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Abstract 

In this paper we propose a novel approach to the estimation of structural credit risk 

models with exogenous default barrier. The method consists of an iterative algorithm 

which, on the basis of the log-likelihood function for the time series of equity prices, 

provides pseudo maximum likelihood (ML) estimates of the default barrier and of the 

value, volatility, and expected return on the firm’s assets. We demonstrate empirically that, 

contrary to the standard ML approach, the proposed method ensures that the default barrier 

always falls within reasonable bounds. Moreover, theoretical credit spreads based on 

pseudo ML estimates offer the lowest credit default swap pricing errors when compared to 

the options that are usually considered when determining the default barrier: standard ML 

estimate, endogenous value, KMV’s default point, and principal value of debt. 
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Introduction 
 

Thirty-five years after Merton’s (1974) seminal paper, no consensus yet exists on the 

ability of structural models to reflect the credit risk of companies.1 Under the structural 

setting, debt and equity are treated as contingent claims on the underlying firm’s asset value, 

which, accordingly, becomes the fundamental source of uncertainty driving credit risk. 

Following this argument, structural models should be able to transform the information on a 

firm’s asset value process provided by equity prices into the information on credit risk 

provided, in turn, by credit spreads. This ability of structural models to explain observable 

market levels of credit spreads has been precisely the cornerstone of most empirical tests. 

Until recently, the broadly accepted conclusion was that in this regard structural models have 

not been highly successful (Jones et al., 1984; Ogden, 1987; Lyden and Saraniti, 2001; Huang 

and Huang, 2003; Eom et al., 2004). 

The theoretical completeness of structural models has raised a question, however: To 

what extent could this seemingly poor performance actually be a product of the estimation 

methods applied? Key determinants of credit spreads – a firm’s asset value and volatility, 

along with the default barrier – represent pure latent variables; thus, any empirical test 

necessarily represents a simultaneous test of both the structural model at hand and the 

estimation method itself. Ericsson and Reneby (2005) and Li and Wong (2008) have shown 

that the empirical performance of structural models is, in fact, largely undermined by 

traditional approaches to the estimation of the firm asset value and volatility (i.e. proxy and 

volatility restriction methods). On the contrary, the maximum likelihood (ML) approach – 

novel in this context and first motivated by Duan (1994, 2000) – provides much greater 

support for theoretically appealing structural credit risk models.2 
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In a similar vein, increasing attention is being paid to the exact definition of the 

default barrier. In general, the default triggering firm asset value may either be set 

exogenously (e.g. Longstaff and Schwartz, 1995) or endogenously obtained inside the model 

as the optimal decision for equity holders (e.g. Nielsen et al., 1993; Leland, 1994; Leland and 

Toft, 1996).3 Although this second alternative seems more appealing, it ignores the potential 

influence of other factors on the event of default (e.g. debt covenants, liquidity restrictions, 

insolvency codes). A more recent approach is based on the assumption of an exogenous 

default barrier; but rather than imposing a somewhat arbitrary value (e.g. the debt’s face 

value, KMV’s default point), market data are used to derive this model parameter. Wong and 

Choi (2009) consider this possibility in the case of the down-and-out call valuation model 

discussed by Brockman and Turtle (2003). Specifically, they maximize the likelihood 

function for the time series of equity prices not only as a function of the expected rate of 

return and volatility of the firm assets, but also as a function of the default barrier. Wong and 

Choi’s paper provides an insightful analysis of some of the drawbacks of using the proxy 

approach – as in Brockman and Turtle (2003); however, their results also indicate that 

standard maximization of the likelihood function can generate misleading results. To be 

precise, at least 25% of their reported barriers are equal to zero, whereas almost 45% are 

above nominal debt and 25% of those values are above two-and-a-half times the face value of 

the debt.4  

Misleading results from likelihood maximization are typically a reflection of an ill-

behaved likelihood function – an old problem in statistics that more commonly appears with 

an increase in the number of unknown parameters – as in the present case. Under these 

circumstances, however, ad hoc procedures can sometimes be defined which, following the 

spirit of likelihood maximization, are naturally referred to as pseudo maximum likelihood 

estimation methods (e.g. Gong and Samaniego, 1981). In this paper we propose one such 
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method for the estimation of structural credit risk models with exogenous default barrier. 

