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In this paper, we study equilibrium implications of benchmarking and delegated
portfolio management. Delegation refers to the situation, in which the investor man-
dates a professional asset manager to make investment decisions on her behalf on a
discretionary basis. Since the demand for risky assets of institutional investors differs
from that of individuals, it raises the question of how asset prices are affected in equi-
librium. In a model with two groups of investors, individual investors and professional
asset managers, we provide a formal model of delegation under benchmarking and we
illustrate how endogenous delegation optimally arises in general equilibrium. Further-
more, we establish an expected return-beta relationship, which allows us to study the
cross-sectional implications of portfolio management delegation and benchmarking. Our
analysis highlights that delegation and benchmarking are two related issues that need
to be examined simultaneously.

Over the past decades, the asset management industry has faced rapid growth.
Nowadays, a substantial part of wealth is invested through investment intermediaries
such as banks, investment funds, pension funds, and other institutional investors. As an
example, total assets for U.S. mutual funds grew by an annual rate of 15 % over the past
twenty years and have reached a level of USD 7.88 trillion by the end of 2007, which
corresponds to a fraction of 56% of the U.S. GDP. Also, despite the current financial
crisis, the global hedge fund industry has still assets under management of an estimated
USD 1.9 trillion in 2008.1 One reason for these impressive numbers is a structural shift
in the investment behavior of private households, as an increasing number of individual
investors is delegating their investment decision to professional asset managers.

In Table 1, we report the ownership structure of U.S. equity over the past six decades.
Back in 1952, individuals directly held over 90 % of corporate equities. By 2008, this
proportion was down to less than 25 %. At the same time, the fraction of equities held
by investment funds (including mutual funds, closed-end funds, and exchange traded
funds) rose from 2.9% to 28.5 %. The share of equities held by pension funds grew from
0.9 % to 23.2%. This structural shift of investment discretion from private households
to institutional investors may have implications on equilibrium asset prices and returns,
since investment objectives of institutional investors and private investors differ in many
respects. Along this line, Gompers and Metrick (2001) argue that the presence of insti-
tutional investors tends to increase the demand for large and liquid stocks, which could
explain the disappearance of the small-stock premium. Further, many institutional as-
set managers are bound to performance objectives relative to a benchmark portfolio,
which increases the demand for those stocks included in the benchmark.

Despite the growing importance of institutional investors, the resulting asset pricing
1Data from the Bureau of Economic Analysis, The Federal Reserve Board, and McKinsey & Com-

pany.
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U.S. Equity Ownership

Sector 1952 1970 1980 1990 2000 2008

Household sector 90.8 79.0 66.0 56.1 49.4 25.3
Banking sector 0.4 0.4 0.6 0.7 0.5 1.2
Insurance companies 3.0 3.2 5.6 4.7 5.8 8.2
Pension funds 0.9 8.5 19.5 24.2 17.9 23.2
Investment funds 2.9 5.7 3.3 6.9 18.6 28.5
Other 2.0 3.2 5.0 7.3 7.7 13.7

Total equities outstanding 170 815 1,070 3,613 20,229 19,361
(in billions of USD)

Table 1: Holdings of corporate equities in the United States, as of the first quarter of the year
indicated. All numbers (except total equities outstanding) are in percent. The banking sector
consists of the subgroups commercial banking, savings institutions and brokers and dealers; in-
surance companies consist of property-casualty insurance and life insurance companies; pension
funds consist of private pension funds and federal, state and local government retirement funds;
investment funds consists of mutual funds, closed-end funds and exchange-traded funds. Source:
The Federal Reserve Board “Flow of Funds Accounts for the United States.”

implications are poorly understood so far. Since traditional financial market theory
is based on the representative investor paradigm, it has nothing to say about the im-
pact of financial institutions on asset pricing. Or as Allen and Santomero (1998) state
affirmatively:

“The fact that there is such extensive intermediation suggests that the ap-
proach of traditional asset pricing may miss important features of actual
markets. [...] Given the importance of intermediaries’ trading in financial
markets, asset pricing theories and intermediation theories need to be better
integrated.”

Given the tremendous growth of the asset management industry, it is obvious that by
neglecting the impact of portfolio delegation, we may miss some important aspects of
asset pricing.

One question to be addressed is why investment decisions are delegated to profes-
sional asset managers in the first place. Apart from reasons related to market frictions
and economies of scale, the main justification for the employment of asset managers is
their investment skill and their superior capacity to observe and process information. We
follow this route and introduce information asymmetry between managers and investors
as a potential trigger for delegation. We endow the investor with a certain amount of
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information capacity that allows her to observe a noisy but unbiased signal about the
true risky asset payoff. In contrast, the manager faces costly information capacity and
needs to decide how much additional capacity is optimal to acquire. This setup gives rise
to a two-step investment process, where agents solve an information allocation problem
in the first stage and a portfolio choice problem in the second stage.2

Another important issue to be addressed is the role of benchmarking. We model
managers as relative return investors, who try to outperform a passive benchmark port-
folio such as the S&P 500 index. The magnitude of the effects on asset prices due to
benchmarking is particularly driven by the number of delegating investors in an econ-
omy. Contrariwise, the composition of the benchmark affects the portfolio holdings
of managers and the utility from delegation, which in turn determines the number of
delegating investors. Therefore, to consistently model the impact of delegation in an
equilibrium model, we need to address delegation and benchmarking simultaneously.
We do so by modelling the manager as a strategic agent who takes into account the
actions of the investor. Hence, there is a two-way relation between delegation and
benchmarking.

In partial equilibrium, we find that delegation is most valuable when the manager’s
risk aversion is equal to that of the investor. A high discrepancy between manager and
investor risk aversion lowers the utility gain from delegation. Furthermore, we find that
benchmarking reduces utility from delegation as soon as the manager exhibits lower
risk aversion than the investor. This reduction in utility is increasing in the risk level of
the benchmark portfolio. Our findings confirm the conclusions in Basak, Pavlova, and
Shapiro (2007) on the suboptimality of benchmarking.

For the general equilibrium analysis, we use the concept of a noisy rational expec-
tations equilibrium as proposed by Grossman and Stiglitz (1980), Hellwig (1980), and
Verrecchia (1982). We develop our model along the lines of the multiple risky asset
framework of Admati (1985). We show that the expected return of an asset is a linear
function of the asset’s covariance with the market portfolio and its covariance with the
benchmark portfolio. For assets included in the benchmark portfolio, only active man-
agement risk is priced in equilibrium. The risk premium turns out to be proportional to
the covariance with a residual portfolio orthogonal to the benchmark. We further show
that the presence of delegated agents leads to a more informative price system and to
lower equity risk premia for those assets the manager acquires information about. All
these equilibrium effects are amplified by the fraction of delegating agents in the econ-
omy. Since the seminal contribution of Mehra and Prescott (1985) about the equity risk

2To keep the analysis simple, we do not consider conflicts of interest between the investor and the
manager. Rather, we assume that the manager’s investment strategy is fully transparent for the investor.
Contributions on optimal contracting are, e.g., Bhattacharya and Pfleiderer (1985), Stoughton (1993),
and Ou-Yang (2003).

4



premium, many authors document that this premium actually is declining over time.3

To this end, our theory offers a theoretical explanation that is empirically supported by
the fact that the volume of institutionally managed money sharply increased over the
same period of time.

Our paper is related to different streams in the literature. Brennan (1993) studies
a static mean-variance model with two types of investors, private investors holding the
standard market portfolio and benchmark investors with performance objectives relative
to a benchmark portfolio. He shows that equilibrium expected returns are characterized
by a two-factor model, the two factors being the assets’ covariance with market returns
and the assets’ covariance with the returns on the benchmark portfolio. A similar
analysis is performed by Stutzer (2003) and Cornell and Roll (2005). Brennan (1995),
Gomez and Zapatero (2003), and Brennan and Li (2008) find empirical support for
those types of models.

In the same vein, Cuoco and Kaniel (2007) examine the equilibrium impact of sym-
metric and asymmetric relative performance evaluation contracts. They find that sym-
metric contracts tilt portfolio choice towards stocks that are part of the benchmark
portfolio, while asymmetric contracts lead fund managers to choose portfolios that max-
imize tracking error. Probably the most rigorous equilibrium analysis in this field is Ross
(2005). He shows that the noisy rational expectations equilibrium, in which investors
have information of varying degrees of precision, is unstable to the formation of better
informed asset management institutions. He further shows that markets will exhibit
lower equity premia if dominated by institutional investors with higher precisions than
individual investors.

However, none of the above contributions addresses the issue of endogenous dele-
gation. Rather, they take the fraction of delegating investors and direct investors as
exogenously given. While this is no restriction to find empirical support for the theory,
these models are not able to explain why delegation occurs. An exception in this area
is Kapur and Timmermann (2005). Similar to ours, they establish a decision rule for
delegation based on expected utility to generate endogenous delegation. Agents are ex-
ogenously endowed with a fixed amount of signal precision and the manager is assumed
to have a higher precision than the investor. However, their model has only one risky
asset. In our model, we consider multiple risky assets. Therefore, we are able to ad-
dress cross-sectional implications of delegation. In addition, we endow only individual
investors with a fixed amount of information capacity. Managers face costly information
and have to decide on their own how much information they should optimally acquire.
Hence, not only delegation, but also the managers’ signal precisions are endogenously

3See, e.g, Mehra and Prescott (2003) and DeSantis (2007). Jagannathan, McGrattan, and Scherbina
(2000) attribute the decline in equity premia to institutional changes in the U.S. as a possible explana-
tion.
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specified in our model. Another paper related to ours is Petajisto (2007), who demon-
strates that the existence of active managers has implications on the cross-sectional
pricing of assets. However, he does not explicitly specify the benchmark portfolio nor
the information allocation process.

Also related to our paper is the literature on relative performance objectives in asset
management. Roll (1992) shows how relative performance objectives can be incorpo-
rated into the traditional mean-variance framework. He states that benchmarking is
generally not mean-variance efficient, unless the benchmark corresponds to a portfolio
on the efficient frontier. Other papers in this direction include Wagner (2001), Basak,
Shapiro, and Tepla (2006), Basak, Pavlova, and Shapiro (2007), and Basak, Pavlova,
and Shapiro (2008). Garcia and Strobl (2008) and Gomez, Pristley, and Zapatero (2008)
derive equilibrium implications of relative wealth concerns with a single risky asset and
multiple risky assets, respectively. They both find that relative performance objectives
lower equilibrium risk premia.

The paper is organized as follows. In Section 1, we introduce the basic setup and
discuss the sequence of events in the model. Section 2 presents partial equilibrium re-
sults on optimal delegation and information acquisition. We compute expected utility
resulting from direct and delegated investment and establish a decision rule for delega-
tion. In Section 3, we discuss equilibrium implications of our model. We also derive an
expected return-beta relationship and analyze the cross-sectional implications of dele-
gated portfolio management and benchmarking. Section 4 provides empirical evidence
for the main prediction of the model. Section 5 concludes. All proofs are delegated to
the appendix.

1 Basic Setup

We consider a simple economy with two types of agents, a private investor (the ‘in-
vestor’) and a professional portfolio manager (the ‘manager’). The private investor
faces the decision problem of whether to delegate the management of her wealth to
the manager or to invest directly. We motivate delegation in our model by assuming
asymmetric information between the investor and the manager. Delegation results from
the investor’s quest for better information and can be rational when the manager has
superior private information. Once the investor has decided to delegate, the manager
has the final decision about which assets to hold in the portfolio. In case of direct
investment, the investor has the final decision about the portfolio composition.4

4Indexing is referred to as direct investing since no active portfolio decision on the part of the manager
is involved. Indexing is not based on private information and absent any market frictions, the individual
investor is able to replicate a passive investment strategy.
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1.1 Preferences and Beliefs

The investment universe consists of N risky assets with price vector p and one risk-free
asset with constant rate of return r. Final payoffs of the risky assets are captured by the
N × 1 random vector f . Agents have some initial information about the distribution of
f , which we assume to be the normal distribution. Both the investor and the manager
start with the same set of prior beliefs

p(f) ∼ N (µ,Σ), (1)

where µ is the N × 1 mean vector and Σ is the N ×N covariance matrix. All agents
observe a noisy but unbiased signal sk about the true realization of f ,

sk = f + ηk, (2)

where ηk ∼ N (0,Ωk), and k ∈ {j, m} stands for investor j and manager m, respectively.
Ωk is a covariance matrix that determines the precision of the signal, which is defined
as the inverse of the signal variance. Ωk is not restricted to be diagonal. Therefore, the
signal about one asset might contain information about another asset.

With the signal observed, agents combine the prior belief and the signal using Bayes’
law. The posterior belief of agent k about the realization of the asset payoffs is

pk(f |µ, sk) ∼ N (
µ̂k, Σ̂k

)
, (3)

with posterior mean

µ̂k :=
(
Σ−1 + Ω−1

k

)−1(Σ−1µ + Ω−1
k sj

)
(4)

and posterior variance
Σ̂k :=

(
Σ−1 + Ω−1

k

)−1 (5)

Given Ωk positive-semidefinite, the posterior variance is always lower (or equal) than
the prior variance, reflecting the fact that the signal generates additional information.

