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ABSTRACT 

This paper presents a new transform-based approach for path-independent lattice 
construction for pricing American options under low-dimensional stochastic volatility 
models.  We derive multidimensional transforms which allow us to construct efficient 
path-independent lattices for virtually all low-dimensional stochastic volatility models 
given in the literature including one volatility factor-based stochastic volatility (SV) 
models, two volatility factors-based SV models, stochastic volatility jump (SVJ) models 
with one and two jump factors in the asset returns, and SVJ models with jumps in both 
asset returns and volatility.  The lattice-based approximations of the prices of European 
options converge rapidly to their true prices obtained using quasi-analytical solutions.  
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The breakthroughs in European option pricing have outpaced those in American 

option pricing with the discovery of Heston [1993] stochastic volatility model, followed 

by the stochastic volatility jump (SVJ) models of Bakshi, Cao, and Chen [1997], Bakshi 

and Madan [2000], Bates [1996, 2000, 2006], Duffie, Pan, and Singleton [2000], and Pan 

[2002]).  The hugely popular book, The Volatility Surface, by Gatheral [2007] reveals 

immense practitioner interest in the SVJ models for pricing equity options.  To get more 

insight on the challenges in pricing American equity options, consider the following 

classification of the option pricing models, based upon the type of stochastic processes 

followed by the state variables: 

i) low-dimensional models with non-stochastic volatility,  

ii) high-dimensional models with non-stochastic volatility, 

iii)  low-dimensional models with stochastic volatility, 

iv) high-dimensional models with stochastic volatility. 

Examples of the first type of models include the Black and Scholes [1973] model 

with constant volatility, the Cox and Ross [1976] CEV model with state variable-

dependent volatility, and the jump-diffusion models of Merton [1976] and Kou [2002] 

with constant volatility and constant jump distribution parameters.  At least three 

methods, given as the lattice method, the finite difference method, and the analytical 

approximation method, have been successful at pricing American options under these 

models. The lattice method was proposed by Cox, Ross, and Rubinstein [1979] for the 

Black and Scholes model.  Neslon and Ramaswamy [1990] extend this method to build 

efficient recombining trees for the Cox and Ross’s CEV model with state variable-
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dependent volatility.  Amin [1993] extends this method to build efficient multinomial 

recombining trees for the Merton’s jump diffusion model.  The finite difference method 

was initially proposed by Brennan and Schwartz [1978] for the Black and Scholes model, 

and has been extended by Zhang [1997] and Carr and Hirsa [2003] for the Merton’s jump 

diffusion model.   Finally, analytical approximations for pricing American options have 

been derived by Barone-Adesi and Whaley [1987], Kim [1990] and Carr, Jarrow, and 

Myneni [1992] for the Black and Scholes model, and have been extended by Gukhal 

[2001] and Chiarella and Ziogas [2004] for the Merton’s jump diffusion model, and by 

Kou and Wang [2004] for the double exponential jump diffusion model of Kou [2002].  

The absence of analytical approximations and practical limitations on 

computational time prevent the three methods given above for pricing American options 

under the second type of models with many state variables.  The significant breakthrough 

for pricing American options under the high-dimensional models with non-stochastic 

volatility is provided by Longstaff and Schwartz (LS)  [2001], who building on the initial 

work by Carriere [1996] and Tsitsiklis and Van Roy [1999], develop an innovative least 

squares Monte Carlo (LSM) approach that uses least square regressions to estimate the 

conditional expected payoff to the option holder from continuation.  LS demonstrate the 

effectiveness of this approach for high-dimensional models using the examples of pricing 

an American swaption using a “twenty-factor” string model, and an American option on 

the maximum of five risky asset prices. The solutions, which would normally take hours 

or days to compute using the traditional methods, are obtained within minutes using the 

LSM approach.  
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Though the LSM approach is powerful for the second type of models, it is not 

generally recommended for the first type of models.1  For example, the traditional 

binomial method, the Neslon and Ramaswamy [1990] extension of the binomial method, 

and the Amin [1993] multinomial extension of the binomial method are significantly 

more efficient than the LSM approach for pricing American options under the Black and 

Scholes model, the Cox and Ross CEV models, and the Merton jump diffusion model, 

respectively.  Further, as mentioned earlier, finite differencing methods and analytical 

approximations also work well under the first type of models. The traditional methods 

can generate the price of an American option within a fraction of a second or a few 

seconds, while the LSM approach requires a significant fraction of a minute, or even 

longer to run the least squares regressions using the simulated data with tens of thousands 

of paths.  

Clearly, the traditional methods (i.e., lattice methods, finite difference methods, 

and analytical approximation methods) are well suited for the first type of models, and 

the LSM approach is advantageous for the second type of models.  However, it is not 

immediately obvious if the LSM approach is useful for the third type of models 

characterized by low-dimensional stochastic processes with stochastic volatility.  The 

main difficulty here is that the ordinary least squares regressions can no longer be used 

for estimating the conditional expected payoff to the option holder from continuation, due 

to the hetroscedastic error terms when the underlying processes follow stochastic 

volatility, as in the models of Heston [1993], Hull and White [1987], Bates [2000, 2006], 

                                                 
1The only exception is when the underlying state variables follow non-Markovian processes, making the 
lattice methods difficult to use for pricing American options.  However, as shown by Amin and Morton 
[1994], for low-dimensional, non-Markovian HJM models, non-recombining trees are quite accurate even 
with as few as 8 to 10 steps.  This finding may not hold over other classes of non-Markovian models, 
however.   
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Jiang and Oomen [2006], Bakshi, Cao, and Chen [1997, 2000], Pan [2002], Duffie, Pan, 

and Singleton [2000], and others. Though, in principle, some type of non- linear 

regression such as GMM, etc., could be used, this would further slow down the 

computational speed of the LSM procedure, as doing GMM would require time-

consuming non- linear optimizations to be performed at every time step of the simulation. 

As an alternative to the LSM approach, this paper derives a multidimensional 

transform that allows efficient path- independent lattice construction for virtually all low-

dimensional stochastic volatility models (with and without jumps) given in the literature, 

using which American options can be priced accurately within seconds.  Hence, even if 

some non- linear regression methods can be used to make the LSM procedure applicable 

to the third type of models, doing this would be relatively inefficient since the lattice 

methods derived in this paper can achieve the same objective with significantly higher 

computational efficiency.  Using the multidimensional transform derived in this paper, 

we show how to construct efficient path- independent lattices for the following types of 

low-dimensional stochastic volatility models: 

i) one volatility factor-based stochastic volatility (SV) models (e.g., Chesney 

and Scott [1989], Heston [1993], Hull and White [1987], Stein and Stein 

[1991], and Wiggins [1987]); 

ii) two volatility factors-based stochastic volatility (SV2) models (e.g., Bates 

[2000], and Jiang and Oomen [2006]); 

iii)  stochastic volatility jump models with one volatility factor and one jump 

factor (SVJ) and one volatility factor and two jump factors (SVJ2) (e.g., 
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Andersen, Benzoni, and Lund [2002], Bates [1996, 2000, 2006], Bakshi, Cao, 

and Chen [1997, 2000], Chacko and Viceira [2003], and Pan [2002]); 

iv) two volatility factor-based models with one jump factor (SV2J) (e.g., Jiang 

and Oomen [2006]). 

 

Much econometric research has already investigated the empirical properties of 

the above models (for example, see Bates [2000, 2006], Chacko and Viceira [2003], 

Chernov and Ghysels [2000], Eraker [2004], Eraker, Johannes, and Polson [2003], Jiang 

and Oomen [2007], and Pan [2002], among others).  These studies finds jump to be an 

important feature in addition to stochastic volatility for explaining the features of equity 

index returns and option prices.  Most notably, Eraker [2004] and Eraker, Johannnes, and 

Polson [2003] find that jumps in volatility are also required - in addition to jumps in stock 

returns - for explaining the index option prices, and returns data on the S&P 500 and 

Nasdaq 100.  The existence of a rich econometric literature on the low-dimensional 

stochastic volatility models makes the results of our paper even more useful for future 

empirical investigations into American option pricing under these models.   

Before outlining our approach to American option pricing for the above models, 

we would like to highlight a related approach that uses GARCH models for pricing equity 

options in the presence of stochastic volatility.  This approach developed by Duan [1995] 

for European option pricing using simulation methods, has been extended to American 

option pricing by Ritchken and Trevor [1999] using a lattice approximation method.  

Duan [1996, 1997] also shows that virtually all of the bivariate diffusion stochastic 

volatility models (e.g., Heston [1993], Hull and White [1987], and others) can be 
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obtained as special cases of a family of generalized GARCH models.  This allows the 

lattice algorithm of Ritchken and Trevor (RV) to be applicable to all of the bivariate 

diffusion stochastic volatility models, as well.   

Since the variance process under the GARCH method is a path-dependent process 

- implying an explosive number of variances at any given node of the asset price tree - 

RV use the approximation methods of Hull and White [1993] and Ritchken, 

Sankarasubramanian, and Vijh [1993], which keep track of only the minimum and the 

maximum values of variances at each node, and then use linear interpolation to generate 

K variances at that node.  With suitable parameterizations, RV find that a value of K = 20 

is generally sufficient for accurate pricing of options using the GARCH model.  Due to 

the volatility interpolations and other approximations involved in the modeling of the 

path-dependent variance process, the RV lattice algorithm is relatively slower and less 

accurate than a typical path- independent binomial or trinomial model. The RV lattice 

algorithm also requires a forward dynamic program to determine the values of the 

minimum and maximum variance at each node. 

