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Abstract

We propose a valuation framework for pricing European call warrants on the is-

suer’s own stock. We allow for debt in the issuer firm. In contrast to other works

which also price warrants with dilution issued by levered firms, ours uses only ob-

servable variables. Thus, we extend the models of both Crouhy and Galai (1994)

and Uhkov (2004). We provide numerical examples to study some implementation

issues and to compare the model with existing ones.
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1 Introduction

As European call options, European call warrants give the holder the right to purchase

a specified amount of an asset at an agreed price, on a fixed date. There are two types

of warrants: warrants on the company’s own stock and warrants on other assets. In the

former case, the exercise of the warrant in exchange for new shares results in a dilution

of the firm’s own stock. To allow for possible dilution when pricing warrants, some

studies, such as Galai and Schneller (1978), Noreen and Wolfson (1981), Galai (1989),

and Lauterbach and Schultz (1990), present different revisions of the Black and Scholes

(1973) option pricing model. In the valuation formulas obtained by these studies, firm

market value and its volatility need to be known, which is not possible. Moreover, when

there are warrants outstanding, the firm value is itself a function of the warrant price.

To overcome these problems, Schulz and Trautmann (1994) propose a warrant-pricing

procedure based on the price and volatility of the underlying stock, both of which are

observable variables. More recently, Ukhov (2004) develops an algorithm that generalizes

the Schulz and Trautmann (1994) proposal for the case of the warrant ratio1 being distinct

from unity.

The above studies value warrants issued by companies financed by shares and warrants.

The majority of firms, however, are also debt financed. To reflect this fact, Crouhy and

Galai (1994) develop a pricing model for the valuation of warrants issued by levered com-

panies. Later, Koziol (2006) extends the analysis of Crouhy and Galai to explore optimal

warrant exercise strategies in the case of American-type warrants.

Both the Crouhy-Galai’s formula and its extension in Koziol (2006) depend on the

value of a firm with the same investment policy as the one issuing the warrant but fi-

nanced entirely with shares of stock. Therefore, these pricing models again present the

drawback of dependence on unobservable variables. In this paper, we devise a model for

the valuation of warrants issued by levered companies, where only the values of observa-

ble variables need to be known.

The remainder of the study is organized as follows. Section 2 briefly describes the va-

1We use the term ratio to refer to the number of units of the underlying asset that can be purchased by

exercising a call warrant.
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luation of unlevered warrants with dilution. Section 3 presents a valuation framework for

pricing warrants on own stock issued by debt-financed firms that uses variables that can

be observed. Section 4 examines its implementation through some numerical examples.

Finally, section 5 contains the conclusions of our research.

2 Pricing unlevered warrants with dilution

A recurring issue in the corporate warrant pricing literature is the fact that the value of a

warrant is a function of firm value, which in turn includes the warrant value and is unob-

servable. Authors such as Ingersoll (1987), Galai (1989), Crouhy and Galai (1991) and

Veld (2003) explicitly acknowledge this problem, and provide different alternatives. More

recently, Ukhov (2004) draws on the work of Schulz and Trautmann (1987) and proposes

an algorithm that requires only knowledge of observable variables. First, he follows the

work of Ingersoll (1987) and derive an expression of warrant value as a function of firm

value and return volatility, then he establishes a relationship between these variables and

the price and volatility of the underlying stock. In this section, we introduce a unifying

notation and we briefly present the models of Ingersoll (1987) and Ukhov (2004).

2.1 Valuation of unlevered warrants using unobservable variables

Let there be a firm financed by N shares of stock and M European call warrants. Each

warrant gives the holder the right to k shares at time t = T in exchange for the payment

of an amount X . Let Vt be the asset value of the firm at time t, St and σS are the price and

volatility of the underlying share, respectively, and let wt be the warrant price at time t.

If the M warrants are exercised at t = T , the firm receives an amount of money MX

and issues Mk new shares of stock. Thus, immediately before the exercise of the warrants,

each warrant must be worth k
N+kM (VT +MX)−X . According to Ingersoll (1987), warrant

holders will exercise the warrants only when this value is non-negative, that is, when

kVT ≥ NX . Thus, the warrant price at date of exercise can be expressed as follows:

wT =
1

N + kM
max(kVT −NX ,0) (1)
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Assuming that the assumpyions of Black and Scholes (1973) hold, Ingersoll obtains the

following expression for the warrant price:

wt =
1

N + kM

[
kVtΦ(d1)− e−r(T−t)NXΦ(d2)

]
(2)

with:

d1 =
ln(kVt/NX)+(r +σ2

V /2)(T − t)
σV
√

T − t
(3)

d2 = d1−σV
√

T − t (4)

where Φ(·) is the distribution function of a Normal random variable and σV is the return

volatility of Vt .

As we can see, the warrant pricing formula proposed by Ingersoll (1987) depends on

Vt y σV , which are unobservable values.

2.2 Valuation of unlevered warrants using observable variables

To obtain a warrant-pricing formula where only the values of observable variables need to

be known, Ukhov (2004) draws on expressions (2) - (4) and proposes relating Vt and σV

to the underlying share price, St , and its return volatility, σS. He relates these variables as

follows:

σS = σV ∆S
Vt

St
(5)

where ∆S = ∂St/∂Vt . Given that Vt = NSt +Mwt , the following expression is satisfied:

N∆S +M∆w = ∆V = 1 (6)

where ∆w = ∂w(Vt ; ·)/∂Vt . Furthermore, using (2) we have that:

∆w =
k

N + kM
Φ(d1) (7)

Substituting the above into (6), the expression for ∆S is obtained:

∆S =
1−M∆w

N
=

N + kM− kMΦ(d1)
N(N + kM)

(8)
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Finally, substituting the expression (8) into (5) the relationship between the unobservable

variables, Vt and σV , and the observable variables St and σS is given.

Having established this relationship, Ukhov (2004) proposes the following algorithm

to obtain the warrant price:

1. Solve (numerically) the following system of non-linear equations for (V ∗
t ,σ∗

V ):{
NSt = Vt − M

N+kM

[
kVtΦ(d1)− e−r(T−t)NXΦ(d2)

]
σS = Vt

St
∆SσV

(9)

with:

∆S =
N + kM− kMΦ(d1)

N(N + kM)
(10)

and where:

d1 =
ln(kVt/NX)+(r +σ2

V /2)(T − t)
σV
√

T − t
(11)

d2 = d1−σV
√

T − t (12)

2. The warrant price, wt , is computed as:

wt =
V ∗

t −NSt

M
(13)

This way Ukhov provides a valuation formula for the warrant price based on observa-

ble variables.