We next define the utility functions for the investor and the manager. For investor
j, we assume a standard mean-variance utility Uj with constant absolute risk aversion
parameter ρj , i.e., for a given arbitrary set of beliefs (µ̂j , Σ̂j), we define

Uj(µ̂j , Σ̂j) = qj
′(µ̂j − pr)− 1

2
ρj qj

′Σ̂jqj , (6)

where qj is the vector of portfolio weights. For the manager, we impose a slightly
different utility function, since most active portfolio managers are concerned with per-
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formance objectives relative to a benchmark.5 The benchmarked manager derives utility
from relative return between portfolio and benchmark minus the tracking error of the
portfolio:6

Ubm(φ, µ̂m, Σ̂m) = (qbm − φ)′(µ̂m − pr)︸ ︷︷ ︸
relative return

−1
2
ρm (qbm − φ)′Σ̂m(qbm − φ)︸ ︷︷ ︸

tracking error

. (7)

ρm is the manager’s aversion to the risk of deviating from the benchmark, qbm is the
manager’s portfolio given the performance objective relative to the benchmark portfolio
φ. Note that usually we have ρj 6= ρm. While ρj measures the aversion to absolute risk,
ρm measures the risk of deviating from the benchmark portfolio and is often referred
to as regret aversion (see, e.g., Wagner (2001)). Empirically, the risk aversion parame-
ter under benchmarking is usually higher than the risk aversion in an absolute return
setting.

1.2 Information Acquisition

Agents not only have to solve for the optimal portfolio weights, but they also have to
decide about which assets they want to learn about prior to observing the signal, i.e.,
how to acquire and allocate signal precision. Hence, agents face a two-level investment
process. First, they decide what they want to learn about and how much they want to
learn. This phase is referred to as information allocation. To observe a signal, agents
need information capacity. For the investor, we assume that information capacity is
fixed. For the manager, information capacity has to be acquired through costly effort.
Therefore, on the one hand, agents need to decide on how much information capacity
to acquire (manager). On the other hand, they decide on which assets to spend the
available information capacity (manager and investor). Second, having observed the
signal, agents form a posterior belief about future asset payoffs and select the optimal
portfolio. This phase is referred to as portfolio choice.

5Active managers are primarily concerned about attracting new money. Recent empirical evidence
suggests that money tends to flow into the fund, if it performs well relative to a benchmark. See,
e.g., Gruber (1996), Chevalier and Ellison (1997), and Sirri and Tufano (1998). Given the manager is
compensated on the basis of total assets under management (which is generally the case for mutual
funds), the manager has an implicit incentive to focus on relative performance. By using the utility
function in (7), we capture this type of behavior.

6Some authors define the tracking error as the difference between portfolio and benchmark return
and refer to (qbm−φ)′Σ̂j(qbm−φ) as the tracking error variance (see, e.g., Roll (1992)). The definition
we use in this paper can be found in Meucci (2005).
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1.2.1 Learning About Risk Factors

Borrowing from Van Nieuwerburgh and Veldkamp (2008a,b), we simplify the informa-
tion allocation problem by letting agents learn about orthogonal risk factors or principal
components. We decompose the covariance matrix Σ into a diagonal eigenvalue matrix
Λ and an eigenvector matrix Γ,

Σ = ΓΛΓ′. (8)

The matrix Γ captures the factor loadings and may include systematic risk factors as
well as firm specific risks. By Γl we denote the l-th column of Γ that contains the
loading of each asset on the l-th risk factor. The l-th row of Γ captures asset l’s factor
loadings on each factor. The eigenvalue matrix Λ = (λl)l=1,...,L captures the variance
of the l-th risk factor λl on its diagonal. Basically, we could reduce the dimensionality
of the problem by only considering the L-th largest eigenvalues (L < N). However,
without loss of generality, we can assume that the number of orthogonal risk factors
equals the number of assets, i.e., L = N .

Instead of signal s, we let agent k observe a signal about the payoff of the risk factor
given by Γ′s. The variance of the signal is Λk = (λk,l)l=1,...,L and serves as choice
variable in the agent’s information acquisition problem. Since the factor loadings Γ

remain constant and only eigenvalues change, the posterior variance of asset payoffs is

Σ̂k = ΓΛ̂kΓ′. (9)

The eigenvector matrix Γ is known to all agents. Information allocation is referred to
the choice of optimal signal precision Λk that helps to reduce uncertainty about the
realization of final payoffs. With Λk being positive semidefinite, we implicitly assume
that agents cannot forget what they already know about factors. The agents’ informa-
tion allocation problem consists of selecting the optimal posterior variance Λ̂k subject
to different informational constraints to be discussed below.

1.2.2 Information Capacity and Information Cost

To operationalize the process in terms of how agents acquire information, we introduce
two additional concepts, information capacity and the cost of information. First, to
become informed, agents need information capacity, which we measure as the increase
in total signal precision.

Definition 1.1. Information capacity Kk for agent k is defined as the sum of the

9



differences between the posterior and the prior precision of each risk factor,7

Kk :=
L∑

l=1

(
λ̂−1

k,l − λ−1
l

)
, k ∈ {j, m}. (10)

For investor j, we assume a fixed amount of information capacity Kj and argue that
portfolio management is not the investor’s profession nor is it her main activity. Hence,
the private investor only has to decide how to allocate the available capacity optimally
among the different assets and does not have to decide how much information capacity
to acquire. In contrast, the manager can acquire further information by increasing her
information capacity. However, information capacity comes at a cost. Each manager
faces a tradeoff between the monetary cost of capacity and the benefits of more accurate
information. We define the monetary cost of capacity as

C(Km) = c
L∑

l=1

(
λ̂−1

m,l − λ−1
l

)ψ
, (11)

with constants c > 0 and ψ ≥ 1. The constant c translates capacity expressed in terms
of differences between posterior and prior precision into monetary costs and ψ specifies
the curvature of the cost function. For ψ = 1, C(Km) is linear in capacity. For values
ψ > 1, C(Km) is a convex function of information capacity and the marginal cost for
information is increasing.

Two properties of equation (11) are worth mentioning. First, no costs occur if the
agent does not receive any private information, i.e., information capacity is zero. From
equation (5) and the specification of the correlation structure, we know that Λ̂m = Λm

if (λm
η,l)

−1 = 0, ∀l. Second, if ψ > 1, the cost function assures that the signal can never

reveal the true asset payoffs, because limλ̂m,l→0 c
(
λ̂−1

m,l − λl

)ψ = ∞. In addition, the
convexity of the cost function makes it unattractive to acquire too much information
about a single risk factor due to the decreasing returns of information acquisition implied
by ψ > 1.

1.3 Sequence of Events

Having discussed the basic building blocks, we briefly outline the sequence of events. We
may think of our framework as a static model with four time periods. In the first period,

7This definition of information capacity corresponds to the linear precision constraint in Van Nieuwer-
burgh and Veldkamp (2008a). They also discuss other types of capacity constraints such as an entropy
based constraint. For our paper and to obtain analytical tractability, we restrict the analysis to the
linear case. Also note that the prior precision λl is not agent specific.
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the manager and the investor solve the information acquisition problem. The investor
solves the information allocation problem to maximize expected utility of final wealth,
while the manager solves the information allocation problem to maximize management
fees. The manager does the information allocation with full anticipation of the investor’s
information choice, whereas the investor chooses information independently. In the
second period, after having observed the manager’s information choice and to make
the delegation decision, the investor compares the magnitude of management fees and
the ex-ante utility gain from delegation expressed in monetary units (labeled CED). In
period 3, both agents observe a signal about the payoff of risk factors based on their
information choice in period 1. Depending on the investor’s delegation decision, either
the portfolio choice of the manager (‘delegated investment’) or the portfolio choice of
the investor (‘direct investment’) takes place. Terminal wealth is realized in period 4.

-
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Acquisition
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Figure 1: Sequence of events in the model with endogenous delegation.

Figure 1 summarizes the sequence of events in the model. The distinction between
period 1 and period 2 is for illustrative purposes only and serves to point out the
chronology of information allocation and the delegation decision. However, since the
signal is received in period 3, there is no difference between period 1 and period 2 in
terms of information sets.

The manager’s information choice Λ̂m is a key variable in the model. It reveals man-
agerial skill and determines the investor’s delegation decision. Comparing the manager’s
posterior risk factor variances, the investor can assess where the manager has precise
private information. A risk factor’s posterior variance relative to other risk factors re-
veals how much capacity the manager devotes to learning about this specific risk factor.
If we define managerial skill as the manager’s ability to receive a precise signal, we may
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say that a more precise private signal leads to higher (ex-ante) managerial skill. The
quality of the manager’s information is thus completely determined by Λ̂m: the smaller
the posterior variance, the better the forecasting abilities and the higher manager skill.8

Given our setting with delegation, manager skill can also be interpreted as the total
gain in precision relative to the investor’s signal, i.e., as a direct measure of relative
information capacity.

1.4 Solving the Model

We solve the model by backward induction. First, we solve the portfolio choice problem
of the investor and the manager in period 3. Given an arbitrary posterior belief (µ̂j , Σ̂j),
the investor maximizes the mean-variance utility in equation (6). Similarly, the manager
maximizes the utility function including the benchmark portfolio in equation (7) given
(µ̂m, Σ̂m).

In period 2, the investor has to make the delegation decision. An informed manager
can add value for a less informed investor by selling her superior information. Since
information is costly to produce but can be replicated almost without any cost, it is
not attractive to sell information directly, e.g., via newsletters. A newsletter can be
reproduced relatively easy and many investors can get access without paying for the
service. An indirect way of selling information is to establish a mutual fund and manage
wealth for others.9 Superior information is then needed to construct active portfolios.
If the manager acts exactly in the interest of the investor, direct and indirect sale of
information create the same utility for the investor.

To operationalize the delegation problem, we establish a decision rule for optimal
delegation based on a certainty equivalent argument. In the context of portfolio man-
agement delegation, the certainty equivalent can be considered as the maximum fee an
investor is willing to pay for the manager skills. We will refer to this measure as the
certainty equivalent of delegation (CED) and define it as:

CED := sup
[
δ
∣∣∣Udir(µ̂j , Σ̂j) ≤ Udel(µ̂m − δ, Σ̂m)

]
, (12)

where Udir(µ̂j , Σ̂j) is the investor’s period 2 utility from direct investment and the period
2 utility from delegation given the belief of the manager is given by Udel(µ̂m, Σ̂m). The

8Results from Van Nieuwerburgh and Veldkamp (2008b) on optimal learning show that agents learn
about one or a small set of risk factors, thus specializing in certain areas leading to concentrated
and under-diversified portfolios. Their model prediction is consistent with recent empirical evidence.
Kacperczyk, Sialm, and Zheng (2005) have shown that active managers do show stock selection abilities
if they focus on relatively few industries. This finding stresses the importance of the manager’s posterior
covariance matrix in defining the area of specialization and managerial skill.

9Already Admati and Pfleiderer (1990) point out that delegated portfolio management is an indirect
way of selling information.
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definition in (12) allows for a direct comparison with the fee effectively charged for
active management. A rational investor delegates investment decisions to the portfolio
manager if and only if the fee for active management is smaller (or equal) than her
CED.

In period 1, the posterior covariance matrices of investor j and the manager m

are determined. As the investor chooses information independently of the manager’s
action, the manager acts strategically and optimizes the information allocation with
full anticipation of the investor’s information choice. Given the mean-variance utility
in equation (6) and the optimal portfolio choice qj from period 3, the investor’s period
1 problem can be written as

maxΛ̂j
E

[
qj
′(µ̂j − pr)− 1

2
ρ qj

′Σ̂jqj

∣∣∣µ
]

, (13)

subject to the capacity constraint

L∑

l=1

(
λ̂−1

j,l − λ−1
l

)
≤ Kj (14)

and the nonnegative-learning constraint

λ̂−1
j,l ≥ λ−1

l ∀l. (15)

The capacity constraint (14) limits the signal precision to a certain level of information
capacity Kj and ensures that the investor cannot reduce posterior variance beyond that
level. The nonnegative-learning constraint (15) prevents the investor from forgetting
what she already knows at the expense of a more precise signal about another risk
factor.

For the manager, information capacity is costly. However, the manager can acquire
an arbitrary level of information capacity Km. He faces a cost-benefit tradeoff between
the cost of becoming informed and management fees earned from delegation. Higher
manager skill enables the manager to charge a higher fee.

The maximum fee the manager can charge depends on the investor’s willingness to
delegate. When deciding how much information capacity to acquire and what assets
to learn about, the manager acts strategically and takes the investor’s response (in
terms of CED) into account. Following Petajisto (2007), we assume that the manager
observes the investor’s posterior variance Σ̂j and maximizes period 1 utility with full
anticipation of the investor’s response in period 2. In this sense, the manager is a
Stackelberg leader who chooses information such that management fees are maximized
under costly information capacity. The period 1 utility of the manager Um depends on
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the investor’s delegation decision,

Um =





α− C(Km) if CED ≥ η (delegation),

0 if CED < η (direct investment),
(16)

where α denotes the management fee and η the manager’s reservation utility. The man-
ager establishes an investment fund, if the remuneration through management fees α

outweighs the information costs C(Km). As long as the certainty equivalent of delega-
tion is higher than the manager’s reservation utility, both agents are better off when they
engage in delegation. If the cost of information acquisition necessary for the manager
skill required to induce the investor to delegate is higher than the fees from managing
delegated wealth, the manager does not engage in wealth management and his utility
is zero.

For simplicity, we assume that the manager observes the investor’s certainty equiva-
lent of delegation, i.e., the manager is aware of the investor’s marginal willingness to pay
for delegation. A rational manager will then charge the highest fee possible such that
α = CED. Hence, in period 1 the manager chooses information such that the investor’s
CED (and therefore his fee) is maximized:

maxΛ̂m
(CED− C(Km)) , (17)

subject to the nonnegative-learning constraint. Therefore, the manager fully discrimi-
nates management fees among investors.

