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Abstract

This paper analyzes the nature and pricing implications of jumps in foreign

exchange rate processes. I propose a general stochastic-volatility jump-diffusion

model of exchange rate dynamics that contains several popular models as its

special cases. I use the efficient method of moments to estimate the model

parameters from the spot exchange rates of Euro, British Pound, Japanese Yen

and Swiss Franc with respect to the U.S. Dollar. The results indicate that

any reasonably descriptive continuous-time model must allow for jumps with a

bimodal distribution of jump sizes, in addition to stochastic volatility. Finally,

I investigate the option pricing implications of jumps. Although the ex-post

estimates of jump probabilities show that jumps occur irregularly and rarely,

the jump component is important for explaining the shapes of implied volatility

”smiles”. The risk premia implicit in the cross-sectional currency options data

suggest that the exchange-rate jump risk appears to be priced by the market.
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1 Introduction

Our knowledge about the complexity of underlying risk factors in exchange rate pro-

cesses parallels the increase in the number of studies on time series and option prices.

The complexity suggests that investment decisions in currency markets will be ad-

equate only if they build upon fairly reasonable specifications of the exchange rate

dynamics. Specifically, currency derivatives such as forward rates, options or currency

swaps will be very sensitive to volatility dynamics and to higher moments of return

distributions.

It is now widely accepted that the exchange rate volatility is time-varying and

that the distributions of returns are fat-tailed (see, for example, Bates (1996a,b)

and the references cited therein). Figure 1, for example, displays the daily relative

changes of the exchange rate of Euro with respect to U.S. Dollar, from January

2005 to September 2008. The time-varying nature of volatility is responsible for the

interchanging periods of high and low variations in returns. On the other hand, the

outliers are manifested through relatively rare but large spikes, or ”jumps”. The

presence of outliers and the extent of skewness are critical for derivatives pricing, as

well as hedging and risk management decisions.

Bates (1988) and Jorion (1988) were among the first to assert that the outliers in

exchange rate series can be accounted for by combining a continuous- and a discrete-

time process. Many studies have later documented the statistical significance of jumps

in exchange rates. Bates (1996b), Jiang (1998), Craine et al. (2000) and Doffou &

Hilliard (2001) find that jumps are important components of the currency exchange

rate dynamics, even when conditional heteroskedasticity is taken into account. More-

over, several authors had reported that neglecting one of the exchange rate properties
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Figure 1: EUR/USD exchange rate. Daily returns for January 2005–September 2008.

usually leads to a significant overestimation of importance of another risk factor (see

Jiang (1998) for a discussion). A number of empirical studies revealed other impor-

tant stylized facts about the exchange rates. For example, Guillaume et al. (1997)

show that exchange-rate returns in general exhibit non-stable, symmetric, fat-tailed

distributions with finite variance and negative first-order autocorrelation and het-

eroskedasticity.1

This paper studies the nature of jumps in foreign exchange rates, as well as their

implications to the option pricing. I propose a general continuous-time stochastic

volatility model with Poisson jumps of time-varying intensity. The model conveniently

captures all the stylized facts known to the literature. The special cases of the model

are several popular benchmarks, such as the Black & Scholes (1973) model, the Merton

(1976) model, the stochastic volatility model of Taylor (1986) and the stochastic-

volatility jump-diffusion model of Bates (1996b). To estimate the model parameters,

1The economic literature dealing with jump processes and their pricing implications has been
growing ever since the seminal work of Merton (1976). Examples include Ball & Torous (1985),
Bates (1991), Bates (1996a), Bates (1996b), Chernov et al. (1999), Pan (2002) and Andersen et al.
(2002).
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I use daily interbank spot exchange rates of Euro, British Pound, Japanese Yen and

Swiss Franc with respect to the U.S. Dollar, the four most important exchange rates

in terms of currency turnover. The inference framework is based on the efficient

method of moments procedure of Gallant & Tauchen (1996).

The results confirm that both stochastic volatility and jumps play a critical role

in the exchange rate dynamics. Moreover, a correctly specified model should include

a bimodal distribution of jump sizes. Depending on the exchange rate, a model with

the volatility-dependent jump intensity may outperform a model with a constant

intensity. The proposed general model also allows for a closed-form solution for the

price of European-style currency options. It is capable to accommodate the shapes

of Black-Scholes implied volatilities observed in the actual data. This indicates that

the dominant empirical characteristics of exchange rate processes seem to be priced

by the market.

The remainder of the paper is organized as follows: Section 2 develops a model

specification for exchange rates and describes the estimation methodology. Section 3

describes the data and provides the estimation results. Section 4 considers the option

pricing implications of jumps. Concluding remarks are given in Section 5.

4



2 Model Specification and Estimation

Methodology

2.1 Model

The model is constructed to capture the salient features of exchange rate dynamics

and incorporate the majority of popular models used in the literature as its special

cases. I will assume that the instantaneous exchange rate St solves

dSt

St
= µdt +

√
Vt dW1,t + (eut − 1) dqt − λtk̄dt, (1)

where the instantaneous variance Vt follows a mean-reverting diffusion given by the

”square-root” specification of Heston (1993):

dVt = (α− βVt) dt + σ
√

Vt dW2,t. (2)

The stochastic processes W1,t and W2,t are standard Brownian motions on the usual

probability-space triple (Ω,Ft, P), where P is the ”physical”, or the data-generating

measure. The correlation between W1,t and W2,t is ρ, which can be written as

dW1,tdW2,t = ρdt. (3)

The term (eut − 1) dqt in equation (1) is the jump component. The returns jump at

t if the Poisson counter (or jump ”flag”) dqt is equal to one, which happens with

probability λtdt. Jump intensity λt may change over time. In particular, jumps may

be more likely in periods of high volatility. I will therefore allow the intensity to be
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a linear function of the instantaneous variance,

λt = λ0 + λ1Vt. (4)

The random variable ut in equation (1) determines the relative magnitude of a jump.

The processes dqt and ut are independent, both are serially uncorrelated, and both are

uncorrelated with diffusions dW1,t and dW2,t. Also, neither dqt nor ut are measurable

with respect to Ft.

It is reasonable to assume that distribution of jump sizes is not concentrated around

zero. This is actually not the case in most of the jump-diffusion specifications in the

literature: jump sizes are usually modeled as random variables from a unimodal

distribution. Since jumps can be both positive and negative, their unconditional

expected size is typically close to zero. Unimodal jump-size distributions imply that

majority of jumps will be relatively small in magnitude, which is exactly the opposite

of their nature. They will also tend to increase kurtosis by adding more mass at the

center of the return distribution instead of adding it to the tails. In this way, the

effect of fat tails is achieved through normalization of the probability density function.