3 Pricing levered warrants with dilution

Despite the advantage of using only the values of observable variables, the Ukhov (2004)

model has the limitation of assuming that the issuer of the warrant is a pure-equity firm,

since the majority of firms issuing warrants are also debt financed.

In this section, we extend the work of Ukhov allowing for debt in the issuer firm.

As we shall see, this extension is by no means obvious. Specifically, we consider a firm

financed by N shares of stock, M European call warrants and debt D. The debt consists
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of a zero-coupon bond with face value F and maturity TD. For every warrant held, the

holder has the right to purchase k shares of stock at T , in exchange for the payment of an

amount X .

As other authors (see Ingersoll, 1987 and Crouhy and Galai, 1994 among others),

we assume that the proceeds from exercising the warrants are reinvested in the company.

Similarly, we also assume no economies of scale and a stationary return distribution for

one unit of investment, independent of firm size. Due to this assumption, in case of

the exercise of warrants, the value of the company increases and the number of shares

outstanding also changes. This fact has a different effect on the price of the warrant

depending on if the firm debt has matured previously, or it is still alive. Accordingly, we

consider three cases: a) warrants expire before debt (T < TD); b) warrants have the same

maturity as debt (T = TD); and c) warrants expire after the zero coupon bond (T > TD).

To obtain the pricing formula in each case, we follow Ukhov (2004) and express

the value of the levered warrant as a function of the unobservable variables. Then, we

establish a relationship between the unobservable variables and the underlying stock price

and its return volatility.

3.1 Warrants with shorter maturity than debt

Let us consider the case in which the warrant issuer is financed with a zero-coupon bond

with longer maturity than the exercise date of the warrants, that is, T < TD. We first build

on Crouhy and Galai (1994) and obtain an expression for the value of the warrants that

depends on unobservable variables.

Crouhy and Galai (1994) propose a pricing formula for levered warrants when debt

maturity is longer than the exercise date of warrants. In their formula, the warrant price

depends on the value of a firm with the same investment policy as the firm issuing the

warrant, but financed entirely by common stock. Thus, the initial value of the reference

firm is the same as the one of the levered firm. The assumptions from which Crouhy

and Galai (1994) derive their results are that the risk-free interest rate, r, is known and

constant, and perfect market conditions.

Let us suppose that at t = 0 the reference firm issues N′ shares of stock at a price
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V ′
0/N′ = S′0, while the warrant-issuing firm issues N shares of stock, M warrants and a

zero-coupon bond with maturity TD > T . Thus we have that for 0≤ t < T :

Vt = NSt +Mwt +Dt , with Vt = V ′
t (14)

where St , wt and Dt are the value of a share, a warrant and the debt of the levered firm

at time t. Thus, the warrant value at any time prior to the exercise date is given by the

following expression:

wt =
V ′

t −NSt −Dt

M
, with t < T (15)

As Crouhy and Galai (1994), we begin by analyzing the value of the company at the

maturity date of debt (t = TD). If the warrants are exercised at t = T an amount MX

is reinvested in the company, thus, the value of the levered company as of the date of

exercise may differ from the reference firm value. If the warrants have not been exercised

at t = T , the value of the levered company at t = TD will be be equal to the reference

asset value, V ′
TD

, whereas if the warrants have been exercised at t = T , the value of the

levered company at t = TD will be V ′
TD

(1+MX/V ′
T ), where V ′

T is the reference asset value

at t = T . The ratio MX
V ′

T
measures the expansion of the company’s assets at t = T .

The exercise of the warrants at t = T depends on whether the value of the shares re-

ceived by the warrant-holders is greater than the exercise price. Although the traditional

analysis2 considers that warrants should be exercised if the value of the shares immedi-

ately prior to the exercise date is greater than X , Crouhy and Galai (1994) show that this

condition may lead to erroneous decisions and argue that warrants should be exercised if

the value of the shares of stock is greater than X immediately after the expiration.

As mentioned earlier, we assume that each warrant gives the holder the right to buy k

shares of stock 3, with k > 0. Thus, we can write the post-expiration value of a share of

stock at t = T , ST , as follows:

ST =


V ′

T−DNW
T

N ≡ SNW
T if warrants are not exercised at t = T

V ′
T +MX−DW

T
N+kM ≡ SW

T if warrants are exercised at t = T
(16)

2See for example Ingersoll (1987), Schulz and Trautmann (1994) and Ukhov (2004).
3We should note that in their work, Crouhy and Galai (1994) only consider the case in which k = 1, that

is, each warrant entitles the right to purchase one share of stock.
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where V ′
T is the reference firm value at t = T , and DW

T , DNW
T , SW

T and SNW
T denote the

debt value and the price of a share of stock in the company immediately after T with

warrants exercised and without warrants exercised, respectively. Given that SW
T is an

increasing function of V ′
T , there exists a unique value of V ′

T , V̄ ′
T , for which the warrant-

holders are indifferent as to whether to exercise their warrants or let them expire, that is,

kSW
T (V̄ ′

T )≡ X . Thus, for reference asset values above (below) V̄ ′
T , the warrants will (will

not) be exercised at t = T .

Alternatively, we can write the above expression in the following way:

ST =

{ c(V ′
T ,F,TD−T )

N ≡ SNW
T if V ′

T ≤ V̄ ′
T

c(V ′
T +MX ,F,TD−T )

N+kM ≡ SW
T if V ′

T > V̄ ′
T

(17)

where c(x,K,T ) denotes the value of a European call option on x, with strike K and time

to maturity T , and where V̄ ′
T is the reference firm value at which the warrants may be

exercised. Consequently, at any time t, with T < t ≤ TD, the value of one share of stock

may be expressed as follows:

St =

{
c(V ′

t ,F,TD−t)
N ≡ SNW

t if V ′
T ≤ V̄ ′

T
c(V ′

t +MX ,F,TD−t)
N+kM ≡ SW

t if V ′
T > V̄ ′

T

(18)

With the assumptions that the reference asset value V ′
t follows a lognormal process and

that there are no arbitrage opportunities, there exists a risk-neutral probability measure

under which e−rtV ′
t is a martingale, so that we can write:

dV ′
t = rV ′

t dt +σV ′V ′
t dZ′t (19)

where r is the risk-free interest rate, σV ′ is the return volatility of V ′
t , and Z′t is a standard

Brownian motion. Therefore, we can apply the Black and Scholes (1973) option pricing

formula to the systems (17) and (18) and thus obtain the value of St , with T ≤ t ≤ TD.