2 Partial Equilibrium Results

We now discuss the partial equilibrium results of our model. We first explore the in-
vestor’s optimal portfolio choice and information allocation in case of direct investment.
Then, we consider the situation in which the individual investor has two investment
opportunities, delegation and direct investment. Finally, we introduce a benchmarking
portfolio for the asset manager.

2.1 Direct Investment

Given the investor’s mean-variance utility function in (6), the solution to the period-3
maximization problem is simply given by

qj =
1
ρj

Σ̂−1
j (µ̂j − pr). (18)
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Since the signal realization is unknown in period 1, only expected portfolio holdings can
be predicted:

E[qj |µ] =
1
ρj

Σ̂−1
j (µ− pr). (19)

The expected utility that results from the optimal investment strategy given in equa-
tion (18) is summarized in the following proposition. All proofs are delegated to the
Appendix.

Proposition 1. Consider an investor j with coefficient of absolute risk aversion ρj and
posterior beliefs µ̂j , Σ̂j. If this investor chooses to invest directly, the period-2 expected
utility implied by portfolio policy qj is

U j
dir =

1
2ρj

(
tr(Σ̂−1

j Σ− I) + (µ− pr)′Σ̂−1
j (µ− pr)

)
, (20)

where I is the identity matrix.

To solve the optimal information allocation problem, we substitute (18) in equation
(13) and write the investor’s period-1 maximization problem as

maxΛ̂j

1
2ρj

E
[
(µ̂j − pr)′Σ̂−1

j (µ̂j − pr)
∣∣∣µ

]
, (21)

subject to the capacity constraint (14) and the nonnegative-learning constraint (15).
Given the result from Proposition 1 and substituting for the eigen decomposition of the
covariance matrix, we can alternatively write the maximization problem as10

maxΛ̂j

1
2ρj

(
tr

(
ΓΛ̂−1

j Γ′Γ(Λ− Λ̂)Γ′
)

+ (µ− pr)′ΓΛ̂−1
j Γ′(µ− pr)

)
, (22)

or, in summation notation,

max{λ̂j,1,...λ̂j,L}
1

2ρj

(
L∑

l=1

λ̂−1
j,l

(
λl +

[
(µ− pr)′Γl

]2
)
− L

)
, (23)

subject to (14) and (15). The optimal information allocation depends on the value of
the constant term λl + [(µ− pr)Γl]

2 in equation (23). We next define

Xl := λl +
[
(µ− pr)′Γl

]2
, (24)

which Van Nieuwerburgh and Veldkamp (2008a,b) call the learning index, because the
value of Xl determines how much is learned about the risk factor. Each risk factor l has

10To derive this result, recall that if A is a symmetric matrix that admits a diagonal factorization of
the form A = V CV ′ where V is a matrix whose columns correspond to the eigenvectors of A, and C
is a diagonal matrix whose entries are the eigenvalues corresponding to the columns of V , the inverse
of A can be written as A−1 = V C−1V ′ (see, e.g., Gentle (2007)). Hence, Σ̂−1

j = ΓΛ̂−1
j Γ′.
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a unique Xl associated with it. The index Xl depends on prior information only and is
independent of the signal realization and the investor’s optimal information choice.

Problem (23) reduces to maximizing a weighted sum of posterior precision subject
to a constraint on the sum of posterior precisions weighted by the index Xl. Analyzing
the index Xl, we make two important observations concerning the optimal information
allocation. First, it is optimal to learn about the risk factor(s) with a high prior variance
λl. This means that the investor wants to learn about a risk factor with high initial
uncertainty. Second, optimal learning comes from an anticipation of future portfolio
positions. It is optimal to learn about the risk factor on which the expected portfolio
strategy will heavily load. Therefore, the investor optimally uses all information capacity
Kj to learn about the risk factor with the highest index Xl. In case the investor has
more capacity available than is needed to fully reduce the uncertainty of the respective
risk factor, the remaining capacity is used to reduce posterior variance of the risk factor
with the second highest index Xl. However, with the correlation structure proposed,
it is generally not possible to fully reveal the true payoff of an asset unless there is
enough information capacity to reduce posterior variance of all risk factors to zero. The
investor’s linear capacity constraint always leads to a corner solution and information
capacity is never allocated partially among different risk factors. We can now make the
following claim.

Proposition 2. With fixed capacity and under a linear capacity constraint, the investor
maximizes period-1 utility, if she allocates all available information capacity to the risk
factor with the highest index Xl.

2.2 Delegated Investment

Absent any principal agent conflicts between the investor and the manager, we can derive
the investor’s utility from delegated investment as in Proposition 1 by substituting qm

in the investor’s utility function.

Proposition 3. Consider an investor j who delegates the investment to a fund manager
with risk aversion ρm and optimal investment strategy qm according to equation (18).
Absent any market frictions, the period-2 utility from delegated investment is

U j
del =

(
1− 1

2
ρ

)
1

ρm

(
tr(Σ̂−1

m Σ− I) + (µ− pr)′Σ̂−1
m (µ− pr)

)
, (25)

where
ρ :=

ρj

ρm

is the ratio of the risk aversions of the investor and the manager.
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In contrast to the case with direct investment, the posterior belief of the manager
determines utility. Further, we observe that utility from delegation is decreasing in the
risk aversion ratio ρ. The first order condition of equation (25) implies that utility from
delegation is maximized if ρm = ρj . Hence, given the investor’s risk aversion, her utility
is maximal if the manager has the same level of risk aversion.

2.2.1 Certainty Equivalent of Delegation

In period 2, the investor observes the manager’s information choice Σ̂m and decides
whether to delegate or not by comparing the CED with the management fee.

Proposition 4. A rational investor delegates her investment decision to a portfolio
manager if and only if

CED ≥ α,

where α denotes the management fee and

CED := sup

[
δ
∣∣∣δ ≤

L∑

l=1

(
a λ̂−1

m,l − b λ̂−1
j,l

)
Xl − L(a− b)

]
, (26)

with constants a, b, and Xl defined as

a :=
(
1− ρ

2

) 1
ρm

, b :=
1

2ρj
, Xl := λl +

[
(µ− pr)′Γl

]2
.

Xl is a constant and thus does not depend on any private information. The only
two parameters driven by private signals are the posterior variances of the manager and
the individual investor, Λ̂m,l and Λ̂j,l. From Proposition 4, two dimensions of optimal
delegation can be observed. First, delegation is driven by ex-ante manager skill, i.e.,
the manager’s signal quality relative to that of the investor. The bigger the difference
between the signal precision of the manager and the signal precision of the investor,
the higher the CED and the more likely the investor decides to delegate for a given
level of management fees. In other words, the higher the difference in information
between manager and investor, the higher the maximum fee the investor is willing to
pay for delegation. Second, the certainty equivalent of delegation is influenced by the
ratio ρ = ρj/ρj . Because λ−1

m,l is itself a function of ρ, this effect cannot be directly
observed from equation (39). However, we know from Proposition 3 that the utility
from delegation is at a maximum when ρ = 1.

In Figure 2, we plot the CED for different levels of the ratio ρ = ρj/ρm using the
numerical example with three assets reported in Table 2. Any deviation of the ratio of
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Summary Statistics of Three-Asset Example

Panel A: Assets

Mean return Volatility
(% p.a.) (% p.a.) Correlations

Southwestern Energy (SWN) 23.39 37.96 1.00
Merck & Co. (MRK) 16.93 25.09 −0.03 1.00
Pfizer (PFE) 15.76 24.84 0.06 0.57 1.00

Panel B: Factors

Volatility Factor loadings Γ′

Xl × 100 (% p.a.) SWN MRK PFE
Factor 1 0.22 16.34 −0.05 −0.70 0.71
Factor 2 0.83 31.22 −0.05 0.72 0.70
Factor 3 1.23 38.02 −1.00 0.00 −0.07

Table 2: Summary Statistics for the three-asset example. The sample period is January 1982
to June 2008. Calculations are based on monthly returns from Datastream. The annual risk-free
rate is fixed at 2.40%.

risk aversion from one leads to a loss in terms of certainty equivalent wealth. Panel a)
plots the CED for three different levels of investor information capacity.11 We observe
that the CED decreases with the investor’s information capacity. A well informed
investor (high information capacity) has a lower incentive to delegate. Therefore, the
CED is smaller. Panel b) plots the CED for different values of investor risk aversion.
The CED is decreasing in ρj . The more risk averse the investor, the lower her willingness
to delegate for a given level of manager skill. Hence, an investor with a low risk aversion
will be inclined to pay higher management fees.

2.2.2 The Manager’s Information Acquisition Problem

So far, we have taken Σ̂m as given. We now solve the manager’s information choice
problem. Substituting for CED and C(Km) in equation (17), the manager’s period-1
problem can be written as

max{λ̂m,1,...,λ̂m,L}

L∑

l=1

(
a λ̂−1

m,l − b λ̂−1
j,l

)
Xl − L(a− b)− c

(
λ̂−1

m,l − λ−1
l

)ψ
, (27)

subject to the nonnegative-learning constraint, λl ≥ λ̂l, ∀ l. With a convex cost func-
tion, problem (27) is well defined and there exist extremum points. Since risk factors
are uncorrelated, the information choice is independent among different factors. The

11To get an idea about the magnitude of information capacity, we note that Kj = 10 is equal to a
reduction in posterior standard deviation for one risk factor from 20% to 16.9%.
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Figure 2: The certainty equivalent of delegation as a function of the ratio of risk aversions
ρj/ρm for three different levels of investor information capacity Kj . Calculations are based on
the numbers of the three-asset example to be presented in Table 2. In Panel a) and b), we set
ρj = 5 and Kj = 10, respectively.

proposition below determines the optimal solution. The proof follows directly from the
first-order condition for equation (27).

Proposition 5. With uncorrelated risk factors, the information choice for risk factor
l is independent of other risk factors. For convex cost functions (ψ > 1), an optimal
solution to the manager’s information acquisition problem is

λ̂∗m,l =

(
λ−1

l +
(

a

c ψ
Xl

) 1
ψ−1

)−1

∀ l. (28)

In contrast to the situation of a fixed level of information capacity (investor’s infor-
mation allocation problem) in which information choice is a strategic substitute, infor-
mation acquisition with costly information capacity is independent from other assets.
Optimal information allocation is a decreasing function of risk aversion and information
cost, and increasing in the index Xl. For the manager, it is optimal to learn about risk
factor(s) for which she expects to have a large exposure and where she has a large initial
uncertainty about. However, the restriction of costly information capacity weakens this
effect. As the coefficient a decreases, i.e., the discrepancy between ρm and ρj grows,
the manager becomes more cautious about investing in information and thus decreases
the level of information capacity acquired. When the discrepancy between ρm and ρj is
high, the CED tends to be low. A low CED implies that the maximum fee will be low
as well and the manager will invest less in information. Furthermore, we note that the
optimal posterior precision is a concave function of a

c ψXl. Therefore, it is never optimal
to learn too much about the same risk factor.
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Figure 3: Optimal information allocation with three assets. We plot posterior volatilities of risk
factors and assets as a function of information capacity K ∈ [0, +∞]. Each level of information
capacity K is associated with a cost C(K). The ratio of risk aversion is chosen to be ρj/ρm = 1.
Calculations are based on the numbers reported in Table 2.

Summarizing the information allocation for the investor and the manager, we con-
clude that learning with costly information capacity leads to more diversified learning
than with free but constrained capacity. The capacity constraint leads to a corner so-
lution, making it optimal to use all information capacity on the risk factor with the
highest index Xl. In contrast, costly information leads to more balanced learning for
the manager.

2.2.3 Numerical Illustration of Optimal Information Allocation

A numerical example with three assets illustrates the effect of learning on posterior
variance of the risky asset payoffs with costly learning according to Proposition 5. The
summary statistics of the three assets and the results of the eigen decomposition are
given in Table 2. We have chosen Southwestern Energy (SWN), Merck & Co. (MRK),
and Pfizer (PFE). Table 2, Panel b) reports the eigen decomposition into three or-
thogonal factors. Factor 3 exhibits the highest learning index. Since SWN has a low
correlation with the two other assets, it loads relatively strong on one specific risk factor
(Factor 3), while MRK and PFE load mainly on the two other factors.

Figure 3 exhibits the effect of optimal learning on posterior risk factor and asset
volatilities. The manager starts learning about the risk factor with the highest index
Xl (factor 3). Since SWN loads heavily on factor 3, the impact of learning is most
pronounced for this asset. Because returns to learning are decreasing, there is a point
when it becomes reasonable to reduce learning about factor 3 to start learning instead
about factor 2 and eventually about factor 1.
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Optimal Learning with Costly Information

Panel A: Standard deviations of risk factors (in % p.a.)

Factor 1 Factor 2 Factor 3
Km ρ = 1 ρ = 1.5 ρ = 1 ρ = 1.5 ρ = 1 ρ = 1.5

Prior - 16.34 16.34 31.22 31.22 38.02 38.02
c high 22 16.30 16.31 30.22 30.46 35.48 36.07
c moderate 114 16.15 16.19 26.99 27.88 28.81 30.48
c low 228 15.95 16.05 24.11 25.43 24.13 26.16

Panel B: Standard deviations of assets (in % p.a.)

