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Abstract

We obtain explicit expressions for valuing perpetual ESO using a stochastic discount factor

derived from a maximization program with constrained holdings of company’s stock a la Ingersoll.

In contrast with previous utility-based models, we take into account that ESOs have stochastic lives

due to the risk of employment termination. By using a simple Poissson process for the modeling

of employment shocks, we analyze the determinants of both, the subjective valuation by employees

and the objective valuation by firms. We also perform a detailed analysis of employees incentives,

with particular emphasis in the uncertainty introduced by employment shocks.

JEL Classification: D91, G11, G13

Keywords: Executive Stock Options, Stochastic Discount Factor, Risk Aversion.

1



1 Introduction

Employee stock options (ESOs) are American call options that provide pay for performance. Firms

use ESOs to align employees’ incentives with the shareholders. To create such incentives, ESOs cannot

be sold or transferred nor hedge it by short selling the firm’s stock, but partial hedge is possible by

trading correlated assets. Additionally, they can only be exercised after a given period of time, called

vesting period, has elapsed. As a result of all those constraints, standard methods for valuing American

options do not apply.

Given the increasing relevance of ESOs as a component of corporate compensation, the Financial

Accounting Standards Board (FASB) revised the Financial Accounting Standard 123 (FAS 123R) in

2004. The FAS 123R does not specify a preference for a particular valuation method, but it specifies that

the valuation method should be based on established principles of financial economics like time value of

money and risk-neutral valuation (FAS 123R, paragraph A8). Moreover, the FAS 123 enumerates the

factors required in the valuation technique at a minimum. Besides common factors (expected volatility,

exercise price, current stock price, expected dividends,...), the standard remarks that the valuation

technique should consider the expected term of the ESO taking into account both the contractual

term of the option and the effects of employees’ expected exercise (FAS 123R, paragraph A18). In

this line, the FASB has proposed to use the standard Black-Scholes model for pricing European call

options but replacing the ESO’s maturity date by its observed average life. This observed average life

is clearly affected by events that terminates the employment relationship, such as employees’ voluntary

resignation or dismissal. Jennergren and Näslund (1993) were the first to propose a modified Black-

Scholes valuation model by incorporating an exogenous exit rate at which employees abandon their

jobs. This essentially implies the introduction of a discount factor reflecting the probability that the

employee remains in the firm before ESO’s expiration.

A common finding in empirical evidence, among which Huddart and Lang (1996) and Bettis et

al. (2005) are the main references, is that the observed average life is lower than the maturity date.

Typically, employees tend to exercise ESOs well before their maturity date and mostly right after

the end of the vesting period. This behavior is inconsistent with the exercise policy that an outside

investor, who takes decisions optimally in an unrestricted environment, will follow. This difference in

the exercise policy confirms that the same ESO has a different value for the employee and for the firm.

Thus, the literature on ESO valuation has distinguished between a subjective value and an objective
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value, where the latter is usually defined as the amount that an unrestricted outside investor would

pay for the ESOs.

Lambert et al. (1991) focus on the subjective value of ESOs by using an expected utility frame-

work. They establish the subjective value of one ESO as its certainty-equivalence. As it is well known

by now, the subjective valuation is very relevant because the market value of ESOs depends on its

payoff and this payoff is determined by the employee’s exercise policy. Many papers use the certainty-

equivalent approach improving the initial model of Lambert et al. (1991). Huddart (1994) use this

framework to provide an estimate of this subjective value determining the executive’s exercise rule on a

binomial tree. Kulatilaka and Marcus (1994) follow the same approach but they focus on the objective

valuation for accounting purposes. Thus, they propose to compute the firm cost of one ESO by using

the employee’s exercise policy in an otherwise non restricted environment in which the firm can hedge

its risk. The value of an ESO computed this way is termed as the objective value or true cost of

ESOs for firms. Of course, since the employee’s threshold price is lower than the unrestricted outside

investor’s, the firm’s true cost will be lower than the fair market value of ESOs. Hall and Murphy

(2002) and Cai and Vijh (2005) also use this methodology to obtain the objective value of ESOs in a

more general setting, allowing for restricted stocks of the firm in the executive’s wealth and introducing

the market portfolio, respectively.

Our approach to derive both, the subjective and objective ESO value, follows a simplified version

of Ingersoll’s (2006) model. We retain his asset menu, so that the employee allocates her wealth across

the market portfolio and risk free bonds, but reduce the risk factors to just the market risk. Further,

as in Ingersoll’s model, the employee is constrained to hold more of the company’s stock than its corre-

sponding share in the market portfolio. This could be rationalized on the grounds of good corporative

image or, more generally, by the fact that the employee is not holding a well diversified portfolio. As a

result, there are two sources of risk, one coming from the systematic risk factor underlying the market

portfolio (non diversifiable) and the other coming from the idiosyncratic component of the company’s

stock (not correlated with market risk). In a well diversified portfolio the only source of risk would come

exclusively from the market portfolio and any other idiosyncratic component would have vanished.

By maximizing a lifetime utility function, Ingersoll (2006) finds an stochastic discount factor

which includes those two sources of risk, and that can be used to price the ESO by pricing the risk free

bond and the company’s stock. The model is extended to include a job termination risk. By using the
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usual no arbitrage condition, this discount factor allows us to obtain an stochastic differential equation

which provides a closed form solution for the subjective valuation of perpetual ESOs with positive

vesting period. Furthermore, by simply assuming either, a well diversified portfolio or a risk neutral

agent, we can also obtain the solution for the ESO market value. Finally, by using the risk neutral

solution with the employee’s exercise policy derived in the subjective solution we obtain the objective

ESO value.

Summarizing, the main contributions of the paper are the following ones. We extend the model

of Ingersoll (2006) allowing for job termination and suboptimal ESO early exercise. We obtain a closed

formula for the subjective and objective value of a perpetual ESO, where the objective value is a

particular case of the former. Moreover, we document the small bias size of the perpetual ESO value

respect to the finite maturity one. We also conduct a deep analysis about ESO incentives studying the

ESO greek delta and vega.

2 Perpetual ESO Valuation

Our benchmark model will be a perpetual ESO with a stochastic live arising from exogenous employment

shocks which forces the termination of the employment relationship, as in the model of Jennergren and

Näslund (1993). These shocks can arise from either the employee’s side, due to voluntary resignation,

or from the firm’s side, due to firm’s bankruptcy or firing of employees. In any case, the employee is

forced to exercise the option if the event occurs after the vesting period, or to forfeit it, if the vesting

period has not come to end. The time at which the employment relationship is terminated is simply

modeled as the first event of a Poisson process with hazard rate of λ per unit time. This Poisson

process is assumed to be independent of any other stochastic process underlying our menu of assets.