In such specifications, most of the jumps are difficult to distinguish from returns

generated by diffusion, which may lead to an overestimation of jump frequencies.

Johannes (2004), for example, estimates a jump-diffusion interest rate model and

finds jump intensities that are between 0.05 and 0.10, but detects only 5 jumps per

year, which corresponds to an intensity of around 0.02.

I will therefore assume that the variable ut, which determines the size of the jump,

comes from a mixture of two normal distributions, one centered around a positive
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value, the other around a negative value:

ut ∼ p N
(
ln(1 + k)− ω2/2, ω2

)
+ (1− p) N

(
ln(1− k)− ω2/2, ω2

)
. (5)

Hence, p has the meaning of the probability that the jump is positive, k is the expected

size of a positive jump, while −k is the expected size of a negative jump. At time t,

the expected contribution of jumps to return dSt/St is

Et [(eut − 1) dqt] = λtk̄dt,

where

1 + k̄ ≡ p(1 + k) + (1− p)(1− k).

Therefore, the return process is constructed such that the jumps are on average

compensated by the last term in equation (1). I use Et(·) to denote the conditional

expectation given the information available at time t, instead of a more cumbersome

E(·|Ft).

The outlined model specification has a form of a stochastic volatility jump-diffusion

process with bimodal distribution of jump sizes (hereafter: SVJD-B).2 It has a con-

venient feature that it contains several popular jump- and pure-diffusion benchmark

models as its special cases. For example, by setting p = 1 and λ1 = 0 we obtain the

usual SVJD specification of Bates (1996b) or Bates (2000). A stochastic volatility

model without jumps (SV) of Taylor (1986) is obtained by setting all jump parameters

(λ0, λ1, p, k and ω) to zero. Merton (1976) diffusion model with constant variance is

obtained by setting all stochastic-volatility parameters (α, β, ρ, λ1) to zero, introduc-

ing a constant jump intensity (λt = λ0, λ1 = 0) and constraining the distribution of

2To the best of my knowledge, the bimodal assumption for the distribution of jump sizes was
previously used only in a numerical valuation of real options in Dias & Rocha (2001).
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jump sizes to be unimodal (p = 1). Finally, the Black & Scholes (1973) model (BS)

is obtained by setting all jump parameters to zero, α, β and ρ to zero, and (with a

slight abuse of notation) by fixing Vt = σ2.

2.2 Estimation Methodology

Estimation of a continuous-time model, such as one given by equations (1)–(2), is

never straightforward when we bring it to discretely sampled data. The main dif-

ficulty lies in the fact that closed-form expressions for a discrete transition density

are seldom available. The presence of unobservable state variables, such as stochastic

volatility, makes this task even more arduous. In principle, some form of maximum

likelihood estimation might be feasible (see, for example, Lo (1988)), but it is based

on computationally very demanding numerical procedures that involve integration

of latent variables out of the likelihood function. The problem becomes even more

difficult when jumps are introduced into the model.

A number of alternatives to the maximum likelihood technique have been proposed

to overcome the issue of computational inefficiency. Examples of simulation-based in-

ference for jump-diffusion models can be found in Andersen et al. (2002), Duffie et al.

(2000) and Chernov et al. (1999). Simulation approaches based on the method of

moments are a useful tool whenever it is possible to alleviate the problem of ineffi-

cient inference, which can be done by careful selection of moment conditions. For

example, Pan (2002) uses the simulated method of moments (SMM) of Duffie &

Singleton (1993) and matches sample moments with the simulated ones to estimate

risk premia embedded in options on a stock market index. The efficient method of

moments (EMM) of Gallant & Tauchen (1996) refines the SMM approach by a con-
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venient choice of moment conditions: they are obtained from the expected score of

the auxiliary model. The auxiliary model is a discrete-time model whose purpose is

to approximate the sample distribution. Hence, there are at least two good features

of the EMM approach: first, it will achieve the efficiency of the maximum likelihood

technique under reasonable assumptions, and second, the objective function can be

used to test for overidentifying restrictions, as with an ordinary generalized method

of moments.

Several jump-diffusion models were developed to describe the exchange rate dy-

namics. Bates (1996b), for example, estimates the parameters of an SVJD model

from the prices of Deutsche Mark options traded on the Philadelphia Stock Exchange.

More recently, Maheu & McCurdy (2006) proposed a discrete-time model of foreign

exchange rate returns with jumps. Their estimation is based on a Markov Chain

Monte Carlo technique. Although this method is a powerful inference tool, its im-

plementation always has to be tailored for a particular choice of model, making it

difficult to compare with other specifications.

I use the EMM to estimate the proposed SVJD-B model (1)–(2) and to compare it

with the alternatives. As pointed out by Andersen et al. (2002), the EMM procedure

critically relies on the correct specification of the auxiliary model. The auxiliary

model should approximate the conditional distribution of the return process as close

as possible. If the score of the auxiliary model asymptotically spans the score of the

true model, the EMM will be asymptotically efficient (see Gallant & Long (1997)

for the proof). Therefore, any auxiliary model should capture the dominant features

of the return dynamics in a discrete-time series. Specifically, it should be able to

take into account the presence of autocorrelation and heteroskedasticity, as well as to

model any excess skewness and kurtosis. A semi-nonparametric (SNP) specification

9



for the auxiliary model by Gallant & Nychka (1987) is based on the notion that

higher-order moments of distribution can be captured with a polynomial expansion.

Given that a set of data is stationary, an ARMA term is sufficient to describe the

conditional mean, while an ARCH-type term should be able to filter out conditional

heteroskedasticity. I choose the EGARCH model of Nelson (1991) in order to capture

both heteroskedasticity and potential presence of asymmetric responses of conditional

variance to positive and negative returns. Finally, to accommodate the presence of fat

tails in the return distribution, I augment the conditional probability density function

of the auxiliary model by a polynomial in standardized returns.

The semi-nonparametric (SNP) estimation step is performed via quasi-maximum

likelihood technique on the fully specified auxiliary model. I follow Andersen et al.