A consequence of the above assumption is that for any time t, with t < T , we can

value the firm’s shares discounting their expected value at T at the risk-free discount rate,

r:

St = e−r(T−t)E∗[ST ]

= e−r(T−t)E∗
[

c(V ′
T ,F,TD−T )

N
IV ′

T≤V̄ ′
T
+

c(V ′
T +MX ,F,TD−T )

N + kM
IV ′

T >V̄ ′
T
|Ft

]
(20)
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where E∗ denotes the expected value under the risk-free probability measure, Ft is the

available information set at time t, and I[condition] is an indicator that takes a value of 1

when the condition is satisfied and 0 otherwise.

We know that the solution of the process given by (19) is:

V ′
T = V ′

t exp
(
(r−1/2σ

2
V ′)(T − t)+σV ′(Z′T −Z′t)

)
(21)

Thus, V ′
T follows a lognormal distribution, that is, [lnV ′

T ]|V ′
t ∼Φ

(
lnV ′

t +(r−0.5σ2
V ′)(T −

t),σ2
V ′(T − t)

)
.

From the properties of the lognormal distribution, expression (20) can be rewritten as

follows:

St = e−r(T−t)
(∫ V̄ ′

T

0

c(V ′
T ,F,TD−T )

N
f (V ′

T )dV ′
T +

∫
∞

V̄ ′
T

c(V ′
T +MX ,F,TD−T )

N + kM
f (V ′

T )dV ′
T

)
(22)

where f (·) is the probability distribution function of a lognormal random variable.

Finally, defining y(V ′
T ) =

ln
V ′T
V ′t

+(r− 1
2 σ2

V ′)(T−t)

σV ′
√

T−t
, we can compute the stock price as follows:

St =
e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞

c(V ′
T ,F,TD−T )

N
e−

y2
2 dy+

∫
∞

ȳ

c(V ′
T +MX ,F,TD−T )

N + kM
e−

y2
2 dy

)
(23)

Analogously, the value of debt at time t, with t < T , is given by:

Dt = e−r(T−t)E∗[DT ]

= e−r(T−t)E∗
[
(Fe−r(TD−T )− p(V ′

T ,F,TD−T ))IV ′
T≤V̄ ′

T

+(Fe−r(TD−T )− p(V ′
T +MX ,F,TD−T ))IV ′

T >V̄ ′
T
|Ft

]
(24)

where p(x,K,T ) denotes the value of a European put option on x, with strike K and time

to maturity T . Using the same reasoning as for the share value, we obtain the following:

Dt = Fe−r(TD−t)

− e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞

p(V ′
T ,F,TD−T )e−

y2
2 dy+

∫
∞

ȳ
p(V ′

T +MX ,F,TD−T )e−
y2
2 dy

)
(25)
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Once we have the expressions for St and Dt , we substitute them into equation (15)

to obtain the warrant price, wt , as a function of the reference asset value and its return

volatility, V ′
t and σV ′ . It should be noted that, for t < T , both the reference firm value and

its return volatility are equal to those of the levered firm, that is, V ′
t = Vt and σV ′ = σV .

Thus, following the Crouhy and Galai approach we have obtained an expression for wt ,

with t < T , that depends on the levered firm value and its return volatility, Vt and σV .

Once we have the price of the warrant expressed as a function of the reference asset

value and return volatility, V ′
t and σV ′ , based on Ukhov (2004) we propose to establish a

relationship between these variables and the firm’s stock price, St , and its return volatility,

σS. To relate these variables, we use the expression (23), which relates the variables V ′
t

and σV ′ to the stock price, St , and also the following expression to relate V ′
t , σV ′ and St to

σS:

σS = σV ′
∂St

∂V ′
t

V ′
t

St
(26)

where St is given by (23).

Having related the unobservable and observable variables, we formulate the following

proposition:

Proposition 1 Let us consider a company with value denoted by Vt , and financed by N

shares of stock, M European corporate call warrants with exercise date T , and a zero-

coupon bond with face value F and maturity TD, with TD > T . For every warrant held,

the warrant holder has the right to k shares in the company in exchange for payment of an

amount X at time t = T . Let St be the stock price and let σS be the stock return volatility.

Let V ′
t be the value of a firm with the same investment policy but financed entirely by

shares. The value of this firm and its return volatility are equal to the value of the levered

firm and its volatility for t < TD if the warrants are not exercised at t = T , and for t < T

if the warrants are exercised at t = T . Furthermore, if V ′
t follows a geometric Brownian

motion with standard deviation σV ′ under a risk-neutral probability measure and in the

absence of arbitrage opportunities, then the value at time t of a European call warrant on

the company’s shares will be given by the following algorithm:
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1. Solve (numerically) the following system of non-linear equations for (V ′∗
t ,σ∗

V ′): St = e−r(T−t)√
2π(T−t)

(∫ ȳ
−∞

c(V ′
T ,F,TD−T )

N e−
y2
2 dy+

∫
∞

ȳ
c(V ′

T +MX ,F,TD−T )
N+kM e−

y2
2 dy

)
σS = σV ′

∂St
∂V ′

t

V ′
t

St

(27)

where c(x,K,T ) denotes the value of a European call option on x, with strike K and

time to maturity T , whereas V̄ ′
T denotes the value of V ′

T that satisfies k c(V ′
T +MX ,F,TD−T )

N+kM =

X, ȳ = y(V̄ ′
T ), and y(V ′

T ) =
ln

V ′T
V ′t

+(r− 1
2 σ2

V ′)(T−t)

σV ′
√

T−t
.

2. The warrant price at time t, with t < T , is obtained as:

wt =
V ′∗

t −NSt −Dt

M
(28)

where Dt is given by:

Dt = Fe−r(TD−t)

− e−r(T−t)√
2π(T − t)

(∫ ȳ

−∞

p(V ′∗
T ,F,TD−T )e−

y2
2 dy+

∫
∞

ȳ
p(V ′∗

T +MX ,F,TD−T )e−
y2
2 dy

)
(29)

and where p(x,K,T ) is the value of a European put option on x, with strike price K

and time to maturity T .