The hazard rate leads to jumps in the ESO price as in Jennergren and Näslund (1993). We assume

that the job termination risk is not priced, that is, it can be diversified away. This assumption is very

common in the literature. See for instance Jennergren and Näslund (1993), Carpenter (1998), Hull and

White (2004), Carr and Linetsky (2000), Sircar and Xiong (2007) and Leung and Sircar (2007).

Those employment shocks forces exogenous exercise of ESOs. Endogenous exercise results from

the optimizing behavior of the employee. Now, we turn to describe the constrained maximization

problem faced by the employee. First, she faces the following menu of assets: a risk free bond, the
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market portfolio and the company’s stock. The equations describing the dynamics of the company

stock and the market portfolio would be given by

dS

S
=

(

µS − qS

)

dt + σSdZS

dM

M
=

(

µM − qM

)

dt + σMdZM

where qS and qM denote the continuous dividend yield on the stock and the market portfolio, respec-

tively. The company stock and the market portfolio are assumed to be imperfectly correlated. Formally,

the Wiener processes satisfy the following relationship:

σSdZS = βσMdZM + σIdZI (1)

where the parameter β is the conventional ’beta’ in the Capital Asset Price Model (CAPM), for

E
[

(dZM )2
]

= E
[

(dZI)
2
]

= 1 and E [dZMdZI ] = 0. Notice that σI is not an independent parame-

ter, since it must satisfy the restriction σ2
I = σ2

S − β2σ2
M as equation (1) makes clear. In short, we can

write the equation for the stock price dynamics as:

dS

S
= (µS − qS) dt + βσMdZM + σIdZI

As Ingersoll (2006), we assume that the employee is infinitely lived and maximizes an expected

lifetime utility of the constant relative risk aversion class. To capture the degree of no diversification,

we define the parameter θ as the excess of company’s stock holdings over the optimal level already

incorporated in the market portfolio 1. Therefore, the executive’s problem is

max
C,ω

E0

{

∫ ∞

0

e−ρt C
1−γ
t

1 − γ
dt

}

(2)

subject to the budget constraint dynamics

dW = {[r + ω (µM − r) + θ (µS − r)]W − C} dt + ωσMWdZM + θσSWdZS (3)

with initial condition W (0) = W0. For simplicity no wage income is assumed. If CAPM holds, i.e.

1Let θ denote the minimum amount of the company stock that the employee is constrained to hold. If ξ⋆ denotes
the optimal share of the company stock in the market portfolio and ω⋆ the optimal share of the market portfolio in the
employee’s total portfolio, then θ would satisfy the following condition θ = θ − ω⋆ξ⋆ ≥ 0.
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µS = r + β
(

µM − r
)

, we can rewrite equation (3) as

dW = {(r + (ω + θβ) (µM − r))W − C} dt + ωσMWdZM + θσSWdZS . (4)

Using the orthogonal decomposition described in equation (1), we can further rewrite the wealth

dynamics equation as

dW =
{(

r +
(

ω + θβ
)(

µM − r
))

W − C
}

dt +
(

ω + θβ
)

σMWdZM + θσIWdZI (5)

It is verified that, conditional on the initial value of wealth:

E0

[

dW
]

=

{[

r +
(

ω + θβ
)(

µM − r
)

]

W − C

}

dt

E0

[

dW 2
]

=

{

(

ω + θβ
)2

σ2
M + θ2σ2

I

}

W 2dt.

Given the above conditions, we can obtain the stochastic discount factor in the following lemma.

Lemma 1 The stochastic discount factor, Θ, that prices the derivative will obey the following ordinary

differential equation (ODE):

dΘ

Θ
= −r̂dt −

(

µM − r

σM

)

dZM − γθσIdZI (6)

where r̂ = r − γθ2σ2
I .

Proof.- See Appendix A.

Notice that, when the employee is either risk neutral, γ = 0, or has a well diversified portfolio,

θ = 0, the stochastic discount factor does not include any term reflecting the (diversifiable) idiosyncratic

risk of the stock. Hence, the resulting value coincides with the risk neutral price for marketable options.

As in the Black-Scholes-Merton model, what matters for the valuation of European options is not the

agents’ degree of risk aversion but their possibilities of diversification.

For pricing the ESO, we use the no arbitrage condition E0

{

d(ΘV )
}

= 0 where V denotes the
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money value of the ESO. Thus,

0 = E0

[

d
(

ΘV
)]

= E0

(

d
(

ΘV
)
∣

∣no employment shock
) (

1 − λdt
)

+

+ E0

(

d
(

ΘV
)∣

∣ employment shock
)

λdt (7)

where Ψ
(

S
)

denotes the payoff of the ESO holder if there is an employment shock defined as Ψ
(

S
)

=
(

S − K
)

1{S>K}, where 1A is an indicator function verifying that 1A = 1 if A is true and 1A = 0

otherwise. Given equation (7), we get the following result:

Lemma 2 Under the non arbitrage condition, it holds that E0

{

d(ΘV )
}

= 0 where V denotes the ESO

money value and Θ is the employee’s stochastic discount factor for valuation of the derivative. From

this condition and assuming that CAPM holds, we get the following fundamental ODE for the subjective

valuation of ESOs:
(

σ2
S

2

)

VSSS2 +
(

r̂ − q̂S

)

VSS −
(

r̂ + λ
)

V + λΨ
(

S
)

= 0 (8)

where r̂ = r − γθ2σ2
I and q̂S = qS + γθ

(

1 − θ
)

σ2
I .

Proof.- See Appendix B.

Equation (8) is the ODE defining the employee’s value of the ESO in the continuation or waiting

region. The structure of the problem implies that there is a threshold price, S∗, such that the optimal

policy is waiting while S < S∗ and exercising as soon as S ≥ S∗. Hence, at the boundary with the

exercise region, the following conditions must hold:

V
(

S∗
)

= S∗ − K (9)

V ′
(

S∗
)

= 1 (10)

where the threshold price S∗ is determined endogenously as part of the complete solution. Considering

equations (8), (9) and (10), we obtain the following two propositions:

Proposition 3 Assume that there is no vesting period and the ESO is a perpetual American call option,
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then the value for the ESO holder is given by

V
(

S
)

=































Â1S
α̂1 if S ≤ K

B̂1S
α̂1 + B̂2S

α̂2 + λ

(

S

λ + q̂S

− K

λ + r̂

)

if K < S ≤ Ŝ∗

S − K if S > Ŝ∗

(11)

where the values of Â1, B̂1 and B̂2 are defined in Appendix C by equations (20), (24) and (21) respec-

tively. Finally, the threshold price Ŝ∗ is uniquely defined by solving the following equation:

λ

(

Ŝ∗

K

)α̂2

= −
(

1 − α̂2

)

r̂ − α̂2q̂S

(

Ŝ∗

K

)

. (12)

Proof.- See Appendix C.