(2002) and assume that auxiliary model follows an ARMA(r,m)-EGARCH(p,q)-Kz(Kz)-

Kx(Kx) process with a probability distribution function of the form:

fK(yt|Ft−1; ϕ) =
[PK(zt, xt)]2∫

[PK(z, x)]2φ(z)dz

φ(zt)√
ht

(6)

where yt ≡ ln(St/St−1) is a vector of log-returns that follows an ARMA(r,m) process

yt = µ +
r∑

i=1

biyt−i + εt +
m∑

i=1

ciεt−i. (7)

The residuals εt are assumed to be normally distributed conditionally on the infor-

mation available one time step before:

εt|Ft−1 ∼ N (0, ht). (8)

The corresponding standardized residuals are zt = εt/
√

ht, and xt is the vector of
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their lags. The standard normal probability density function is labeled by φ(·). The

conditional variance ht follows an EGARCH(p,q) process of the form

ln ht = ω +
p∑

i=1

βi ln ht−i +
q∑

j=1

αj

(
|zt−j| −

√
2

π

)
+

q∑

j=1

θjzt−j. (9)

In equation (6), the full set of parameters is labeled by ϕ. Finally, PK(·) is a non-

parametric polynomial expansion given by

PK(z, x) =
Kz∑

i=0

Kx∑

j=0

(
aijx

j
)
zi, a00 = 1. (10)

Here, as in Andersen et al. (2002), the coefficients in expansion depend on lags

x. This expansion is designed to capture any excess kurtosis in returns, but also

to accommodate additional skewness that has not already been represented by the

EGARCH term. I use the Bayesian information criterion (BIC) to select the best

fitting model for each series.

The EMM estimation step works in the following way. Given the set of parameters

ψ = {µ, α, β, σ, ρ, λ0, λ1, p, k, ω},

I simulate the sample of exchange rates {S̃t}Tsim
t=1 and instantaneous variances {Ṽt}Tsim

t=1

using the specification given by the continuous-time model (1)–(2). The EMM esti-

mator of model parameters ψ is defined as

ψ̂ = arg min
ψ

m(ψ, ϕ̂)′ W m(ψ, ϕ̂), (11)

where m(ψ, ϕ̂) is the expectation of the score function and ϕ̂ is the quasi-maximum

likelihood estimate of the set of SNP parameters. The expectation of the score is
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evaluated as the sample mean across simulations,

m(ψ, ϕ̂) =
1

Tsim

Tsim∑

t=1

∂ ln fK(ỹt|Ft−1; ϕ̂)

∂ϕ
,

where ỹt ≡ ln(S̃t/S̃t−1). The weighting matrix W is a consistent estimate of the

inverse asymptotic covariance matrix of the auxiliary score.

To reduce the effects of discretization, I sample at time intervals of 1/10 of a

day. At each run, two antithetic samples were created for the purpose of variance

reduction, each of length 100, 000 × 10 + 20, 000. To eliminate the effects of initial

conditions, I discard the ”burn-in” period of the first 20,000 simulated points. The

final sample of Tsim = 100, 000 daily log-returns, {ỹt}Tsim
t=1 , was obtained by adding up

the groups of 10 elements in the simulated sample.

3 Estimation Results

3.1 Data

The results are based on average daily interbank spot exchange rates of Euro, British

Pound, Japanese Yen and Swiss Franc with respect to the U.S. Dollar, from Jan-

uary 4, 1999 to September 30, 2008, a sample of 2542 observations. All four time

series, obtained from Thomson Financial’s Datastream, are shown in Figure 2. The

JPY/USD exchange rate is expressed per 100 Yens. Table 1 provides summary statis-

tics for the exchange rate levels St and the corresponding daily returns, computed

as yt = ln(St/St−1). Daily sampling is chosen in order to capture high-frequency
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fluctuations in return processes that may be critical for identification of jump compo-

nents, while avoiding to model the intraday return dynamics, abundant with spurious

market microstructure distortions and trading frictions.

Table 1: Summary Statistics
Daily interbank spot exchange rates of Euro, British Pound, Japanese Yen and Swiss
Franc with respect to the U.S. Dollar, from January 4, 1999 to September 30, 2008
(2542 observations).

Panel A: Daily exchange rate levels

Currency Mean Variance Skewness Kurtosis

EUR 1.1511 0.0376 0.2234 2.1992
GBP 1.7103 0.0376 0.0661 1.7385
JPY 0.8774 0.0030 −0.0339 2.2511
CHF 0.7380 0.0121 0.1375 2.1955

Panel B: Daily returns (percent)

Currency Mean Variance Skewness Kurtosis

EUR 0.0084 0.3539 −0.0267 4.5420
GBP 0.0040 0.2338 0.0757 4.1778
JPY 0.0026 0.3493 0.2267 4.8656
CHF 0.0088 0.4012 0.1411 4.2532

I perform several preliminary test on the data. The values of skewness and kurtosis

in Table 1 indicate that both the levels and returns deviate from normality. This is

also confirmed by Jarque-Bera and Kolmogorov-Smirnov tests (not reported), whose

p-values are at most of the order of 10−3. Table 2 shows the results of Ljung-Box test

for the autocorrelation of returns, up to order 10 (Panel A). The null hypotheses of no

autocorrelation in returns cannot be rejected. The absence of a significant short-run

return predictability is consistent with high efficiency of the currency market. The

autocorrelation in the squared returns is, on the other hand, highly significant in all

four series, indicating the presence of heteroskedasticity (Panel B). The correlation

coefficients between squared returns and their lags (not reported) are all positive,

confirming the notion of clustering – the periods of high volatility are likely to be
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Figure 2: Daily exchange rate levels: January 4, 1999 to September 30, 2008. The
JPY/USD rate is expressed per 100 Yens.

followed by high volatility.

Table 3 reports the results of the unit root tests. The values of the Augmented

Dickey-Fuller (ADF) and Phillips-Perron (PP) statistics indicate that the unit root

hypothesis is convincingly rejected in favor of stationary returns (the critical values

of ADF and PP statistics at 5 and 1 percent confidence are −3.41 and −3.96, respec-

tively). The stationarity is a prerequisite for any method of moments approach that
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Table 2: Autocorrelation
Ljung-Box test for autocorrelation of returns and squared returns up to 10th lag.

Panel A: Autocorrelation of returns

Currency Q statistic p-value

EUR 3.9867 0.9479
GBP 9.4858 0.4867
JPY 6.8611 0.7385
CHF 12.7326 0.2390

Panel B: Autocorrelation of squared returns

Currency Q statistic p-value

EUR 111.5435 < 10−5

GBP 105.7946 < 10−5

JPY 81.5108 < 10−5

CHF 42.7107 < 10−5

Table 3: Stationarity
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests for the presence of
unit roots, based on the regression

yt = c + δt + φyt−1 +
10∑

L=1

bL∆yt−L + εt,

H0 : φ = 1, δ = 0.