In contrast to the RV algorithm, this paper derives a multidimensional transform 

in order to model both the asset price process and the volatility process as path-

independent trees. The efficiency and accuracy of our approach is of similar order as a 

two-factor Cox, Ross, and Rubinstein [1979] model, which represents a significant 

improvement over the RV algorithm for the special case of the bivariate diffusion 

stochastic volatility models.  Our approach also generalizes parsimoniously to other low-

dimensional stochastic volatility models, such as those with two volatility state variables, 

or jump factors in the asset returns.  In contrast, the GARCH option pricing models 
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cannot allow more than one volatility state variable, and it is virtually impossible to 

extend the RV lattice approximation method to the GARCH-jump models (e.g., Duan, 

Richken, and Sun [2006]), which allow jumps in the asset return and/or the volatility 

process. 

Though a few other researchers have provided different approaches for pricing 

American options under low-dimensional stochastic volatility models, none are as 

general in terms of applicability to a diverse set of models with stochastic volatility and 

jumps, or numerically as efficient as our approach (e.g., see Clarke and Parrott [1999], 

Finucane and Tomas [1996], Guan and Xiaoqiang [2001], Hilliard and Schwartz [1996], 

Leisen [2000], Tzavalis and Wang [2003], and Chiarella and Ziogas [2005]).  For 

example, Leisen [2000] shows how to construct recombining lattices for the class of 

bivariate diffusion stochastic volatility models.  Leisen’s approach requires both forward 

induction and backward induction with a complex tree structure of the order O(N4) for an 

N-step tree.  The requirement of forward induction puts huge burden on the computer 

memory and the high order (i.e., O(N4)) for the tree structure slows down the Leisen 

approach significantly.  Though Hilliard and Schwartz [1996] generate a path 

independent lattice for the special case of Hull and White [1987] model using a two-

dimensional transform (along the lines of Nelson and Ramaswamy [1990]), their 

approach cannot be generalized to any other stochastic volatility models.  Chiarella and 

Ziogas [2005] extend McKean’s [1965] incomplete Fourier transform method to solve 

the two-factor partial differential equation for the price and early exercise surface using 

numerical methods.  However, Chiarella and Ziogas approach is limited only to the case 

of Heston model. Clarke and Parrott [1999] consider a multigrid implicit finite difference 
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scheme for pricing American options under bivariate diffusion stochastic volatility 

models.  This approach requires analytic strike-price related transformation of asset 

prices, and adaptive time-stepping for efficient computation of option prices, and cannot 

be generalized easily to models with jumps in asset prices and/or volatility. Guan and 

Xiaoqiang [2001] use an interpolation-based approach to construct recombining trees for 

pricing American options under stochastic volatility models.  However, the ir 

interpolation-based approximations lead to large pricing errors for long-dated options.   

This paper is organized as follows.  Section 1 demonstrates the main difficulty in 

the construction of a path-independent lattice for low-dimensional stochastic vo latility 

models, using Heston’s model as an example.   The traditional lattice technique leads to 

negative transition probabilities in the tree for stock return when the volatility of the stock 

return becomes small relative to the absolute size of the correlation between the stock 

return and its volatility.  In order to remove the negative transition probabilities, Section 2 

proposes a multi-dimensional transform that is uncorrelated with the volatility state 

variable(s).  A zero correlation between the transform process and the volatility processes 

allows path- independent lattice construction without the occurrence of negative transition 

probabilities for virtually all stochastic volatility models given in the literature with one 

and two volatility factors.  Section 3 extends the multi-dimensional transform to 

stochastic volatility models with jumps.  The results are derived for models with one and 

two volatility factors combined with one and two jumps (i.e., SVJ, SV2J, and SVJ2 

models outlined earlier).   The details of the transforms used and the lattice-based 

simulation results for pricing European and American options are given in each of the 

sections 2 and 3 for the models considered in these sections.   
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I. The Problem of Negative Transition Probabilities using a Simple Path-
Independent Lattice for Stochastic Volatility Models 

 
This section outlines the main difficulty underlying the construction of a simple 

path-independent lattice for low-dimensional stochastic volatility models using the 

specific example of Heston [1993] model.  The simple path-independent lattice has 

computational simplicity similar to that of the two-factor binomial tree of CRR [1979], 

and hence, is simpler than the lattices considered by Ritchken and Trevor [1999] and 

Leisen [2000].  We demonstrate why such a simple path- independent lattice leads to 

negative transition probabilities when the volatility of the stock return becomes small. 

This problem applies to all stochastic volatility models that allow non-zero correlation 

between the stock return and its volatility, and remains the main impediment in the 

construction of simple path-independent lattices for these models. This demonstration 

motivates the development of the multi-dimensional transform in the next section, which 

allows the construction of the simple path-independent lattice of the transform, while 

keeping the transition probabilities positive.  

To illustrate this problem, consider the risk-neutral stochastic processes for the 

log of the stock price and the volatility process under the Heston model, given as follows: 

 
  
dy(t) = r − v(t) / 2( )dt + v(t)dZ(t)

 (1) 

and, 

 
  

dv(t) = α (m − v(t))dt + v(t)dW(t)  (2) 

where y(t) = lnS(t), S(t) is the stock price, v(t) is the instantaneous variance of the stock 

return, and dZ(t) and dW(t) are the associated Wiener processes, respectively.  Let the 
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conditional correlation between the changes in y(t) and v(t) be given as ρ, where by 

definition dZ(t)dW(t) = ρdt.  

A necessary (but not sufficient) condition for constructing a simple two-

dimensional path- independent lattice for the log stock price process and the variance 

process is that separate path-independent trees must exist for each of these processes.  

Using the method of Nelson and Ramaswamy (NR) [1990], a discrete-time path-

independent trinomial tree is constructed for the variance process, by using the NR 

transform.   

Let vh(t) represent the discrete-time trinomial-tree approximation of the v(t) 

process, and let the up, middle, and down node values of the variance after a discrete 

time- interval h, obtained using the NR method, be given as,  Vh
u ,  Vh

m , and  Vh
d .   The 

intuition behind the NR transform is that it shifts the node values on a non-recombining 

tree by the order of O(h), which shifts the up, middle, and down probabilities, slightly.  

But this shift is done in a manner that allows the nodes in the second, third, and higher 

steps to recombine, while matching the mean and the variance of the underlying process 

at each time step in the order of O(h). 

Let yh(t) be the discrete-time trinomial- tree approximation of the y(t) process.  

Construction of a path-independent trinomial tree for y(t) process requires that the span 

between the up and down nodes increases as the variance v(t) increases (see Ritchken and 

Trevor [1999]).   Let v represent the value used for spacing the adjacent nodes on the 

grid for the trinomial tree, such that v h  is the vertical distance between any two 

adjacent nodes on the entire grid.   Then a one-step trinomial tree for the y(t) process will 

lead to the following three nodes at time t + h: 
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yh
u(t + h) = yh (t) + Jh(t) v h

yh
m(t + h) = yh(t)

yh
d (t + h) = yh(t) − Jh (t) v h

 (3) 

where the variable Jh(t) is a function of vh(t) process, and takes integer values greater or 

equal to 1.  The parameter v used for defining node spacing for the grid structure can 

be set equal to the initial volatility v(0) . The integer variable Jh(t) is used to  increase 

the span between the up node and the down node, as the variance increases, which 

prevents the probability of the middle node from becoming negative.  The value of Jh(t) is 

computed as follows.  For all t ≥ 0,  

 

  

J h(t) =
CEILING

vh(t)

v













, if vh(t) > 0

1, if vh(t) = 0.










 (4) 

where CEILING(z), such that z > 0, defines the first integer value that is greater or equal 

to z. Restricting Jh(t) to be an integer value ensures that the tree recombines at the future 

nodes, while the specific definition in equation (4) ensures that the probability associated 

with the middle node value yh
m(t + h)does not become negative as the variance increases. 

By matching the mean and variance of the discrete-time yh(t) process over the 

time interval t to t + h, such that these moments converge to instantaneous moments of 

the continuous-time y(t) process defined in equation (1), in the limit as h → 0, we obtain 

the three probabilities associated with the three nodes in equation (3), as follows: 
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ph, y
u =

1
2

v
h
(t)

Jh(t) v( )2
+

1
2

r − vh(t) / 2( )
Jh(t) v

h

ph, y
d =

1
2

vh(t)

J
h
(t) v( )2

−
1
2

r − v
h
(t) / 2( )

Jh(t) v
h

ph, y
m = 1−

v
h
(t)

J h(t) v( )2

 (5) 

The joint lattice of the yh(t) process and the vh(t) process requires the computation 

of joint probabilities.  Using standard approaches such as Hull and White [1994], the joint 

probabilities take the following form: 

 p(Yh
i ,Vh

j) = ph,y
i  ph,v

j + cijρ  (6) 

for i, j = u, m, and d, where cij are constants, and ρ is the correlation coefficient defined 

earlier.  Now consider following two cases. 

Case 1. The process vh(t) is strictly greater than 0.  

It is well known that under specific parameter choice, the square root process 

remains strictly greater than zero.  Under this case, the three probabilities in equation (5) 

remain positive as h → 0.  However, as vh(t) becomes small, the probabilities 
  
p

h, y
u  and 

  
p

h, y
d  in equation (5) become small, and hence some of the joint probabilities in equation 

(6) can become negative, depending on the size and magnitudes of the correlation 

coefficient ρ and the coefficients cij. 
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Case 2. The process vh(t) converges to 0.  

