 0.975147 0.948184 0.931512 0.936687 0.972862 0.951114 0.944588 0.939343 
FIFTH PRINCIPAL COMPONENT 

Eigenvalue 0.500027 0.711464 0.755749 0.812430 0.473576 0.690566 0.677145 0.788932 
Var. prop. 0.018520 0.026351 0.027991 0.030090 0.017540 0.025577 0.025079 0.029220 

Cum. prop. 0.993667 0.974534 0.959503 0.966777 0.990402 0.976691 0.969667 0.968563 
G-before the name of the model indicates that we have used a GARCH model 
 

 We can emphasize the best values about the percentage of cumulative explained 

variance for each principal component: 56 % in case of GVFG (first principal 

component), 84 % in case of GNSO (second principal component) and 93 % (third 

principal component), 97 % (fourth principal component) and 99 % (fifth principal 

component) in case of NSO. Thus, the first five factors capture, at least, 97 % of the 

variation in the volatility time series. 
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Figure 6.- Representation of the main first five principal components (PC) 
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 The eigenvectors in each case are shown in appendix, in Table A1. On the other 

hand, figure 6 plots the evolution of these five factors. 

 In this section, we can assert that the first three principal components (PC) are 

quite similar among different models. Particularly, the first PC keeps quasi constant 

over the whole volatility term structure (VTS) and the eight models. So we can interpret 

it as the general level of the volatility (level or trend). With respect to the second PC, it 

presents coefficients of opposite sign in the short-term and coefficients of the same sign 

level 

curvature 

slope

“hump 1” 

“hump 2”
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in the large-term, so this component can be interpreted as the difference between the 

levels of volatility between the two ends of volatility the term structure (slope or tilt). 

Finally, the third PC shows changing signs of the coefficients, so this PC could be 

interpreted as changes in the curvature of the volatility term structure (curvature). 

 With regard to the fourth and fifth PC, they present some differences among 

each model; nevertheless, these PCs can be related with higher or lower hump of the 

volatility term structure (VTS). 

The three first factor loadings are similar to those obtained by Litterman and 

Scheinkman (1991) and Piazzesi (2005), Matzner-Løber and Villa (2004), and 

Cornillon et al. (2008), who estimated loadings via a standard principal component 

analysis and variations about this analysis. Nevertheless, in this paper we focus on the 

second moment of interest rates. An important insight is that the three factors may be 

interpreted in terms of level, slope and curvature. 

 In order to finish this analysis, we want to test whether the first three principal 

components, which clearly reflect level, slope and curvature of the VTS, and the last 

two PCs are different among our eight models (historical and conditional volatilities). 

 
Table 4.- Tests of equality of means, medians and variances among different models 

TEST PC1 PC2 PC3 PC4 PC5 
F 0.012749 0.056012 0.020015 0.179951 0.024021 

K-W 1.016249 2.452214 3.810190 11.82140 55.13159 c 
vW 0.518985 0.795634 2.032438 8.070648 45.21040 c 
L 4.033919 c 23.92485 c 16.57419 c 66.74642 c 67.33491 c 

B-F 4.064720 c 23.87826 c 16.51119 c 65.80991 c 67.06584 c 
a p < 0.10, b p < 0.05, c p < 0.01 
F: Anova-F Test, K-W: Kruskal-Wallis Test, vW: van der Waerden Test, L: Levene Test, B-F: Brown-Forsythe Test 
 

 Considering the results from table 4, we can assert that statistics related with 

differences in mean evidence homogeneity in mean for our eight models as we can not 

reject the null hypothesis. In case of differences in median, we find evidence against the 

null hypothesis of equal medians for the fifth PC. Nevertheless, the rest of PCs offer 

evidence in favour the null hypothesis. 

 On the other hand, statistics to test for whether the PC variance produced by our 

eight models is the same or not also appears in table 4. For all the PCs, these statistics 

offer strong evidence against the null hypothesis. 

 Summarizing, in this section we have concluded that the first three principal 

components can be related with level, slope and curvature of the volatility term structure 

(VTS) and, besides, these PCs are not significantly different in mean and median among 
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our eight models. Nevertheless, PC4 and PC5 are significantly different between our 

models. 