It should be noted that our proposed algorithm is based on observable variables only,

such as the risk-free interest rate and the current price of the underlying stock. Thus, we

can claim to have solved a problem found in the literature concerning the valuation of

corporate warrants issued by levered firms when T < TD.

3.2 Warrants with the same maturity as debt

Let us suppose now that the warrants issued by the company have the same maturity as

debt, that is T = TD. This case is consistent with many issues of warrants that are joint to

some bond issues. In this situation, the owner of a warrant has the right to pay X at T and

receive k shares of stock with individual value 1
N+kM (ET +MX), where ET is the value of
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equity at T , just after the maturity of debt. We can thus express the value of the warrant

at t = T as:

wT = max(0, kλ (ET +MX)−X) (30)

where λ = 1
N+kM . Furthermore, we know that ET = max(VT −F,0), because if the value

of the company at T is larger than the face value of debt, F , debtholders get F while

shareholders get VT −F , and in case of default, the debtholders receive what is left of the

company, VT , while the shareholders get 0. Thus, we can write (30) this way:

wT = max
(

0, max
(
kλ (VT −F +MX)−X ,−λNX

))
(31)

Additionally, since the values of λ , N and X are non-negative, we can express wT as

follows:

wT = λ max(0,kVT − kF−NX) (32)

We must note that at time t = T the warrantholder receives the same payoff as the

owner of λ European call options on kVt , with strike kF + NX and exercise date at T .

Thus, if we assume that the Black-Scholes assumptions are satisfied, the value of the

warrant is given by the following expression:

w(Vt , σ , X) = λ
[
kVtΦ( f1)− e−r(T−t)(kF +NX)Φ( f2)

]
(33)

with:

f1 =
ln

( kVt
kF+NX

)
+

(
r + 1

2σ2
V
)
(T − t)

σV
√

T − t
(34)

f2 = f1−σV
√

T − t (35)

where Φ(·) is the distribution function of a Normal random variable and where σV is the

standard deviation of Vt .

This way we have expressed the value of the warrant as a function of the firm value,

Vt , and its volatility, σ . Since these variables cannot be observed, on the basis of Ukhov

(2004) we search for a relationship between Vt and σV with St and σS. As we have seen

before, we can establish a relationship by this expression:

σS =
Vt

St
∆SσV (36)
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where ∆S = ∂St
∂Vt

. To compute ∆S when there exists debt we see that now Vt = NSt +Mwt +

Dt , so we have that:

∆V = 1 = N∆S +M∆w +∆D (37)

Using (33) we obtain the following:

∆w =
∂wt

∂Vt
= kλΦ( f1) (38)

On the other hand, to obtain the expression for ∆D first we must determine the expres-

sion for Dt . We know that the payoff received by debtholders at maturity can be written

this way: DT = min(F, VT ) = F−max(0, F−VT ). Thus, Dt can be expressed as:

Dt = Fe−r(T−t)− p(Vt ,F,T − t) (39)

where p(x,K,T ) is the value of a European put option on x with strike price K and time

to maturity T . Thus, ∆D is given by this expression:

∆D =
∂Dt

∂Vt
= 1−Φ(h1) (40)

where:

h1 =
ln Vt

F +
(
r + 1

2σ2
V
)
(T − t)

σV
√

T − t
(41)

Once we know the expressions for ∆w and ∆D and substituting in (37), we obtain the

expression for ∆S and therefore, we have Vt related to σV , St and σS when the firm is

financed by equity, warrants and debt and T = TD.

Furthermore, we can consider that stockholders and warrantholders have a European

call option on the value of the firm, with exercise price equal to the face value of the debt,

and with maturity at T , that is, NSt +Mwt = c(Vt , F, T − t). Moreover, using the put-call

parity we can check that Vt = NSt +Mwt +Dt is satisfied for all t ∈ [0, T ].

Having established the relationship between the unobservable and observable varia-

bles, we can now enunciate our second proposition:

Proposition 2 Let us consider a company with value denoted by Vt , and financed by N

shares of stock, M European corporate call warrants with exercise date T , and a zero-

coupon bond with face value F and maturity T . For every warrant held, the warrant
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holder has the right to k shares in the company in exchange for payment of an amount

X at time t = T . Let St be the share price and let σS be the share return volatility. If

Vt follows a geometric Brownian motion with standard deviation σV , then the value at

time t of a European call warrant on the company’s shares will be given by the following

algorithm:

1. Solve (numerically) the following system of nonlinear equations for (V ∗
t ,σ∗):{

N St = VtΦ(h1)− e−r(T−t)FΦ(h2)−Mλ
[
kVtΦ( f1)− e−r(T−t)(kF +NX)Φ( f2)

]
σS = Vt

St
∆SσV

(42)

with:

∆S =
Φ(h1)− kM

N+kM Φ( f1)
N

(43)

f1 =
ln

(
kVt

kF+NX

)
+

(
r + 1

2σ2
V
)
(T − t)

σV
√

T − t
(44)

f2 = f1−σV
√

T − t (45)

h1 =
ln

(
Vt
F

)
+

(
r + 1

2σ2
V
)
(T − t)

σ
√

T − t
(46)

h2 = h1−σV
√

T − t (47)

and where λ = 1
N+kM .

2. The warrant price at t is obtained as:

wt = λ
[
kV ∗

t Φ( f1)− e−r(T−t)(kF +NX)Φ( f2)
]

(48)

We must remark that the formula obtained represents an extension of Ukhov’s model

to consider the possibility of the firm financed with debt. Moreover, when the firm has

no debt, we can verify that the expression we obtain is the same as that given by Ukhov

(2004). Furthermore, if the firm has no debt and the effect of dilution is minimal, that is,
M
N → 0, the pricing formula collapses to the Black-Scholes model.
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3.3 Warrants with longer maturity than debt

Let us consider now that case of warrants with longer maturity than debt (T > TD). Thus,

at t = T the owner of a warrant has the right to pay X and receive k shares of stock with

individual value VT
N+kM , where VT is the value of the company at T .

In the same way as Crouhy and Galai (1994) we are going to express VT as a function

of the value of a reference firm with the same investment policy as the warrant issuer but

financed only with shares of stock. For any time prior to the maturity of debt, t < TD, it is

satisfied that the values of the two companies are the same, that is:

Vt = NSt +Mwt +Dt , with Vt = V ′
t (49)

where Vt is the value of the issuer company, St is the value of an individual stock of the

company, wt is the value of a warrant, Dt is the value of debt, and V ′
t denotes the value of

the reference firm.