Under this case, as vh(t) converges to zero, the probability of the down node, 
  
p

h, y
d , 

in equation (5) becomes negative in the order O( h ), because r > 0.  It is easy to show 

that this problem cannot be solved by either allowing the trinomial lattice of yh(t) to move 

in a different direction with multiple node jumps, or by imposing artificial bound on 
  
p

h, y
d , 

such that it remains greater than zero.  Further, both probabilities 
  
p

h, y
u  and 

  
p

h, y
d  become 

of the order O( h ), and hence, similar to case 1, the joint probabilities in equation (6) 

can become negative, depending on the size and magnitudes of the correlation coefficient 

ρ and the coefficients cij. 

Though the problem of negative transition probabilities under the above two cases 

has been demonstrated using the Heston model, similar demonstration can also made 

when constructing simple path- independent lattices for other stochastic volatility models.  

It can be shown that the problem outlined in the first case applies to all stochastic 

volatility models in which the stock return and the volatility process have a non-zero 

conditional correlation.  The problem outlined in the second case applies to all stochastic 

volatility models in which the instantaneous variance of the y(t) process converges to 

zero because of the singularity reached by the v(t) process.  

The next section derives a multidimensional transform that allows building a 

simple path independent lattice – i.e., with the similar simple structure as for the lattice 

developed earlier in this section for the Heston model - that disallows negative transition 

probabilities for all for stochastic volatility models given in the finance literature.  The 

multidimensional transform is derived as a function of the stock price, and the volatility 
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variables such that the stochastic process of the transform remains conditionally 

uncorrelated with the stochastic processes of the volatility variables.  Applying this 

transform allows the construction of a joint lattice of the transform and the volatility 

variables, without requiring the correlation term (as in equation (6)), which eliminates the 

first reason for causing negative transition probabilities.  The transform also uses a time-

dependent deterministic term, which forces the instantaneous mean of the transform 

process to converge to zero, when the instantaneous variance of the transform process 

converges to zero.  This eliminates the second reason for causing negative transition 

probabilities as outlined in case 2 above. The lattice of the stock price process is obtained 

by using the inverse transform.   

A MULTI-DIMENSIONAL TRANSFORM FOR STOCHASTIC VOLATILITY 

MODELS 

Assume that the stock price s(t), follows an N-dimensional stochastic process 

under the risk-neutral measure, given as: 

 
1

( )
( ) ( )

( )

N

i i i
i

ds t
rdt v dZ t

s t
ψ

=

= + ∑  (7) 

where the Wiener processes Zi(t) are mutually independent, and ( )i ivψ are continuous 

differentiable functions of the state variables vi.  The risk-neutral stochastic processes 

followed by the state variables are given as: 

 ( ) ( ( ) ) ( ) ( )i i i i i i idv t m v t dt v dW tα ϕ= − +  (8) 
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where the Wiener processes Wi(t) are mutually independent, and ( )i ivϕ are continuous 

differentiable functions of the state variables vi.  The correlations between the diffusion 

factors related to stock returns and the corresponding volatility factors are given as 

follows: 

 
( ) ( ) ,  for all 1,2,..., , and

( ) ( ) 0,  for all 
i i i

i j

dZ t dW t dt i N

dZ t dW t i j

ρ= =

= ≠
 (9) 

Equations (7) through (9), nest virtually all continuous-time stochastic volatility 

(SV) models in the equity option pricing literature.  Specifically, the SV models of 

Chesney and Scott [1989], Heston [1993], Hull and White [1987], Stein and Stein [1991], 

and Wiggins [1987] can be derived with appropriate specifications of the functions ( )vψ  

and ( )vj  with one diffusion factor and one volatility factor.  Also, the SV2 models (i.e., 

based upon two diffusion factors and two volatility factors) considered in Alizadeh, 

Brandt, and Diebold [2002], Bates [2000], Chacko and Viceira [2003], and Jiang and 

Oomen [2007] can be derived with N = 2, and ( )i ivψ  and ( )i ivϕ  given as square-root 

functions.   

The above model uses 2N factors, given as N diffusion factors and N volatility 

factors, of which N pairs are correlated as shown in equation (9).   Generating efficient 

recombining lattices for such a model is difficult even with N = 1 or 2. The following 

proposition outlines the main result of this paper, given as the multidimensional 

transform which reformulates the Markovian system given by equations (7) through (9) 

with N +1 conditionally correlated state variables into an equivalent Markovian system 

with N + 1 conditionally independent state variables.  This transform allows construction 
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of parsimonious recombining lattices for virtually all of continuous-time stochastic 

volatility models given in the literature.  

 

Proposition 1. For all stochastic processes nested in equations (7) through (9),the 

multidimensional transform given as: 

 ( )
( )

1

( )
( ) ln ( ) ( )

( )

iv tN
i

i
i i

u
y t s t du h t

u
ψ

ρ
ϕ=

 
= − − 

 
∑ ∫  (10) 

is conditionally independent of each of the volatility processes, v i(t) (i.e., dy(t)dv i(t)=0), 

where h(t) is a deterministic function of time. 

 

Proof: Using Ito’s lemma, the stochastic process for y(t) is given as: 

 ( ) ( ) ( ) ( )y y ydy t t dt t dZ tµ σ= +  (11) 

where, 

2

1 1

1

( )( ) 1
( ) ( ) ( ( ))

2 ( )

( ) ( )1
( ) ( )

2

N N
i i

y i i i i i i
i i i i

N
i i i i

i i i i i
i i i

vh t
t r v m v t

t v

v v
v v

v v

ψ
µ ψ ρ α

ϕ

ϕ ψ
ρ ψ ϕ

= =

=

∂
= − − − −

∂

 ∂ ∂
+ − 

∂ ∂ 

∑ ∑

∑

 (12) 

 

( )2 2

1

( ) ( ) 1
N

y i i i
i

t vσ ψ ρ
=

= −∑   (13) 

and the Wiener process dZy(t) is defined as: 
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( )

( )
1

2 2

1

( ) ( ) ( )
( )

( ) 1

N

i i i i i
i

y N

i i i
i

v dZ t dW t
dZ t

v

ψ ρ

ψ ρ

=

=

−
=

−

∑

∑
  (14) 

Using the definition of the correlation terms in equation (9), and the definition of dZy(t) in 

equation (14), it follows that dZy(t)dWi(t) = 0, for all i = 1, 2,…,N.  Hence, the 

multidimensional transform y(t) is conditionally independent of each of the volatility 

processes, v i(t).  

Equation (11) together with equation (8) provides an equivalent Markovian 

system, which requires a joint evolution of N + 1 conditionally independent state 

variables, instead of N + 1 conditionally correlated state variables given by equations (7) 

through (9).  In order to build a recombining lattice for pricing American options under 

stochastic volatility models, we build a separate recombining tree for each of the N 

volatility processes vi(t), and the y(t) process.  Then using the conditional independence 

between these N + 1 processes, and the inverse transform given in the next section, we 

obtain a recombining lattice for s(t) by joining the N +1 recombining trees, with joint 

probabilities computed as simple products of the marginal probabilities at each node of 

the recombining lattice. 

The definition of the transform y(t) in equation (10) contains three separate 

terms.  The first term is the standard log transformation of the stock price, which allows 

the construction of a recombining tree for the y(t) process and is needed even in the 

absence of volatility factors (see Cox, Ross, and Rubinstein [1977] and Nelson and 

Ramaswamy [1990]), as in the case of binomial tree construction for the standard Black 
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and Scholes [1973] model.  The second term eliminates the correlation between the y(t) 

process and the N volatility processes, thereby allowing the Markovian system given in 

equations (7) through (9) to be represented with N + 1 conditionally independent 

processes. The third term h(t), is a deterministic function of time. The next section 

demonstrates that negative probabilities arise for some nodes of the tree of the y(t) 

process, if  µy(t) does not equal zero, when σy(t) becomes zero.  Proposition 2 given in the 

next section assumes that an appropriate specification of term h(t) exists, which allows 

the term µy(t) to go to zero when σy(t) goes to zero. 

 

LATTICE CONSTRUCTION FOR STOCHASTIC VOLATILITY MODELS 

For the purpose of lattice construction, let S(t), Vi(t), and Y(t), denote the 

discrete-time variables, that correspond to the continuous-time variables, s(t), vi(t), and 

y(t), respectively, in equations (7) through (10).  To get some insight on the 

multidimensional lattice construction for stochastic volatility models, first consider the 

one-dimensional trees for the volatility variables Vi(t), for the one volatility factor-based 

SV1 models, as well as the two volatility factors-based SV2 model given in Table I. 

 

Tree Construction for the Volatility Variables 

The first row of Table I specifies the functions ϕi(.) (see equation (8)) for various 

stochastic volatility models with both one volatility factor and two volatility factors.  

Specifically, we consider the SV1 models (i.e., based on a single volatility factor) of Hull 
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and White [1987], Chesney and Scott [1989], Stein and Stein [1991], and Heston [1993], 

and the SV2 model (i.e., based on two volatility factors) given in Alizadeh, Brand t, and 

Diebold [2002], Bates [2000], Chacko and Viceira [2003], and Jiang and Oomen [2007].  

For the Hull and White model, the volatility variable follows a lognormal distribution, 

and hence, the standard binomial method can be used for tree construction of this 

variable.  For other SV1 models given by Chesney and Scott, and Stein and Stein, the 

volatility variable follows the mean-reverting Vasicek [1977] process, and the binomial 

Vasicek trees can be constructed.   