 

6. Summary and conclusions 

 This paper is aimed to provide new insights into the behaviour of the volatility 

term structure (VTS) of interest rates by using historical volatility estimates from four 

different models of the term structure of interest rate (TSIR) and applying alternative 

conditional volatility specifications (using GARCH models) from 1994 to 2006. We 

have used the mentioned models, and we have worked out the volatility time series 

using 30-, 60-, 90-day moving windows in order to construct the volatility term 

structure (VTS). 

 First of all, the results of our analysis show that there are statistically significant 

differences between estimates of the term structure of interest rate volatilities depending 

on the model used to estimate the term structure and the heteroskedasticity structure of 

errors (NSO, NSG, VFO and VFG), mainly in the short-term (less than one year) and in 

the large-term (more than ten years), but these differences do not depend on procedures 

to estimate the volatility term structure. 

Secondly, the previous evidence suggests that the dynamics of term structures of 

volatilities can be well described by relatively few common components. The possible 

interpretation of these principal components in terms of level, slope, and curvature can 

describe how the VTS shifts or changes shape in response to a shock on a principal 

component. 

 We find that the first three principal components (PC) are quite similar among 

different models and they can be identified as trend, tilt and curvature. Regarding fourth 

and fifth PC, they can be related with higher or lower hump of the volatility term 

structure. Also, the first three PCs are not significantly different in mean and median 

among our eight models. Nevertheless, PC4 and PC5 are significantly different between 

our models. 
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Appendix 

Table A1.- Representation of the principal components (PC): factor weights 
Panel A: Historical Volatility 

NSO NSO NSO NSO NSO NSG NSG NSG NSG NSG  
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

1 0.121397 -0.259249 0.261221 -0.187814 -0.138194 0.113942 -0.150523 0.234249 0.112743 0.748817 
2 0.127484 -0.264761 0.244047 -0.166698 -0.105761 0.107654 -0.195499 0.277798 -0.121744 0.425546 
3 0.134342 -0.268752 0.221091 -0.139226 -0.06958 0.128617 -0.253108 0.285545 -0.189594 -0.020031 
4 0.14235 -0.271143 0.191057 -0.10512 -0.030515 0.135174 -0.263191 0.249016 -0.170776 -0.142228 
5 0.151754 -0.271231 0.151607 -0.063686 0.010448 0.145574 -0.2706 0.203691 -0.13 -0.186363 
6 0.162626 -0.267524 0.099883 -0.014271 0.051094 0.158059 -0.273952 0.14348 -0.074455 -0.19805 
7 0.174608 -0.257603 0.033866 0.041884 0.08769 0.171016 -0.271009 0.067186 -0.007826 -0.185778 
8 0.1865 -0.238721 -0.045664 0.100143 0.114505 0.18204 -0.259145 -0.021882 0.063126 -0.151983 
9 0.196263 -0.209476 -0.133124 0.152586 0.124226 0.188972 -0.237608 -0.114734 0.12798 -0.101339 

10 0.202024 -0.171744 -0.217996 0.189674 0.111063 0.191415 -0.209018 -0.199647 0.176215 -0.042221 
11 0.203716 -0.131086 -0.288516 0.204216 0.073944 0.191012 -0.178223 -0.267598 0.201797 0.016358 
12 0.203258 -0.093839 -0.337898 0.195536 0.017164 0.18997 -0.149475 -0.315279 0.205022 0.067578 
13 0.202512 -0.063243 -0.366708 0.169053 -0.051113 0.18959 -0.124765 -0.34446 0.191075 0.107537 
14 0.209538 0.051382 -0.265868 -0.184753 -0.468382 0.209218 0.014711 -0.29688 -0.12729 0.183392 
15 0.211982 0.107458 -0.18496 -0.291188 -0.358059 0.217149 0.079669 -0.215525 -0.284608 0.140762 
16 0.214489 0.13848 -0.125447 -0.310665 -0.156896 0.217154 0.114496 -0.150177 -0.341714 0.07367 
17 0.217481 0.153438 -0.069554 -0.285884 0.025451 0.217344 0.137134 -0.093528 -0.332023 0.013242 
18 0.219179 0.161991 -0.01922 -0.235883 0.161091 0.220351 0.155325 -0.040737 -0.272246 -0.027212 
19 0.219275 0.168071 0.023808 -0.174282 0.245437 0.223836 0.169293 0.008056 -0.183311 -0.048827 
20 0.218288 0.172948 0.06009 -0.109023 0.281353 0.225306 0.178064 0.05028 -0.086814 -0.057984 
21 0.216693 0.176908 0.091702 -0.042633 0.271988 0.224296 0.182274 0.084808 0.003305 -0.05895 
22 0.21461 0.179656 0.12124 0.025814 0.219512 0.221393 0.183263 0.111971 0.080669 -0.054619 
23 0.211719 0.180288 0.150256 0.097474 0.128181 0.217364 0.182283 0.132789 0.143969 -0.047406 
24 0.207176 0.177554 0.178378 0.171299 0.007766 0.212829 0.180209 0.1485 0.194505 -0.039082 
25 0.199827 0.170696 0.203544 0.243769 -0.127305 0.208191 0.17759 0.160269 0.234374 -0.030805 
26 0.188869 0.159963 0.222817 0.309274 -0.260831 0.203672 0.17475 0.169057 0.265636 -0.023234 
27 0.174687 0.146502 0.234292 0.362238 -0.378401 0.199377 0.17186 0.175594 0.29005 -0.016643 