SW Energy Merck & Co. Pfizer
Km ρ = 1 ρ = 1.5 ρ = 1 ρ = 1.5 ρ = 1 ρ = 1.5

Prior - 37.96 37.96 25.09 25.09 24.84 24.84
c high 22 35.43 36.01 24.44 24.60 24.19 24.35
c moderate 114 28.78 30.44 22.37 22.94 22.15 22.71
c low 228 24.11 26.13 20.54 21.37 20.37 21.18

Table 3: Impact of learning on posterior variance with costly information. Numerical example
with three assets with different levels of information capacity costs c. Km denotes the manager’s
capacity implied by the choice of a particular c. The other parameters are ψ = 2 and ρj = ρm =
5.

Table 3 shows optimal learning for the same assets by means of three different levels
of information costs. We report the results on learning about risk factors in Panel a) and
on learning about assets in Panel b). Note that since the manager’s learning problem
is a strategic decision based on the investors certainty equivalent of delegation, ρ (or
a, equivalently) matters for optimal learning. Everything else constant, we have seen
that the CED takes its highest value when ρ = 1. A high CED increases the investor’s
willingness to pay a high management fee. Hence the manager spends a high effort
to acquire information, because this effort is rewarded by a high management fee. If
there is a mismatch between risk aversions (ρ 6= 1), the investor’s willingness to pay
high fees diminishes independently of manager skill. In this case, a rational manager
spends less effort on information acquisition. Table 3 reports the standard deviation of
risk factors and of the asset payoffs under optimal learning when ρ = 1 and in the case
when there is a mismatch in risk aversion. When ρ 6= 1, the manager always acquires
less information as is the case for ρ = 1. We also note that the effect of the risk aversion
ratio is symmetric around ρ = 1.

2.2.4 Information Acquisition and Optimal Portfolios

How does learning affect portfolio choice? To answer this question, we compare the
learning portfolios of the investor and the manager with the prior portfolio. Since the
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prior portfolio is based on the prior belief, we can interpret it as a special case with
K = 0. With zero information capacity, there would be no signal and Λ̂ = Λ. It is
indeed exactly the difference in these matrices that drives a wedge between the learning
portfolio and the prior portfolio. Taking a closer look at investor j, we first define the
expected period-1 portfolio difference as

∆(qj) := E[qj − qj,prior|µ] = E[qj |µ]− qj,prior, (29)

which we can write in terms of risk factor variance as

∆(qj) =
1
ρj

Γ(Λ̂−1
j −Λ−1)Γ′(µ− pr).

We know from Proposition 2 that ∆(qj) is solely driven by the variance of the factor λl

the investor decides to learn about. For the other factors the investor does not acquire
information. Assuming that the investor learns only about risk factor l, we can write

∆(qj) =
1
ρj

(λ̂−1
j,l − λ−1

l )ΓlΓl
′(µ− pr) =

Kj

ρj
ΓlΓl

′(µ− pr), (30)

where the second equation arises due to the fact that λ̂j,l−λl is the additional capacity
Kj available to the investor to reduce posterior variance of risk factor l. However, we
cannot make any general claim about the direction of the portfolio changes, since the
loadings in the column vector Γl may have positive or negative signs.

To derive the expected portfolio changes ∆(qm) for the manager when there is no
benchmarking, we can substitute optimal posterior precision λ̂∗m,l given in (5) into the
optimal portfolio demand. Since, in contrast to investor j, the manager learns not only
about one single asset, the portfolio differences will be influenced by all variances of the
different risk factors. Again, due to positive and negative signs in the eigenvectors, we
cannot make any general claim about the sign of the elements in ∆(qm).

Figure 4 exhibits the predicted portfolio weights in the three-assets example reported
in Table 2. Since we want to focus on the impact of learning, we assume that there
is no benchmarking. The manager and the investor mostly learn about the risk factor
with the highest variance. Therefore, we observe the most significant shift in portfolio
holdings for SWN, since this asset loads the most on factor 3. While the information
capacity of the investor is exogenous, the manager’s information acquisition (and thus
expected portfolio holdings) are endogenously determined and depend on the investor’s
information choice. The manager’s expected demand for risky assets turns out to be
higher than the one of the investor. Obviously, this simple exercise already shows the
importance of including the potential impact of asset delegation and learning when we
extend our analysis to a general equilibrium framework.
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Figure 4: Optimal expected portfolio holdings under different posterior beliefs (prior Σ, man-
ager Σ̂m and investor Σ̂j) for the three-assets example in Table 2 and no benchmarking.

2.3 Delegated Investment with Benchmarking

We now turn to the situation, in which the manager has a performance objective relative
to a prespecified benchmark portfolio. How does the presence of a benchmark influence
the investor’s delegation decision? And how is the manager’s information acquisition
affected? First, we note that the optimal portfolio with benchmarking is

qbm = φ +
1

ρm
Σ̂−1

m (µ̂m − pr). (31)

The optimal portfolio of risky assets in (31) has two components, a passive component
that consists of the benchmark portfolio φ and an active component 1

ρm
Σ̂−1

m (µ̂m− pr).
The deviation from the benchmark portfolio is controlled by the risk aversion parameter
ρm. The lower the manager’s risk aversion, the stronger the deviation from the bench-
mark. A manager with an infinitely high coefficient of risk is referred to as a passive
manager, since such an investor has no active exposure to risky assets and completely
matches the benchmark portfolio. The active part of the portfolio is independent of the
benchmark. Absent any principal agent conflicts between the investor and the man-
ager, the investor’s utility from delegated investment with benchmarking is summarized
below. The result follows directly from substituting for qbm in the investor’s utility
function.

Proposition 6. Consider an investor j who delegates the investment to a fund manager
with a relative performance objective against an exogenously benchmark portfolio φ, risk
aversion ρm, and optimal investment strategy qbm according to equation (31). The period
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2 utility from delegated investment is

U j
del =

(
1− 1

2
ρ

)
1

ρm

(
tr(Σ̂−1

m Σ− I) + (µ− pr)′Σ̂−1
m (µ− pr)

)

︸ ︷︷ ︸
I

+ (1− ρ) φ′(µ− pr)︸ ︷︷ ︸
II

− 1
2
ρjφ

′Σ̂mφ
︸ ︷︷ ︸

III

, (32)

where ρ := ρj

ρm
.

From Proposition 6, we observe that the expected utility from delegated investment
has three different components. The first term is the utility that arises from delegated
investment in the absence of a benchmark (see, Proposition 3). The second and third
terms are induced by the presence of a benchmark. The second term accounts for the
expected return of the benchmark portfolio φ′(µ − pr). If ρ > 1 (ρ < 1), a positive
expected excess return of the benchmark portfolio decreases (increases) utility. This is to
say that when the investor is more (less) risk averse than the manager, the presence of a
benchmark decreases (increases) utility. This effect cancels out if ρ = 1. The third term
is a penalty for the additional variance of the benchmark portfolio, which is increasing
with the risk aversion of the investor. Therefore, it is not clear whether benchmarking
increases or decreases expected utility. However, the impact of benchmarking is negative
as long as the investor is more risk averse than the manager, i.e., when we have ρ < 1.

Proposition 7. When the manager has a performance objective relative to a benchmark
portfolio φ, the certainty equivalent of delegation is defined as

CEDj
bm := sup

[
δ
∣∣∣δ ≤

L∑

l=1

(
aλ̂−1

m,l − bλ̂−1
j,l

)
Xl + L(b− a) + (1− ρ)µφ − 1

2
ρjΣ̂φ

]
, (33)

where µφ := φ′(µ− pr) is the expected return and Σ̂φ := φ′Σ̂mφ =
∑L

l=1 λ̂m,l(φ′Γl)2 is
the variance of the benchmark portfolio.

As before, the investor delegates investment when the certainty equivalence is higher
than the cost for delegation and invests directly otherwise. In contrast to the case
without benchmarking, the expected return and the variance of the benchmark portfolio
matter for investment delegation. In particular, CEDbm is decreasing in the variance of
the benchmark portfolio. A riskier benchmark decreases the likelihood of delegation.

Figure 5 plots the certainty equivalent as a function of the risk aversion ratio ρ.
The size of the impact of benchmarking depends on the riskiness of the benchmark.
We assume three cases. In the first case, we do not include benchmarking, i.e., we
set φ = 0. In the second case, we consider a ‘normal’ benchmark φ2, which equals
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Figure 5: The certainty equivalent of delegation as a function of ρ for three different types
of benchmarks. The investor’s risk aversion is 5 and information capacity Kj = 10. The solid
line denotes the case without benchmarking; the normal benchmark corresponds to the prior
mean-variance efficient portfolio where the risk aversion equals the investor’s risk aversion. The
risky benchmark is a prior mean-variance efficient portfolio with risk aversion coefficient equal
to two. Panel a) plots the CED for low information costs and panel b) plots the CED for high
information costs. Calculations are based on the three-assets example in Table 2.

the prior mean-variance efficient portfolio when using ρj as risk aversion coefficient. In
our numerical example, this choice implies an annualized volatility of 13.45% for the
benchmark portfolio. In the third case, we consider the prior mean-variance efficient
portfolio as ‘risky’ benchmark by setting the risk aversion coefficient equal to two, which
implies an annualized benchmark volatility of 33.54%. In Figure 5, we observe that
adding a benchmark has an asymmetric impact on the certainty equivalent wealth. The
presence of a benchmark tends to increase the certainty equivalent if the risk aversion
ratio is smaller than one and tends to lower the CED for a risk aversion ratio above one.

2.3.1 Information acquisition in presence of a benchmark

As in the case without benchmarking, the manager’s information choice problem amounts
to maximizing the certainty equivalent of delegation minus the cost of information ca-
pacity,

max{λ̂m,1,...,λ̂m,L}

L∑

l=1

(
a λ̂−1

m,l − b λ̂−1
j,l

)
Xl−L(a−b)+(1−ρ)µφ− 1

2
ρjΣ̂φ−c

(
λ̂−1

m,l−λ−1
l

)ψ
,

(34)
subject to the nonnegative-learning constraint. Unfortunately, the extra term of the
variance of the benchmark portfolio leads to additional complexity and we cannot solve
the maximization problem (34) in closed-form.

In Table 4, we report some numerical results for the manager’s information ac-
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Optimal Learning with Benchmarking

Panel A: Standard deviations of risk factors (in % p.a.)

Factor 1 Factor 2 Factor 3
φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

Prior 16.34 16.34 16.34 31.22 31.22 31.22 38.02 38.02 38.02
c high 16.30 16.30 16.30 30.22 30.20 30.09 35.48 35.44 35.25
c moderate 16.15 16.15 16.14 26.99 26.94 26.71 28.81 28.77 28.55
c low 15.95 15.95 15.95 24.11 24.07 23.86 24.13 24.10 23.98

Panel B: Standard deviations of asset payoffs (in % p.a.)

SW Energy Merck & Co. Pfizer
φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

Prior 37.96 37.96 37.96 25.09 25.09 25.09 24.84 24.84 24.84
c high 35.43 35.39 35.20 24.44 24.43 24.36 24.19 24.18 24.11
c moderate 28.78 28.73 28.52 22.37 22.34 22.19 22.15 22.12 21.99
c low 24.11 24.08 23.96 20.54 20.52 20.39 20.37 20.35 20.22

Table 4: Optimal learning with benchmarking. All numbers are based on the three-assets
example in Table 2. The columns denoted with φ exhibit different benchmark regimes: φ1 is the
case without benchmarking; φ2 is the case with normal benchmarking, where the benchmark
portfolio is the prior mean-variance efficient portfolio with risk aversion equal to 5, implying an
annualized benchmark volatility of 15.22%; φ3 is the case with a risky benchmark, where the
risk aversion coefficient is 2, implying an annualized benchmark volatility of 38.07%. The other
parameters are: ρj = 5, ρm = 5, and ψ = 2.

quisition problem with benchmarking. We find that the impact of the benchmark on
information acquisition is marginal. A possible explanation lies in the independence of
the active component of the portfolio from the benchmark (see equation (31)). Fur-
thermore, the active component of the benchmarking portfolio qbm equals the optimal
portfolio without benchmarking. Hence, it is intuitively reasonable that benchmarking
has no dominant effect on the information acquisition process. The small differences
between the three benchmarking regimes given in Table 4 might be explained by the fact
that the optimal information acquisition strategy reacts to the investor’s CED, which
is slightly different across the three benchmarking regimes.

3 Equilibrium Impact of Delegation under Benchmarking

Equilibrium models with asymmetric information have a long tradition in finance.
Grossman and Stiglitz (1980) establish the concept of a noisy rational expectations
equilibrium. A noisy rational expectations equilibrium has two important character-
istics. First, the price system makes publicly available the information obtained by
informed individuals to uninformed or less-informed individuals. Thus, all individuals
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do recognize any information comprised in asset prices when specifying their asset de-
mand. Second, the price has a noisy and unlearnable component such that information
is not fully revealed by prices. This property is a necessary condition for an equilibrium
to exist. A price system that perfectly aggregates information is not robust. The more
informative prices become, the lower are the incentives to acquire private information.
However, the price can not be informative if nobody collects private information. This
paradox on the impossibility of informationally efficient markets was first pointed out
by Grossman (1976).

Many subsequent papers in the literature on asymmetric information have built on
the framework of Grossman and Stiglitz (1980). Hellwig (1980) and Verrecchia (1982)
extend the base model to allow agents to choose the precision of their private signals.
Admati (1985) extends the noisy rational expectations equilibrium model to the case
with multiple risky asset. Instead of choosing their signal precision, agents are endowed
with heterogenous information. In this section, we base our analysis on the equilibrium
analysis of Admati (1985).