The first two rows of equation (11) show the ESO value when the price is below the optimal

subjective threshold. Both belong to a situation in which the employee is better-off waiting rather than

exercising the option. For an intuitive explanation of these gains let us consider the second waiting

region. In this region, the first component comes from the possible increase in the future price of the

underlying stock. The second one concerns the possibility of exercising the ESO if an employment

shock occurs at any future time with a probability of λ. Hence, the term λ (S/(λ + q̂S) − K/(λ + r̂))

denotes the expected ESO present value when it is in the money.2 Of course, in the first waiting region

this term does not appear since the option is out of the money.

Figure 1 shows the typical shape of V (S) derived in proposition 3. This figure displays several

values for the stock excess holdings. Note that the situation of θ = 0 is equivalent to the ESO risk

neutral valuation. This value acts as an upper boundary for other situations in which the employee is

less diversified.

[Figure 1 is about here]

2This expected present value is obtained by solving the following integral:
∫ ∞

0
λe−λt

[

e−rt
(

Se(r−qS)t − K
)]

dt

where the time for the first employment shock follows an exponential distribution with mean 1/λ.
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A simplified situation that improves our understanding is provided by the case λ = 0 in the

following corollary. This case leads to the vanilla perpetual American call option already described in

Dixit and Pindyck (1994).

Corollary 4 Assuming λ = 0 in proposition 3, the subjective value of the ESO at any time is given by

V
(

S
)

=















Â1S
α̂1 if S ≤ Ŝ∗

S − K if S > Ŝ∗

(13)

where the values of Â1 and the threshold price Ŝ∗ are given by

Â1 =
Ŝ∗ − K
(

Ŝ∗
)α̂1

; Ŝ∗ =
α̂1

α̂1 − 1
K.

where α̂1 is a positive function of r̂ and a negative function of q̂S.

Denote V SUB as the subjective ESO value and V RN as the market value of ESO achieved when

either θ = 0 or γ = 0 (risk neutral valuation). Then, in the waiting region, V SUB can be written as

V SUB =

(

S

Ŝ∗

)α̂1 (

Ŝ∗ − K
)

=

(

α̂1 − 1
)(α̂1−1)

α̂α̂1

1

K1−α̂1 . (14)

Accordingly, the effect on V SUB of changes in the underlying parameters will all come through their

effects on the positive root α̂1. In Appendix D we show that the relationship between V SUB and α̂1 is

negative, thus anything that reduces α̂1 will increase the ESO value. Notice also that the relationship

between Ŝ∗ and α̂1 is also negative and hence, V SUB and Ŝ∗ will tend to move in the same direction.

The perpetual ESO described in corollary 4 will also help us to understand the impact of changes

in the components of total variance, i.e. σ2
S = β2σ2

M +σ2
I . Although a higher variance tends to increase

V SUB , when this increase is due to a higher idiosyncratic volatility, the adjusted interest rate falls

and the adjusted dividend yield increases. These changes tend to decrease V SUB . In Appendix D we

derive the precise conditions under which V SUB decreases when σI increases. As one would expect,

either a higher degree of risk aversion or a higher excess of stock holding makes more likely that V SUB

decreases.

Next, we introduce our main result concerning the subjective valuation of perpetual ESOs with
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a positive vesting period.

Proposition 5 Let ν denote the length of the vesting period. The ESO expected value at the granting

date, t = 0, conditional on information available at this date is given by

V SUB
0 = e−λν

E0

[

Θν

Θ0
V
(

Sν

)

]

(15)

where the exponential term is the probability that the employee will remain employed at the end of the

vesting period and

E0

[

Θν

Θ0
V
(

Sν

)

]

= e−r̂ν
E0

[

(

Sν − K
)

1{Sν>Ŝ∗}

]

+

+e−r̂ν
E0

[(

B̂1S
α̂1 + B̂2S

α̂2 + λ

(

Sν

λ + q̂S

− K

λ + r̂

))

1{K<Sν≤Ŝ∗}

]

+e−r̂ν
E0

[(

Â1S
α̂1

ν

)

1{Sν≤K}

]

(16)

where for any a and b ∈ R, it holds that

E0

[

Sα̂
ν 1{a≤Sν≤b}

]

= exp

{

α̂

(

lnS0 +
σ2

2

(

b̂ − 1
)

ν

)

+ α̂
σ2

2
ν

}

×
{

Φ

(

ln b − µ − α̂σ2

σ

)

− Φ

(

ln a − µ − α̂σ2

σ

)}

with µ = lnS0 − (r̂ − q̂S − σ2
S/2)ν and σ = σS

√
ν.

Proof.- See Appendix E.

We can obtain a version of proposition 5 for well diversified agents (equivalently, risk neutral

agents) by simply setting the parameter θ to zero. That is,

Corollary 6 When θ = 0, the adjusted risk free rate, r̂, and the adjusted dividend yield, q̂S, become r

and qS respectively so that the risk neutral ESO valuation is obtained as

V RN
0 = e−λν

{

e−rν
E0

[(

Sν − K
)

1{Sν>S∗}

]

+

+ e−rν
E0

[(

B1S
α1 + B2S

α2 + λ

(

Sν

λ + qS

− K

λ + r

))

1{K<Sν≤S∗}

]

+ e−rν
E0

[(

A1S
α1

ν

)

1{Sν≤K}

]

}

(17)
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Following Hall and Murphy (2002), we can compute the objective value defined as the true cost of

granting one ESO. This true cost is the amount received by the firm if the ESO would be sold to

a well diversified investor with the exercise policy of a risk averse under-diversified employee, facing

exogenous employment shocks, to whom the ESO was granted. We show that the ESO cost experiments

a substantial fall with respect to the ESO market value. Notice that this true cost can be simply

calculated by substituting the employee’s threshold Ŝ⋆ obtained in proposition 3 into the market ESO

value given in (17).

3 Discussion

Here, we begin studying the impact on the ESO valuation due to changes in several parameters of inter-

est. These results can be found in the section of sensitivity analysis. Second, we discuss the robustness

of our perpetual ESO valuation by comparing with American-style ESOs with finite maturities.

For all situations, we assume the risk free interest rate r = 6%, the continuous dividend yield

qS = 1.5% and the market volatility σM = 20%. All these parameter values are taken on a yearly basis.

Both the strike price, K, and the stock price at the granting date, S0, are equal to $30. This suggests

that ESOs are granted at the money.

