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ABSTRACT 

We formulate AR(p) stochastic duration measures with constant volatility and risk 

premium. Numerical exercise shows that AR(p) stochastic duration overstate the 

weighted time to maturity compared to Modified duration. A closer look at the AR(p) 

model shows a need for model refinement in order to better fit empirical bond yield 

observations. Possible models include models with time-varying volatility and models for 

nominal interest rate. 
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1 INTRODUCTION 

Interest rate risk is defined as an unexpected change in bond prices due to changes in the 

term structure; it is therefore essential in managing a bond portfolio to identify interest 

rate risk. Duration is the most commonly used measure of interest rate risk and 

accordingly is one of the most important tools available to bond portfolio managers. It is 

then not surprising that duration is of interest to both academic researchers and 

practitioners. 

 

Our study attempts to contribute to the duration literature in two ways. First, our study 

attempts to place a common theoretical language on the various duration measures 

developed under the no-arbitrage or equilibrium-based bond pricing models. While a 

number of no-arbitrage or equilibrium-based bond pricing models have been developed 

following the seminal papers of Vasicek (1977) and Cox, Ingersoll, and Ross (1985), a 

common theoretical language is missing. We develop our duration measure based on 

stochastic discount factor: a stochastic process that governs the pricing of state-

contingent claims. We model the short rate as an autoregressive process of order p and 

we model our option-free discrete-time bond pricing model following those of Backus, 

Foresi, and Telmer (1998). To our knowledge, our model is the first duration measure 

derived under stochastic discount factor. 

 

Second, we hope to bridge the gap between the highly mathematical no-arbitrage or 

equilibrium-based duration models and the discrete-time duration models based on bond 

mathematics similar in spirit to those of Macaulay (1938). Our aim is similar in spirit to 
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those of Backus, Foresi, and Telmer (1998). Our duration model formulation uses 

continuous state variable in discrete time which eases the model implementation for 

practitioner. We hope that this study will add to the continuing work of bridging the gap 

between academics and practitioners. 

2 LITERATURE REVIEW 

Duration was first defined by Macaulay (1938) to compare loans with different payment 

schedules based on the weighted average of their income stream. The various duration 

measures that followed can generally be divided into durations based on traditional “bond 

mathematics” and durations based on no-arbitrage or equilibrium-based bond pricing 

models. 

 

The first duration measure that does not explicitly model the underlying term structure 

behavior is Macaulay (1938). Subsequent studies include Cooper (1977), Bierwag 

(1977), Bierwag and Kaufman (1979), and Khang (1979) as discussed in Gultekin and 

Rogalski (1984). These early duration measures assume specific characteristics on the 

term structure movement such as changes in both the level and shape of the yield curve. 

For example, Khang (1979) proposes different duration measures for specific changes in 

the yield curve.  

 

A more recent measures includes Chambers, Carleton, and McEnally (1988), Ho (1992), 

Nawalkha and Chambers (1996), Nawalkha and Chambers (1997) and Nawalkha, Soto, 

and Zhang (2003). Chambers, Carleton, and McEnally (1988) indicates that interest risk 

can only be measured by a vector of numbers as opposed to a single number by proposing 
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the Duration Vector while Ho (1992) proposes the Key Rate Duration which associates 

the price sensitivity of a bond to multiple segments of the yield curve. Nawalkha and 

Chambers (1996) proposes M-Absolute duration measure which allows for superior 

immunization compared to traditional Fisher and Weil (1971) duration by selecting a 

bond portfolio clustered around its planning horizon date. Nawalkha and Chambers 

(1997) and Nawalkha, Soto, and Zhang (2003) extend the analysis of Nawalkha and 

Chambers (1996) into a multi-factor M-Vector. 

 

The development of duration measures based on no-arbitrage or equilibrium-based bond 

pricing models coincides with Ingersoll, Skelton, and Weil (1978) appraisal of Macaulay 

(1938) duration and developments in studies of bond pricing models. The seminal papers 

by Vasicek (1977) and Cox, Ingersoll, and Ross (1985) initiate the no-arbitrage or 

equilibrium-based bond pricing models. Ingersoll, Skelton, and Weil (1978) provide an 

arbitrage-based criticism of the Macaulay (1938) duration. To resolve this criticism, 

durations measures that take into account an explicit random process driving models of 

the bond pricing were developed. Cox, Ingersoll and Ross (1978) formally derives a 

duration measure consistent with the general equilibrium conditions of the Cox, Ingersoll, 

and Ross (1985) term structure model.  