For the case of Heston model, the volatility variable follows the well-known 

square root process. For this process, many authors including Li, Ritchken, and 

Sankarasubramanian [1995], and Acharya and Carpenter [2002] have demonstrated the 

application of the Nelson and Ramaswamy (NR) [1990] trans form for generating a 

recombining tree.  We use a slightly modified version of this approach given as the 

truncated trinomial tree by Nawalkha, Beliaeva, and Soto (NBS) [2007], which corrects a 

small error in the original NR transform when the short rate hits the zero boundary, and 

truncates the tree at the zero value of the transform, reducing the number of nodes 

significantly.  Finally, since the two volatility variables under the SV2 model are 

uncorrelated, the NBS trinomial method is applied separately for modeling the one-

dimensional trees for both these variables.  

Tree Construction for the Multidimensional Transform 

The main contribution of this paper is the derivation of the multidimensional 

transform in proposition 1, which can be used to build a parsimonious recombining lattice 
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for the stock price that captures the correlations between the stock price and the volatility 

variables.  Doing this, however, requires the construction of a tree for the 

multidimensional transform, in addition to the trees of the volatility variables discussed 

above. The second row of Table I specifies the functions ψ i(.) (see equation (7)), and the 

third row of this table derives the specific multidimensional transforms for the various 

SV1 and SV2 models using equation (10).  The fourth row of Table I defines the 

deterministic term h(t) that is used for avoiding negative probabilities for some of the 

stochastic volatility models when the volatility of the transform become zero. 

The discrete time processes Y(t) for the multidimens ional transform is represented 

as follows: 

 ( ) ( ) ( ) ( )Y Y YY t t t t Z tµ σ∆ = ∆ + ∆  (15) 

where µY(t) and σY(t) are obtained by replacing vi(t) with Vi(t), in the definitions of µy(t) 

and σy(t) given in equations (12) and (13), respectively.  The terms µY(t) and σY(t) for the 

various stochastic volatility models are specified in the fifth row and the sixth row of 

Table I, respectively.  The term ∆ZY(t) is the discrete-time approximation of the 

continuous change in the Wiener process, dZy(t) defined in equation (14). The procedure 

to build the tree for Y(t) transform is the same for all models nested in equations (7) 

through (9), and is outlined as follows.  The discrete-time Y(t) process represented in 

equation (15) is modeled as a trinomial tree, with the up and down nodes determined by a 

changing node span.  However, before modeling the changing node span, first consider 

the normal node span, as shown in Figure 1.   
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Figure 1.  Normal node span of the trinomial tree for the Y(t) process 

 

The parameter Yσ  is used to define the normal node span for building the grid for the 

tree for the Y(t) process.  The normal node span is defined as the distance between the up 

node and the down node in Figure 1, or: 

 Normal node span = 2 Y tσ ∆  (16) 

The parameter Yσ  used in defining the normal node span can be set equal to the initial 

volatility of the Y(t) process, given as σY(0) (see equation (13)), or in case the initial 

volatility is much lower or much higher than the expected volatility of Y(t) process in the 

time-window over which the option is being priced, then Yσ can be set close to the 

expected volatility of Y(t) process.  Since the stochastic process of Y(t) does not follow 

constant volatility, the up node and the down nodes are chosen to match the volatility 

σY(t), at any given time t.  This is done by changing the node span as shown in Figure 2 

using the integer function k(t), computed as the first positive integer that is greater or 

equal to the ratio σY(t)/ Yσ , or: 

Y(t) 
 

( ) YY t tσ+ ∆  

Y(t) 

( ) YY t tσ− ∆  
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where as mentioned earlier, Vi(t) denotes the ith discrete-time volatility process, which 

approximates the continuous-time vi(t) process for all i = 1,2,…N.   

 

 

 

 

 

 

Figure 2. Changing node span of the trinomial tree for the Y(t) process 
 

The changing node span in Figure 2 is the distance between the up node and the down 

node for the trinomial tree for Y(t), at time t, and is defined as follows: 

 Changing Node Span = 2 ( ) Yk t tσ ∆  (18) 

It can be seen that the changing node span is always an integer multiple of the normal 

node span given in equation (16).  If k(t) equals 1, then we obtain the normal node span 

of the trinomial tree. When the volatility σY(t) increases, then node span must increase to 

avoid getting a negative middle probability for the Y(t) process in Figure 2.  The changing 

Y(t) 
 

( ) ( ) YY t k t tσ+ ∆  

Y(t) 

( ) ( ) YY t k t tσ− ∆  



 24 

nodes span can be twice, thrice, or even a higher multiple of the normal node span.  

Restricting k(t) to be an integer value ensures that the tree recombines at the future nodes.  

The computation of the changing node span in equation (18) involves N volatility 

terms Vi(t) (for i = 1,2,…,N), which are available using the discrete-time trees for the N 

volatility processes.  The combined effect of these volatilities determines the size of the 

changing node span.  For illustration, Figure 3A displays a normal node span with k(t) 

=1, in all states, over two time intervals.  In contrast, Figure 3B displays a changing node 

span with k(t) = 1 in all states in the first time interval, and with k(t) = 2 in the up state 

and the middle state in the second time interval. Note that even though the node span 

when k(t) = 2 is twice the node span when k(t) = 1, the total number of nodes goes up 

only to seven from five, at the end of the second time interval, due to the recombining 

nature of the tree.  The non-explosive nature of the tree for Y(t) process allows the 

building of an efficient lattice that combines the tree for the Y(t) process with the trees of 

the volatility processes, Vi(t). 

 

 

 

 

 

 

Figure 3. The 2-period Y(t) tree with a changing node span  
 

 

k(t) = 1 k(t) = 2 
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The marginal probabilities of the Y(t) process are obtained by matching the 

conditional mean and the conditional variance, in the order of O(∆t), and are given as 

follows: 

 

2

2 2

2

2 2

( ) ( )1 1
2 ( ) 2 ( )

( ) ( )1 1
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p t
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σ σ

= + ∆

= − ∆
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 (19) 

The roles played by the functions k(t) and h(t), in ensuring positive probabilities 

can be seen from the definition of these probabilities in equation (19).  Whenever the 

current volatility σY(t) exceeds Yσ , the integer value of k(t) becomes greater than 1 (see 

equation (17)), which ensures that both the up probability and the down probability 

remain less than 0.5, and the middle probability remains non-negative in the limit as ∆t 

→ 0.   

By assumption, the function h(t) is defined to make µY(t) go to zero, when σY(t) 

goes to zero.  Note that if µY(t) did not converge to zero, whenever σY(t) goes to zero, 

then either the up probability or the down probability is nega tive in equation (19).  

However, the function h(t) is not required for the models of Hull and White, and Chesney 

and Scott, given in Table I.  In the case of Hull and White model, the volatility process 

V(t) follows a lognormal distribution, and hence σY(t) remains strictly above zero.  In the 

case of Chesney and Scott model, the volatility process V(t) follows a mean-reverting 

Gaussian distribution, and hence, can become zero.  But, since σY(t) is defined as an 
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exponential function of V(t) (see Table I), it remains strictly above zero. However, the 

function h(t) is required under the models of Stein and Stein, Heston, and the SV2 model.  

Under these models, the specific definitions of h(t) given in Table I, ensure that whenever 

all of the volatility variables (which follow square root processes) become zero, making 

σY(t) go to zero, then µY(t) goes to zero, as well.   

We now state proposition 2, according to which the discrete-time process Y(t) 

converges to the continuous-time process y(t) in the limit as ∆t → 0.  

 

Proposition 2. The discrete-time process Y(t) given by equation (15), and approximated 

using the trinomial tree specified in equations (16) through (19),converges to the 

continuous-time process y(t), in the limit as ∆t → 0, for each of the stochastic volatility 

models given in Table I. 

A recombining lattice for stock price S(t) is obtained by joining the recombining 

trees of the transform Y(t) and the volatility processes Vi(t), using the inverse transform 

obtained by rearranging the terms in equation (10), and expressing it using discrete-time 

variables as follows: 

 
( )

1

( )
( ) exp ( ) ( )

( )

iV tN
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i
i i

u
S t Y t du h t

u
ψ

ρ
ϕ=

  
= + +     

∑ ∫  (20) 

The last row of Table I gives the inverse transform using the above equation, for the 

various stochastic volatility models with one and two volatility factors.  The recombining 

lattice for S(t) is easy to construct since by construction the tree for the Y(t) process is 

conditionally independent of the trees of the volatility processes Vi(t).  Hence, the 
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probabilities of nodes of the multidimensional lattice for S(t) are obtained simply by 

multiplying the marginal probabilities of the respective nodes of the trees for the Y(t) 

process and the Vi(t) processes.  Since the tree for Y(t) process converges to y(t), and the 

trees for Vi(t) processes converge to vi(t), in the continuous-time limit, the 

multidimensional lattice for S(t) defined using the inverse transform in equation (20) also 

converges to s(t) in the limit, using the transform relationship given in equation (10) in 

proposition 1, for all SV1 and SV2 models given in Table I. 

 

SIMULATIONS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC 

VOLATILITY MODELS 

Table II documents the performance of SV1 model.  It shows the European and 

American put option prices and Heston [1993] closed form solution for the case of 

European option.  The computations have been performed for the options with strikes X = 

$90, $100 and $110 maturing in 1, 3 and 6 months for the starting volatility value of 

(0)v = 0.1, 0.2 and 0.3 and starting stock value of S(0) = $100.  The other parameters 

are based on Jun Pan [2002] and given as follows: r = 0.03; σ = 0.38; α = 5.3; m = 

0.0242; and ρ = -0.57.  The number of steps in a tree is N = 100 and 300.  The American 

put prices were obtained using Control Variate (CV) technique.  CV technique computes 

the value of the put option as follows: 

 

American Put = Tree American Put + (Closed Form Euro Put – Tree Euro Put) 
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CV technique is particularly useful for options with longer maturity when a 

regular tree needs a significant number of steps to provide accurate answers. 