 
VFO VFO VFO VFO VFO VFG VFG VFG VFG VFG  
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

1 0.076862 -0.177532 0.117497 0.374599 -0.204143 0.038251 -0.081649 0.216733 0.406232 -0.823221 
2 0.085535 -0.186532 0.123966 0.418413 -0.228741 0.122404 -0.230248 0.288881 0.289442 0.041293 
3 0.130671 -0.243434 0.121608 0.358295 -0.090576 0.141644 -0.249789 0.269506 0.233799 0.115692 
4 0.157309 -0.259957 0.09794 0.244077 0.033962 0.159101 -0.256702 0.223374 0.152348 0.157072 
5 0.175653 -0.261789 0.071493 0.135912 0.110097 0.17479 -0.256923 0.16297 0.068733 0.159254 
6 0.190172 -0.256015 0.044827 0.038637 0.150682 0.1879 -0.25054 0.096515 -0.009205 0.1332 
7 0.201836 -0.244209 0.01828 -0.047433 0.163435 0.197998 -0.238361 0.030899 -0.074983 0.08877 
8 0.210893 -0.227272 -0.007827 -0.120803 0.152187 0.205364 -0.221778 -0.029062 -0.12507 0.035991 
9 0.2177 -0.206247 -0.03316 -0.179737 0.119632 0.210612 -0.202188 -0.08063 -0.159253 -0.016904 
10 0.222779 -0.18222 -0.057445 -0.223333 0.068805 0.214316 -0.180994 -0.122914 -0.179547 -0.064625 
11 0.226621 -0.156294 -0.08022 -0.251472 0.004179 0.216907 -0.159417 -0.156555 -0.188949 -0.10457 
12 0.229508 -0.129575 -0.10072 -0.26485 -0.067699 0.218705 -0.13832 -0.182913 -0.190191 -0.136104 
13 0.231568 -0.103121 -0.118238 -0.265345 -0.139638 0.219941 -0.118238 -0.203349 -0.185361 -0.159987 
14 0.226889 0.0817 -0.176722 -0.063281 -0.463132 0.21963 0.032169 -0.252261 -0.021641 -0.194524 
15 0.225285 0.138928 -0.165744 0.022565 -0.383735 0.219405 0.099493 -0.214108 0.072085 -0.126334 
16 0.226433 0.169705 -0.146884 0.062347 -0.248556 0.220774 0.135399 -0.174371 0.126337 -0.054982 
17 0.225001 0.188583 -0.128132 0.088624 -0.114954 0.220526 0.157267 -0.138932 0.161967 0.005677 
18 0.221253 0.200106 -0.111826 0.109826 0.005567 0.218648 0.171787 -0.105313 0.181576 0.053883 
19 0.216394 0.20708 -0.097461 0.127279 0.109489 0.215806 0.18241 -0.072063 0.186732 0.09038 
20 0.211643 0.211652 -0.080596 0.138557 0.192828 0.212728 0.191325 -0.037555 0.178782 0.116325 
21 0.207496 0.214836 -0.05978 0.141689 0.255587 0.209661 0.199957 0.001449 0.156203 0.130149 
22 0.20419 0.217557 -0.017421 0.129831 0.291293 0.205986 0.209188 0.05096 0.112386 0.126942 
23 0.200108 0.217602 0.12654 0.067375 0.24487 0.200173 0.217965 0.118618 0.036338 0.098652 
24 0.175586 0.190631 0.312657 -0.033949 0.105121 0.189154 0.221884 0.20488 -0.07672 0.039701 
25 0.138686 0.146155 0.431757 -0.115057 -0.041807 0.169184 0.214129 0.291991 -0.207781 -0.040542 
26 0.106733 0.106027 0.482087 -0.157968 -0.143171 0.14176 0.193356 0.352725 -0.31766 -0.117252 
27 0.084227 0.077779 0.492251 -0.171303 -0.198566 0.114293 0.167248 0.37848 -0.383985 -0.171863 
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Panel B: Conditional Volatility 