3.1 The Economy

We assume a continuum of j ∈ [0, 1] investors. We denote by n the fraction of delegating
investors. If j ∈ [0, n], then investor j delegates the portfolio allocation. If j ∈ (n, 1], the
investor invests directly in the market. The fraction of delegating investors is determined
by the certainty equivalent rule, i.e., CEDj > αj ⇔ ∀j ∈ [0, n], and CEDj < αj ⇔
∀j ∈ (n, 1], where αj is the management fee faced by the jth investor. For simplicity,
we assume that each investor has a specific manager associated with her. Each manager
charges an individual fee αj .

Asset prices p are determined by market clearing. The per capita risky asset supply
is x̄+x, with x ∼ N (0, σ2

xI). The noise in the asset supply assures that the price never
fully reveals all private information. This extra source of randomness can be, e.g., due
to liquidity traders. The market clears when the demand of all agents, direct investors
and delegated managers, equals supply:

∫ n

0
qj

del dj +
∫ 1

n
qj

dirdj = x̄ + x, (35)

where qj
del = φ+ 1

ρm
Σ̂j

m(µ̂j
m−pr) denotes the demand for risky assets of the delegating

investor’s manager and qj
dir = 1

ρj
Σ̂j(µ̂j − pr) is the demand of the direct investor.12

Following Admati (1985), we prove in Corollary 5.1 in the appendix that the price is a
12Since we assume that each investor j is associated with one specific manager, we index the manager’s

posterior with the index j.
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linear function of the asset payoff and the unexpected component of the asset supply,

p =
1
r

(A + Bf + Cx) . (36)

In contrast to the partial equilibrium model, where the investor has two pieces of
information (prior and signal) to form the posterior belief, there is an additional source
of information in general equilibrium, the information inferred from equilibrium prices.
Therefore, by observing equilibrium prices, agents can infer part of the other agents’
private information. The noise due to liquidity traders, x̄+x, prevents the price system
from fully revealing all private information.

Thus, in general equilibrium, the posterior belief about the asset payoff f , is con-
ditional on prior information, µ ∼ N (f ,Σ), information observed from the signal sj ∼
N (f ,Ωj), and information inferred from equilibrium prices, f |p ∼ N (B−1(pr−A),Σp)
with

Σp := V ar[f |p] = σ2
xB−1CC ′(B−1)′.

Standard Bayesian updating implies that the posterior mean about f is

µ̂j :=
(
Σ−1 + Ω−1

j + Σ−1
p

)−1 (
Σ−1µ + Ω−1

j sj + Σ−1
p B−1(pr −A)

)
, (37)

with variance
Σ̂j :=

(
Σ−1 + Ω−1

j + Σ−1
p

)−1
. (38)

Note that all investors (and managers) j ∈ [0, 1] start with identical priors. Information
inferred from observed prices is equal for all investors as well. Only the signal sj and the
signal precision matrix Ω−1

j are investor specific. Therefore, heterogeneity of investors
in the model enters only through the signal and signal precision.

3.2 Certainty Equivalent of Delegation

Optimal delegation in general equilibrium follows the same reasoning as in partial equi-
librium. The only difference is the fact that prices are not constant and contain in-
formation about the private information of other market participants. The existence
of so called noise traders or liquidity traders prevents the equilibrium price from being
fully revealing. This property of the general equilibrium will eventually influence the
optimal information choice of the investor and of the manager, which in turn influences
the certainty equivalent of delegation.

Proposition 8. In general equilibrium, the certainty equivalent of delegation for in-
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vestor j with risk aversion ρj is given as

CEDj
E := sup

[
δ
∣∣∣δ ≤

L∑

l=1

(
aj(λ̂

j
m,l)

−1 − bj λ̂
−1
j,l

)
XE

l

+ L(bj − aj) +
(

1− ρj

ρj
m

)
µφ − 1

2
ρjΣ̂

j
φ

]
, (39)

where
XE

l := λl(1− λB,l)2 + λp,l + [((I −B)µ−A)′ Γl]2 (40)

with aj :=
(
1− 1

2
ρj

ρj
m

)
1

ρj
m

, bj := 1
2ρj

, µφ := φ′(µ−pr), Σ̂j
φ := φ′Σ̂j

mφ, and λB,l and λp,l

denote the eigenvalues of B and Σp, respectively.

Investor j delegates if and only if the certainty equivalent of delegation is higher than
the management fee, CEDj

E > αj . As in partial equilibrium, XE
i is independent from

any private information, i.e., every investor faces the same learning index. Furthermore,
the CED in general equilibrium is also increasing in manager skill and the index XE

l .
However, in contrast to the partial equilibrium result, the learning index XE

l and hence
the CED is additionally driven by the information efficiency of prices.

First, note that XE
l depends on λB,l. The eigenvalue λB,l captures the dependence

of the lth risk factor’s price with its true payoff. A high value indicates a strong
dependence between the price and the future payoff. Equation (40) predicts a negative
relation between λB,l and XE

l . In other words, when the price reflects future asset
payoffs accurately, delegation is less attractive. The utility from delegation is thus
higher for a financial market in which prices are imprecise predictors of future asset
payoffs. When λB,l is small, the first term of the index XE

l is high, which makes
delegation more valuable.

Second, XE
l also depends on the eigenvalue λp,l of V ar[f |p], the conditional variance

of risk factor l. This eigenvalue depends not only on B, but also on the variance of the
supply shock σ2

x and on C, the correlation between the price and the supply shocks x.
The higher λp,l, the noisier the lth risk factor’s price. Therefore, the price contains less
information about future payoffs. In such an environment, it is more difficult to predict
future payoffs and delegation becomes more valuable. When λp,l is high, the second
term of the index XE

l is also high, which makes delegation more valuable.

3.3 The Equilibrium Price in Presence of Delegation

How does delegation under benchmarking impact risky asset prices in equilibrium?
Inspired by the model of Admati (1985), we derive the equilibrium price function in
presence of delegated portfolio management with benchmarking.

29



Proposition 9. In presence of delegation, the equilibrium price is a function of the
‘average’ investor’s posterior mean and the covariance with the residual portfolio, where
the residual portfolio is the difference between the market portfolio and the benchmark
portfolio,

p =
1
r

(
µ̂a − ρaΣ̂a(xmkt − nφ)

)
. (41)

We present the expressions for µ̂a, Σ̂a and ρa in the appendix and the market portfolio
is defined as xmkt := x̄− x.

It turns out that the belief of the ‘average’ investor is driven by both groups of
agents, the individual investors and the managers. The higher the number of delegating
investors, the more the ‘average’ investor reflects manager beliefs, and vice versa. As
long as there is no benchmark (φi = 0∀i), prices are determined by their expected payoff
minus their covariances with the market portfolio, which corresponds to the classic result
of the CAPM. Proposition 9 shows that in presence of a benchmark, asset prices are
determined by their covariance with the residual portfolio, i.e. the difference between
the market portfolio and the weighted benchmark portfolio. Therefore, benchmarking
leads to a positive shift in asset demand for those assets included in the benchmark
portfolio. A high weight of an asset in the benchmark creates a steady demand for this
asset independent of any beliefs. A high and positive weight in the benchmark portfolio
decreases the residual portfolio and leads to a higher price. This effect increases in the
fraction of delegating agents n.

The ‘average’ investor in our model reflects the average of the actions taken by
all agents in the economy. Furthermore, µ̂a and Σ̂a are not observable. The agents
act based upon their individual signals and the information revealed by equilibrium
prices but do not observe the true market portfolio, due to the additional noise in total
supply, x. Therefore, in our framework, the market portfolio is not observable ex ante.
As pointed out by Biais, Bossaerts, and Spatt (2004), such a setup is in line with the
critique of Roll (1977), who emphasized that the market portfolio is not observable in
general.

3.4 Expected Returns

Rearranging equation (41), we can write the expected dollar excess return from the
viewpoint of the ‘average’ investor as

Ea[f − pr|µ] = ρa

(
Σ̂ax̄− nΣ̂aφ

)
, (42)

where we use Ea to indicate the expectation operator conditional on the information set
of the ‘average’ investor. Equation (42) expresses the expected excess return on an asset
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as a linear function of the asset’s covariance with the portfolio x̄ and its covariance with
the benchmark portfolio φ. Note that the expected return is increasing in the covariance
with the market portfolio and decreasing with the benchmark portfolio. The higher the
asset’s correlation with the benchmark, the stronger this effect. The negative impact due
to benchmarking is driven by, first, the asset’s weight in the benchmark portfolio and,
second, by the fraction of delegating investors n. When n = 0, equation (42) collapses
to the standard CAPM. Furthermore, the equilibrium expected return is increasing with
the risk aversion ρa of the ‘average’ investor.

From the viewpoint of the manager, the benchmark portfolio is the risk-free asset.
Holding a portfolio of assets that perfectly matches the composition of the benchmark
is thus a risk free portfolio for the manager. In this case, the manager does not demand
a premium for systematic risk. However, holding some assets in other proportions than
provided in the benchmark, the manager would require a risk premium for the fraction
that deviates from the benchmark weight. The higher the fraction of benchmarked
managers in an economy, the stronger this effect will be. Therefore, benchmarking
directly reduces the risk that must be borne and reflected in security prices and, as a
consequence, lowers the expected returns of assets included in the benchmark portfolio.13

We summarize this important finding in the following proposition.

Proposition 10. In an economy with delegation under benchmarking, only the risk
arising from active portfolio management is priced in equilibrium and it is priced pro-
portional to the covariance with the residual portfolio Σ̂a(x̄− nφ).

So far, we have not specified the per capita market capitalization of the benchmark
portfolio φ. The capitalization of the benchmark can take any value between zero and
total market capitalization xmkt. If the benchmark capitalization were equal to that
of the market portfolio, a passive manager would hold exactly the market portfolio.
However, we can also think of a benchmark with constituents that have a lower market
capitalization than their counterparts in the market portfolio. In this case x′mkt1 > φ′1
and a passive manager (with risk aversion ρm = ∞) would only invest a fraction of
his wealth into the benchmark portfolio, since φ′1 < 1. In this case, the remainder is
invested into the risk free asset. Denote the fully invested benchmark portfolio as φfull.
We can then define the market capitalization of the actual benchmark portfolio as:

φ = hφfull, (43)

where h is a scaling factor 0 ≤ h ≤ 1 that determines the total market capitalization of
the benchmark portfolio. h is referred to as the benchmark scaling factor.

13Brennan (1993) and Cornell and Roll (2005) find similar theoretical results. Brennan (1995), Gomez
and Zapatero (2003) and Brennan and Li (2008) provide empirical evidence for their model.
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3.4.1 A Two-Factor CAPM

Based on the equilibrium expected return given in equation (42), we derive now an
expected return-beta relationship as in the standard CAPM. For a single asset i the
expected excess return Ri can be written as

Ea[fi − pir] = ρa

N∑

k=1

Cova(fi, fk)x̄k − ρan
N∑

k=1

Cova(fi, fk)φk := Ea[Ri], (44)

where x̄k and φk is the weight of asset k, respectively, in the market portfolio and the
benchmark portfolio. Define the payoff of the market portfolio fmkt :=

∑N
i=1 fix̄

i, and
the payoff of the benchmark portfolio fφ :=

∑N
i=1 fiφ

i. Then, we can write the expected
return as

Ea[Ri] = ρaCova(fi, fmkt)− ρanCova(fi, fφ). (45)

Recall the definition of the market beta βi
mkt = Cov(fi, fmkt)/V ara(fmkt) and the

benchmark beta βi
φ = Cov(fi, fφ)/V ara(fφ), where V ara(fmkt) and V ara(fφ) denotes

the volatility of the market portfolio and the benchmark portfolio, respectively. With
these definitions, we can write:

Ea[Ri] = ρaV ara(fmkt)βi
mkt − ρanV ara(fφ)βi

φ. (46)

Following Brennan (1993), we can define the return of the benchmark portfolio Rφ

as a linear combination of the return on the market portfolio and a residual return
component orthogonal to the market return, i.e., Rφ = αφ + βφ

mktRmkt + ε. Using this
result, the expected return may be expressed in terms of the market beta and the beta
of the residual portfolio. This gives rise to a two-factor CAPM:

Ea[Ri] = ρaV ara(fmkt)
(
1− nβφ

mkt

)

︸ ︷︷ ︸
λmkt

βi
mkt − ρanV ara(fε)︸ ︷︷ ︸

λε

βi
ε, (47)

where V ara(fε) is the variance of the residual portfolio and βi
ε = Cova(fi, fε)/V ara(fε)

is the beta of the residual portfolio for asset i. We can interpret λε as the price of active
management risk and λmkt as the market price of risk. For βφ

mkt > 0 and βi
mkt > 0, the

market price of risk is decreasing in the number of delegating investors and in the beta
between the market and the benchmark portfolio. The higher the (positive) correlation
between the market portfolio and the benchmark, the stronger this effect. Furthermore,
we notice that λmkt increases with a higher average risk aversion ρa. If the fraction of
delegation is equal to one and the benchmark perfectly matches the market portfolio,
the market price of risk would degenerate to zero.