 

Table IV documents the performance of SV2 model.  It shows the European and 

American put option prices and closed form solution for the case of European option.  

The computations have been perfo rmed for the options with strikes X = $90, $100 and 

$110 maturing in 1, 3 and 6 months for the starting volatility value of (0)v = 0.1, 0.2 

and 0.3 and starting stock value of S(0) = $100.  The other parameters were adopted from 

Christoffersen, Heston, and Jacobs [2007] and given as follows: r = 0.03; σ1 = 1.072; α1 

= 0.2563; m1 = 0.004; ρ1 = -0.8084; σ2 = 0.2875; α2 = 1.8817; m2 = 0.0233; and ρ2 = -

0.6997.  The number of steps in a tree is N = 50 and 150.   

EXTENSIONS TO STOCHASTIC VOLATILITY JUMP MODELS 

Under stochastic volatility models, the volatility is modeled as a diffusion 

process, therefore, it does not have enough variation in the short run to generate high 

short-term kurtosis and therefore prices of short-term options might be biased.  To deal 

with this problem, many papers extend stochastic volatility models with jumps in asset 

returns (for example, see Bates [1996, 2000], Bakshi, Cao and Chen [1997], Pan [2002], 

Andersen, Benzoni and Lund [2002], Chernov, Ghysels, Gallant and Tauchen [1999]).  It 

has been suggested that jumps could account for the skewness and high kurtosis in option 

prices.  In the second part of this paper we further extend stochastic volatility model of 

Heston [1993] by allowing jumps in asset returns.   

There are not many papers that use or develop numerical procedures for pricing 
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American options under stochastic volatility and jumps in asset returns.  For example, 

Bates [1996] in his paper uses a bivariate explicit finite-difference method influenced by 

Omberg [1988] to compute American option prices.  He subsequently adjusts the 

obtained prices for observed biases in European prices using the control variate 

technique.  Another approach using Monte Carlo simulation that works with multiple 

factors was developed by Longstaff and Schwartz [2001].  The key to their approach is to 

use a cross-sectional least squares regression to estimate the conditional expected payoff 

to the option holder from continuation.  This way they are able to obtain a complete 

specification of the optimal exercise strategy along each sample path.  With this 

specification, American options can then be valued by simulation.   

In this section we consider the construction of parsimonious recombining lattices 

for affine stochastic volatility jump models. Due to their analytical tractability, these 

models have been studied extensively, and much empirical estimation work supports the 

basic features of these models.  Assume that the stock price s(t), follows a risk-neutral 

stochastic process with N volatility factors and M jump factors (selecting N = 1 or 2, and 

M = 1 or 2, leads to different affine stochastic volatility jump models studied in the 

literature), given as: 

 ( )

1 1 1

( )
( ) ( ) ( ) ( 1) ( )

( )
i

M N M
J t

i i i i i
i i i

ds t
r t dt v t dZ t e dN t

s t
η λ

= = =

 
= − + + − 

 
∑ ∑ ∑  (21) 

where the Wiener processes Zi(t) are mutually independent.  The jump variables Ji(t) 

follow Gaussian distributions, under the risk-neutral measure, specified as follows: 
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 ( )2( ) ~ , , for 1,...,i Ji JiJ t i Mµ σ =N  (22) 

where µJi and σJi
2 are the first two central moments of Ji(t), and the compensator terms 

are defined under the risk-neutral measure as follows: 

 
2( ) 0.5( 1) 1,  for 1,...,i Ji JiJ t

i E e e i Mµ ση += − = − =  (23) 

The risk-neutral intensity of the ith Poisson variable Ni(t), is given as λi(t), where 

λi(t) is defined as a linear function of the ith volatility, or: 

 ( ) ( ), for 1,...,i i i it a b v t i Mλ = + =  (24) 

where ai and bi are positive constants.  The Wiener processes, jump variables, and 

Poisson processes given in equation (21), are all independently distributed. 

The volatility variables follow square-root processes under the risk-neutral 

measure, given as follows: 

 ( ) ( ( ) ) ( ) ( )i i i i i i idv t m v t dt v t dW tα σ= − +  (25) 

for i = 1,…,N, where the Wiener processes dWi(t) are mutually independent. The 

correlations between the diffusion factors related to stock returns and the corresponding 

volatility factors are given as follows: 



 31 
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( ) ( ) 0,  for all 
i i i
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dZ t dW t dt i N

dZ t dW t i j

ρ= =

= ≠
 (26) 

The model specified in equations (21) through (26) nest a variety of affine models with 

one or two volatility factors, and one or two jumps.  When N = 1 and M = 1, we get the 

SVJ model given by Andersen, Benzoni, and Lund [2002], and Pan [2002].  When N = 1 

and M = 1, and b1 = 0 in equation (24), we get the SVJ model given by Bakshi, Cao, and 

Chen [1997, 2000] and Bates [1996, 2000].  When N = 1 and M = 2, we get the SVJ2 

model given by Bates [2006].  When N = 2 and M = 1, and b1 = 0 in equation (24), we get 

the SV2J model given by Jiang and Oomen [2007].  We limit our simulations to models 

with a maximum of two volatility factors and two jumps (i.e., N = 2 and M = 2), which 

nest virtually all affine stochastic volatility jump models given in the literature.  

The following proposition gives a multidimensional transform that reformulates 

the Markovian system given by equations (21)  through (26), with N + 1 conditionally 

correlated state variables into an equivalent Markovian system with N + 1 conditionally 

independent state variables.  

 

Proposition 3. For the stochastic processes nested in equations (21)  through (26), the 

multidimensional transform given as: 

 ( )
1

( ) ln ( ) ( ) ( )
N

i
i

i i

y t s t v t h t
ρ
σ=

= − −∑  (27) 
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is conditionally independent of each of the volatility processes, v i(t) (i.e., dy(t)dv i(t)=0) 

where h(t) is a deterministic function of time. 

 

Proof: Using Ito’s lemma, the stochastic process for y(t) is given as: 
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and the Wiener process dZy(t) is defined as: 
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The proof follows using the same logic as in proposition 1 (i.e., dZy(t)dWi(t) = 0, for all i 

= 1,…,N), and noting that jump variables Ji(t), and Poisson processes Ni(t), for all i = 

1,…,M, are distributed independently of the Wiener process dZy(t) defined in equation 

(31).    
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As in the case of stochastic volatility models in the previous section, by 

appropriately choosing h(t) in equation (29), we can ensure that when all of volatility 

processes vi(t) become zero, and make σy(t) go to zero in equation (30), then µy(t) also 

goes to zero.  Similar to the case of stochastic volatility models in the previous section, 

doing this prevents negative diffusion probabilities for the tree of the y(t) process, when 

σy(t) goes to zero.  An inspection of equation (29) reveals that setting h(t) to:  

 
1 1
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i ii
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h t r a t
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σ= =

 
= − − 

 
∑ ∑  (32) 

makes µy(t) equal to only the first two summation terms in equation (29), which are linear 

in vi(t), and hence, achieves the desired objective.  

We now consider lattice construction for three models introduced earlier as the 

SVJ model, the SVJ2 model, and the SV2J model.  The lattice construction is similar to 

the case of stochastic volatility models considered in the previous section, except that 

jump lattices are superimposed on the diffusion lattice of the y(t) process, using the 

explicit finite difference method outlined by Amin [1993], with slight adjustments made 

for the changing node span of the diffusion lattice. 

Let the discrete-time process Y(t) corresponding to y(t) process be represented as 

follows: 

 
1

( ) ( ) ( ) ( ) ( ) ( )
M

Y Y Y i i
i

Y t t t t Z t J t N tµ σ
=

∆ = ∆ + ∆ + ∆∑  (33) 

where, the term ∆ZY(t) represents the discrete-time approximation of the continuous 
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change in the Wiener process dZy(t), and the variables ∆Ni(t) represent the discrete-time 

approximations of the continuous changes in the Poisson processes, dNi(t), for all i = 

1,…,M.  The variable ∆Ni(t) is assumed to equal 1 with probability ( )i t tλ ∆ , and 0 with 

probability 1 - ( )i t tλ ∆ , for all i = 1,…,M.  The discrete-time variables µY(t), σY(t), and 

( )i tλ are obtained by replacing vi(t) with Vi(t), for all i = 1,…N, in the definitions of µy(t), 

σy(t), and λi(t) given in equations (29), (30), and (24), respectively, and Vi(t) represents 

the discrete-time process corresponding to the vi(t) process, for all i = 1,…,N.  

The procedure to build trees for the discrete-time volatility variables Vi(t) is 

identical to that outlined in the previous section for the cases of Heston model and the 

SV2 model.  To illustrate the construction of the tree for the Y(t) process, consider Table 

V which gives the definitions of the transform y(t); the function h(t); the discrete-time 

functions µY(t) and σY(t), which are needed to model the diffusion part of the multinomial 

tree for Y(t); and the discrete-time inverse transform S(t) for the SVJ, SVJ2, SV2J, and 

SV2J2 models.  