Currency ADF statistic PP statistic

EUR −15.8257 −50.4768
GBP −15.2648 −48.0508
JPY −14.6802 −49.2301
CHF −15.6345 −50.9751

5% crit. value −3.41 −3.41
1% crit. value −3.96 −3.96

is critically relying on stability of the data-generating process.

Finally, I report the results of the Jiang & Oomen (2008) swap-variance test for
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detection of jumps in returns and squared returns, Table 4. The swap-variance test

exploits the impact of jumps on the third and higher order moments of asset returns.

The test is based on the statistic

T√
Ω

(SwVT −RVT ) ∼ N (0, 1),

where

SwVT = 2
T∑

t=2

(Rt − yt)

is twice the accumulated difference between discretely and continuously compounded

returns, Rt = St/St−1 − 1 and yt = ln(St/St−1), respectively,

RVT =
T∑

t=2

y2
t

is the realized variance, and Ω is the asymptotic variance of the test statistic. The

robust estimator of Ω is given by

Ω̂ =
1

9

µ6

µ6
1

T 3

T − 5

T−6∑

s=1

6∏

t=1

|ys+t|,

with µk = E(|y|k). The null hypothesis of the swap-variance test is that St follows a

process without jumps. Intuitively, the test statistic reflects the cumulative gain of

a variance swap replication strategy which is known to be minimal in the absence of

jumps but substantial in the presence of jumps. If the underlying process is contin-

uous, the difference between SwVT and RVT should asymptotically go to zero. The

results of the test indicate that in all four series the jumps in returns are highly signif-

icant (Panel A), whereas the jumps in squared returns are not (Panel B). This implies

that it is not necessary to overparameterize the model by introducing discontinuities

into the process for conditional variance.
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Table 4: Presence of jumps
Swap-variance jump test, based on the test statistics

T√
Ω̂

(SwVT −RVT ) ∼ N (0, 1),

where

SwVT = 2
T∑

t=2

(Rt − yt) , RVT =
T∑

t=2

y2
t ,

Rt = St/St−1 − 1, yt = ln(St/St−1),

Ω̂ =
1

9

µ6

µ6
1

T 3

T − 5

T−6∑

s=1

6∏

t=1

|ys+t|, µk = E(|y|k),

H0 : St follows a process without jumps.

Panel A: Jumps in returns

Currency Swap-var stat. p-value

EUR −6.9228 < 10−5

GBP −10.9712 < 10−5

JPY −5.9042 < 10−5

CHF −7.9779 < 10−5

Panel B: Jumps in squared returns

Currency Swap-var stat. p-value

EUR −0.0254 0.9797
GBP −0.0259 0.9794
JPY −0.0220 0.9824
CHF −0.0210 0.9833
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3.2 Estimation of the auxiliary model

Table 5 reports the results of the SNP step. It shows the quasi-maximum likelihood

parameter estimates ϕ̂, along with their standard errors. I ran the estimations across

the possible combinations (r,m, p, q,Kx, Kz), allowing each of the parameters to take

values between 0 and 10. The selection criterion based on the BIC indicates that

the best-fitting auxiliary models have the form ARMA(0,0)-EGARCH(1,1)-Kz(Kz)-

Kx(0), with Kz being 8, 7, 6 and 7 for the Euro, Pound, Yen and Franc exchange

rate, respectively.3 Table 5 also shows the total number of SNP parameters n, as well

as the optimal values of log-likelihood functions, LL. The absence of the ARMA term

is not surprising given that the data exhibit no significant autocorrelation. Also, in

all four cases heteroskedasticity is entirely captured by the first lags of conditional

variance and return innovations in the EGARCH terms, as p = 1 and q = 1. The

values of EGARCH parameter β governing the persistence are close to the boundary

of covariance stationary region, but still significantly within the boundaries. The

parameter θ is relatively small and – with the exception of Swiss Franc – statistically

insignificant. This indicates that the ”leverage” effect does not play such an important

role in dynamics of exchange rates. The terms Kx that should take into account

heterogeneity in the polynomial expansion are always insignificant (Kx = 0), which

indicates that the EGARCH leading terms pick up all the serial dependence in the

returns.

3The actual values of BIC are not reported, but are available upon request.
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Table 5: Estimates of the Auxiliary Model

EUR GBP JPY CHF

µ 0.0558 0.0844 −0.0588 0.0737
(0.0350) (0.0493) (0.0443) (0.0434)

ω −0.0065 −0.0437 −0.0263 −0.0021
(0.0034) (0.0162) (0.0242) (0.0035)

β 0.9945 0.9799 0.9731 0.9969
(0.0018) (0.0078) (0.0093) (0.0016)

α 0.0675 0.0583 0.1239 0.0401
(0.0119) (0.0149) (0.0288) (0.0096)

θ 0.0047 −0.0023 0.0203 0.0161
(0.0063) (0.0080) (0.0144) (0.0064)

a10 −0.1275 −0.1671 0.0684 −0.1815
(0.0588) (0.0776) (0.0646) (0.0606)

a20 −0.1274 −0.0274 −0.1407 −0.0980
(0.0521) (0.0582) (0.1172) (0.0632)

a30 0.0743 0.0701 −0.0187 0.0852
(0.0240) (0.0206) (0.0161) (0.0206)

a40 0.0330 0.0119 0.0237 0.0205
(0.0184) (0.0122) (0.0237) (0.0130)

a50 −0.0141 −0.0130 0.0024 −0.0126
(0.0039) (0.0033) (0.0014) (0.0035)

a60 −0.0013 0.0004 −0.0004 −0.0002
(0.0024) (0.0009) (0.0017) (0.0009)

a70 0.0008 0.0006 0.0005
(0.0002) (0.0002) (0.0002)

a80 0.0000
(0.0001)

Model 001180 001170 001160 001170
n 13 12 11 12
LL 9597.85 10048.37 9568.58 9402.97

(Standard errors in parentheses.)
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3.3 EMM estimation

Once we have the optimal score parameters ϕ̂ obtained from the SNP model, we

can estimate the main step of the EMM procedure. The EMM parameter estimates

ψ̂ obtained from the SVJD-B and the competing models are summarized in Tables

6–9. Standard errors are given in the parentheses. Tables also report the results

of Hansen’s test of overidentifying restrictions: chi-squares, degrees of freedom and

p-values.