Moreover, we know that at t = TD, if the value of the issuer firm is larger than the face

value of debt, F , debholders get F while shareholders get the rest of the firm value, and if

the contrary, the firm defaults and debtholders receive what is left of the company, while

shareholders get 0. In terms of the value of the reference company, we can express the

value of the issuer’s firm this way:

VTD =

{
0 if V ′

TD
< F

V ′
TD
−F if V ′

TD
≥ F

(50)

And at t = T , just after the expiration date of the warrants, we can express VT as this:

VT =


0 if V ′

TD
< F

V ′
T −F if V ′

TD
≥ F and the warrants are not exercised at t = T

V ′
T −F +MX if V ′

TD
≥ F and the warrants are exercised at t = T

(51)

The condition for a warrantholder to exercise a warrant at t = T is that the value of

the k shares of stock he or she would receive in case of exercise be greater than the strike

price, that is, kV ′
T−F+MX

N+kM ≥ X . This way, we can write the value at t = T of a warrant as:

wT =

{
0 if V ′

TD
< F

λ max(0,kV ′
T − kF−NX) if V ′

TD
≥ F

(52)
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where λ = 1
N+kM . Consequently, we can consider that at t = TD, just after maturity of

debt, the warrant value is:

wTD =

{
0 if V ′

TD
< F

λc(kV ′
TD

,kF +NX ,T −TD) if V ′
TD
≥ F

(53)

where c(x,K,T ) denotes the value of a European call option on x, with strike K and time

to maturity T .

As in the case of warrants with shorter maturity than debt, if we suppose that the value

of the reference firm follows a lognormal process and the absence of arbitrage opportu-

nities, then it is satisfied that there exists a risk-neutral probability measure below which

e−rtV ′
t is a martingale, such that equation (19) is satisfied. As a consequence, we can

value the warrant discounting its expected value at TD at the risk-free discount rate, r, that

is:

wt = e−r(TD−t)E∗[wTD] = e−r(TD−t)E∗[
λc(kV ′

TD
,kF +NX ,T −TD)IV ′

TD
≥F |Ft

]
(54)

where E∗ denotes the expected value under the risk-free probability measure, Ft is the

available information set at time t and I[condition] is an indicator that takes a value of 1 when

the condition is satisfied and 0 otherwise. Using the same reasoning as in subsection 3.1.

we can write wt this way:

wt =
e−r(TD−t)√
2π(TD− t)

∫
∞

ȳ
λc(V ′

TD
,F,T −TD)e−

y2
2 dy (55)

with y(V ′
TD

) =
ln

V ′TD
V ′t

+(r− 1
2 σ2

V ′)(TD−t)

σV ′
√

TD−t , ȳ =
ln F

V ′t
+(r− 1

2 σ2
V ′)(TD−t)

σV ′
√

TD−t , and where σV ′ is the volatility

of the return of the reference firm value.

Once we have obtained the expression for wt depending on the unobservable varia-

bles V ′
t and σV ′ , we search for a relationthip between these variables and the price of the

underlying stock and its return volatility. To do so, we use the fact that before debt ma-

turity, shareholders and warrantholders own jointly a European call option on the value

of the company, with strike equal to the face value of debt, and with exercise date TD;

that is, NSt +Mwt = c(V ′
t ,F,TD− t), where wt is given by (55). Additionally, we use the

expression σS = σV ′∆SV ′
t /St .
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Having related the unobservable and the observable variables, we can finally formulate

the following proposition:

Proposition 3 Let us consider a company with value denoted by Vt , and financed by N

shares of stock, M European corporate call warrants with exercise date T , and a zero-

coupon bond with face value F and maturity TD, with TD < T . For every warrant held,

the warrant holder has the right to k shares in the company in exchange for payment of an

amount X at time t = T . Let St be the stock price and let σS be the stock return volatility.

Let V ′
t be the value of a firm with the same investment policy as the warrant issuer but

financed entirely by shares. For any time before the maturity of debt it is satisfied that

the value of this firm and its return volatility are equal to the value of the levered firm

and its volatility. Furthermore, if V ′
t follows a geometric Brownian motion with standard

deviation σV ′ under a risk-neutral probability measure and in the absence of arbitrage

opportunities, then the value at time t of a European call warrant on the company’s shares

will be given by the following algorithm:

1. Solve (numerically) the following system of non-linear equations for (V ′∗
t ,σ∗

V ′): NSt +M e−r(TD−t)√
2π(TD−t)

∫
∞

ȳ λc(V ′
TD

,F,T −TD)e−
y2
2 dy = c(V ′

t ,F,TD− t)

σS = σV ′
∂St
∂V ′

t

V ′
t

St

(56)

where c(x,K,T ) denotes the value of a European call option on x, with strike K

and time to maturity T , and with λ = 1
N+kM , y(V ′

TD
) =

ln
V ′TD
V ′t

+(r− 1
2 σ2

V ′)(TD−t)

σV ′
√

TD−t and

ȳ =
ln F

V ′t
+(r− 1

2 σ2
V ′)(TD−t)

σV ′
√

TD−t .

2. The warrant price at time t, with t < TD, is obtained as:

wt(V ′∗
t ,σ∗

V ′) =
e−r(TD−t)√
2π(TD− t)

(∫ ȳ

−∞

λc(V ′
TD

,F,T −TD)e−
y2
2 dy (57)

4 Numerical examples

In this section we provide some applications of the warrant-pricing framework proposed

in this paper to study its implementation. Specifically, we show various numerical appli-

cations comparing the results given by other warrant-pricing models.
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First of all, in Tables 1 and 2 we study the application of the Ukhov (2004) algorithm

by expanding Table 1 presented in his paper. In his table, Ukhov compares the prices given

by three methods: the Black-Scholes-Merton formula, the Ingersoll (1987) pricing model

and his own model. He investigates whether they are close for hypothetical warrants with

different levels of dilution, different underlying stock prices and stock return variance.