GNSO GNSO GNSO GNSO GNSO GNSG GNSG GNSG GNSG GNSG  
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

1 0.133095 -0.231878 0.294572 -0.255244 -0.18813 0.107534 -0.177863 0.245492 0.03719 0.74622 
2 0.141549 -0.243706 0.275368 -0.211485 -0.133614 0.116937 -0.209815 0.290919 -0.110932 0.397662 
3 0.150027 -0.251323 0.243096 -0.164082 -0.073496 0.134689 -0.248504 0.294975 -0.166686 -0.026263 
4 0.158364 -0.256879 0.205054 -0.104133 -0.010013 0.141089 -0.255525 0.255592 -0.148616 -0.167542 
5 0.166975 -0.257253 0.153892 -0.041977 0.047895 0.151122 -0.261673 0.20376 -0.109323 -0.218733 
6 0.17463 -0.25363 0.099534 0.01431 0.079359 0.162752 -0.264339 0.13547 -0.058507 -0.210391 
7 0.183669 -0.24352 0.024016 0.083275 0.116732 0.174767 -0.261003 0.058584 0.001428 -0.211714 
8 0.191784 -0.226234 -0.052882 0.137171 0.129434 0.184777 -0.249605 -0.033051 0.064435 -0.165529 
9 0.198723 -0.202704 -0.128489 0.172435 0.117696 0.190912 -0.229677 -0.125135 0.120706 -0.101016 
10 0.203252 -0.173113 -0.204432 0.193611 0.093336 0.193153 -0.203855 -0.207331 0.161693 -0.028981 
11 0.205647 -0.144536 -0.261568 0.189775 0.047522 0.193119 -0.176393 -0.271556 0.183186 0.038201 
12 0.206457 -0.115741 -0.307124 0.172328 -0.012008 0.192589 -0.150836 -0.315736 0.186365 0.092953 
13 0.207053 -0.092125 -0.33418 0.141437 -0.078106 0.191652 -0.128569 -0.341219 0.183924 0.134229 
14 0.206073 0.045451 -0.288687 -0.188633 -0.459106 0.210923 0.010573 -0.296954 -0.123588 0.164243 
15 0.205358 0.110646 -0.21798 -0.292905 -0.328072 0.2174 0.083055 -0.208965 -0.295069 0.114224 
16 0.207606 0.143926 -0.156935 -0.308258 -0.10939 0.215569 0.119036 -0.14189 -0.354966 0.05152 
17 0.210335 0.161034 -0.095679 -0.279159 0.075436 0.214018 0.143037 -0.079571 -0.345324 -0.001795 
18 0.211853 0.171408 -0.038611 -0.226859 0.202649 0.216918 0.160555 -0.029458 -0.279005 -0.031746 
19 0.211922 0.178827 0.010845 -0.164907 0.273692 0.220048 0.174787 0.017958 -0.184801 -0.044345 
20 0.211035 0.184673 0.052552 -0.099244 0.293368 0.220326 0.18415 0.061315 -0.086444 -0.047197 
21 0.209625 0.189241 0.088892 -0.03054 0.263143 0.219748 0.187455 0.09094 0.007478 -0.043418 
22 0.207565 0.192409 0.121922 0.041142 0.187213 0.218371 0.186869 0.109787 0.090043 -0.037217 
23 0.204425 0.193585 0.150915 0.112992 0.079765 0.214199 0.186097 0.129574 0.153123 -0.028872 
24 0.199499 0.192473 0.174269 0.17982 -0.040405 0.210911 0.182948 0.138974 0.20695 -0.021828 
25 0.193051 0.188733 0.190811 0.237111 -0.155585 0.206815 0.180022 0.147692 0.247767 -0.014737 
26 0.184799 0.18257 0.202417 0.284937 -0.262786 0.202819 0.176661 0.153113 0.279993 -0.008801 
27 0.175618 0.173619 0.210408 0.32207 -0.357152 0.198849 0.173671 0.157843 0.304631 -0.003384 