We can draw several important conclusions from these estimates. First, as ex-

pected, stochastic volatility is important: the constant-volatility Merton and Black-

Scholes models can be overwhelmingly rejected in all four cases. Second, jumps are

statistically significant, since SVJD-B and SVJD specifications outperform the SV

model without jumps. The SV model is also strongly rejected at any reasonable

level of significance for Euro and Franc. Third, the usual SVJD specification is out-

performed by the SVJD-B model with bimodal distribution of jump sizes given by

equation (5). The SVJD model may as well be rejected at significance levels less

than 0.05. Fourth, the dependence of jump intensity on volatility levels as given by

the affine specification (4) is important, but the alternative of constant jump inten-

sity (λ1 = 0) cannot be easily rejected. For example, for the Yen exchange rate the

restricted model is significant at 0.05 level, while the fully specified SVJD-B model

is not. The constant term λ0 is by an order of magnitude greater than the affine

coefficient λ1. Finally, the correlation between return and volatility is important: the

estimated values of ρ are significant and negative. The restriction ρ = 0 may not be

rejected only for the Euro exchange rate. As suggested by Andersen et al. (2002),

a negative correlation between return diffusion and volatility can explain part of the

skewness in returns.
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The values of the leading intensity term λ0 roughly indicate that jumps should

on average occur between 7 and 10 times per year, depending on the exchange rate.

Although jumps are rare, their significance implies that they cannot be ruled out.

Positive jumps are more likely on average, with the exception of the British Pound,

where about 63 percent of jumps are negative. The unconditional mean of jump sizes,

k̄ = (2p−1)k, is close to zero and positive, except for the Pound, where p < 0.5. This

asymmetry captures a part of the skewness of the unconditional return distribution.

The confidence bounds for jump sizes can be obtained from the values of the standard

deviation ω. For example, positive jumps in the Euro exchange rate happen with

probability 0.52 and have magnitudes that are in the 95-percent confidence interval

of [0.61, 2.36] percent.

Using the estimated parameters, we can infer the ex-post probability of a jump on

a given date implied by the actual data. Following Johannes (2004), I use a Gibbs

sampling technique to compute the filtering distribution of jump times and jump sizes.

The Gibbs sampler iteratively samples from the filtering distribution of variances

π(Vt+∆t|Vt, qt+∆t, ut+∆t, yt+∆t, yt; ψ̂),

the filtering distribution of jump times

π(qt+∆t|ut+∆t, yt+∆t, yt, Vt+∆t, Vt; ψ̂),

and the filtering distribution of jump sizes

π(ut+∆t|qt+∆t, yt+∆t, yt, Vt+∆t, Vt; ψ̂),

all of which are know distributions, where {yt}T
t=1 is the observed time series of
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daily returns and ψ̂ are the estimated SVJD-B parameters. In each iteration j,

the algorithm produces a sequence {{V (j)
t }T

t=1, {q(j)
t }T

t=1, {u(j)
t }T

t=1} of conditional

variances, jump flags and jump sizes, which are draws from the joint distribution

π(Vt+∆t, qt+∆t, ut+∆t|yt+∆t, yt, Vt; ψ̂). The algorithm converges quickly since there is

no parameter uncertainty. Hence, I work with at most 10, 000 iteration steps and

discard the ”burn-in” period of the first 2,000 iterations.

Figures 3–6 display the results. They show daily returns yt (top panel), jump prob-

abilities (middle panel) and ex-post jump sizes (bottom panel), for the four exchange

rates between January 3, 2005 and September 30, 2008. The algorithm identified

numerous observations that have a high probability of being a jump. The average

number of events with jump probability over 0.5 is roughly between 8 per year (for

GBP) and 11 per year (for EUR), which is close to the values obtained from the EMM

estimates over the full samples. The bimodal nature of the jump size distribution in

the SVJD-B model guarantees that most of the identified jumps will be significant in

size. This is an important feature of the model. For example, when the probability of

a jump in the Euro exchange rate is greater than 0.5, the expected sizes fall within two

bounds: the negative one, [−1.45,−0.41] percent, and the positive one, [0.53, 1.72]

percent. In the usual SVJD specification with unimodal distribution of jump sizes

most of the jumps are difficult to identify. This is because majority of them have

a magnitude that is relatively close to the unconditional expectation, which is often

very small.

Some jumps are isolated events, while others tend to cluster and lead to higher

volatility and even more jumps. The highest concentration of jumps is in 2008, of

which most coincide with the events related to the sub-prime mortgage crisis. Other

jumps often coincide with the important news related to macroeconomy or asset
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markets. Consider, for example, the Euro exchange rate (Figure 3). Eight jumps

happened on the dates when the U.S. Commerce Department issued reports about

trade balance, unemployment levels, retail sales or GDP growth. Five jumps coincide

with the announcements by the U.S. Federal Reserve or the European Central Bank

regarding monetary policy, and two of them with important fiscal policy moves made

by the U.S. Senate. Ten jumps coincide with unusually large stock market movements

in the United States or Europe, three with the unexpected earnings announcements

by some of the major U.S. corporations, and one with the Société Générale $7 billion

trading fraud. The strong co-movement of the currency market and the stock market

is consistent with the findings of Cao (2001). These results, although far from being

conclusive, reinforce the intuition based on Merton (1976, 1990) that jumps provide

a mechanism through which unanticipated information about the most important

determinants of the underlying process enter the market.
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Figure 3: EUR/USD exchange rate: Returns, ex-post jump probabilities and expected
jump sizes for January 2005–September 2008.
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Figure 4: GBP/USD exchange rate: Returns, ex-post jump probabilities and expected
jump sizes for January 2005–September 2008.
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Figure 5: JPY/USD exchange rate: Returns, ex-post jump probabilities and expected
jump sizes for January 2005–September 2008.
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Figure 6: CHF/USD exchange rate: Returns, ex-post jump probabilities and expected
jump sizes for January 2005–September 2008.

4 Option pricing implications

4.1 The impact of jumps on implied volatility patterns

The main empirical issue in option pricing is to find an appropriate model that will

be consistent both with the observed dynamics of the underlying asset as well as

with the observed option prices. The U-shaped patterns of implied volatilities, the

so-called ”volatility smiles”, obtained from the actual data are difficult to reconcile

with a great number of return models. This is also true for exchange rates, where any

specification that does not allow for jumps fails to accommodate observed implied

volatility patterns, even when stochastic nature of volatility is taken into account.
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In this section I illustrate the effect of jumps on currency option prices. A suitable

property of the SVJD-B model is that it can yield a closed-form solution for the price

of European-style options. Options can be priced if the model specification is written

in the risk-neutral form. Introducing the usual change of measure, the risk-neutral

counterparts of the processes for the return and the instantaneous variance, equations

(1) and (2), become

dSt

St
= µ∗t dt +

√
Vt dW ∗

1,t + (eut − 1) dqt − λ∗t k̄
∗dt, (12)

dVt = (α− β∗t Vt) dt + σ
√

Vt dW ∗
2,t, (13)

where µ∗t = rt − rf
t is the domestic-foreign interest rate differential. Stochastic pro-

cesses W ∗
1,t and W ∗

2,t are now standard Brownian motions under the risk-neutral prob-

ability measure P∗, having the same correlation coefficient as under the physical

measure P, that is dW ∗
1,tdW ∗

2,t = ρdt. The mean-reversion speed of the instantaneous

variance β∗t and the expected jump size λ∗t k̄
∗dt depend on the market prices of volatil-

ity and jump risk, respectively. The explicit relationships are derived in Appendix A.