In order to approximate the Y(t) process in equation (33), using a multinomial 

jump diffusion tree, consider the case of SV2J2 model which nests all other models in 

Table V.  For this model equation (33) can be approximated as follows: 
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In the limit as ∆t → 0, equation (34) is different from equation (33) only by terms 

of the order of o(0).  Amin [1993] using a similar approximation shows to build a jump-

diffusion multinomial tree for the Merton’s [1976] jump option pricing model.  We first 

show how the diffusion component is modeled on the grid for the jump-diffusion tree.  

Specifically, from any given node Y(t) at time t, the three diffusion nodes are defined as 

follows: 
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 (35) 

where J is an integer closest in absolute distance to the following expression: 
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By comparing equations (35) and (36), it can be seen that the definition of J ensures that 

the middle node ( )mY t t+ ∆ is as close as possible to the expression Y(t) + µY(t)∆t, 

allowing the three probabilities to remain positive, even when the drift µY(t)∆t has a high 

magnitude.  In general, since µY(t) (defined for the stochastic volatility jump models in 

row 3 of Table V) depends upon jump intensity parameter bi (see equation (24)), and 

jump size parameters µJi and σJi (see equation (23)), the magnitude of µY(t) can be high, 

for some of the models given in Table V.  

The three diffusion node probabilities conditional on no-jump occurrence sum up 

to 1 and are obtained by matching both the drift and the variance of dY(t) exactly (using 

the extra degree of freedom available using a trinomial tree), as follows:    
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where, 
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Since the two Poisson jumps occur with intensities 1( )tλ  and 2( )tλ , the unconditional 

probabilities of the three diffusion nodes are given as: 
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 (39) 

 

To see how Amin’s method can be applied to build a multinomial tree for the Y(t) 

process, first consider the case of only one jump by assuming that 2( )tλ = 0, in equation 

(34), consistent with the SV2J model in Table V.  Figure 4 compares the multinomial 

jump tree for the Merton model as modeled by Amin [1993], versus the multinomial 

jump tree for the SV2J model.   The normal node span for the grid for Merton tree is 

based upon stock return volatility σ, while the normal node span for the grid for the SV2J 

model is based upon the constant Yσ .  While the diffusion nodes for Merton tree are 



 37 

always the first two nodes surrounding the central node, the diffusion nodes for SV2J tree 

are the three nodes that include the central node, and the up and down nodes with the 

distance between them determined by the function k(t). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Jump Distribution of Amin [1993] versus Multinomial SV2J Tree.  
 

As the time t volatility increases, the integer value of the function k(t) increases, 

and the span between the up and down diffusion nodes increases for the SV2J tree.  Due 

to the slightly different structure of the diffusion nodes under these two models, the jump 

probabilities are allocated slightly differently, using the algorithm given in Amin [1993].   
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SIMULATIONS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC 

VOLATILITY JUMP MODELS 

Table VI and Table VII document the performance of SVJ model using 

parameters obtained by Pan [2002] and Bates [2006] respectively.  Table VIII documents 

the performance of SVJ2 model using parameters obtained by Bates [2006].  Table IX 

documents the performance of SVJ2 model using parameters obtained by Jiang and 

Oomen [2006].  The tables show the European and American put option prices and 

closed form solutions for the case of European options.  The computations have been 

performed for the options with strikes X = $90, $100 and $110 maturing in 1, 3 and 6 

months for the starting volatility values of (0)v = 0.1, 0.2 and 0.3 and starting stock 

price value of S(0) = $100.  The number of steps in a tree used for SVJ and SVJ2 models 

was N = 100 and 300.  The number of steps in a tree for SV2J model was N = 50 and 100. 

The American put prices were obtained using Control Variate technique.  All tables show 

good conversion for the European options.  The convergence is worse for options with 

longer maturity and higher level of starting volatility.  The convergence becomes better 

with the increase in the number of steps in a tree.   

 

CONCLUSIONS 

This paper presented a new transform-based approach for path-independent lattice 

construction for pricing American options under low-dimensional stochastic volatility 

models.  We derive multidimensional transforms which allow us to construct efficient 

path-independent lattices for virtually all low-dimensional stochastic volatility models 

given in the literature including: 
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i) one volatility factor-based stochastic volatility (SV) models (e.g., Chesney 

and Scott [1989], Heston [1993], Hull and White [1987], Stein and Stein 

[1991], and Wiggins [1987]); 

ii) two volatility factors-based stochastic volatility (SV2) models (e.g., Bates 

[2000], and Jiang and Oomen [2006]); 

iii)  stochastic volatility jump models with one volatility factor and one jump 

factor (SVJ) and one volatility factor and two jump factors (SVJ2) (e.g. 

Andersen, Benzoni, and Lund [2002], Bates [1996, 2000, 2006], Bakshi, Cao, 

and Chen [1997, 2000], Chacko and Viceira [2003], and Pan [2002]); 

iv) two volatility factor-based models with one jump factor (SV2J) (e.g., Jiang 

and Oomen [2006]). 

The related lattice approach of Ritchken and Trevor (RV) uses GARCH models 

for pricing equity options in the presence of stochastic volatility.  Since the variance 

process under the GARCH method is a path-dependent (which implies an explosive 

number of variances at any given node of the asset price tree), RV method has to use 

approximation procedures to model volatility.  Due to the volatility interpolations and 

other approximations involved in the modeling of the path-dependent variance process, 

the RV lattice algorithm is relatively slower and less accurate than a typical path-

independent binomial or trinomial model.  In contrast to the RV algorithm, this paper 

derives a multidimensional transform in order to model both the asset price process and 

the volatility process as path-independent trees. The efficiency and accuracy of our 

approach is of similar order as a two-factor Cox, Ross, and Rubinstein [1979] model, 

which represents a significant improvement over the RV algorithm for the special case of 
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the bivariate diffusion stochastic volatility models.  Our approach also generalizes 

parsimoniously to other low-dimensional stochastic volatility models, such as those with 

two volatility state variables, or jump factors in the asset returns.  In contrast, the 

GARCH option pricing models cannot allow more than one volatility state variable, and 

it is virtually impossible to extend the RV lattice approximation method to the GARCH-

jump models.  Though a few other researchers have provided different approaches for 

pricing American options under low-dimensional stochastic volatility models, none are as 

general in terms of applicability to a diverse set of models with stochastic volatility and 

jumps, or numerically as efficient as our approach.  Our lattice-based approximations of 

the prices of European options converge rapidly to their true prices obtained using quasi-

analytical solutions.  
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Table I. Variable Definitions for Alternative SV1 and SV2 models  

 Hull-White Chesney-Scott Stein-Stein Heston SV2 
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Table II. SV1 Model.  European and American put prices computed assuming r = 
0.03; σ = 0.38; α = 5.3; m = 0.0242; and ρ = -0.57 (Jun Pan [2002]). 

European Tree American Tree 
v(t)  X T 

N = 100 N = 300 
Heston 

N = 100 N = 300 
0.1 90 0.0833 0.0083 0.0086 0.0086 0.0087 0.0087 
0.1 100 0.0833 1.1518 1.1523 1.1524 1.1669 1.1671 
0.1 110 0.0833 9.7257 9.7257 9.7257 10.0000 10.0000 

        

0.1 90 0.25 0.2201 0.2222 0.2232 0.2254 0.2254 
0.1 100 0.25 2.1202 2.1260 2.1267 2.1746 2.1745 
0.1 110 0.25 9.2840 9.2953 9.2954 10.0114 10.0001 

        

0.1 90 0.5 0.7022 0.7089 0.7141 0.7319 0.7308 
0.1 100 0.5 3.0987 3.1044 3.1122 3.2268 3.2274 
0.1 110 0.5 9.1849 9.1875 9.1994 10.0144 10.0122 

        

0.2 90 0.0833 0.1031 0.1034 0.1036 0.1039 0.1040 
0.2 100 0.0833 2.0698 2.0700 2.0700 2.0865 2.0867 
0.2 110 0.0833 9.7835 9.7831 9.7830 9.9994 9.9998 

        

0.2 90 0.25 0.6196 0.6219 0.6232 0.6298 0.6300 
0.2 100 0.25 3.1827 3.1843 3.1850 3.2503 3.2511 
0.2 110 0.25 9.7605 9.7588 9.7577 10.1471 10.1485 

        

0.2 90 0.5 1.2076 1.2145 1.2179 1.2481 1.2489 
0.2 100 0.5 4.0260 4.0318 4.0344 4.1913 4.1933 
0.2 110 0.5 9.9098 9.9116 9.9110 10.5276 10.5290 

        

0.3 90 0.0833 0.3945 0.3963 0.3972 0.3984 0.3984 
0.3 100 0.0833 3.0567 3.0582 3.0589 3.0756 3.0758 
0.3 110 0.0833 10.1382 10.1369 10.1362 10.2401 10.2409 

        

0.3 90 0.25 1.3036 1.3123 1.3168 1.3306 1.3310 
0.3 100 0.25 4.4596 4.4651 4.4678 4.5414 4.5427 
0.3 110 0.25 10.6921 10.6893 10.6877 10.9511 10.9533 

        

0.3 90 0.5 1.9832 2.0022 2.0117 2.0655 2.0670 
0.3 100 0.5 5.2543 5.2680 5.2746 5.4699 5.4726 
0.3 110 0.5 11.0172 11.0174 11.0169 11.5545 11.5582 
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Table III Hull and White model.  European put prices computed assuming r = 0.0; σ 
= 1.0; α = 0.0; m = 0.0; and v(0)= 0.1 (Leisen [2000]). 