3.1 Sensitivity Analysis

We illustrate the effect of varying each of the following parameters: (i) the market beta, β, which

can be either 0 or 1; (ii) the total yearly volatility of the stock return, σS , which can be 30%, 40%

or 60%; (iii) the vesting period, ν, which can be either 0 or 3 years and hence, using propositions 3

and 5 to obtain respectively; (iv) the employment shock captured through the yearly Poisson intensity

parameter, λ, with values of either 10% or 20%; (v) the excess stock holding, θ, ranging from 0% to

40%; and finally, (vi) the risk aversion parameter, γ, with value of 2 or 4. In short, this analysis is

displayed on Table 1 throughout four panels according to different values of λ and ν, such that in all

we allow for different values of σS , γ, θ and β. That is, panel A (λ = 10%, ν = 0), panel B (λ = 10%,

ν = 3), panel C (λ = 20%, ν = 0) and panel D (λ = 20%, ν = 3). Next, we show how sensitive are

ESO prices according to the above parameters.
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First, the ESO market price, V RN , is obtained under the restriction of θ = 0%. Note that

V RN increases with the total volatility of the stock return. This feature is independent of the risk

decomposition into common risk or beta and specific or idiosyncratic risk, σI . The reason is that a well

diversified agent does not worry about the size of σI . As expected, it is shown that V RN acts as an

upper boundary for V SUB.

[Table 1 is about here]

Second, the higher the value of β the higher V SUB . This effect has already been addressed by

Tian (2004). A value of β = 0 suggests that the market portfolio is useless for hedging the risk of large

holdings of the company stock. This affects negatively the ESO price with respect to an initial positive

beta with the same size for the total volatility. Observe that under β = 0, σS = σI . Note also that, for

any level of both the excess stock holding and risk aversion, if we increase the size of beta in any row

(i.e. σS does not change its size) whatever panel in Table 1, it leads to an increase of common risk in

exchange for a decrease in the specific risk. This effect leads to an increase of V SUB .

Third, moving down across the same column of any panel, so that σS increases while the level

of beta, risk aversion and excess stock holding remain unchanged, does not have a very clear effect

on V SUB . In most situations, there is evidence that higher values of σI produce a pattern of either a

decreasing ESO value (see, for instance, the column of panel A corresponding to the values of β = 1

γ = 2 and θ = 30%) or increasing ESO value (see, for instance, the column of panel A corresponding to

the values of β = 1 γ = 2 and θ = 10%). For the remaining situations, there is an (inverted) U-shaped

behavior. See, for instance, column of panel A for the values of β = 1 γ = 2 and θ = 20% for the

U-shaped case, while column of panel B for the values of β = 0 γ = 2 and θ = 20% for the inverted

U-shaped case. In order to understand better this result for the idiosyncratic risk, Appendix D shows

the analytical conditions that increases of σI lead to increases of V SUB under the restricted version of

our model which is the case of imposing both no vesting period and no employment shocks obtained

in Corollary 4. It is also shown in Appendix D that a higher beta (which increases the total volatility)

leads to a higher ESO value for this restricted model.

Fourth, the higher the risk aversion or the excess stock holding, the lower V SUB . Fifth, the

higher the employment shock intensity the lower V SUB . Compare panels A and C when there is no
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vesting period, while panels B and D for the positive one. Last but not least, the higher the vesting

period the lower V SUB. Compare panels A and B for λ = 10% or panels C and D for λ = 20%.

Finally, it is exhibited in Figure 2 the main findings concerning the impact on V OBJ for different

values of γ, θ and β. We take the values of σS = 30%, ν = 3 and λ = 20%. The straight line at the top

of the figure represents V RN = 6.240 which corresponds to the first row in Panel D. It is shown that

V OBJ increases with β and it becomes higher the lower the risk aversion is. Henceforth, the higher θ

the lower V OBJ . So, the discount obtained as V RN −V OBJ increases in any of the following situations:

when the value of θ or γ increases, or when the value of β decreases.

[Figure 2 is about here]

3.2 Perpetual versus Finite Maturities

It becomes interesting to analyze if ESOs having finite maturities are adequately approximated by

perpetual ones. We calculate ESO prices with finite maturities using the least-squares Monte Carlo

algorithm (LSMC henceforth) of Longstaff and Schwartz (2001). We simulate the risk neutral price

process but replacing r and qs by r̂ and q̂s, defined in Lemma 2, respectively.

At maturity, the ESO is exercised if it is in the money, then the subjective value of the ESO

is V SUB
T = (ST − K)+. One period before, at T − δt where δt is the length of one time step, on one

hand there is a probability equal to 1 − eλδt to abandon the firm and the payoff of the ESO would be

(ST−δt − K)+. On the other hand, with probability eλδt the employee remains in the firm and thus,

he must decide either to hold or to exercise voluntary the ESO. The employee will exercise the ESO

if ST−δt − K > e−r̂δt
ET−δt

[

V SUB
T

]

, in this case the ESO value will be ST−δt − K. Otherwise, the

payoff will be the discounted expected one period ahead ESO value. Thus, the ESO value at any time

t verifying that T > t > ν is computed as

V SUB
t = e−λδt

[

Xt1{St−K<Xt} + (St − K)
+
1{St−K≥Xt}

]

+
(

1 − e−λδt
)

(St − K)
+

where Xt = e−r̂δt
Et

[

V SUB
t+1

]

is the discounted expectation of the ESO value3. The conditional expected

3Hull and White (2004) and Ammann and Seiz (2004) also introduce in the same way the exit rate for the backwards
induction in their binomial tree models.
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ESO value is computed by least-squares such that for those paths in the money, the one period ahead

ESO value is regressed over some basis functions of the current stock price. We work backwards until

the vesting or grant date with this scheme. We use 20,000 paths simulated with monthly frequency4

and we take the average of 50 previous estimations using 25 different seeds plus the 25 antithetics.

[Figure 3 is about here]

Figure 3 exhibits alternative subjective ESO values without vesting period for different values of β and

λ from Table 1. The values of the risk aversion and the total volatility are γ = 2 and σs = 30%. The

remaining parameters are the same as in Table 1. The selected time to maturities, (T ), go from 5 years

until 25 years, denoted as V SUB
(T ) . It is observed that ESO prices do not change from about 15 years

until the end considering alternative values of θ, see the graphics on the left. The graphics of relative

biases, (V SUB − V SUB
(T ) )/V SUB

(T ) , where V SUB are the ESO values from Table 1 displayed on the right

lead to a decreasing pattern as T increases. Indeed, this positive bias tends to be lower than 10% for

the benchmark American-style ESO with a maturity of ten years. In short, the benchmark ESO value

is well approximated through the perpetual one5. For the shortest maturity, T = 5, the largest bias is

around 25% for λ = 10%, while it decreases significantly to approximately 10% for λ = 20%. Therefore,

the larger the probability of employment shock, the better the approximation through the perpetual

ESO becomes.