 

Our study models the short rate as an AR(p) process similar in spirit to those of Vasicek 

(1977) and, unlike duration previous models, utilizes stochastic discount factor as the 

common element linking the bond pricing theory. The formulation of our discrete time 
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model of bond pricing follows those of Backus, Foresi and Telmer (1998).  A review of 

stochastic discount factor is provided by Cochrane (2005). 

 

Empirical research of duration’s effectiveness as an interest rate risk measure can be 

categorized into two school of thoughts. One school of thought looks at duration’s 

explanatory power over a cross section of bond return while the other looks at duration’s 

performance in an immunization strategy. Gultekin and Rogalski (1984) was the first to 

examine duration’s explanatory power over a cross-sectional bond return. Their study of 

seven different duration measures show that duration explains about 50% of cross-

sectional variation of bond return for U.S. treasury from 1947 – 1976. An exclusion of 

yield changes as an independent variable in the Gultekin and Rogalski (1984) statistical 

method however leads to underestimated R2 values. Subsequent study by Ilmanen (1992) 

corrected the omission by including yield changes as an independent variable1. Ilmanen 

(1992) shows that duration explained 80% to 90% bond return variance from the period 

of 1959 – 1989.  

3 THEORETICAL BACKGROUND 

3.1 Stochastic Discount Factor 

Stochastic discount factor is the rate at which an investor is willing to substitute 

consumption tomorrow for consumption today. In other words, stochastic discount factor 

is the investor’s intertemporal marginal utility of substitution of consumption. As per 

Cochrane (2005), given an investor’s one-period consumption-investment decision, the 

                                                 
1 We would like to thank Assaf Eisdorfer for observing the omission on Gultekin and Rogalski (1984) 
which lead us to Ilmanen (1992) 
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marginal utility of consuming less and buying more of the asset today should be equal to 

marginal utility of consuming more of the asset in the future.  

 

Following Cochrane (2005), let pt be the asset price at time t, dt+1 be the dividend from 

the asset at time t+1, ct be the consumption at time t, β be the subjective discount factor, 

U be the utility function, and xt+1 be the asset payoff at time t+1 where xt+1 = pt+1 + dt+1. 

The first order condition for optimal consumption and portfolio choice is then 

 1
1 1 1'( ) [ '( ) ] '( ) [ '( ) ]t

t t t t t t t t
t

x
p U c E U c x U c E U c

p
β β +

+ + += ⇔ =  (1) 

The left hand side stands for the marginal utility cost of consuming one dollar less at time 

t. The right hand side stands for the expected marginal utility of investing one dollar at 

time t, selling the dollar at time t+1, and consuming the investment at time t+1. Dividing 

equation (4) by U’(c t), we obtain  

 1 1 1
, 1

'( )
1 [ ] [ ]

'( )
t t t

t t k t
t t t

U c x x
E E m

U c p p
β + + +

+= =  (2) 

where mt+1 is the stochastic discount factor.  

3.2 Interest Rate Risk and Macaulay Duration 

Interest rate risk is defined as unexpected changes in bond prices due to changes in the 

term structure. Macaulay (1938) defined the duration measure D for a bond to measure 

bond price sensitivity to interest rate changes under infinitesimal parallel shift in term 

structure.  

 
( 1)

1

1 1
( )

(1 )

T
t

t
t

CP
D t

Y P Y P+
=

∂= − = − −
∂ +∑  (3) 
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where Ct is the cash flow at time t, Y is the yield-to-maturity, T is the time to maturity, 

and P is the bond price such that 

 
1 (1 )

T
t

t
t

C
P

Y=

=
+∑  (4) 

Equation (1) can be rewritten as follows 

 ( )
P

D Y
P

∂ = −∂  (5) 

As noted by Ilmanen (1992), extension to non-flat term structure would require the use of 

spot rates as opposed to yield-to-maturity. Fortunately, the use of spot rates as opposed to 

yield-to-maturity has only negligible impact on duration as observed by Ingersoll (1983).  