The instantaneous risk premia are:

premium for the return diffusion risk = µ− µ∗t ,

premium for the volatility risk = (β − β∗t )Vt,

overall premium for the jump risk = λtk̄ − λ∗t k̄
∗.

The overall jump-risk premium consists of the combined premia for the uncertainty

about the arrival of a jump and the uncertainty about the size of a jump.

At time t, the price of a European-style call option with the value of the underlying
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exchange rate equal to St, time to maturity τ and strike price X, is given by

Ct(St, Vt, τ, X; ψ̂) = e−rf
t τStP1(St, Vt, τ, X; ψ̂)− e−rtτXP2(St, Vt, τ, X; ψ̂). (14)

Closed-form expressions for the functions P1 and P2 are given in Appendix B.

Various effects of stochastic volatility and jumps on option prices are illustrated

in Figures 7–9. The graphs show generic examples, calculated for European-style call

options on EUR/USD exchange rate. The curves represent the Black-Scholes implied

volatilities

σimp = BSImpVol(St, Ct, rt, r
f
t , τ, X). (15)

The implied volatilities σimp were obtained numerically, by substituting the values of

Ct calculated with the formula (14) into equation (15). The set of parameters ψ̂ in

(14) are the EMM estimates given in Table 6. The independent variable in Figures

7–9 is the relative moneyness, defined as the ratio of intrinsic value of option to the

underlying exchange rate, i.e. (St − X)/St. All option prices Ct are computed for

St = 1.1512, the sample average of the EUR/USD exchange rate. The U.S. and the

Eurozone risk-free interest rates are set to rt = 0.02 and rf
t = 0.05, respectively.

The instantaneous volatility
√

Vt is fixed at the annualized long-run mean of 11.1433

percent.

Figure 7 displays the pricing effect of stochastic volatility and jumps, when there

is no premium for volatility and jump risk (β∗t = β, λ∗t = λt and k̄∗ = k̄). The

SV model produces a ”smirk” pattern (dashed line), which is more pronounced for

shorter maturities. This is indicative of a model in which the probability that the call

option price will change significantly is low if the option is deep out of the money.

The smirk effect wanes with maturity since the probability of moving towards higher
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prices increases with the remaining life of the option, while at the same time the

probability of staying in the money decreases. In the SVJD-B model (full line), the

jump component adds an upward tilt to the implied volatility, creating a familiar

”smile” pattern. The smile virtually disappears at longer maturities. This effect

has the following simple intuition. Jumps are not important for options with longer

maturities, as they tend to be compensated in the long run. However, in the short

run, the chance for a compensation is small. Therefore, jumps will make an impact

on price as maturity date approaches: a deep-out-of-the-money option will have a

non-negligible probability of ending up in the money only if the underlying exchange

rate has a tendency to make sudden large jumps.

Figure 8 shows the effect of volatility risk premium implied by the SVJD-B model

when jump risks premium is set to zero (λ∗t = λt and k̄∗ = k̄). The instantaneous

premium for volatility risk is measured by the difference between the speed of mean

reversion β and its risk neutral counterpart β∗t . I set the premium to 0 (full lines), 2

percent (dashed lines) and −2 percent (dotted lines). The graphs indicate that the

volatility premium has little to no effect on short-maturity options. This is because

unexpected changes of the underlying exchange rate over short time periods are mostly

picked up by jumps, and if the jump risk premium is zero the exposure to the volatility

risk alone has a negligible effect on option prices. At longer maturities, the exchange

rate has more time to drift across the moneyness and hence the volatility risk becomes

increasingly important. Positive premia decrease the long-run mean of the risk-neutral

volatility, pushing the option prices down, and vice versa.

The impact of jump risk premium is shown in Figure 9. Now, the volatility pre-

mium implied by the SVJD-B model is set to zero (β∗t = β), while the risk-neutral

jump intensities take the values λ∗t = λt = 0.03 (full line), λ∗t = 0.05 (dashed line) and
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λ∗t = 0.07 (dotted line). The risk-neutral expected jump size is set equal to its ”phys-

ical” value, k̄∗ = k̄ = 0.067 percent. These values imply annual jump risk premia of

0, 0.5 and 1.0 percent, respectively. Even with relatively small premia, the effects are

significant: a change in the risk-neutral jump intensity produces the twists in volatil-

ity smiles. The twists are more pronounced at short option maturities and show an

asymmetric behavior. First, they are directed upward for out-of-the-money options

and downward for in-the-money options. Second, the increase in implied volatility

of out-of-the-money options is greater than the decrease of in-the-money options. A

positive jump risk premium implies that the buyers require to be compensated for

holding an option that is in the money to account for the risk of a negative jump.

At the same time, they are willing to pay more for an out-of-the-money option, since

higher jumps probabilities increase the chance to profit.

33



!!"# !!"!$ ! !"!$ !"#
!

#!

%!

&!

'!

1 week to maturity

 

 

()*+!,

()

!!"# !!"!$ ! !"!$ !"#
!

#!

%!

&!

'!

1 month to maturity

-.
/
01
23
45
6
07
81
01
89
4:
/
2;
<2
=
8>

 

 

()*+!,

()

!!"# !!"!$ ! !"!$ !"#
!

#!

%!

&!

'!