4 Incentive Effects

To analyze the ESO incentive effects, we focus on how the ESO subjective value changes in response

to changes of the stock price (delta measure) and the volatility (vega measure). For the last case,

we study the vega through the decomposition between systematic and idiosyncratic volatility. Note

that the manager’s characteristics, such as the risk aversion degree and diversification restrictions, are

considered here since ESO incentives depend on the manager’s subjective valuation. This leads that

the proper measures become the subjective delta and vega which are perceived by the employee (not

4Stentoft (2004) obtains that the LSMC method with 10 exercise points per year produce very accurate prices compared
with the ones obtained using a binomial model with 50,000 time steps. He argues that more accurate prices are obtained
when increasing the simulated paths or the number of basis functions used as regressors.

5It is available upon request, though not reported here, a table similar to Table 1 for the case of an ESO with T = 10
years containing the ESO values underlying the four graphics on the left-hand side of the above figure.
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the employer). We will compare these indexes with the market delta and vega corresponding to the

either the employer or the employee without stockholding restrictions. For all situations, we assume a

vesting period, ν, of three years and an intensity rate, λ, equal to 20%. Other parameters such as K,

r, qS and σM keep the same value as in Section 3. For the remaining parameters, i.e. β, γ and θ, their

alternative sets of values are exhibited later in figures 4 and 5.

The main purpose of ESO packages is providing managers’ incentives in order to raise sharehold-

ers’ wealth (agency problem). This idea of aligning manager and shareholder interests relies upon the

presumption that employees will maximize the firm value since they receive payouts contingent upon

firm value. As noticed above, the option delta is the change in the subjective value, V SUB , relative

to the change in the company stock price, S. Since we cannot obtain a closed-form expression for this

partial derivative, we approximate the delta by its finite counterpart using increments of one per cent

in the stock price. Pictures on the left-hand side of figure 4 show the corresponding subjective deltas

for several values of β, γ and θ. It is shown that the delta is always positive but with a decreasing slope

which tends to be rather constant when the option is deeply in the money. Note also that the delta for

the ESO market value, V RN , acts as an upper bound. We conclude, in line with Ingersoll (2006), that

this market delta overstates the executive’s incentives. We also observe a decrease in the subjective

delta as the level for risk aversion increases. This effect becomes more significant when θ increases

when comparing picture ’a’ (’b’) with ’c’ (’d’) for the same level of β. Note that changes in beta are not

important if you compare picture ’a’ (’c’) with ’b’ (’d’) for the same level of θ. Hence, the incentives to

raise shareholders’ wealth tend to reduce with a lower portfolio diversification of the executive. This

evidence can also be shown as the difference between the market delta and the subjective one increases

with θ, see again pictures ’a’ (’b’) and ’c’ (’d’).

As expected, the case of λ = 0 only makes delta values higher (a drop in λ from 20% to 0%

roughly doubles the delta values) but it does not change the qualitative behavior, so it is not reported

here. In short, we find that a higher likelihood of employment termination may reduce substantially

the executive’s incentives to increase shareholders’ wealth.

[Figure 4 is about here]

While options may provide incentives for executives to work harder, they can also induce sub-
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optimal risk-taking behavior (moral hazard problem). Hence, it becomes interesting to analyze the

subjective vegas which measure the incentives related with the volatility. A higher volatility of the

underlying asset return implies a higher value of traditional call options. Thus, there is a presumption

that ESOs rise the incentive of taking riskier projects with higher returns. However, taking a new in-

vestment project can change both the systematic and the idiosyncratic volatilities. Since the executive’s

subjective valuation is influenced negatively by the idiosyncratic volatility, see Lemma 2 or Corollary

4, the source of the change in total volatility is relevant to establish how the manager’s incentives are

affected. Looking at pictures on the right-hand side of figure 4, we can see that the systematic-risk vega

is positive with a decreasing slope for all reasonable values of β. In most situations, except for picture

’h’, the vega for the ESO risk neutral or market value acts as a lower boundary. The behavior for vega

seems quite predictable. In all cases, a higher market beta creates incentives to take up investment

projects with returns highly correlated with the market portfolio return since it increases the subjective

ESO value. Looking at pictures ’e’ (’f’) and ’g’ (’h’), the systematic-risk vega measure changes due to

increases in systematic risk while keeping constant the idiosyncratic level at 20% (30 %). We observe

that the effects for the executive’s degree of risk aversion do not become so important as in the case for

the subjective delta. It is also shown that the size for the difference between the market systematic-risk

vega and the subjective one increases for lower values of portfolio diversification, compare pictures ’e’

(’f’) and ’g’ (’h’), when β increases. The effect of changing the idiosyncratic volatility level is less

important.

Finally, we make the same analysis for the vega but changing now the composition of total

volatility and keeping its size fixed, see figure 5. This new analysis is different to the one carried out

before in the sense that total volatility, σS , raised because β increased. As we move through the x-axis

to the right, σI increases while β decreases at the same time so as to hold a fixed value for σS across

the different graphics in figure 5. It is shown that vega becomes negative being its size higher (lower)

for higher (lower) values of the risk aversion degree (total volatility). The size of vega increases with

the size of the idiosyncratic volatility which is in line with Ingersoll (2006).

[Figure 5 is about here]
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5 Conclusions

In this paper we have examined how the valuation of perpetual ESOs can be achieved by using a

stochastic discount factor derived from the constrained intertemporal optimization problem faced by

the employee. Following Ingersoll (2006), the constraint comes from the obligation to hold a proportion

of the company’s stock higher than the optimal one. We obtain a stochastic discount factor that, by

pricing the risk free asset, the market portfolio and the company’s stock, can also price the option. In

a first step we obtain a closed formula for the subjective value of ESOs with and without a vesting

period. The subjective valuation of ESOs allows us to obtain the firm’s cost by obtaining the subjective

threshold price that triggers immediate exercise by the employee.

Despite considering perpetual ESOs, our valuation method approximates reasonably well the

more realistic finite maturity case. In our sensitive analysis we have found that higher values for

the degree of risk aversion, the excess stock holding or the risk of employment termination, reduces

substantially the ESO subjective value. We must remark an interesting result of our sensitive analysis.