Parameters common for all calculations are k = 1, X = 100, T − t = 3, r = 0.0488 and

N = 100. In our tables we add the warrant value given by the Ingersoll (1987) warrant-

pricing formula, taking as values of Vt and σV the values V ∗
t and σ∗

V that satisfy the

system of equations (9), that is, the equilibrium values obtained for the reference firm and

its volatility when using the observed value of the underlying stock and its volatility. We

can check that the results for the warrant price given by this procedure are the same as we

obtain when using the Ukhov (2004) formula taking as inputs the stock price, St , and its

volatility, σS. Furthermore, we see that, as dilution increases, the warrant price decreases

in all the cases except the Black and Scholes (1973) model, which ignores the dilution

effect. We should also stress that the variation between the share volatility, σS, and the

volatility obtained for firm value, σ∗
V , increases with increasing dilution.

In Tables 3 and 4 we compare the valuation of warrants using three models: the Black-

Scholes-Merton formula, the Crouhy and Galai (1994) pricing model, and our own model

when T < TD. Parameters common for all calculations are now k = 1, X = 100, T = 1,

r = 0.0488, N = 100, F = 1000 and TD = 3. The second column gives the warrant prices

given by the Black-Scholes-Merton formula. The third column shows the results given

by the Crouhy and Galai model taking as initial values of V ′
t and σV ′ the values of NSt

and σS. From these values we find the reference asset value above which the warrants

are exercised, V̄ ′
T , which is the value of V ′

T that satisfies c(V ′
T +100M,1000,2)

N+M = 100, where

c(·) is given by the Black and Scholes (1973) option pricing formula. Using the value

of V̄ ′
T thus obtained, we simulate by Monte Carlo the value of V ′

t from t = 0 to t = T .

In each run, the firm value is determined as a function of whether the value of V ′
T given

by the simulation is below or above V̄ ′
T , for which we use the expression of St given by

(18). If the warrants are not exercised, the debt value at t = T is DNW
T = V ′

T −NSNW
T

and the warrant value is wT = 0, whereas, if the warrants are exercised, we calculate the

debt value as DW
T = V ′

T + MX − (N + kM)SW
T and the warrant value as wT = kSW

T −X .
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Finally, after running 1.000.000 simulations, we obtain the values of St , Dt and wt . With

this valuation of the warrant at time t = 0, we have complemented the analysis performed

by Crouhy and Galai, who implement their valuation model only for times close to the

exercise date. Columns 4 - 6 show the results obtained with the algorithm presented in

this paper for pricing levered warrants when T < TD, which is implemented using the

simulation described above and solving the system of non-linear equations given by (27)

such that the value given by the simulation coincides with the known value of St and

the expression of σS is satisfied. As before, we perform 1.000.000 simulations to obtain

the warrant value, wt . We show, in addition to the value of wt obtained with our model,

the values of V ′
t and σV ′ that solve the aforementioned system of equations, that is, the

values of V ′∗
t and σ∗

V ′ . Finally, the seventh column shows the result obtained with the

Crouhy and Galai (1994) model, using these values as values of V ′
t and σV ′ . It can be seen

that the value obtained for wt is practically the same as that obtained with our algorithm.

We should point out that, as in Tables 1 and 2, in both the Crouhy and Galai model and

ours, the differences between the stock return volatility, σS, and the volatility obtained

for the firm asset value, σ∗
V ′ , increase with increasing dilution. We should also mention,

however, that in the case of low stock volatility and for warrants in the money or at the

money, the value of each warrant decreases with increasing dilution with the Crouhy and

Galai (1994) model but increases slightly with our valuation proposal. We must notice

that while in the application of Crouhy and Galai with V ′
t = NSt the value of the reference

firm is invariant to changes in the degree of dilution, in the case of the implementation of

our model, the value of the reference firm changes depending on the number of warrants

and stocks outanding.

Finally, in Tables 5 and 6 we compare the valuation of warrants when T = TD. Pa-

rameters are now k = 1, X = 100, r = 0.0488, N = 100, F = 1000 and T = TD = 34. The

second column provides the warrant prices given by the Black-Scholes-Merton formula.

The third column shows the results given by the Crouhy and Galai model taking as ini-

tial values of Vt and σV the values of NSt and σS. The procedure followed to implement

Crouhy and Galai (1994) in this case is the same as described for the case in which T < TD.

4Since the implementation of the Crouhy and Galai (1994) model is not possible for T = TD, we have

taken TD as 3.0000001.
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Next, in columns 4 - 6 we show the results obtained with the algorithm presented in this

paper for pricing levered warrants when T = TD, given by expressions (42) - (48). In

addition to the value obtained for wt , we provide the values of Vt and σV that solve system

(42), that is, V ∗
t and σ∗

V . Finally, the seventh column shows the result obtained with the

Crouhy and Galai (1994) model using these values as values of Vt and σV . It can be seen

that the value obtained for wt is practically the same as that obtained with our algorithm.

We should remark that, as in Tables 1 - 4, in both the Crouhy and Galai model and ours,

the differences between the stock return volatility, σS, and the volatility obtained for the

firm asset value, σ∗
V , increase with dilution. Moreover, as in the case of T < TD, we obtain

that for low stock volatility and warrants in the money or at the money, the value of each

warrant decreases with dilution with the Crouhy and Galai (1994) model but increases

slightly with our valuation proposal. The reasoning for this fact is the same as before, that

is, while in Crouhy and Galai (1994) the value of the reference firm is invariant to changes

in the degree of dilution, in the valuation model we propose, the value of the reference

firm changes depending on the number of warrants and stocks oustanding.

5 Conclusions

In this paper, we provide a valuation framework for pricing European call warrants on

the issuer’s own stock that takes debt into account. In contrast to other works which also

price warrants with dilution issued by levered firms, ours uses only observable variables.

We consider three different cases depending on the exercise date: warrants expiring

before debt maturity, warrants with the same maturity as debt and warrants with longer

maturity than debt. In order to derive the valuation formula for each situation, and fol-

lowing Ukhov (2004), we first express the value of the warrant as a function of some

unobservable variables. With the aim of obtaining such expression, we follow the Crouhy

and Galai (1994) framework in the case of warrants with shorter and longer maturity than

debt, and we draw on Ingersoll (1987) when the warrants have the same maturity as debt.