 
GVFO GVFO GVFO GVFO GVFO GVFG GVFG GVFG GVFG GVFG  
PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 

1 0.10152 -0.209115 0.180743 0.375075 -0.238076 0.044211 -0.087372 0.246447 0.440701 -0.806486 
2 0.112132 -0.212229 0.176866 0.346632 -0.23868 0.121155 -0.233448 0.306776 0.275852 0.092715 
3 0.145956 -0.249138 0.156755 0.28335 -0.068751 0.139944 -0.251216 0.285775 0.207839 0.148226 
4 0.162087 -0.253531 0.126507 0.201446 0.027599 0.157751 -0.25667 0.235409 0.123908 0.166591 
5 0.176341 -0.252508 0.095606 0.11779 0.087363 0.174164 -0.251984 0.170945 0.037549 0.150586 
6 0.188499 -0.24639 0.062558 0.035723 0.127335 0.186097 -0.248303 0.096107 -0.03171 0.12161 
7 0.19881 -0.235101 0.027486 -0.044673 0.148414 0.195994 -0.23582 0.027228 -0.090061 0.073364 
8 0.207036 -0.218444 -0.008493 -0.119451 0.149183 0.202966 -0.220809 -0.035023 -0.130967 0.022347 
9 0.213181 -0.198301 -0.045918 -0.180447 0.133358 0.208282 -0.202773 -0.088122 -0.156749 -0.028828 
10 0.217706 -0.175248 -0.082806 -0.226791 0.096328 0.212124 -0.182839 -0.131836 -0.169874 -0.074801 
11 0.220989 -0.150434 -0.117584 -0.257144 0.040137 0.214843 -0.162813 -0.166882 -0.172514 -0.112268 
12 0.223328 -0.125458 -0.147975 -0.270905 -0.02485 0.216811 -0.14314 -0.194315 -0.16827 -0.141253 
13 0.224842 -0.100092 -0.172974 -0.271428 -0.094238 0.218243 -0.124162 -0.215491 -0.158591 -0.162942 
14 0.220158 0.071582 -0.239823 -0.042902 -0.445221 0.219589 0.021089 -0.266722 0.025184 -0.177543 
15 0.219012 0.127511 -0.215262 0.051141 -0.379538 0.219463 0.089954 -0.225547 0.114237 -0.104384 
16 0.220089 0.15901 -0.181736 0.091882 -0.245264 0.220729 0.12788 -0.178802 0.15709 -0.034501 
17 0.218874 0.178304 -0.150338 0.117961 -0.107 0.219416 0.152674 -0.139367 0.187605 0.026756 
18 0.216148 0.189958 -0.120142 0.136523 0.017863 0.217874 0.167358 -0.099685 0.196648 0.074283 
19 0.211683 0.197425 -0.093632 0.154138 0.122805 0.214959 0.179088 -0.062305 0.191654 0.107899 
20 0.206821 0.202665 -0.067021 0.166427 0.203746 0.211785 0.188958 -0.024978 0.17354 0.129593 
21 0.203007 0.20655 -0.036337 0.165758 0.261962 0.2086 0.19834 0.015369 0.140742 0.137297 
22 0.200085 0.210614 0.013699 0.142213 0.287014 0.204726 0.208034 0.063873 0.087146 0.125384 
23 0.196525 0.21451 0.135455 0.059105 0.227086 0.19962 0.215813 0.127096 0.003157 0.086896 
24 0.181324 0.202363 0.278651 -0.058542 0.09162 0.190196 0.219787 0.198801 -0.104372 0.021774 
25 0.156899 0.175793 0.381855 -0.163658 -0.054509 0.175568 0.21529 0.265068 -0.216411 -0.056749 
26 0.143804 0.15499 0.417864 -0.216846 -0.151305 0.154526 0.202391 0.313637 -0.314076 -0.136343 
27 0.115287 0.124477 0.449314 -0.253707 -0.25874 0.131227 0.183318 0.337612 -0.379402 -0.199237 

G-before the name of the model indicates that we have used a GARCH model 
 

 