That is, in the presence of employment shocks, there is no need for the subjective value of ESO to be

positively related with the threshold that define the executive’s optimal exercise policy. In particular,

we have found that a higher idiosyncratic volatility may increase the subjective ESO value even though

the threshold clearly falls. Thus, a higher value of the subjective ESO might not be positively correlated

with a lower expected time to exercise.
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Appendix A

The Bellman’s equation corresponding to the problem of maximizing (2) subject to the budget constraint (3)

is:

0 = max
C,ω

{

C1−γ

1 − γ
− ρJ +

[(

r + (ω + θβ)(µM − r)
)

W − C
]

JW +
1

2

[

(ω + θβ)2σ2
M + θ2σ2

I

]

W 2JWW

}

The first order conditions are:

C = J
−1/γ
W

(

ω + θβ
)

=

(

µM − r
)

σ2
M

(

−JW

WJWW

)

By substituting into the Bellman’s equation we get after simplifying:

0 =
γ

1 − γ
J

1−1/γ
W − ρJ + rWJW − 1

2

(

µM − r

σM

)2 (
J2

W

JWW

)

+
1

2
θ2σ2

IW 2JWW

Using the trial solution J =
b

1 − γ
W 1−γ we end up with the following solution for the optimal consumption

and the market portfolio share in wealth:

C = aW ; ω =
1

γ

µM − r

σ2
M

− θβ

where

a ≡ b−1/γ =
ρ

γ
− 1 − γ

γ
r − 1 − γ

2γ2

(

µM − r

σM

)2

+
1 − γ

2
θ2σ2

I

Substituting the optimal values of C and ω in the equation for the dynamics of wealth, we get:

dW

W
=

[

r − a +
1

γ

(

µM − r

σM

)2
]

dt +
1

γ

(

µM − r

σM

)

dZM + θσIdZI

Now, since the stochastic discount factor, Θ is defined as the discounted value of the marginal utility of

wealth:

Θ = e−ρtJW = e−ρtbW−γ

we apply Ito’s lemma to get:

dΘ =
∂Θ

∂t
dt +

∂Θ

∂W
dW +

1

2

∂2Θ

∂W 2

(

dW
)2

= −ρΘdt − γΘ

(

dW

W

)

+
γ
(

γ + 1
)

2
Θ

(

dW

W

)2

By straightforward substitution and after some simplifications we get equation (6).
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Appendix B

Equation (6) together with the money value of the ESO, V :

dV =

[

(

µS − qS

)

VSS +
σ2

S

2
VSSS2

]

dt + βσMVSSdZM + σIVSSdZI

allow us to obtain equation our fundamental equation (8). Indeed, by omitting terms of order higher than dt:

E0

[

V dΘ
]

= −
(

r − γθ2σ2
I

)

V Θdt

E0

[

ΘdV
]

=
(

µS − qS

)

VSSΘdt +
σ2

S

2
VSSS2Θdt

E0

[

dΘdV
]

= −
(

µS − r
)

VSSΘdt − γθσ2
IVSSΘdt

whereE0 denotes the conditional expectation operator under the real measure and the CAPM condition, µS =

r + β
(

µM − r
)

, has been used to obtain the third equation. Now, by straightforward substitution, we get:

0 = E0 (V dΘ + ΘdV + dΘdV )
(

1 − λdt
)

+ E0

(

V dΘ + Θ

(

Ψ
(

S
)

− V

)

+ dΘ

(

Ψ
(

S
)

− V

))

λdt.

Hence,

−
(

r − γθ2σ2
I

)

V +
(

r − qS − γθσ2
I

)

VSS +
σ2

S

2
VSSS2 + λ

[

Ψ
(

S
)

− V

]

= 0.

Finally, by defining r̂ =
(

r − γθ2σ2
I

)

and q̂S =
(

qS + γθ
(

1 − θ
)

σ2
I

)

we obtain equation (8).

Appendix C

The solution to equation (8) can be easily shown to be

V
(

S
)

=















Â1S
α̂1 if S < K

B̂1S
α̂1 + B̂2S

α̂2 +

(

λS

λ + q̂S
− λK

λ + r̂

)

if S ≥ K

(18)

where α̂1 and α̂2 are, respectively, the positive and negative root of the quadratic equation α̂2 +
(

b̂ − 1
)

α̂ − ĉ,

where:

ĉ ≡ 2

σ2
S

(r̂ + λ) = −α̂1α̂2 ; b̂ ≡ 2

σ2
S

(

r̂ − q̂S

)

= 1 − α̂1 − α̂2 (19)

In (8) the negative root has been eliminated in the region S < K by imposing the boundary condition

limS→0 V
(

S
)

= 0.

The constants Â1 and B̂2 can be solved in terms of B̂1 and K by using the usual conditions of value
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matching and smooth pasting for S = K:

Â1K
α̂1 = B̂1K

α̂1 + B̂2K
α̂2 +

(

λ

λ + q̂S

)(

r̂ − q̂S

λ + r̂

)

K

α̂1Â1K
α̂1 = α̂1B̂1K

α̂1 + α̂2B̂2K
α̂2 +

(

λ

λ + q̂S

)

K

whose solution is:

Â1 = B̂1 +
2λ

σ2
S

(

1

α̂1

(

α̂1 − 1
)

)

K1−α̂1

(

α̂1 − α̂2

) (20)

B̂2 =
2λ

σ2
S

(

1

α̂2

(

α̂2 − 1
)

)

K1−α̂2

(

α̂1 − α̂2

) (21)

To determine the remaining constant, B̂1, and the threshold price, S⋆, we use equations (9) and (10) to get:

B̂1Ŝ∗
α̂1

+ B̂2Ŝ∗
α̂2

+

(

λŜ∗

λ + q̂S
− λK

λ + r̂

)

= Ŝ∗ − K (22)

α̂1B̂1Ŝ∗
α̂1

+ α̂2B̂2Ŝ∗
α̂2

+
λŜ∗

λ + q̂S
= Ŝ∗ (23)

Solving first for B̂1 in equation (23) one gets:

B̂1 =
−α̂2

α̂1
B̂2

(

Ŝ∗)α̂2−α̂1 +
1

α̂1

(

1 − λ

λ + q̂S

)

(

Ŝ∗)1−α̂1 (24)

Finally, by combining equations (23) and (23) we get the implicit equation for solving for Ŝ∗ which, by using

the relations given in equation (19), can be written as equation (12) in the main text.

Appendix D

For a perpetual ESO with no vesting and no employment shocks, its value in the waiting region is given by

V SUB =

(

S

Ŝ⋆

)α̂1
(

Ŝ⋆ − K
)

=

(

α̂1 − 1
)(α̂1−1)

α̂α̂1

1

K1−α̂1

using the notation of the main text.

Clearly, the impact of changes in the underlying parameters comes from its effect on α̂1. In particular, a

change in any of these parameters that increases α̂1 has a negative impact on the subjective valuation of ESO.