32



3.4.2 The Adjusted Beta

Another way to see the impact of portfolio management delegation is to express expected
returns as a function of the excess return of the market portfolio. This gives rise to an
adjusted beta. Recall that the expected excess return of asset i can be written as

Ea[Ri] = ρa (Cova(fi, fmkt)− nCova(fi, fφ)) . (48)

If this relationship holds true for asset i, it also holds true for the market portfolio.
Thus,

Ea[Rmkt] = ρa (V ara(fmkt)− nCova(fmkt, fφ)) , (49)

where Ea[Rmkt] is the expected excess return on the market portfolio. Solving for ρa in
equation (49) and substituting into equation (48), we find in a setting with delegation
under benchmarking a linear expected return-beta relationship. The resulting beta is
an adjusted version of the standard market beta:

Ea[Ri] = βi
adj Ea[Rmkt] (50)

where
βi

adj =
Cova(fi, fmkt)− nCova(fi, fφ)
V ara(fmkt)− nCova(fmkt, fφ)

. (51)

The adjusted beta, βi
adj , differs from the standard CAPM beta βi

CAPM in two respects.
First, βi

adj accounts for the number of delegated agents n and the covariance of the
benchmark portfolio with the market and asset i. A high positive covariance between
the market and the benchmark leads to a high beta for asset i. Also, a strong positive
covariance between the asset and the benchmark tends to lower the adjusted beta.

Second, we notice that the beta without delegation under benchmarking but with
information acquisition, say βi

a, is not equal to the standard CAPM beta βi
CAPM . Al-

though the correlation structure of the assets is not changed through learning, the
standard deviation of the assets is what agents in our model can reduce through learn-
ing. Since βi

a = Stda(fi)Corr(fi, fmkt)/Stda(fmkt), we observe that βi
a tends to be lower

than the standard CAPM beta for those assets for which agents acquire additional in-
formation. Since learning decreases the uncertainty about the future asset payoff, assets
held by agents with high information capacity tend to exhibit a lower expected return
than assets held by less sophisticated investors. Therefore, our model predicts a lower
risk premium for those assets held by the asset managers.

Table 5 summarizes the different cases for the beta adjustment under the assump-
tion V ara(fmkt) > Cova(fmkt, fφ) > 0, which covers most of the practical cases. In
some situations it is not possible to make a general statement about the direction of
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Beta Adjustments

βi
a Benchmark-effect Impact on βi

adj

Cova(fi, fφ) > Cova(fmkt, fφ) ambiguous
βi

a > 1 Cova(fi, fφ) = Cova(fmkt, fφ) positive
Cova(fi, fφ) < Cova(fmkt, fφ) positive

Cova(fi, fφ) > Cova(fmkt, fφ) negative
βi

a = 1 Cova(fi, fφ) = Cova(fmkt, fφ) no impact
Cova(fi, fφ) < Cova(fmkt, fφ) positive

Cova(fi, fφ) > Cova(fmkt, fφ) negative
βi

a < 1 Cova(fi, fφ) = Cova(fmkt, fφ) negative
Cova(fi, fφ) < Cova(fmkt, fφ) ambiguous

Table 5: Impact of beta adjustment for different cases of benchmark correlation of asset i
and the market portfolio. The coefficient βi

a is defined as βi
a = Cova(fi, fmkt)/V ara(fmkt), i.e.,

the beta without delegation, but with information acquisition. ‘Ambiguous’ means that the
effect of the adjustment can either be positive, negative or neutral. Further, we assume that
V ara(fmkt) > Cova(fmkt, fφ) > 0.

the adjustment. However, we notice that the correlation between the market and the
benchmark usually takes values close to one for most widely used benchmarks such as,
e.g., the S&P 500 Index for the U.S. stock market. Such a practice implies that for
assets with moderate variance, we generally have Cova(fi, fφ) < Cova(fmkt, fφ). But
for assets with a high variance, it is possible to have Cova(fi, fφ) > Cova(fmkt, fφ).
Furthermore, assets with a big weight in the benchmark tend to have a higher covari-
ance with the benchmark than other assets. When βi

a takes value greater than one,
the adjustment due to the presence of delegated agents and benchmarking is positive as
long as the covariance of asset i with the benchmark is lower or equal to the covariance
between the market and the benchmark, i.e., as long as Cova(fi, fφ) ≤ Cova(fmkt, fφ).
Contrary, when the standard beta βi

a takes values smaller than one, the adjustment is
negative as long as Cova(fi, fφ) ≥ Cova(fmkt, fφ).

3.4.3 Numerical Illustration of Expected Returns

We illustrate the model’s implications using a numerical example for SWN (see Table
2). Figure 6 shows how the presence of better informed delegated agents affects equilib-
rium returns. To clearly isolate the effect of delegation, we assume that the individual
investor does not observe any informative signal sj . Therefore, the investor can only
use information observed from the equilibrium price to build up her posterior belief.
For both panels, the annualized true excess return (fi − pir)/pi equals 15.83% and the
annualized prior expected excess return (µi−pir)/pi equals 17.72% for all agents as long
as n = 0, i.e., in the case without delegation. Note that fi and µi are fixed parameters
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in the model. However, because expected returns depend on realized prices pi, not only
posterior expected returns but also the true and the prior return vary with the other
parameters such as the fraction of delegation n, the benchmark scaling factor h, and
manager skill.

Panel a) in Figure 6 shows expected excess returns as a function of n for three
different levels of manager skill. To isolate the effect of manager skill from the effect
of benchmarking, we set h = 0, i.e., there is no benchmarking. The plot confirms that
expected returns are decreasing in manager skill. Since delegation takes place only when
the manager’s posterior signal precision is higher than that of the investor, the presence
of delegated agents lowers Σ̂a and leads to a more informative price system. Since, in
addition the fraction of delegating investors increases with manager skill, the decrease of
the expected return can be substantial. For instance, assuming high manager skills, the
expected return for SWN drops from an expected excess return with 100% uninformed
investors of 17.72% down to 7.01%, if 80% of the investors decide to delegate. Note that
when there are only uninformed investors, the expected return implied by the model
equals the prior expected return, because no agent acquires information and therefore
no additional information is discovered through prices.

We now turn to the impact of benchmarking on expected returns. In Panel b) of
Figure 6, we plot expected excess returns of SWN for different levels of the benchmark
scaling factor h. Clearly, when the fraction of delegation n approaches 1, the price
will rise such that expected excess returns fall to zero, because an active manager
would not require any risk premium for systematic risk as long as φ equals x̄. When
n < 1, there will always be an agent demanding a premium for holding systematic
market risk. Therefore, the expected excess return will be strictly positive. However,
the expected excess return will be smaller the larger the market capitalization of the
benchmark portfolio. Therefore, taking Panel a) and b) together, we conclude that
delegation under benchmarking can lead to a large and economically significant decrease
in expected excess returns.

4 Empirical Implications of the Model

The goal of this section is to find empirical support for some of the predictions of our
theory. One of the main results from the equilibrium analysis is that the presence of
institutional investors lowers a stock’s expected return. The effect is more pronounced
when institutional ownership is high. The theory further states that in presence of
benchmarking, a two-factor CAPM holds. Besides market risk, the second risk factor
is active management risk. The model predicts that the price of this new risk factor is
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a) Expected Returns and Manager Skill
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b) Expected Returns and Benchmarking

h = 0%
h = 5%
h = 20%
h = 50%
h = 100%

Figure 6: Impact of manager skill and benchmarking on equilibrium expected excess returns in
a model with delegated agents. Panel a) exhibits expected excess returns as a function of n for
three different levels of manager skill. Panel b) exhibits expected excess returns as a function
of n for different levels of benchmark capitalizations h. The prior beliefs are based on historical
data for Southwestern Energy, given in Table 2. Prices are normalized to one such that the
historical return equals the expected payoff µ. The true payoff fi is chosen to be 0.192, µi is
0.212, and the risk-free rate is 2.40% p.a.

negative, indicating that the expected return is lower for stocks with a high exposure
to active management risk.

4.1 Hypothesis

Based on our theoretical results, we establish two hypothesis. Hypothesis 1 claims that
institutional ownership (IO) has power to explain the cross-section of returns.

Hypothesis 1. The fraction of institutional ownership (IO) impacts the cross-section
of returns. Stocks with high institutional ownership exhibit lower returns than stocks
with low institutional ownership.

Hypothesis 1 follows from the observation of our model that delegation only takes
place when the manager is skilled, i.e. when he possesses more precise information than
the individual investor. The manager will primarily invest in assets where he has an
informational advantage. This leads to a higher demand for those stocks institutional
managers learn about and invest in, which in turn lowers expected returns.

Hypothesis 2 is motivated by the two-factor CAPM established in the previous
section.

Hypothesis 2. The presence of benchmarking gives rise to an additional risk factor that
accounts for active management risk. The price of active management risk is negative
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and increases with the overall level of delegation in the economy. A positive loading on
active management risk is associated with lower expected returns.

Gomez and Zapatero (2003) and Brennan and Li (2008) both provide empirical
support for Hypothesis 2. Performing Fama and MacBeth (1973) type regressions, they
find strong evidence that in the recent period the (negative) price of active management
risk is statistically significant, i.e. that stocks whose returns covary stronger with the
residual component of the S&P 500 index return exhibit significantly lower returns.
The objective of this section is to demonstrate that institutional ownership matters for
explaining cross-sectional differences in returns. We therefore focus on Hypothesis 1
and try to find empirical evidence for the relationship between a stock’s return and its
fraction of institutional ownership.

In an insightful paper, Nagel (2005) demonstrates that IO helps explaining stock
return anomalies. More specifically, he finds that when controlling for size, the under-
performance of stocks with high market-to-book ratios, analyst forecast dispersion,
turnover, or volatility is most pronounced among stocks with low institutional own-
ership. More recently, Phalippou (2008) documents that the value premium exists only
for stocks with low institutional ownership.

4.2 Data and Methodology

For our empirical analysis, we use a comprehensive sample of U.S. firms covering the
time period from March 1980 to December 2007. The data come from three primary
sources. Data on institutional ownership is from CDA/Spectrum 13F Institutional
Holdings (s34) database, data on analyst coverage from I/B/E/S International Corp.
and stock market data from the Center for Research in Security Prices (CRSP).

In the U.S. large investment managers such as banks, insurance companies, mutual
funds, pension funds, and other investment advisors with assets under discretionary
management of at least USD 100 million are required to report their equity holdings
to the SEC by filing the 13F form14. All stock positions greater than 10,000 shares or
USD 200,000 must be disclosed on a quarterly basis, which leads to a comprehensive
data sample on U.S. institutional ownership. For every U.S. corporation, this data set
provides us with the total number of shares held by institutions, which facilitates to
calculate the exact fraction of institutional ownership (IO). The data is collected by
CDA/Spectrum and made accessible to us by Thomson Reuters. Institutional holdings
are available beginning in March 1980. Gompers and Metrick (2001) give a more detailed

14See United States Securities and Exchange Commission, Form 13F for more details,
http://www.sec.gov/about/forms/form13f.pdf.
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description of the CDA/Spectrum database15. In what follows, we refer to institutional
investors as investment intermediaries or managers that are obligated to report their
equity holdings to the SEC. Using this definition of institutional investors, it is important
to notice that small investment intermediaries are classified as private investors, as long
as they do not file the 13F reports.

To provide additional information, we also collect data on analyst coverage. Fol-
lowing Hong, Him, and Stein (2000), coverage in any given quarter is set equal to the
number of I/B/E/S analysts who provide fiscal year 1 earnings estimates for that quar-
ter. Data on stock returns, prices and shares outstanding is from the CRSP monthly
stock file that includes NYSE, AMEX, and NASDAQ stocks. To calculate quarterly
cumulative returns, we require a minimum track record of three month starting in the
first month of the quarter for a stock to be included in the sample. Further, we re-
quire that prices and total shares outstanding as of the end of the quarter are available.
The CRSP file with quarterly data on returns, prices, and total shares outstanding de-
fines the universe of stocks included in the empirical analysis. Stocks that are in the
CDA/Spectrum or I/B/E/S database but cannot be matched16 to a stock in the CRSP
file are excluded. Stocks that are on the CRSP file but without any data on institu-
tional holdings or analyst coverage are assumed to have zero IO and analyst coverage,
respectively.

To arrive at our final sample, we perform different screens. First, we exclude all non-
equity issues such as certificates, ADRs, SBIs, and Units. Second, we exclude companies
incorporated outside the U.S., primes and scores, closed-end funds, and REITs. In
particular, we exclude all stocks that do not have a CRSP share type code of 10 or 11.
Analyzing institutional ownership with CDA/Spectrum holdings data, it is important
to exclude foreign stocks listed in the U.S. from the analysis. For foreign stocks, we
expect that U.S. institutional investors only account for a small fraction of IO. Hence,
institutional holdings reported to the SEC is far below the true number of institutionally
held stocks, leading to a significant underestimation of IO for foreign stocks listed in
the U.S. Third, we exclude small stocks having market capitalization below USD 10
million and stocks with a share price smaller than five USD17. Applying these filters18,

15Note that holdings of mutual funds are reported on fund family level rather than for every fund
separately. CDA/Spectrum also provides holdings data on a single fund level. Since the focus of
our analysis is on the impact of aggregate institutional ownership (where mutual funds are just one
subgroup), a breakdown of mutual fund families into single funds is not of interest for us.

16Stocks from CDA/Spectrum and I/B/E/S are assigned to the sample of CRSP stocks based on the
cusip identification number.

17We repeat the analysis for a cutoff level of three USD and also for the case where no stocks are
excluded due to a price level criterium. The main results are not affected. However, results for the first
size, IO, and RO decile are much more stable when excluding stocks with a price below five dollars.

18After screening for late filers and stale data, for some stocks the number of institutionally held shares
still exceeds total shares outstanding in certain quarters, which is obviously a problem in data quality.
Officials from Thomson Reuters told us that this problem is ascribed to wrong filings by institutions and
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we arrive at a final sample of 13,675 companies and 247,574 quarterly observations for
the time period between March 1980 and December 2007. This is an average number
of 2,210 observations per quarter.