6 months to maturity

?20781524.6=29=2@@

 

 

()*+!,

()

Figure 7: The effect of stochastic volatility and jumps on option prices. Black-
Scholes implied volatilities are calculated from option prices generated by SVJD-B and SV
models for the EUR/USD exchange rate. Model parameters are given in Table 6. The risk
premia for the volatility and jump risks are set to zero. Panels display different times to
maturity: 1 week, 1 month and 6 months.
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implied volatilities are calculated from option prices generated by the SVJD-B model for
the EUR/USD exchange rate. Model parameters are given in Table 6. Annual volatility
risk premia are set to 0, 2 and −2 percent. Panels display different times to maturity: 1
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Figure 9: The effect of jump risk premium on option prices. Black-Scholes im-
plied volatilities are calculated from option prices generated by the SVJD-B model for the
EUR/USD exchange rate. Model parameters are given in Table 6. Annual jump risk pre-
mia are set to 0, 0.5 and 1.0 percent. Panels display different times to maturity: 1 week, 1
month and 6 months.
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4.2 Risk premia and volatility smiles implicit in the cross-

sectional currency options data

The SVJD-B model can fully accommodate the implied volatility patterns observed in

the actual data. As an illustration, I use a cross section of European-style call options

on Euro that were traded on the Philadelphia Stock Exchange (PHLX) on August 6,

2008. The PHLX currency options are settled in U.S. Dollars and expire on Saturday

following the third Friday of the month. There were six available maturities: August

2008, September 2008, October 2008, December 2008, March 2009 and June 2009.

The underlying exchange rate was St = 1.5409 and the available strikes went from

1.2700 to 1.6600, in steps of 0.0050, although some strike/maturity combinations had

no open interest. There were 247 options in the cross section in total.

In order to match the model-implied options prices with the observed ones we

need the risk-neutral parameter estimates. I use the yield on 3-month Treasury bill

as a proxy for the U.S. risk-free rate and the 3-month Euribor as a proxy for the

Eurozone risk-free rate. Their respective values on August 6, 2008 were rt = 1.4800

percent and rf
t = 5.0289 percent. Hence, the annualized risk-neutral drift rate was

µ∗t = −3.5489 percent. This implies an annual premium for the return diffusion risk

of 12.28 percent.

The remaining risk-neutral parameters, β∗t , λ∗0, λ∗1, k̄∗, as well as the instantaneous

variance, Vt, can be obtained by solving

min
{Vt,β∗t ,λ∗0,λ∗1,k̄∗}

∑

i

wi(BSImpVolmodel
i − BSImpVoldata

i )2, (16)

wi =
(
Cask

i − Cbid
i

)−1
.
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The estimator is designed to minimize the weighted squared difference between the

Black-Scholes implied volatilities obtained from the data and the SVJD-B model.

For every contract i, the point estimates of BSImpVoldata
i are obtained from the

average values of volatilities implied by the bid and the ask price. To account for the

differences in liquidity, the weights wi are set equal to the reciprocal of the bid-ask

spread of a given option contract. In this way, the contracts with higher liquidity will

carry more weight in the estimation. The results of the optimization (16) are given

in the left panel of Table 10. The Pearson’s chi-square statistic indicates that the fit

is highly significant. Figure 10 displays the market- and model-implied volatilities for

four selected maturities. The error bars correspond to implied volatilities calculated

from the bid and ask market prices, while the smooth lines are obtained from the

SVJD-B model using the parameter estimates given in Tables 6 and 10. Parameter

values imply annual risk premia of −2.30 and 0.16 percent for the volatility and jump

risk, respectively (see the right panel of Table 10).

Table 10: Option-implied parameters
The left panel shows the instantaneous variance and risk-neutral parameters estimated
from the cross section of currency option prices that were traded on PHLX on August
6, 2008. The right panel shows the corresponding risk premia.

Parameter Value

Vt 0.0106
(0.0015)

β∗t 0.0248
(0.0047)

λ∗0 0.0332
(0.0017)

λ∗1 0.0027
(0.0002)

k̄∗ 0.0007
(0.0001)

χ2[246] 0.2973

(Standard errors in parentheses.)

Premium Value (%)

Return diff. risk 12.28
(4.98)

Volatility risk −2.30
(0.76)

Jump risk 0.16
(0.03)

(Standard errors in parentheses.)
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Figure 10: Black-Scholes market- and model-implied volatilities. Four selected
maturities of European-style call option contracts on Euro. The error bars correspond
to implied volatilities calculated from the bid and ask market prices quoted on PHLX on
August 6, 2008. The smooth lines are obtained from the proposed SVJD-B model with
instantaneous variance and risk-neutral parameters given in Table 10. Parameter values
imply a volatility risk premium of −2.30 percent and a jump risk premium of 0.16 percent.
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The premium for the return diffusion risk has the highest absolute value of the

three, which is plausible given that the diffusion is responsible for most of the everyday

changes. Volatility risk premium is negative and significant. The negative premium is

a sign that investors are willing to pay more for exposure to the volatility uncertainty,

which is reasonable given that higher volatility increases the option premium. The

negative volatility risk premium is consistent with the findings of Bates (1996b). It

is also implied in the prices of options on stock market indices (see, for example,

Chernov & Ghysels (2000) or Pan (2002)). Finally, the jump risk premium is positive

and significant, although an order of magnitude smaller than the volatility premium.

Since jumps are very rare this is not surprising. However, the statistical significance

of the jump risk premium indicates that the fear of jumps is important and seems to

be priced by the market.

5 Conclusion

This paper confirms the crucial role of stochastic volatility and jumps in exchange

rate processes, at least in the four major U.S. Dollar-based spot exchange rates. The

inference procedure based on the efficient method of moments shows that all pure-

diffusion models are misspecified. These models are not able to capture the events in

the tails of return distributions nor to accommodate the implied volatility patterns

obtained from the actual options data. A stochastic volatility model with jump sizes

from a bimodal distribution is able to fully remove the misspecification and yield an

option pricing formula.

The filtering distributions of jump times inferred from the data indicate that jumps

occur in irregular patterns, on average between eight and eleven times a year, depend-
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ing on the exchange rate. In general, the jump probability weakly depends on volatil-

ity. On the other hand, jump events tend to coincide with the arrival of important

news to the currency market. They also appear to be more frequent in the periods

of turbulence in the stock market. This observation points to the importance of a

deeper understanding of jumps in foreign exchange rates that goes beyond statistical

significance.

Finally, jumps have a large impact on the prices of foreign currency options. They

remove the distinct asymmetry of Black-Scholes implied volatility patterns character-

istic for models without jumps. Moreover, the proposed general model is capable to

accommodate the smile patterns observed in the actual data. Estimates of the risk-

neutral model parameters obtained from the cross-sectional options data indicate that

jump risk appears to be priced by the market.

Appendix A: The risk-neutral version of the model

Given that the diffusion and the jump process are independent of each other, we can

split the return dynamics into the pure-diffusion part and the pure-jump part:

dSt

St
=

(
dSt

St

)

diff

+ dJt, (17)

where (
dSt

St

)

diff

= µdt +
√

Vt dW1,t (18)
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and

dJt = (eut − 1) dqt − λtk̄dt. (19)

Let us focus on the diffusion part first. Pure-diffusion return (18) and the instanta-

neous volatility Vt follow a joint Brownian diffusion, since W1 and W2 are correlated.