European Tree ρ  X 
N = 40 N = 100 

Leisen Monte 
Carlo 

0.5 95 0.7904 0.7881 0.793 0.788 
0.5 96 1.0632 1.0612 1.068 1.061 
0.5 97 1.3948 1.3930 1.403 1.393 
0.5 98 1.7877 1.7874 1.800 1.787 
0.5 99 2.2439 2.2440 2.259 2.243 
0.5 100 2.7613 2.7614 2.775 2.761 
0.5 101 3.3382 3.3389 3.359 3.337 
0.5 102 3.9698 3.9709 3.993 3.969 
0.5 103 4.6528 4.6535 4.678 4.652 
0.5 104 5.3813 5.3829 5.408 5.381 
0.5 105 6.1512 6.1523 6.179 6.151 

     

0 95 0.9252 0.9227 0.922 0.922 
0 96 1.1835 1.1808 1.181 1.180 
0 97 1.4936 1.4912 1.491 1.490 
0 98 1.8575 1.8558 1.858 1.855 
0 99 2.2802 2.2815 2.283 2.279 
0 100 2.7595 2.7616 2.762 2.763 
0 101 3.3078 3.3089 3.310 3.307 
0 102 3.9112 3.9093 3.910 3.908 
0 103 4.5699 4.5656 4.566 4.565 
0 104 5.2778 5.2749 5.273 5.273 
0 105 6.0309 6.0277 6.027 6.028 

      

-0.5 95 1.0280 1.0289 1.022 1.029 
-0.5 96 1.2714 1.2726 1.265 1.272 
-0.5 97 1.5607 1.5612 1.553 1.562 
-0.5 98 1.8995 1.9008 1.891 1.901 
-0.5 99 2.2930 2.2941 2.282 2.294 
-0.5 100 2.7434 2.7439 2.725 2.745 
-0.5 101 3.2537 3.2542 3.237 3.255 
-0.5 102 3.8235 3.8235 3.804 3.825 
-0.5 103 4.4528 4.4524 4.429 4.454 
-0.5 104 5.1386 5.1385 5.112 5.140 
-0.5 105 5.8779 5.8771 5.849 5.879 
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Table IV. SV2 Model.  European and American put prices computed assuming r = 
0.03; σ1 = 1.072; α1 = 0.2563; m1 = 0.004; ρ1 = -0.8084; σ2 = 0.2875; α2 = 1.8817; m2 = 
0.0233; and ρ2 = -0.6997 (Christoffersen, Heston, and Jacobs [2007]). 

European Tree American Tree 
1v (t)
 

2v (t)
 

X T N = 50 N = 150 
Closed 
Form N = 50 N = 150 

0.1 0.1 90 0.0833 0.0858 0.0869 0.0875 0.0877 0.0877 
0.1 0.1 100 0.0833 1.4246 1.4249 1.4248 1.4389 1.4392 
0.1 0.1 110 0.0833 9.7267 9.7266 9.7266 10.0000 10.0000 

         

0.1 0.1 90 0.25 0.4710 0.4764 0.4788 0.4832 0.4826 
0.1 0.1 100 0.25 2.2875 2.2897 2.2913 2.3396 2.3401 
0.1 0.1 110 0.25 9.2724 9.2753 9.2767 10.0044 10.0015 

         

0.1 0.1 90 0.5 0.9750 0.9913 1.0000 1.0210 1.0191 
0.1 0.1 100 0.5 3.0953 3.1020 3.1112 3.2214 3.2211 
0.1 0.1 110 0.5 8.9607 8.9598 8.9703 10.0096 10.0105 

         

0.1 0.3 90 0.0833 0.5609 0.5649 0.5669 0.5682 0.5683 
0.1 0.3 100 0.0833 3.3828 3.3874 3.3898 3.4043 3.4047 
0.1 0.3 110 0.0833 10.2955 10.2963 10.2965 10.3803 10.3812 

         

0.1 0.3 90 0.25 1.9292 1.9505 1.9608 1.9733 1.9742 
0.1 0.3 100 0.25 5.3075 5.3296 5.3405 5.3953 5.3978 
0.1 0.3 110 0.25 11.3447 11.3528 11.3564 11.5391 11.5443 

         

0.1 0.3 90 0.5 3.1210 3.1745 3.1989 3.2426 3.2472 
0.1 0.3 100 0.5 6.6380 6.6840 6.7072 6.8443 6.8534 
0.1 0.3 110 0.5 12.1942 12.2156 12.2273 12.5890 12.6036 

         

0.3 0.1 90 0.0833 0.7953 0.7973 0.7983 0.7997 0.79998 
0.3 0.1 100 0.0833 3.3766 3.3768 3.3769 3.3896 3.3899 
0.3 0.1 110 0.0833 10.0468 10.0442 10.0429 10.1526 10.1539 

         

0.3 0.1 90 0.25 2.4661 2.4705 2.4737 2.4851 2.4855 
0.3 0.1 100 0.25 5.2339 5.2346 5.2355 5.2820 5.2831 
0.3 0.1 110 0.25 10.6953 10.6887 10.6849 10.9113 10.9129 

         

0.3 0.1 90 0.5 3.7903 3.7995 3.8053 3.8430 3.8441 
0.3 0.1 100 0.5 6.5255 6.5280 6.5305 6.6435 6.6463 
0.3 0.1 110 0.5 11.3837 11.3744 11.3710 11.7701 11.7711 

         

0.3 0.3 90 0.0833 1.3394 1.3442 1.3466 1.3489 1.3490 
0.3 0.3 100 0.0833 4.5789 4.5832 4.5852 4.5985 4.5990 
0.3 0.3 110 0.0833 11.0074 11.0071 11.0070 11.0617 11.0628 

         

0.3 0.3 90 0.25 3.5924 3.6098 3.6192 3.6357 3.6369 
0.3 0.3 100 0.25 7.2201 7.2365 7.2451 7.2950 7.2978 
0.3 0.3 110 0.25 12.8930 12.8995 12.9029 13.0357 13.0410 

         

0.3 0.3 90 0.5 5.3733 5.4128 5.4331 5.4854 5.4905 
0.3 0.3 100 0.5 9.0509 9.0886 9.1067 9.2333 9.2424 
0.3 0.3 110 0.5 14.3213 14.3429 14.3526 14.6334 14.6477 
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Table V. Variable Definitions for Alternative Stochastic Volatility Jumps Models  
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Table VI SVJ Model.  European and American put prices computed assuming r = 
0.03; σ = 0.28; α = 7.1; m = 0.0134; ρ = -0.52; a = 0; b = 27; µJ = -0.199; and σ J = 0.033 
(Jun Pan [2002]). 

European Tree American Tree 
v(t)  X T 

N = 100 N = 300 
Closed 
Form N = 100 N = 300 

0.1 90 0.0833 0.1784 0.1933 0.1938 0.2061 0.1967 
0.1 100 0.0833 1.2518 1.2664 1.2668 1.2935 1.2824 
0.1 110 0.0833 9.7107 9.7253 9.7256 10.0150 10.0003 

        

0.1 90 0.25 0.6142 0.6257 0.6268 0.6563 0.6465 
0.1 100 0.25 2.3780 2.3887 2.3888 2.4584 2.4477 
0.1 110 0.25 9.2724 9.2926 9.2914 10.0190 9.9988 

        

0.1 90 0.5 1.2017 1.2128 1.2147 1.2796 1.2727 
0.1 100 0.5 3.5350 3.5384 3.5372 3.7011 3.6962 
0.1 110 0.5 9.2442 9.2339 9.2279 10.0039 10.0147 

        

0.2 90 0.0833 0.5937 0.5960 0.5963 0.6042 0.6026 
0.2 100 0.0833 2.5360 2.5367 2.5362 2.5580 2.5565 
0.2 110 0.0833 9.8225 9.8230 9.8223 10.0052 10.0051 

        

0.2 90 0.25 1.3385 1.3419 1.3435 1.3769 1.3772 
0.2 100 0.25 3.9282 3.9279 3.9274 4.0240 4.0246 
0.2 110 0.25 9.9897 9.9849 9.9818 10.3305 10.3326 

        

0.2 90 0.5 1.9443 1.9529 1.9566 2.0466 2.0469 
0.2 100 0.5 4.8411 4.8470 4.8478 5.0943 5.0922 
0.2 110 0.5 10.3005 10.3016 10.2967 10.9100 10.9040 

        

0.3 90 0.0833 1.2530 1.2564 1.2579 1.2663 1.2660 
0.3 100 0.0833 3.9725 3.9727 3.9726 3.9992 3.9990 
0.3 110 0.0833 10.4261 10.4234 10.4217 10.5088 10.5092 

        

0.3 90 0.25 2.4105 2.4200 2.4248 2.4687 2.4698 
0.3 100 0.25 5.7121 5.7161 5.7179 5.8362 5.8383 
0.3 110 0.25 11.4498 11.4432 11.4396 11.6997 11.7064 

        

0.3 90 0.5 3.0469 3.0685 3.0782 3.2063 3.2068 
0.3 100 0.5 6.4807 6.4991 6.5054 6.8067 6.8053 
0.3 110 0.5 11.9215 11.9304 11.9288 12.5218 12.5141 
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Table VII SVJ Model.  European and American put prices computed assuming r = 
0.03; σ = 0.237; α = 4.25; m = 0.0142; ρ = -0.611; a = 0; b = 93.4; µJ = -0.002; and σ J = 
0.039 (Bates [2006]). 