Table 6 provides a year by year overview of the final sample. The second column
gives the total number of observations per year. We notice that data availability for the
first three years is very limited. Columns 3 and 4 exhibit mean and median quarterly
returns. The median is robust to outliers and gives a more accurate picture of returns
in a given quarter. Columns 5 and 6 exhibit mean and median numbers of institutional
ownership (IO). IO is calculated by summing the stock holdings of all institutional
investors and dividing it by the total amount of shares outstanding for each stock in
each quarter. IO for stock i is defined as

IOi :=

∑N
j=1 SHARESi,j

SHROUTi
, (52)

where IOi is the fraction of institutional ownership of stock i, SHARESi,j is the number
of shares of stock i held by institution j, SHROUTi is the total number of shares
outstanding for stock i and N is the total number of institutions holding stock i. The
numbers on IO confirm the trend observed in Table 1 in the introduction. During
the sample period, mean (median) IO increased from 17.3% (7.5%) to 50.4% (55.0%).
Ovtcharova (2003) report similar results. Notice that Gompers and Metrick (2001)
analyze only stocks that are included in the CDA/Spectrum database. Since we join
CDA/Spectrum data with the entire universe of U.S. stocks in the CRSP monthly
stock file and set IO equal to zero for those stocks not matched in the CDA/Spectrum
database, our numbers on IO are significantly lower than those reported in Gompers
and Metrick (2001). Other authors that have analyzed institutional ownership do not
report IO over time.

Regarding our methodology to calculate IO, two issues should be noticed that have
an impact on the results. First, since small institutions and foreign investment interme-
diaries are not required to file 13F reports and are considered as individual investors,
reported numbers on IO underestimate the numbers disclosed by the Fed, as given in
Table 1. Second, some of the growth in IO is due to small institutions that crossed the
cutoff level for institutional investors only because an increase in market value pushed
their assets under management above the threshold of USD 100 million. Hence, we
assume that a small portion of growth in IO is not due to a ‘real’ change in institu-
tional holdings, since the nominal threshold of USD 100 million did not change with
the growth in market value of total equity. However, as pointed out by Gompers and

cannot be corrected by the database vendor. Therefore, we delete all observations where the number of
institutionally held shares exceeds total shares outstanding. This is the case for about 4,145 observations
in our sample.
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Metrick (2001), this bias is very small.

Columns 7 and 8 exhibit mean and median analyst coverage. We observe a moderate
increase in both columns. In 2007, the median group of firms has 4 analysts providing
fiscal year 1 earnings forecasts. Since our sample is relatively large compared to other
studies and includes many small capitalization stocks that are not followed by analysts,
our numbers on analyst coverage are small. The average and median number of institu-
tions holding a share of equity significantly increased over the past 28 years, as can be
seen from columns 9 and 10 in Table 6. The big gap between mean and median figures
indicates that there exists a small group of stocks with a high number of institutional
investors whereas the main part of our sample stocks exhibit significantly lower numbers
of institutional investors. Mean and median size are depicted in columns 11 and 12.
Mean size dramatically increased over the sample period. Again, the big gap between
mean and median figures indicates an increasing concentration in market capitalization
among a small group of firms.

As we will see later on, IO strongly depends on size. Since our theory does not make
any predictions about the influence of size, we will test weather IO can explain the cross-
section of stock returns when holding size fixed. To control for size, we follow Hong,
Him, and Stein (2000) and Nagel (2005) and sort stocks based on residual institutional
ownership (RO). RO is obtained as the residual of a cross-sectional regression of IO on
size. Since IO is bounded by 0 and 1 we perform a logit transformation as follows:

logit(IO) = log
(

IO
1− IO

)
. (53)

As in Nagel (2005), values of IO below 0.0001 and above 0.9999 are replaced with 0.0001
and 0.9999, respectively. To get residual institutional ownership (RO), we estimate the
following cross-sectional regression for each quarter t from March 1980 to December
2007,

logit(IOi,t) = δ0 + δ1 log(SIZEi,t) + δ2 log(SIZEi,t)2 + εi,t (54)

where the residual εi,t is residual ownership for stock i in quarter t, ROi,t.
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4.3 Institutional Ownership and the Cross-Section of Returns

Table 7 reports descriptive statistics for equal-weighted quintile portfolios sorted on size
and institutional ownership. The numbers are time series averages based on quarterly
data for each quintile. Panel A sorts all stocks in the sample on size. The average
number of observations is about 2,210 per quarter. Total average returns vary between
4.92% and 6.00%. The sort on size is not able to explain average returns in the cross-
section. There is no regularity among different quintiles. IO clearly increases with size
measured as the logarithm of total market capitalization. IO in the lowest size quintile
is 16.04% and increases steadily to 51.08% for the highest size quintile. There is a clear
relationship between IO and size. The same holds true for analyst coverage. The number
of analysts following a stock increases with size. The average number of institutional
investors per stock also increases with size from approximately 9 institutions per stock
in the lowest quintile to 230 institutions in the highest quintile.

Panel A gives strong evidence that IO is related to size. Given the fact that insti-
tutional investors have a preference for large, liquid stocks, this result is not surprising.
Therefore, to control for size, we sort stocks based on residual ownership (RO). Panel
B of Table 7 exhibits the results for quintile portfolios sorted on RO. The results are
striking. Returns seem unrelated to RO for the first two quintiles, but then monotoni-
cally decrease for quintiles 3, 4, and 5 from 5.97% per quarter down to only 4.81%. The
highest quintile portfolio under-performs the first two quintile portfolios by more than
one percent per quarter, about four percent per year. IO now ranges from 2.65% to
67.58%. Size is relatively constant among all RO-quintiles. Hence sorting on RO seems
to be effective in creating variation in IO and holding size fixed. The number of ana-
lysts does not show substantial variation among RO-quintiles, indicating that analyst
coverage is more related to size than to institutional ownership. The same holds true
for the number of institutional investors holding shares of equity of a firm. The highest
RO-quintile has on average 98 institutional investors, while the highest size-quintile has
230 institutional investors on average.

Do high RO-quintile portfolios consistently deliver lower than average returns? In
other words, is the return differential between the highest RO-quintile portfolio and the
rest of the sample statistically significant? To answer this question, we test the null
hypothesis that the return differential between the sample mean return and the return
of the highest RO-quintile portfolio is not significantly different from zero against the
alternative hypothesis that the return differential is different from zero. At the end
of each quarter t, we form five quintile portfolios sorted on RO. The return of this
portfolios is the average return of all stocks included in the portfolio in the respective
quarter. It is important to notice that we do not build portfolios based on past RO
and calculate returns for the forthcoming period. End of quarter institutional holdings
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Descriptive Statistics of Sorted Portfolios

Measure Low 2 3 4 High

Panel A: Quintile portfolios sorted on size

RET (%) 4.92 5.52 5.64 6.00 5.44

RETX (%) 4.60 5.27 5.39 5.70 5.04

DIV (%) 0.32 0.25 0.26 0.30 0.40

IO (%) 16.04 30.34 39.98 45.20 51.08

Analysts 0.55 1.77 3.11 4.91 9.26

Institutions 9.05 26.69 49.29 81.18 230.06

ln(SIZE) 17.68 18.79 19.69 20.68 23.16

N 687 688 688 688 687

Panel B: Quintile portfolios sorted on residual ownership (RO)

RET (%) 5.87 5.97 5.64 5.23 4.81

RETX (%) 5.52 5.58 5.32 4.96 4.61

DIV (%) 0.35 0.38 0.32 0.27 0.21

IO (%) 2.65 21.37 38.72 52.32 67.58

Analysts 1.35 3.44 4.66 5.10 5.04

Institutions 12.40 73.31 102.96 109.40 98.09

ln(SIZE) 21.47 21.60 21.81 21.82 21.60

N 687 688 688 688 687

Table 7: Quarterly Returns to quintile portfolios sorted on size and residual ownership (RO).
All numbers are time series averages based on quarterly data. At the end of each quarter t
from March 1980 to December 2007, stocks are ranked by Size and RO as of quarter t. RET
is the average holding period return, RETX is the average return ex dividends and DIV is the
average contribution of dividends to total return. Institutional ownership (IO) is defined as the
sum of the holdings of all reporting institutions divided by the total shares outstanding for the
firm. Analyst coverage is the number of analysts providing fiscal year 1 earnings estimates in
any given quarter. Institutions is the average number of institutional investors per stock. Size
is the market capitalization at the end of the quarter, reported in millions of USD; N is the
average number of quarterly observations for each decile. Only U.S. stocks were included that
are traded on the NYSE, AMEX, and NASDAQ. Stock data is from CRSP, data on institutional
ownership is from the CDA/Spectrum database and data on analyst coverage is from I/B/E/S.
Data is filtered according to the screening procedure documented in section 4.2.

reflect which stocks institutions have bought in the previous quarter. It makes sense to
compare quarter t holdings with quarter t returns rather then with quarter t+1 returns.
We do not intend to test an investable investment strategy but rather want to capture
the impact of institutional holdings on returns19. Based on the quarterly returns of
quintile portfolios, we calculate the sample mean return and the return differentials for
each quintile. Again, we additionally calculate average IO and size for the respective
quintile portfolios.

19We have redone the analysis taking t−1 and t−2 RO to sort stocks and could not find any evidence
of cross-sectional variation in returns for RO-sorted portfolios.
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Quintile Portfolios Sorted on Residual Ownership

Low 2 3 4 High

Panel A: Entire Sample March 1980 - December 2007

RET (%) 6.38 6.72 6.42 6.20 5.22
∆ RET (%) 0.20 0.53 0.23 0.01 −0.96
(t-statistic) (0.83) (2.00)∗∗ (1.16) (0.04) (−3.46)∗∗∗
IO (%) 1.62 15.27 31.04 43.43 56.32
ln(SIZE) 21.05 21.17 21.39 21.36 21.15
N 442 442 442 442 442

Panel B: March 1980 - December 1993

RET (%) 7.28 8.00 7.56 7.40 5.79
∆ RET (%) 0.08 0.80 0.35 0.19 −1.42
(t-statistic) (0.22) (1.66)∗ (0.94) (0.42) (−2.97)∗∗∗
IO (%) 0.01 5.83 19.41 29.92 39.70
ln(SIZE) 19.61 19.41 19.77 19.61 19.44
N 146 146 146 146 146

Panel C: March 1994 - December 2007

RET (%) 5.49 5.44 5.28 5.00 4.66
∆ RET (%) 0.31 0.26 0.11 −0.17 −0.51
(t-statistic) (1.00) (1.19) (0.82) (−0.83) (−1.83)∗
IO (%) 3.23 24.71 42.67 56.94 72.94
ln(SIZE) 21.62 21.77 21.97 21.96 21.75
N 738 738 738 738 738

Table 8: Average returns of RO-sorted quintile portfolios for different time periods. At the
end of each quarter t stocks are ranked by RO as of quarter t and the average returns of each
quintile is calculated for quarter t. The returns reported in the table are time-series averages
of quarterly quintile-portfolio returns. ∆RET (%) denotes the return differential between the
mean return of the quintile and the sample mean return. ln(Size) is the natural logarithm of
the average market capitalization and N denotes the average number of observations. ∗, ∗∗, and
∗∗∗ denotes significance at the 10%, 5% and 1% level.

The results are shown in Table 8. Panel A exhibits average returns for the five
quintile portfolios sorted on RO for the entire sample period from 1980 to 2007. Along
the average returns also the return differentials between the quintile portfolios and the
sample mean are reported with associated t-statistics in parentheses. We find that the
differential is significantly negative for the 5th quintile. Again, size is relatively constant
among deciles and indicates that our sorting technique effectively controls for size. Panel
B and C report results for the two subperiods 1980-1993 and 1994-2007. We observe
that the negative return differential persists for the two subperiods. In Panel B the
mean return for the 5th quintile under-performs the sample mean by 1.42 percent per
quarter. In Panel C the under-performance is 0.51 percent for the highest RO-quintile.
All negative return differentials for the 5th quintile are statistically significant. Overall,
we observe that the pattern we found in Table 7 seems to be robust to different periods,
and that the highest RO-quintile significantly under-performs the sample mean in all
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periods.

One concern regarding robustness of our results is that the low returns of high-RO
stocks could be due to a lower compensation for market risk in this group of stocks. If
for some reasons stocks in the 5th RO-quintile load less on market risk, this could be
an explanation for the lower returns. To check on this issue, we calculate the historical
beta for each stock over the entire sample period and divide the sample into three
subgroups of beta before sorting on RO. The results not reported here indicate that the
under-performance of the 5th quintile portfolio persists, i.e. we cannot find any different
return pattern due to variation in betas.

Summing up, the above analysis demonstrates that there might be a relationship
between institutional ownership and stock returns. Since IO is strongly related to size, it
is important to control for the size effect. We notice that residual institutional ownership
is a powerful tool on this. Our extensive sample on institutional holdings data provides
some evidence in favor of Hypothesis 1. Holding size fixed, we observe that average
returns of quintile portfolios monotonically decrease with increasing IO and that stocks
with high IO exhibit significantly lower than average returns.

5 Conclusion

We analyze equilibrium implications of delegated portfolio management under bench-
marking. A novel part of our paper is the simultaneous modeling of delegation and
benchmarking. Delegation arises endogenously in equilibrium as a result of a given
benchmarking policy. The main result from our partial equilibrium analysis is that
the investor’s utility from delegation is always maximized when the manager exhibits
the same attitude towards risk than the investor. Whenever the manager is more risk
tolerant than the delegating investor, benchmarking results in a utility loss compared
to the situation without benchmarking .