Once obtained the expression for the warrant depending on unobservable variables, we

relate these variables to the price of the underlying asset and its return volatility, whose

values are observable.
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Finally, to study the implementation of our valuation framework, we provide some

numerical examples. Specifically, we provide various numerical applications comparing

the results given by other warrant-pricing models, such as the Black-Scholes-Merton for-

mula, the Crouhy and Galai (1994) model and the Ukhov (2004) algorithm. We study

the prices given by the models for different levels of dilution, underlying stock prices and

stock return variance.
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Low volatility, σS = 25%

BSM Ingersoll (1) Ukhov’s model Ingersoll (2)

S0,σS V = NS0,σV = σS S0,σS V = V ∗
U ,σV = σ∗

VU

S0 wBSM wI1 wU V ∗
U σ∗

VU
(%) wI2

PANEL A. Low dilution, N = 100, M = 10

75 8.8572 8.0520 8.8123 7588.12 25.82 8.8123

100 23.6712 21.5193 23.6834 10236.83 26.15 23.6834

110 31.1412 28.3102 31.1540 11311.54 26.20 31.1540

PANEL B. Medium dilution, N = 100, M = 50

75 8.8572 5.9048 8.6528 7932.64 28.72 8.6528

100 23.6712 15.7808 23.6766 11183.83 30.14 23.6766

110 31.1412 20.7608 31.1363 12556.53 30.35 31.1363

PANEL C. High dilution, N = 100, M = 100

75 8.8572 4.4286 8.4880 8348.79 31.73 8.4880

100 23.6712 11.8356 23.6064 12360.64 34.17 23.6064

110 31.1412 15.5706 31.0467 14104.66 34.47 31.0466

Table 1: Expansion of Table 1 of Ukhov (2004) for low volatility of stock returns. This

table displays warrant prices computed by four methods: 1) wBSM is the warrant price

computed according to the Black-Scholes-Merton option formula; 2) wI1 corrects for di-

lution according to Ingersoll (1987), and V = N · S0, and σV = σS; 3) wU is the warrant

price obtained with Ukhov’s model, and V ∗
U and σ∗

VU
are, respectively, the firm value and

the standard deviation of the firm value process that satisfy system (9); and 4) wI2 is the

warrant price computed with the Ingersoll’s formula when firm value and its volatility are

obtained with Ukhov’s model. The remaining parameters are: k = 1, X = 100, T = 3 and

r = 0.0488. Warrant prices are shown for three stock prices and three levels of dilution

due to warrant exercise.
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High volatility, σS = 40%

BSM Ingersoll (1) Ukhov’s model Ingersoll (2)

S0,σS V = NS0,σV = σS S0,σS V = V ∗
U ,σV = σ∗

VU

S0 wBSM wI1 wU V ∗
U σ∗

VU
(%) wI2

PANEL A. Low dilution, N = 100, M = 10

75 16.6081 15.0983 16.5598 7665.59 41.30 16.5598

100 32.5992 29.6356 32.5671 10325.67 41.48 32.5672

110 39.9462 36.3148 39.9089 11399.09 41.51 39.9089

PANEL B. Medium dilution, N = 100, M = 50

75 16.6081 11.0721 16.3742 8318.71 45.77 16.3741

100 32.5992 21.7328 32.3964 11619.82 46.51 32.3964

110 39.9462 26.6308 39.7088 12985.44 46.59 39.7088

PANEL C. High dilution, N = 100, M = 100

75 16.6081 8.3040 16.1638 9116.38 50.26 16.1638

100 32.5992 16.2996 32.1503 13215.00 51.39 32.1503

110 39.9462 19.9731 39.4214 14942.14 51.46 39.4214

Table 2: Expansion of Table 1 of Ukhov (2004) for high volatility of stock returns. This

table displays warrant prices computed by four methods: 1) wBSM is the warrant price

computed according to the Black-Scholes-Merton option formula; 2) wI1 corrects for di-

lution according to Ingersoll (1987), and V = N · S0, and σV = σS; 3) wU is the warrant

price obtained with Ukhov’s model, and V ∗
U and σ∗

VU
are, respectively, the firm value and

the standard deviation of the firm value process that satisfy system (9); and 4) wI2 is the

warrant price computed with the Ingersoll’s formula when firm value and its volatility are

obtained with Ukhov’s model. The remaining parameters are: k = 1, X = 100, T = 3 and

r = 0.0488. Warrant prices are shown for three stock prices and three levels of dilution

due to warrant exercise.
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Low volatility, σS = 25%

BSM CG94 (1) AN model CG94 (2)

S0,σS V ′ = NS0,σV ′ = σS S0,σS V ′ = V ′∗
AN ,σV ′ = σ∗

V ′
AN

S0 wBSM wCG1 wAN V ′∗
AN σ∗

V ′
AN

(%) wCG2

PANEL A. Low dilution, N = 100, M = 10

75 1.9052 0.7854 1.7877 8380.91 22.79 1.7864

100 12.2756 7.4141 12.2924 10984.49 24.15 12.2953

110 19.2280 12.5466 19.2930 12054.26 24.51 19.2908

PANEL B. Medium dilution, N = 100, M = 50

75 1.9052 0.6374 1.6132 8444.51 24.06 1.6110

100 12.2756 5.5189 12.3502 11481.08 28.28 12.3441

110 19.2280 9.2909 19.3990 12833.56 29.32 19.3971

PANEL C. High dilution, N = 100, M = 100

75 1.9052 0.4838 1.4382 8507.53 25.23 1.4387

100 12.2756 4.1468 12.3400 12095.90 32.70 12.3380

110 19.2280 6.9766 19.4316 13806.41 34.39 19.4311

Table 3: Pricing of levered warrants for low volatility of the stock return when T < TD.

This table displays warrant prices computed by four methods: 1) wBSM is the warrant

price computed according to the Black-Scholes-Merton option formula; 2) wCG1 corrects

for dilution according to Crouhy-Galai (1994), and uses V ′ = N ·S0, and σV ′ = σS; 3) wAN

is the warrant price obtained with the Abínzano-Navas approach when T < TD; V ′∗
AN and

σ∗
V ′

AN
are, respectively, the firm value and the standard deviation of the firm value process

that satisfy system (27); and 4) wCG2 is the warrant price computed with Crouhy-Galai’s

formula when firm value and its volatility are obtained with the Abínzano-Navas model.

The remaining parameters are: k = 1, X = 100, T = 1, r = 0.0488, F = 1000 and TD = 3.