This is because
(

∂V SUB

∂α̂1

)

=

(

α̂1 − 1
)

(

α̂1−1
)

α̂α̂1

1

K1−α̂1

{

ln

(

α̂1 − 1

α̂1

)

− ln K

}

which is negative by taking K >
(

α̂1−1
α̂1

)

. Therefore, by computing the effect on the positive root we have also
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obtained the effect on the subjective value of ESO. To this end the following lemma, which is stated without

proof, will be used

Lemma 7 The partial derivatives ∂α̂1/∂b̂ and ∂α̂1/∂ĉ are given by

∂α̂1

∂b̂
= −1

2















1 +

(

1−b̂
2

)2

√

(

1−b̂
2

)2

+ ĉ















=
−α̂1

(α̂1 − α̂2)
< 0

∂α̂1

∂ĉ
=

1

2















1
√

(

1−b̂
2

)2

+ ĉ















=
1

(

α̂1 − α̂2

) > 0

Using this lemma we obtain the following result:

Proposition 8 For nonnegative values of market beta, an increase in market beta always increases the ESO

subjective value. However, an increase in idiosyncratic volatility will increase ESO subjective value iff

α̂1

(

α̂1 − 1
)

> 2γθ
(

α̂1 − θ
)

Proof.- From the definitions of b̂ and ĉ we compute the impact of changes in β and σI on α̂1. Using the risk

decomposition σ2
S = β2σ2

M + σ2
I , it is easy to find that

∂b̂

∂β2
= −σ2

M

σ2
S

b̂ ;
∂ĉ

∂β2
= −σ2

M

σ2
S

ĉ

and

∂b̂

∂σ2
I

= −

(

b̂

σ2
S

+
2γθ

σ2
S

)

;
∂ĉ

∂σ2
I

= −
(

ĉ

σ2
S

+
2γθ2

σ2
S

)

Thus

∂α̂1

∂β2
=

∂α̂1

∂b̂

∂b̂

∂β2
+

∂α̂1

∂ĉ

∂ĉ

∂β2
=

(

σ2
M

σ2
S

)

α̂1

(

1 − α̂1

)

(

α̂1 − α̂2

)

which is clearly negative as long as α̂1 > 1. Similarly

∂α̂1

∂σ2
I

=
∂α̂1

∂b̂

∂b̂

∂σ2
I

+
∂α̂1

∂ĉ

∂ĉ

∂σ2
I

=
α̂1

(

1 − α̂1

)

σ2
S

(

α̂1 − α̂2

) +
2γθ

(

α̂1 − θ
)

σ2
S

(

α̂1 − α̂2

)

Clearly the first term is negative (since α̂1 > 1) whereas the second one is positive (since θ < 1). From here we

obtain the sign condition stated in the proposition.

�
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Appendix E

We want to solve the following conditional expectation:

E0

[

Θν

Θ0
V
(

Sν

)

]

= Â1E0

[

Θν

Θ0
Sα̂1

ν 1{Sν≤K}

]

+ B̂1E0

[

Θν

Θ0
Sα̂1

ν 1{K≤Sν≤Ŝ∗}

]

+

+B̂2E0

[

Θν

Θ0
Sα̂2

ν 1{K≤Sν≤Ŝ∗}

]

+
λ

λ + q̂S
E0

[

Θν

Θ0
Sν1{K≤Sν≤Ŝ∗}

]

− λ

λ + r̂
KE0

[

Θν

Θ0
1{K≤Sν≤Ŝ∗}

]

+

+E0

[

Θν

Θ0
Sν1{Sν≥Ŝ∗}

]

− KE0

[

Θν

Θ0
1{Sν≥Ŝ∗}

]

Thus, all expectations take the general form E0

[

Θν

Θ0
Sα

ν 1{a≤Sν≤b}

]

for α any given real number. Given the

stochastic dynamics driving Sα̂
ν and

(

Θν/Θ0

)

we have explicit expressions for each one of them, namely:

Sα
ν = Sα

0 · exp

{

α

(

µS − qS − σ2
S

2

)

ν + ασS

√
νε

}

Θν

Θ0
= exp

{

−

(

r̂ +
1

2

(

µM − r

σM

)2

+
γ2θ2σ2

I

2

)

ν −
(

µM − r

σM

)√
νεM − γθσI

√
νεI

}

where ε, εM and εI are independent standard normal variables satisfying σSε = βσMεM + σIεI . Then, the

expectation we seek to solve is given by a double integral of the form:

∫

εM

∫

εI

Sα
0 exp

{

α

(

µS − qS − σ2
S

2

)

ν + α
(

βσMεM + σIεI

)√
ν

}

×

exp

{

−

(

r̂ +
1

2

(

µM − r

σM

)2

+
γ2θ2σ2

I

2

)

ν −
(

µM − r

σM

)√
νεM − γθσI

√
νεI

}

× (25)

φ
(

εM

)

φ
(

εI

)

dεMdεI

where φ
(

·
)

denotes the density function of a standard normal variable. Notice that the range of integration

for εM and εI must be such that a ≤ Sν ≤ b.

Following Cochrane and Saa-Requejo (1999), we define the new variables:

δ1 =
βσMεM + σIεI

σS
; δ2 =

σIεM − βσMεI

σS

Notice that δ1 and δ2 are too independent standard normal variables. By reversing the change we have the

following expression in terms of εM and εI :

εM =
βσMδ1 + σIδ2

σS
; εI =

σIδ1 − βσMδ2

σS
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After substitution into equation (25) we get the following expression:

Sα
0 exp

{

α

(

µS − qS − σ2
S

2

)

ν −

(

r̂ +
1

2

(

µM − r

σM

)2

+
γ2θ2σ2

I

2

)

ν

}

×

∫

δ1

∫

δ2

exp

{[

ασS −

(

β
(

µM − r
)

+ γθσ2
I

σS

)]

√
νδ1

}

×

exp

{

−

[(

(

µM − r
)

σM

)

− βσMγθ

]

σI

σS

√
νδ2

}

φ
(

δ1

)

φ
(

δ2

)

dδ1dδ2 (26)

We turn next to the specification of the integration region for each of the new variables. Clearly, for

a ≤ Sν ≤ b we have the following boundaries in terms of the δ1 variable:

ln
(

a/S0

)

−
(

µS − qS − σ2
S/2

)

ν

σS
√

ν
≤ δ1 ≤

ln
(

b/S0

)

−
(

µS − qS − σ2
S/2

)

ν

σS
√

ν

or more compactly A ≤ δ1 ≤ B. By the other hand the range of integration for δ2 is unrestricted. Hence, by

omitting the exponential term that appears outside the double integral (26), we are left with:

1√
2π

∫

δ2

exp

{

−
[(

µM − r

σS

)

− βσMγθ

](

σI

σS

)√
νδ2 −

1

2
δ2
2

}

dδ2 ×

1√
2π

∫ B

A

exp

{[

ασS −

(

β
(

µM − r
)

+ γθσ2
I

σS

)]

√
νδ1 −

1

2
δ2
1

}

dδ1

Each integral is solved by completing the square. Thus, for the first integral, we get:

exp

{

1

2

[(

µM − r

σM

)

− βσMγθ

]2 (
σI

σS

)2

ν

}

whereas for the second integral we obtain:

exp

{

1

2

[

ασS −

(

β
(

µM − r
)

+ γθσ2
I

σS

)]2

ν

}

×

{

Φ

[

ln
(

b
)

− µ − ασ2

σ

]

− Φ

[

ln
(

a
)

− µ − ασ2

σ

]}

for µ = ln(S0) +
(

r̂ − q̂S − (σ2
S/2)

)

ν and σ = σs
√

ν. In the computation of this integral we have made use of

the relationship r̂ − q̂S = r − qS − γθσ2
I and the CAPM condition

(

µs − r
)

= β
(

µM − r
)

.