In general equilibrium, we find that the impact of delegation is twofold. First, the
presence of benchmarking gives rise to active management risk that lowers expected
returns. For those assets included in the benchmark portfolio, the manager does not
require a premium for systematic market risk. Only active management risk is priced,
implying a lower market price of risk and lower expected excess returns. Second, dele-
gated agents acquire more information than individual investors to induce investors to
delegate and to justify the management fees. This motivation for information acquisi-
tion leads to a more informative price system and to lower expected returns, at least for
those assets in which delegated managers invest. In a brief empirical analysis, we find
support for the model’s predictions that institutional ownership lowers returns.
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On a final note, we provide theoretical and empirical arguments that the existence
of investment intermediaries matters for asset pricing and significantly affects the cross-
section of equilibrium returns. Finally, our model predictions might find empirical
support given the decrease in returns for stocks with high institutional ownership over
the past two decades, a period during which the volume of institutionally managed
money has sharply increased. However, we leave a more rigorous empirical analysis for
future research.
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Appendix

Proof of Proposition 1

Substituting for (18) in equation (13), the investor’s expected utility reads

Uj =
1

2ρj
E

[
(µ̂j − pr)′Σ̂−1

j (µ̂j − pr)
∣∣∣µ

]
(55)

The value of µ̂j depends on the signal realization and therefore is not known in period
2. The term (µ̂j − pr)′Σ̂−1

j (µ̂j − pr) follows a non-central χ2
N -distribution with N

degrees of freedom. Taking the expected value of a χ2
N -distributed random variable, the

investor’s expected utility can be rewritten as

Uj =
1

2ρj

(
tr

(
Σ̂−1

j V ar[µ̂j |µ]
)

+ E[µ̂j − pr|µ]′Σ̂−1
j E[µ̂j − pr|µ]

)
, (56)

where E[µ̂j − pr|µ] = µ− pr and V ar[µ̂j |µ] = Σ− Σ̂j . Therefore,

Uj =
1

2ρj

(
tr

(
Σ̂−1

j (Σ− Σ̂j)
)

+ (µ− pr)′Σ̂−1
j (µ− pr)

)
, (57)

which is equivalent to the expression given in Proposition 1. ¤

Proof of Proposition 4

U j
dir(µ, Σ̂j

j) ≤ U j
del(µ− δ, Σ̂j

m) in equation (12) can be written as

E

[
(µ̂j − pr)′qj − 1

2
ρjq

′
jΣ̂jqj

∣∣∣µ
]
≤ E

[
(µ̂m − pr)′qm − δ − 1

2
ρjq

′
mΣ̂mqm

∣∣∣µ
]

δ ≤
(

1− 1
2
ρ

)
1

ρm
E

[
(µ̂m − rp)′Σ̂m(µ̂m − pr)

∣∣∣µ
]
− 1

ρj
E

[
(µ̂j − pr)′Σ̂j(µ̂j − pr)

∣∣∣µ
]

For notational simplicity, we drop superscript j. Because we are in partial equilibrium,
it is not necessary to distinguish between different investors. Taking the expected value
of a noncentral χ2

N -distributed random variable, we get

δ ≤
(

1− 1
2
ρ

)
1

2ρm

(
tr(Σ̂−1

m Σ− I) + (µ− pr)′Σ̂−1
m (µ− pr)

)

− 1
2ρj

(
tr(Σ̂−1

j Σ− I)− (µ− pr)′Σ̂−1
j (µ− pr)

)
.

Define the constants
a :=

(
1− 1

2
ρ

)
1

ρm
, b :=

1
2ρj

.
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Substituting for the eigen decomposition yields:

δ ≤ a
(
tr(ΓΛ̂−1

m Γ′ΓΛΓ′ − I) + (µ− rp)′ΓΛ̂−1
m Γ′(µ− pr)

)

− b
(
tr(ΓΛ̂−1

j Γ′ΓΛΓ− I)− (µ− pr)′ΓΛ̂−1
j Γ′(µ− pr)

)
.

Using the fact that the trace of a matrix is the sum of its diagonal values, the above
expression reads in summation notation

δ ≤ a
1

ρm

L∑

l=1

λ̂−1
m,l

(
λl + ([µ− pr)′Γl]2

)− b
L∑

l=1

λ̂−1
j,l

(
λl + [(µ− pr)′Γl]2

)
+ N(b− a).

Collecting terms yields the expression in Proposition 4. ¤

Proof of Proposition 7

The derivation of this result is similar to the proof given in Proposition 4. Substituting
for U j

del and U j
dir in equation (12) and solving for δ yields the expression stated in

Proposition 7. ¤

Proof of Proposition 8

Recall that the CED for investor j is defined as

CEDj := sup
[
δ
∣∣∣U j

dir(µ̂j , Σ̂j) ≤ U j
del(µ̂

j
m − δ, Σ̂j

m)
]
.

We first derive U j
dir(µ̂j , Σ̂j). The period 2 utility from direct investment, given optimal

portfolio choice qj
dir = 1

ρj
Σ̂j(µ̂j − pr) and optimal information choice Σ̂j , is

Udir =
1

2ρj
E

[
(µ̂j − pr)′Σ̂−1

j (µ̂j − pr)
∣∣µ

]
. (58)

In period 2, (µ̂j − pr) is normal with mean

E[(µ̂j − pr)|µ] = (I −B)µ−A (59)

and variance
V ar[(µ̂j − pr)|µ] = Σ− Σ̂j + BΣB′ − 2ΣB + Σp, (60)

48



which follows from the equilibrium price function (36). Hence, we write the period-2
utility according to equation (56) as

U j
dir =

1
2ρj

(
Tr

(
Σ̂−1

j (Σ− Σ̂j + BΣB′ − 2ΣB + Σp)
)

+ ((I −B)µ−A)′ Σ̂−1
j ((I −B)µ−A)

)
. (61)

Substituting for the correlation structure of the risky assets Σ̂ = ΓΛ̂Γ yields

U j
dir =

1
2ρj

(
Tr

(
ΓΛ̂−1

j Γ′(ΓΛΓ′ − ΓΛ̂jΓ′ + BΣB′ − 2ΣB + Σp)
)

+ ((I −B)µ−A)′ ΓΛ̂−1
j Γ′ ((I −B)µ−A)

)
. (62)

Since the trace of a matrix is the sum of its diagonal elements, equation (62) can be
written in summation notation as follows:

U j
dir =

1
2ρj

(
L∑

l=1

λ̂−1
j,l

(
λl(1− λB,l)2 + λp,l + [((I −B)µ−A)′ Γl]2︸ ︷︷ ︸

XE
l

)
− L

)
, (63)

where ΛB and Λp are the eigenvalues of B and Σp. Define

XE
l := λl(1− λB,l)2 + λp,l + [((I −B)µ−A)′ Γl]2.

Similarly, by substituting for qj
m, we write U j

del(µ̂
j
m − δ, Σ̂j

m) as

U j
del =

(
1− 1

2
ρj

ρj
m

)
1

ρj
m

E
[
(µ̂j

m − pr)′(Σ̂j
m)−1(µ̂j

m − pr)
∣∣µ

]
+

(
1− ρj

ρm

)
µφ− 1

2
ρjΣ̂φ−δ,

(64)
where ρj

m is the risk aversion of the manager of investor j. The above equation is
equivalent to

U j
del =

(
1− 1

2
ρj

ρj
m

)
1

ρj
m

(
L∑

l=1

(λ̂j
m,l)

−1XE
l − L

)
+

(
1− ρj

ρm

)
µφ − 1

2
ρjΣ̂φ − δ. (65)

Combining equations (63) and (65) and using the definition of the certainty equivalent
of delegation yields the expression in Proposition 8. ¤

Proof of Proposition 9

The market clearing condition implies that the total demand for risky assets of dele-
gating investors, qj

del, and direct investing investors, qj
dir, equals total supply of risky
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assets, x̄ + x, ∫ n

0
qj

deldj +
∫ 1

n
qj

dirdj = x̄ + x, (66)

where n ∈ [0, 1]. Therefore,

∫ n

0

(
1

ρj
m

(Σ̂j
m)−1

(
µ̂j

m − pr
)

+ φ

)
dj +

∫ 1

n

1
ρj

Σ̂−1
j (µ̂j − pr) dj = x̄ + x, (67)

where (µ̂j
m, Σ̂j

m) denotes the set of posterior beliefs of the manager of the j-th investor
and (µ̂j , Σ̂j) the set of posterior beliefs of the j-th investor. Substituting (37) and (38)
into the market clearing condition, we get

∫ n

0

(
1

ρj
m

(Σ̂j
m)−1

(
Σ̂j

m

(
Σ−1µ + (Ωj

m)−1sj
m + Σ−1

p B−1(pr −A)
)− rp

)
+ φ

)
dj

+
∫ 1

n

1
ρj

Σ̂−1
j

(
Σ̂j

(
Σ−1µ + Ω−1

j sj + Σ−1
p B−1(pr −A)

)− rp
)

dj = x̄ + x. (68)

Define the following two average quantities. The first is the average signal precision
matrix,

Ψ :=
∫ n

0
(Ωj

m)−1dj +
∫ 1

n
Ω−1

j dj. (69)

The second average quantity is the average risk tolerance of direct and delegating in-
vestors,

ρ−1
a :=

∫ n

0

1

ρj
m

dj +
∫ 1

n

1
ρj

dj. (70)

With these two definitions, the market clearing condition becomes

1
ρa

Σ−1µ+
1
ρa

Ψf +
1
ρa

Σ−1
p B−1(pr−A)− 1

ρa
Σ−1pr− 1

ρa
Ψpr− 1

ρa
Σ−1

p pr+nφ = x̄+x.

(71)
To derive the above result, we used the fact that signals s are distributed iid around
the true payoffs f . Solving for pr yields

pr = ρa

(
Σ−1 + Ψ−Σ−1

p (B−1 − I)
)−1

(
1
ρa

Σ−1µ− 1
ρa

Σ−1
p B−1A− x̄ + nφ

︸ ︷︷ ︸
constant

− 1
ρa

Ψf+x

)

(72)
The above expression is clearly linear in f and x and confirms (36). Next step is to
solve for the constants in (36). From (36) and (72), we know that B takes the following
form,

B =
(
Σ−1 + Ψ−Σ−1

p (B−1 − I)
)−1 Ψ. (73)
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Solving for B yields

B =
(
Σ−1 + Ψ + Σ−1

p

)−1 (
Ψ + Σ−1

p

)
. (74)

In the same manner, one can solve for the other constants. C can be expressed as:

C = −ρa

(
Σ−1 + Ψ−Σ−1

p (B−1 − I)
)−1

. (75)

Solving for C yields

C = −ρa

(
Σ−1 + Ψ + Σ−1

p

)−1 (
Σ−1

p Ψ−1 + I
)
. (76)

Last step is to solve for the constant A.

A = ρa

(
Σ−1 + Ψ−Σ−1

p (B−1 − I)
)−1

(
1
ρa

Σ−1µ− 1
ρa

Σ−1
p B−1A− x̄ + nφ

)
, (77)

A = ρa

(
Σ−1 + Ψ + Σ−1

p

)−1
(

1
ρa

Σ−1µ− x̄ + nφ

)
(78)

Note that Σp := σ2
xB−1CC ′(B−1)′. Therefore, we can make the following claim.

Corollary 5.1. Asset prices are linear functions of the asset payoffs and the unexpected
component of asset supply. With identical priors, the price function is

p =
1
r

(A + Bf + Cx) , (79)

with constants

A = ρa

(
Σ−1 + Ψ + Σ−1

p

)−1
(

1
ρa

Σ−1µ− x̄ + nφ

)
(80)

B =
(
Σ−1 + Ψ + Σ−1

p

)−1 (
Ψ + Σ−1

p

)
(81)

C = −ρa

(
Σ−1 + Ψ + Σ−1

p

)−1 (
Σ−1

p Ψ−1 + I
)

(82)

where Ψ :=
∫ n
0 Ωj−1dj +

∫ 1
n (Ωj

dir)
−1dj and ρ−1

a :=
∫ n
0

1

ρj
m

dj +
∫ 1
n

1
ρj

dj.

The first term on the right-hand side in equations (80), (81) and (82), is the posterior
covariance matrix of the ‘average’ investor Σ̂a,

Σ̂a :=
(
Σ−1 + Ψ + Σ−1

p

)−1
. (83)

Like the individual investor, the ‘average’ investor has a posterior covariance matrix
that is based on the prior and signal variance and the variance observed from the price
level. Using the expression for the ‘average’ posterior variance, the price function can
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be written as

pr = Σ̂a

(
Σ−1µ− ρax̄ + ρanφ +

(
Ψ + Σ−1

p

)
f − ρa

(
Σ−1

p Ψ−1 + I
)
x
)
. (84)

Rearranging terms yields

pr = Σ̂a

(
Σ−1µ + Ψf + Σ−1

p (f − ρaΨ−1x)− ρax̄− ρax + ρanφ
)
. (85)

Note that (f − 1
ρ̄Ψ

−1x) = B−1(pr−A) is the signal that investors observe from prices.
The first three terms in (85) are equal to the posterior mean of the ‘average’ investor,
as given by the Bayesian updating formulas. Defining

µ̂a := Σ̂a

(
Σ−1µ + Ψf + Σ−1

p (f − ρaΨ−1x)
)

(86)

the price function can be rewritten as given in Proposition 9. ¤
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