It is important to note as per Campbell, Lo, and MacKinlay (1997) that duration is 

sensitivity of n-period bond return to n-period yield and not sensitivity to a 1-period 

yield. 

3.3 Duration Model based on p-Factor Stochastic Process 

We model the short rate Zt as an autoregressive process of order p, an AR(p) process, and 

the stochastic discount factor mt+1 as 

 2 2
1 1

1
log

2t t tm Zε ελ σ λσ ε+ +− = + −  (6) 

where λ is the risk premium and ε ~ N(0,1). As shown in Appendix A, we can then 

recursively obtain a model for discount bond price with par value of $1, bn,t, at time t with 

n periods to maturity. We model discount bond price model assuming that the short rate 

Zt follows AR(1), AR(2), and AR(3). 

 



9 
 

The discount bond price model assuming that the short rate Zt follows an autoregressive 

process of order 1, AR(1) is: 

 ( )
,

n n tA B Z
n tb e− +=  (7) 

where 

 

0 0 1 1

2 2 2
1 1 1 1

1 1

0, 0, 1

1 1
(1 ) ( )

2 2
1

n n n n

n n

A B A B

A A B Z B

B B

ε ε ελ σ ϕ λσ σ

ϕ

− − −

−

= = = =

= + + − − −

= +

 

while discount bond price model assuming that the short rate Zt follows an autoregressive 

process of order 2, AR(2) is: 

 1( )
,

n n t n tA B Z C Z
n tb e −− + +=  (8) 

where 

 

0 0 0 0 1 1 1 1

2 2 2
1 1 1 2 3 1

1 1 1

1 2 1

1 3

0, 0, 1

1 1
(1 ) ( )

2 2
1

n n n n

n n n

n n n

n n

A B C D A C D B

A A B Z B

B B C

C B D

D B

ε ε ελ σ ϕ ϕ ϕ λσ σ

ϕ
ϕ
ϕ

− − −

− −

− −

−

= = = = = = = =

= + + − − − − −

= + +
= +
=

 

The discount bond price model assuming that the short rate Zt follows an autoregressive 

process of order 3, AR(3) is: 

 1 2( )
,

n n t n t n tA B Z C Z D Z
n tb e − −− + + +=  (9) 

where 
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0 0 0 0 1 1 1 1

2 2 2
1 1 1 2 3 1

1 1 1

1 2 1

1 3

0, 0, 1

1 1
(1 ) ( )

2 2
1

n n n n
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ϕ
ϕ
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As per Appendix B, duration measure for an AR(p) option-free discount bond with par 

value of $F is 

 , ,ln( )n t n tD Fb= −  (10) 

and duration measure for an AR(p) option-free coupon bond model Vn,t is 

 ,
, ,

1 ,

ln( )
n

i i t
n t i i t

i n t

C b
D C b

V=

= −∑   (11) 

4 NUMERICAL ANALYSIS 

4.1 Parameter Estimation 

4.1.1 Description of the Data for Estimation 

We estimates the model parameters using CRSP (Center for Research in Security Prices) 

U.S. term structure of interest rate (discount bond yield) with maturities of 1, 3, 6, and 9 

months in addition to 1, 2, 3, 4, and 5 years2. The estimation period runs from June 1964 

to December 1995. The data spans non-overlapping 379 months. Summary statistics of 

the annualized data is presented in Table 1. 

                                                 
2 The same dataset is used in Bansal and Zhou (2002). We would like to thank Ravi Bansal and Hou Zhou 
for providing us with the dataset. 
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4.1.2 Parameter Estimation Methods 

We estimate the following parameters from our models: the long run mean (Z ), the 

constant time-series residual standard deviation (σε), the n-th autocorrelation of the state 

variable (φn) and the constant risk premium coefficient (λ). The parameters are estimated 

using a two-step procedure. In the first step, we estimate the time series parameters of the 

models: the long run mean (Z ), the time-series residual standard deviation (σε) and is the 

n-th autocorrelation of the state variable (φn) using linear regression. In the second step, 

we estimate the constant risk premium coefficient, λ, using a non-linear least squares. 