Finally and after some algebra, the product of the three remaining exponentials can be greatly simplified

to:

exp
{

− r̂ν
}

exp

{

αµ + α2 σ2

2

}

Summing up, we have obtained that:

E0

[(

Θν

Θ0
Sα

ν

)

1{
a≤Sν≤b

}

]

= exp
{

− r̂ν
}

exp
{

αµ + α2σ2} ×
{

Φ

(

ln b − µ − ασ2

σ

)

− Φ

(

ln a − µ − ασ2

σ

)}
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Table 1: Perpetual subjective Valuation.

β = 0 β = 1

θ 0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40

γ σs Panel A: λ = 0.1. ν = 0

2 0.30 11.000 8.802 7.404 6.420 5.683 11.000 9.673 8.714 7.987 7.416
0.40 12.859 9.617 7.813 6.624 5.768 12.859 10.266 8.694 7.611 6.810
0.60 16.248 10.866 8.410 6.923 5.911 16.248 11.273 8.899 7.432 6.419

4 0.30 11.000 7.273 5.415 4.281 3.516 11.000 8.605 7.127 6.105 5.348
0.40 12.859 7.644 5.456 4.215 3.416 12.859 8.527 6.453 5.190 4.332
0.60 16.248 8.174 5.538 4.185 3.345 16.248 8.656 6.007 4.596 3.719

Panel B: λ = 0.1. ν = 3

2 0.30 9.778 7.692 6.365 5.415 4.689 9.778 8.516 7.613 6.928 6.392
0.40 11.324 8.232 6.450 5.221 4.310 11.324 8.858 7.337 6.259 5.446
0.60 14.095 8.756 6.054 4.356 3.216 14.095 9.187 6.616 4.961 3.823

4 0.30 9.778 6.233 4.382 3.169 2.311 9.778 7.505 6.098 5.101 4.343
0.40 11.324 6.259 3.892 2.466 1.560 11.324 7.159 5.012 3.617 2.645
0.60 14.095 5.733 2.636 1.205 0.533 14.095 6.296 3.193 1.635 0.828

Panel C: λ = 0.2. ν = 0

2 0.30 8.296 6.930 5.994 5.306 4.774 8.296 7.485 6.863 6.370 5.969
0.40 9.951 7.863 6.597 5.720 5.066 9.951 8.297 7.216 6.434 5.837
0.60 13.080 9.380 7.507 6.311 5.468 13.080 9.677 7.884 6.718 5.885

4 0.30 8.296 5.920 4.612 3.766 3.170 8.296 6.803 5.807 5.086 4.536
0.40 9.951 6.492 4.856 3.865 3.197 9.951 7.116 5.610 4.639 3.952
0.60 13.080 7.340 5.179 3.990 3.238 13.080 7.716 5.573 4.360 3.574

Panel D: λ = 0.2. ν = 3

2 0.30 6.240 5.062 4.263 3.668 3.199 6.240 5.538 5.009 4.593 4.258
0.40 7.365 5.560 4.433 3.625 3.011 7.365 5.939 4.996 4.300 3.761
0.60 9.450 6.120 4.290 3.108 2.304 9.450 6.404 4.674 3.528 2.729

4 0.30 6.240 4.192 3.019 2.215 1.630 6.240 4.954 4.100 3.470 2.978
0.40 7.365 4.320 2.743 1.758 1.120 7.365 4.894 3.495 2.550 1.878
0.60 9.450 4.077 1.901 0.874 0.389 9.450 4.464 2.296 1.184 0.602

This table shows the subjective ESO value obtained simulating the ESO value for the first waiting region described
in equation (11) when there is no vesting period and equation (16 ) otherwise. The first column, γ, denotes the risk-
aversion coefficients considered. The second column, σs, contains the different levels of firm stock volatility. The following
5 columns are obtained with β = 0 and the last 5 with β = 1. Each column hold a different value of θ ranging from 0 to
0.4. Moreover, the table is divided in four panels for different combinations of the employee shock rate, λ, and the ESO
vesting period ν.
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Figure 1: Subjective value of ESO as a function of the stock price for several values of θ. No vesting
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The figure plots the subjective value of ESO as a function of the stock price for different values of θ. The value of
the remaining parameters are r = 6%, qS = 1.5%, λ = 20%, σM = 20%, σS = 40% and K = $30. The thick line
(θ = 0), which represents the market value V RN , acts as an upper bound for the subjective valuation of ESO

Figure 2: Firm cost of perpetual ESO. Vesting = 3 years
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Panel A represents the firm cost, V OBJ , of a perpetual ESO for several values of γ and β. Other values of the
parameters are λ = 20% and ν = 3 years. Panel B represents the deviations of the objective value from the
subjective value in terms of the latter. In both panels, the thick line represents the risk neutral value, V RN of the
perpetual ESO.
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Figure 3: Maturity Plot
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This figure shows the subjective value of the ESO (left hand graphics) for different maturities (in x-axis) ranging from
5 to 25 years. Each graphic hold a different pair of values for (β, λ), and each line corresponds to a different value
of θ. The right hand graphics display the relative bias of the perpetual ESO computed as (V SUB −V SUB

(T )
)/V SUB

(T )
,

where V SUB are the ESO values from Table 1. V SUB
(T )

has been obtained through simulations. We use 20,000 paths

and we take the average over 50 previous estimates obtained with 25 seeds and the 25 antithetics.
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Figure 4: Option Greeks
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(b) θ = 0.1,β = 1
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(c) θ = 0.4,β = 0
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Panels (a) to (d) plots the Delta of the subjective ESO. The parameters not shown takes the following values:
r = 6%, qS = 1.5%, σM = 20%, σI = 30%, λ = 20% and K = 30. In the numerical computation of Delta we have
used V SUB as given in proposition 5 for successive values of S is steps of 1 per cent. Panels (e) to (h) plots the
systematic Vega of the subjective ESO. The parameters not shown takes the following values: r = 6%, qS = 1.5%,
σM = 20%, λ = 20% and K = 30. For the numerical computation of the systematic Vega we have also used V SUB

as given in proposition 5, for successive values of β is steps of 1 percentage point.
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Figure 5: Compensated Option Vega
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The figure plots the numerical partial derivative of V SUB with respect to changes in σI so that the total volatility,
σS , does not change. The parameters not shown takes the following values: r = 6%, qS = 1.5%, σM = 20% and
K = 30.
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