Warrant prices are shown for three stock prices and three levels of dilution due to warrant

exercise.
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High volatility, σS = 40%

BSM CG94 (1) AN model CG94 (2)

S0,σS V ′ = NS0,σV ′ = σS S0,σS V ′ = V ′∗
AN ,σV ′ = σ∗

V ′
AN

S0 wBSM wCG1 wAN V ′∗
AN σ∗

V ′
AN

(%) wCG2

PANEL A. Low dilution, N = 100, M = 10

75 5.6669 3.5519 5.4839 8420.77 36.80 5.5040

100 17.9693 12.7799 18.0276 11044.99 38.45 18.0558

110 24.6768 18.1191 24.8004 12112.95 38.88 24.8384

PANEL B. Medium dilution, N = 100, M = 50

75 5.6669 2.6928 5.2266 8626.28 40.06 5.2361

100 17.9693 9.4893 17.9858 11760.20 44.20 17.9892

110 24.6768 13.4165 24.8051 13100.56 45.18 24.8075

PANEL C. High dilution, N = 100, M = 100

75 5.6669 2.0278 5.0064 8862.83 43.44 4.9983

100 17.9693 7.1280 17.9171 12652.83 50.20 17.9291

110 24.6768 10.0745 24.7653 14335.71 51.63 24.7613

Table 4: Pricing of levered warrants for high volatility of the stock return when T < TD.

This table displays warrant prices computed by four methods: 1) wBSM is the warrant

price computed according to the Black-Scholes-Merton option formula; 2) wCG1 corrects

for dilution according to Crouhy-Galai (1994), and uses V ′ = N ·S0, and σV ′ = σS; 3) wAN

is the warrant price obtained with the Abínzano-Navas approach when T < TD; V ′∗
AN and

σ∗
V ′

AN
are, respectively, the firm value and the standard deviation of the firm value process

that satisfy system (27); and 4) wCG2 is the warrant price computed with Crouhy-Galai’s

formula when firm value and its volatility are obtained with the Abínzano-Navas model.

The remaining parameters are: k = 1, X = 100, T = 1, r = 0.0488, F = 1000 and TD = 3.

Warrant prices are shown for three stock prices and three levels of dilution due to warrant

exercise.
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Low volatility, σS = 25%

BSM CG94 (1) AN model CG94 (2)

S0,σS V ′ = NS0,σV ′ = σS S0,σS V ′ = VAN ,σV ′ = σ∗
VAN

S0 wBSM wCG1 wAN V ∗
AN σ∗

VAN
(%) wCG2

PANEL A. Low dilution, N = 100, M = 10

75 8.8572 6.0650 8.7391 8451.20 23.16 8.7621

100 23.6712 17.6025 23.7982 11101.79 24.10 23.8415

110 31.1412 23.7167 31.3129 12176.94 24.33 31.3615

PANEL B. Medium dilution, N = 100, M = 50

75 8.8572 4.4273 8.5739 8792.51 25.79 8.5739

100 23.6712 12.8813 23.8083 12054.23 27.88 23.8141

110 31.1412 17.3624 31.3195 13429.78 28.30 31.3291

PANEL C. High dilution, N = 100, M = 100

75 8.8572 3.3186 8.4041 9204.22 28.54 8.4032

100 23.6712 9.6584 23.7540 13239.21 31.74 23.7576

110 31.1412 13.0190 31.2473 14988.54 32.28 31.2523

Table 5: Pricing of levered warrants for low volatility of the stock return when T = TD.

This table displays warrant prices computed by four methods: 1) wBSM is the warrant

price computed according to the Black-Scholes-Merton option formula; 2) wCG1 corrects

for dilution according to Crouhy-Galai (1994), and uses V ′ = N ·S0, and σV ′ = σS; 3) wAN

is the warrant price obtained with the Abínzano-Navas approach when T = TD; V ∗
AN and

σ∗
VAN

are, respectively, the firm value and the standard deviation of the firm value process

that satisfy system (42); and 4) wCG2 is the warrant price computed with Crouhy-Galai’s

formula when firm value and its volatility are obtained with the Abínzano-Navas model.

The remaining parameters are: k = 1, X = 100, r = 0.0488, F = 1000 and T = TD = 3

(3.0000001 in the Crouhy and Galai (1994) model since it does not allow T to be equal

to TD). Warrant prices are shown for three stock prices and three levels of dilution due to

warrant exercise.
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High volatility, σS = 40%

BSM CG94 (1) AN model CG94 (2)

S0,σS V ′ = NS0,σV ′ = σS S0,σS V ′ = VAN ,σV ′ = σ∗
VAN

S0 wBSM wCG1 wAN V ∗
AN σ∗

VAN
(%) wCG2

PANEL A. Low dilution, N = 100, M = 10

75 16.6081 13.1133 16.4939 8528.68 37.07 16.6045

100 32.5992 20.5033 32.8007 11191.79 38.24 32.9597

110 39.9462 32.7731 40.2254 12266.05 38.55 40.4064

PANEL B. Medium dilution, N = 100, M = 50

75 16.6081 9.5438 16.3116 9179.16 41.22 16.3280

100 32.5992 19.3389 32.6573 12496.58 43.07 32.6877

110 39.9462 23.9270 40.0572 13866.60 43.47 40.0925

PANEL C. High dilution, N = 100, M = 100

75 16.6081 7.1511 16.1071 9973.96 45.43 16.1136

100 32.5992 14.4951 32.4353 14107.09 47.81 32.4525

110 39.9462 17.9353 39.7961 15843.24 48.24 39.8155

Table 6: Pricing of levered warrants for high volatility of the stock return when T = TD.

This table displays warrant prices computed by four methods: 1) wBSM is the warrant

price computed according to the Black-Scholes-Merton option formula; 2) wCG1 corrects

for dilution according to Crouhy-Galai (1994), and uses V ′ = N ·S0, and σV ′ = σS; 3) wAN

is the warrant price obtained with the Abínzano-Navas approach when T = TD; V ∗
AN and

σ∗
VAN

are, respectively, the firm value and the standard deviation of the firm value process

that satisfy system (42); and 4) wCG2 is the warrant price computed with Crouhy-Galai’s

formula when firm value and its volatility are obtained with the Abínzano-Navas model.

The remaining parameters are: k = 1, X = 100, r = 0.0488, F = 1000 and T = TD = 3

(3.0000001 in the Crouhy and Galai (1994) model since it does not allow T to be equal

to TD). Warrant prices are shown for three stock prices and three levels of dilution due to

warrant exercise.
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