Define

dWt =




√

Vt dW1,t

σ
√

Vt dW2,t



 , (20)

for all t. To find the risk-neutral equivalent dW∗ of (20) that would be a martingale

under an equivalent measure P∗, we first write the Radon-Nikodým derivative of P∗

with respect to the physical measure P:

dP∗
dP = exp

[
−

∫ t

0

ξs · dWs −
1

2

∫ t

0

(ξs · dWs) (dWs · ξs)

]
,

where

ξs =




ξ1,s

ξ2,s





is predictable at s (see Bingham & Kiesel (2004)). Then, by Girsanov’s theorem, a

P∗-Brownian motion has the form

dW∗
t = dWt (1 + dWt · ξt) .

Therefore,

dWt = dW∗
t −




1 ρσ

ρσ σ2








ξ1,t

ξ2,t



Vtdt,

42



which implies that we can substitute




√

Vt dW1,t

σ
√

Vt dW2,t



 =




√

Vt dW ∗
1,t − (ξ1,t + ρσξ2,t) Vtdt

σ
√

Vt dW ∗
2,t − (ρσξ1,t + σ2ξ2,t) Vtdt





into (1) and (2). Hence, the processes

(
dSt

St

)

diff

= µ∗t dt +
√

Vt dW ∗
1,t

and

(α− β∗t Vt) dt + σ
√

Vt dW ∗
2,t

both contain diffusions that are (jointly) martingales under P∗, as long as

µ∗t = µ− (ξ1,t + ρσξ2,t) Vt

and

β∗t = β − ξt,

where ξt ≡ ρσξ1,t + σ2ξ2,t. The no-arbitrage argument in the form of covered interest

parity requires that µ∗t dt = E∗
t (dSt/St) = (rt − rf

t )dt. This constraint implies that

at each t, ξ1,t and ξ2,t will not be independent given the values of the interest rates.

A common assumption of constant elasticity of substitution in the utility function of

the representative agent, as in Bates (1996b), will correspond to the case where ξt is

constant in time.

The jump component in equation (19) is a P-martingale by construction:

Et(dJt) = Et [(eut − 1)dqt]− λtk̄dt

= Et(e
ut − 1)λtdt− λtk̄dt
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= 0.

The second equality follows from measurability of Vt with respect to Ft. Define

dNt = dqt − λtdt.

By applying Girsanov’s theorem for point processes (Elliot & Kopp (2005)), the risk-

neutral version of dN will be

dN∗
t = dNt − Et

[
ea+but

Et(ebut)
− 1

]
λtdt

= dNt − (ea − 1)λtdt

= dqt − λ∗t dt,

where the market prices of jump risk a and b are measurable with respect to Ft, and

λ∗t ≡ eaλt. Girsanov’s theorem applied to dJ then yields

dJ∗t = dJt − Et

[(
ea ebut

Et(ebut)
− 1

)
(eut − 1)

]
λtdt

= (eut − 1)dqt − λ∗t

[
ebω2 Q(b + 1)

Q(b)
− 1

]
dt,

where

Q(Φ) = p(1 + k)Φ + (1− p)(1− k)Φ.

Therefore, the process

dJ∗ = (eut − 1)dqt − λ∗t k̄
∗dt

will be a martingale under P∗ as long as

k̄∗ = ebω2 Q(b + 1)

Q(b)
− 1.
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Parameter a captures the inability of the market to time the arrival of jumps, while

b measures the uncertainty related to the jump size and, possibly, the model uncer-

tainty. Liu et al. (2005) also argue that a significant part of the jump risk premium

should come from the uncertainty aversion in the sense of Knight (1921) and Ellsberg

(1961).

Putting everything together, the processes

dSt

St
= µ∗t dt +

√
VtdW ∗

1,t + (eut − 1) dqt − λ∗t k̄
∗dt,

dVt = (α− β∗t Vt) dt + σ
√

VtdW ∗
2,t,

with dW ∗
1,tdW ∗

2,t = ρdt, represent the risk-neutral equivalents of (1) and (2). The

market risk premia are the following:

premium for the return diffusion risk = µ− µ∗t

premium for the volatility risk = (β − β∗t )Vt = − ξtVt

overall premium for the jump risk = λtk̄ − λ∗t k̄
∗.

Appendix B: Closed-form solution for the price of

a European currency option

Given the risk-adjusted model (12)–(13), the price at t of a European call option with

residual maturity τ = T − t and strike price X is given by

Ct(St, Vt, τ, X; ψ̂) = e−rtτE∗
t [max (ST −X, 0)]
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= e−rf
t τStP1 − e−rtτXP2,

where E∗
t (·) denotes the expectation with respect to the risk-neutral probability mea-

sure P∗ and conditional on the sigma-algebra Ft. P1 and P2 have the usual Black-

Scholes interpretation of the expected value of the underlying asset conditionally on

the option being in the money, and probability of being in the money, respectively.

The closed-form expressions for P1 and P2 can be obtained by following the calculation

steps similar to those in Bates (1996b). The results are

Pj =
1

2
+

1

π

∫ ∞

0

imag
(
Fj(iΦ)e−iΦx

)

Φ
dΦ,

Fj(Φ; V, τ) = exp {Aj(τ ; Φ) + Bj(τ ; Φ)V + λ∗0τCj(Φ)} ,

Aj(τ ; Φ) = µ∗t τΦ− ατ

σ2
(ρσΦ− βj − γj)

−2α

σ2
ln

[
1 +

1

2
(ρσΦ− βj − γj)

1− eγjτ

γj

]
,

Bj(τ ; Φ) = − Φ2 + (3− 2j)Φ + 2λ∗1Cj(Φ)

ρσΦ− βj + γj(1 + eγjτ )/(1− eγjτ )
,

Cj(Φ) = (1 + k̄∗)2−j
[
Q(Φ; p, k∗)e(1/2)ω2(Φ2+(3−2j)Φ) − 1

]
− k̄∗Φ,

γj =
√

(ρσΦ− βj)2 − σ2 [Φ2 + (3− 2j)Φ + 2λ∗1Cj(Φ)],

βj = β∗t + ρσ(j − 2),

Q(Φ; p, k∗) = p(1 + k)Φ + (1− p)(1− k)Φ,

x = ln(X/St),

µ∗t = rt − rf
t ,

for j = 1, 2. By setting p = 1 and λ∗1 = 0 we obtain the option pricing formula

given in Bates (1996b) for currency options, or in Bates (2000) for options on a stock

market index.
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