European Tree American Tree 
v(t)  X T 

N = 100 N = 300 
Closed 
Form N = 100 N = 300 

0.1 90 0.0833 0.0064 0.0065 0.0066 0.0066 0.0066 
0.1 100 0.0833 1.1201 1.1205 1.1207 1.1345 1.1346 
0.1 110 0.0833 9.7279 9.7285 9.7288 10.0010 10.0003 

        

0.1 90 0.25 0.1367 0.1385 0.1394 0.1409 0.1409 
0.1 100 0.25 1.8887 1.8928 1.8949 1.9488 1.9483 
0.1 110 0.25 9.2492 9.2562 9.2587 10.0095 10.0025 

        

0.1 90 0.5 0.4403 0.4489 0.4534 0.4652 0.4646 
0.1 100 0.5 2.5808 2.5985 2.6074 2.7378 2.7332 
0.1 110 0.5 8.8622 8.8892 8.9003 10.0381 10.0111 

        

0.2 90 0.0833 0.1134 0.1141 0.1145 0.1148 0.1148 
0.2 100 0.0833 2.1810 2.1839 2.1854 2.2005 2.001 
0.2 110 0.0833 9.8223 9.8271 9.8296 10.0100 10.0063 

        

0.2 90 0.25 0.6055 0.6132 0.6176 0.6254 0.6248 
0.2 100 0.25 3.2547 3.2734 3.2839 3.3574 3.3534 
0.2 110 0.25 9.8232 9.8529 9.8682 10.2559 10.2370 

        

0.2 90 0.5 1.0826 1.1073 1.1218 1.1588 1.1557 
0.2 100 0.5 3.8798 3.9313 3.9607 4.1579 4.1439 
0.2 110 0.5 9.7737 9.8562 9.8992 10.6292 10.5787 

        

0.3 90 0.0833 0.4659 0.4705 0.4731 0.4744 0.4742 
0.3 100 0.0833 3.2711 3.2840 3.2912 3.3087 3.3067 
0.3 110 0.0833 10.2645 10.2858 10.2968 10.3960 10.3861 

        

0.3 90 0.25 1.4414 1.4713 1.4901 1.5100 1.5067 
0.3 100 0.25 4.7324 4.7966 4.8345 4.9271 4.9132 
0.3 110 0.25 10.8958 10.9997 11.0564 11.3532 11.3100 

        

0.3 90 0.5 2.0661 2.1368 2.1838 2.2608 2.2501 
0.3 100 0.5 5.3801 5.5229 5.6097 5.8681 5.8328 
0.3 110 0.5 11.0333 11.2651 11.3944 12.0596 11.9641 
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Table VIII SVJ2 Model.  European and American put prices computed assuming r = 
0.03; σ = 0.24; α = 4.12; m = 0.0163; ρ = -0.627; a1 = 0; b1 = 121.3; µJ1 = -0.002; σ J1 = 
0.03; a2 = 0; b2 = 3.7; µJ2 = -0.216; and σ J2 = 0.003 (Bates [2006]). 

European Tree American Tree v(t)  X T 
N = 100 N = 300 

Closed 
Form N = 100 N = 300 

0.1 90 0.0833 0.0373 0.0374 0.0375 0.0379 0.0379 
0.1 100 0.0833 1.1575 1.1576 1.1580 1.1722 1.1722 
0.1 110 0.0833 9.7256 9.7264 9.7268 10.0012 10.0004 

        

0.1 90 0.25 0.2383 0.2403 0.2415 0.2464 0.2463 
0.1 100 0.25 2.0245 2.0280 2.0309 2.0845 2.0834 
0.1 110 0.25 9.2517 9.2612 9.2659 10.0143 10.0047 

        

0.1 90 0.5 0.6427 0.6535 0.6601 0.6835 0.6820 
0.1 100 0.5 2.8554 2.8768 2.8895 3.0232 3.0153 
0.1 110 0.5 8.9422 8.9900 9.0102 10.0680 10.0203 

        

0.2 90 0.0833 0.2049 0.2050 0.2054 0.2068 0.2068 
0.2 100 0.0833 2.2565 2.2576 2.2593 2.2760 2.2753 
0.2 110 0.0833 9.8172 9.8236 9.8271 10.0127 10.0075 

        

0.2 90 0.25 0.8064 0.8086 0.8125 0.8268 0.8255 
0.2 100 0.25 3.4642 3.4743 3.4853 3.5649 3.5580 
0.2 110 0.25 9.8768 9.9118 9.9321 10.3146 10.2878 

        

0.2 90 0.5 1.3970 1.4069 1.4208 1.4760 1.4691 
0.2 100 0.5 4.2439 4.2764 4.3077 4.5232 4.4978 
0.2 110 0.5 9.9594 10.0457 10.1001 10.8083 10.7376 

        

0.3 90 0.0833 0.6278 0.6281 0.6319 0.6353 0.6353 
0.3 100 0.0833 3.4058 3.4150 3.4251 3.4463 3.4439 
0.3 110 0.0833 10.2833 10.3081 10.3239 10.4287 10.4162 

        

0.3 90 0.25 1.7582 1.7569 1.7801 1.8100 1.8040 
0.3 100 0.25 5.0523 5.0820 5.1291 5.2362 5.2172 
0.3 110 0.25 11.0645 11.1502 11.2226 11.5270 11.4770 

        

0.3 90 0.5 2.5267 2.5401 2.5856 2.6944 2.6637 
0.3 100 0.5 5.8959 5.9618 6.0497 6.3537 6.2880 
0.3 110 0.5 11.4023 11.5798 11.7202 12.4223 12.2782 
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Table IX SV2J Model.  European and American put prices computed assuming r = 
0.03; σ1 = 0.99; α1 = 0.897; m1 = 0.0094; ρ1 = 0.028; σ2 = 2.711; α2 = 6.23; m2 = 0.0125; 
ρ2 = -0.478; a = 0.751; b = 0; µJ = -0.067; and σ J = 0.051 (Jiang and Oomen [2006]). 

European Tree American Tree 
1v (t)
 

2v (t)
 

X T N = 50 N = 100 
Closed 
Form N = 50 N = 100 

0.1 0.1 90 0.0833 0.1385 0.1448 0.1466 0.1525 0.1485 
0.1 0.1 100 0.0833 1.3396 1.3357 1.3315 1.3664 1.3595 
0.1 0.1 110 0.0833 9.7812 9.7858 9.7870 10.0058 10.0035 

         

0.1 0.1 90 0.25 N/A 0.5160 0.5221 N/A 0.5381 
0.1 0.1 100 0.25 N/A 2.1844 2.1829 N/A 2.2752 
0.1 0.1 110 0.25 N/A 9.5725 9.5761 N/A 10.1415 

         

0.1 0.1 90 0.5 N/A 0.9677 0.9803 N/A 1.0256 
0.1 0.1 100 0.5 N/A 2.9903 2.9955 N/A 3.1961 
0.1 0.1 110 0.5 N/A 9.2724 9.2743 N/A 10.3170 

         

0.1 0.3 90 0.0833 0.6967 0.7010 0.7040 0.7067 0.7063 
0.1 0.3 100 0.0833 2.7822 2.7780 2.7710 2.7993 2.7988 
0.1 0.3 110 0.0833 10.0773 10.0747 10.0726 10.2133 10.2140 

         

0.1 0.3 90 0.25 1.3942 1.3999 1.4032 1.4285 1.4248 
0.1 0.3 100 0.25 3.7138 3.7007 3.6788 3.7961 3.7908 
0.1 0.3 110 0.25 10.2339 10.2099 10.1935 10.6190 10.6340 

         

0.1 0.3 90 0.5 1.8723 1.8681 1.8634 1.9329 1.9288 
0.1 0.3 100 0.5 4.4177 4.3441 4.3025 4.5253 4.5372 
0.1 0.3 110 0.5 10.2921 10.1837 10.1008 10.8546 10.9047 

         

0.3 0.1 90 0.0833 0.5822 0.5844 0.5853 0.5872 0.5871 
0.3 0.1 100 0.0833 3.4068 3.3996 3.3964 3.4161 3.4162 
0.3 0.1 110 0.0833 10.4878 10.4868 10.4858 10.5698 10.5702 

         

0.3 0.1 90 0.25 1.9313 1.9278 1.9253 1.9459 1.9453 
0.3 0.1 100 0.25 5.2957 5.2853 5.2654 5.3568 5.3577 
0.3 0.1 110 0.25 11.7623 11.7416 11.7264 11.9599 11.9674 

         

0.3 0.1 90 0.5 N/A 3.1369 3.1183 N/A 3.1903 
0.3 0.1 100 0.5 N/A 6.6253 6.5771 N/A 6.8042 
0.3 0.1 110 0.5 N/A 12.6971 12.6289 N/A 13.1566 

         

0.3 0.3 90 0.0833 1.1818 1.1837 1.1855 1.1885 1.1885 
0.3 0.3 100 0.0833 4.2732 4.2628 4.2580 4.2765 4.2771 
0.3 0.3 110 0.0833 10.9638 10.9563 10.9515 11.0203 11.0215 

         

0.3 0.3 90 0.25 2.7411 2.7345 2.7297 2.7553 2.7560 
0.3 0.3 100 0.25 6.2952 6.2520 6.2256 6.3101 6.3176 
0.3 0.3 110 0.25 12.4817 12.4410 12.4129 12.6178 12.6299 

         

0.3 0.3 90 0.5 3.9915 3.9279 3.8890 3.9603 3.9752 
0.3 0.3 100 0.5 7.7467 7.5799 7.4876 7.6723 7.7087 
0.3 0.3 110 0.5 13.6657 13.4913 13.3576 13.7426 13.8299 
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