The estimation results are presented in Table 2. 

4.2 Numerical Exercise 

We calculated the duration for monthly non-callable United States Treasury Bills, Notes 

and Bonds from January 1996 to December 2006 obtained from Center for Research in 

Security Prices (CRSP).  Bonds with special tax features, flower bonds, as well as bonds 

missing relevant data are excluded. The data spans non-overlapping 132 months with a 

total of 23,135 individual observations. The duration summary statistics are available on 

Table 3. 

 

The results of our duration calculation shows that AR(p) duration performs worse as 

maturity increases compared to Modified duration. As shown in table 4, at maturity of 0.5 

years, our AR(p) duration is comparable to Modified duration. As the maturity of the 

bond increase however, our AR(p) duration overstate weighted time to maturity 

compared to Modified duration. 
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5 CONCLUSION 

Empirically AR(p) duration performs worse as a proxy of weighted time to maturity than 

Modified duration in our forecast period. A closer look at the AR(p) model shows a need 

for model refinement in order to better fit empirical bond yield observations. Possible 

model include models with time-varying volatility and models for nominal interest rate 

model. 
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Table 1: Summary statistics for annualized U.S. Treasury term structure from June 1964 to December 1995  

          

Maturity 1-month 3-months 6-months 9-months 1-year 2-years 3-years 4-years 5-years 

          

Mean 6.446001 6.716742 6.944729 7.085367 7.129530 7.338939 7.495414 7.619863 7.689058 

Std. Dev. 2.648370 2.712717 2.703928 2.685806 2.599354 2.521404 2.441905 2.403834 2.371477 

Skewness 1.211099 1.211768 1.151771 1.101269 1.030724 0.977756 0.961475 0.926271 0.879131 

Kurtosis 4.590163 4.523702 4.314679 4.160509 3.909804 3.661173 3.589720 3.506315 3.353150 

 

Table 1 reports the mean, standard deviation, skewness, and kurtosis of annualized U.S. Treasury term structure from June 1964 to 

December 1995.  
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Table 2: Parameter estimation results for AR(p) discount bond model using U.S. Treasury term structure from 
June 1964 to December 1995 

       

Model 

      

AR(1) 0.957608 - - 0.000148 0.510157 0.000118 

AR(2) 0.879656 0.081137 - 0.000147 0.517970 0.000109 

AR(3) 0.886068 0.154651 -0.082922 0.000146 0.492114 0.000117 
 

Table 2 reports the estimation results for the AR(p) discount bond model.  

 

 

 

 

 

 

 

 

1ϕ 2ϕ 3ϕ εσ λ Z
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Table 3: Summary statistics for AR(1), AR(2), AR(3), and Macaulay Duration 
Specification from March 1996 to December 2006  
     

 AR(1) Duration AR(2) Duration AR(3) Duration Macaulay 
         

Mean 6.936376 6.759994 6.695676 4.287787 
Std. Dev 18.84907 18.91014 18.81771 4.80017 

Skewness 2.209346 2.196086 2.20906 1.254747 
Kurtosis 7.155883 7.132464 7.202382 3.318123 

 

Table 3 reports AR(1), AR(2), AR(3), and Macaulay Duration using the U.S. Treasury data from March 1996 to December 2006.  

 

Table 4: Average Duration   
     

Maturity      
(in years) Modified AR(1) AR(2) AR(3) 

     
0.5 0.522 0.521 0.521 0.500 
1 1.309 1.307 1.307 0.988 
2 2.807 2.802 2.804 1.870 
5 7.848 7.839 7.840 4.370 

10 16.716 16.701 16.706 8.003 
 

Table 4 reports AR(1), AR(2), AR(3), and Macaulay Duration based on maturity using the U.S. Treasury data from March 1996 to 

December 2006. The data is an average duration for securities with 10 days around 0.5, 1, 2, 5, and 10 years of maturity.
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APPENDIX A 

Similar in spirit to Backus, Foresi and Telmer (1998), we construct our option-free 

discount bond pricing model. The stochastic discount factor is  

 1 1log t t tm Z εδ λσ ε+ +− = + −  (1) 

where mt+1 is the stochastic discount factor at time t+1, Zt is a state variable at time t, λ is 

the risk premium, δ is a free variable and ε ~ N(0,1). We restrict the risk premium λ to be 

a positive number. The state variable Zt follows a normal autoregressive process of order 

p, AR(p): 

 1 2 1 1 2 2(1 ... ) ...t p t t p t p tZ Z Z Z Z εϕ ϕ ϕ ϕ ϕ ϕ σ ε− − −= − − − − + + + + +  (2) 

where ε ~ N(0,1), Z  is the long run mean, σε is the residual standard deviation and φn is 

the n-th autocorrelation of the state variable. Let bn,t denote the value of a discount bond 

at time t with n periods to maturity with the following pricing relation 

 , 1
1 1, 1 , 1

1,

1 ( ) ( )n t
t t n t t t n t

n t

b
E m b E m b

b
+

+ + + +
+

= ⇔ =  (3) 

Assume that at any time t, the value of a matured discount bond b0,t is $1. The value of a 

discount bond with one-period (n = 1) to maturity at time t is then: 

 1, 1 0, 1 1( ) ( )t t t t t tb E m b E m+ + += =  (4) 

Given mt+1 as a lognormal random variable and imposing no arbitrage opportunity, we 

obtain stochastic discount factor as 

 2 2
1 1

1
log

2t t tm Zε ελ σ λσ ε+ +− = + −  (5) 
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where state variable Zt is the 1-month Treasury bill rate at time t. We can then recursively 

obtain theoretical price of discount bond. We will illustrate the process assuming that the 

state variable Zt follows an AR(3) process. 

 

We assume the general form for discount bond price as 

 1 2( )
,

n n t n t n tA B Z C Z D Z
n tb e − −− + + +=  (6) 

where  

0 0 0 0 1 1 1 10, 0, 1A B C D A C D B= = = = = = = =  

The value of a discount bond with two-period until maturity (n = 2) at time t is 

 

2 2
1

1

2 2
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1 2 3 1 2 1 3 2 1

2 2
1 2 3 1 2 1 3 2 1
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1
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t t
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t t t t
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Z Z Z Z Z
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b E m b E e e

E e e

E e

e

ε ε

ε ε
ε

ε ε ε

ε

λ σ λσ ε

λ σ λσ ε ϕ ϕ ϕ ϕ ϕ ϕ σ ε
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 (7) 

Generalizing the recursion above, the price of an option-free discount bond with n 

periods to maturity at time t, denoted by bn,t has the following general form: 

 1 2( )
,

n n t n t n tA B Z C Z D Z
n tb e − −− + + +=  (8) 

where 
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0 0 0 0 1 1 1 1

2 2 2
1 1 1 2 3 1

1 1 1

1 2 1

1 3

0, 0, 1

1 1
(1 ) ( )

2 2
1

n n n n

n n n

n n n

n n

A B C D A C D B

A A B Z B

B B C

C B D

D B

ε ε ελ σ ϕ ϕ ϕ λσ σ

ϕ
ϕ
ϕ
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−
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=

 

The price of the discount with par of $1 bond above can be viewed as a discount factor 

for option-free coupon bonds V where   

 , ,
1

n

n t i i t
i

V C b
=

=∑  (9) 

where Ci is future cash flows associated with each period.
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APPENDIX B 

Duration is a point elasticity of bond price to yield-to-maturity. As per Campbell, Lo, and 

MacKinlay (1997), duration is sensitivity of n-period bond return to n-period yield and 

not sensitivity to a 1-period yield. Macaulay duration for discount bond with n period-to-

maturity at time t is formulated as  
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As per Campbell, Lo, and MacKinlay (1997), the coupon bond can be seen as a portfolio 

of discount bonds and the Macaulay duration of a coupon bond is the present-value-

weighted average of the underlying discount bond’s duration. The duration for a discount 

bond with n period-to-maturity at time t is formulated as n. Given a coupon bond Vn,t, 

duration measure for Vn,t is therefore 
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