More explicitly, an iterative algorithm is defined, which, based on the log-likelihood function 

for the time series of equity prices, provides pseudo ML estimates of the default barrier and 

of the value, volatility, and expected rate of return on the firm’s assets. The suggested 

approach is tested empirically using an international sample of 96 companies, whereas the 

reference credit risk model corresponds to the modified version of Leland and Toft’s (1996) 

model suggested by Forte (2009). It is shown that – in line with Wong and Choi (2009) – the 

standard ML approach results in unreal barriers for a substantial proportion of the companies 

considered. On the contrary, the pseudo ML approach suggested in this paper generates 

reasonable values that fall in the range of 50.3% to 96.9% of the principal value of debt. In 

terms of credit default swap (CDS) spread estimation, theoretical credit spreads based on the 

proposed method provide the lowest pricing errors when compared to other options that are 

usually considered when specifying the default barrier: standard ML estimate, endogenous 

value, KMV’s default point, and principal value of debt.5 

It is worth noting that recent studies suggest using CDS data in addition to equity data 

for the estimation of structural credit risk models. Predescu (2005), for example, derives the 

joint likelihood function for the time series of equity prices and CDS spreads, where the 

equity pricing equation corresponds to the same down-and-out call valuation model analyzed 

by Brockman and Turtle (2003) and Wong and Choi (2009). Additional information on CDS 

premia guarantees a well-behaved likelihood function and, consequently, standard likelihood 

maximization provides default barrier estimates within reasonable bounds in this case.6 

Following a different approach, Forte (2009) employs an iterative scheme to derive the time 

series of firm asset values and the corresponding volatility from the time series of equity 

prices, whereas the default barrier is calibrated from the time series of CDS spreads. Again, 

use of both equity and CDS data ensure reasonable results for most of the cases.  



5 
 

In this paper we explicitly refrain from using market data other than equity prices. 

Although the use of CDS spreads for the estimation of structural models undoubtedly 

represents an appealing approach, it does not allow for the most common situation in which 

such information is either unavailable or unreliable. As this is exactly the situation in which 

information regarding credit risk becomes more valuable, this is the one we presume in this 

study. 

The remainder of the paper is structured as follows. Section 1 describes the structural 

model setting. Section 2 summarizes the standard ML approach. Section 3 presents the 

proposed alternative: the pseudo ML estimation approach. Other methods that are usually 

applied in determining the default barrier are briefly discussed in Section 4. Section 5 offers a 

full description of our data set. Section 6 provides the empirical results, in terms of both 

parameter estimates and predicted spreads. The main conclusions are drawn in Section 7. 

1. The Structural Model Setting  

As our reference credit risk model, we consider the modified version of Leland and 

Toft’s (1996) model suggested by Forte (2009). This model has already been shown to 

generate reasonable predictions on credit spreads as long as the appropriate default barrier is 

selected; therefore, it seems suitable for testing the performance of the pseudo ML estimation 

approach that we propose in this paper. Here we merely describe the main features of the 

model, referring the interested reader to the original paper for details.  

The market value of total assets at any time ݐ, ௧ܸ, is assumed to evolve according to 

the continuous diffusion process: 

݀ ௧ܸ ൌ ሺߤ െ ሻߜ ௧ܸ݀ݐ  ߪ ௧ܸ݀(1) ,ݖ
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where ߤ is the expected rate of return on the asset value, ߜ is the fraction of the asset value 

paid out to investors, ߪ is the asset return volatility, and ݖ is a standard Brownian motion. 

Default occurs whenever ௧ܸ reaches a specific critical point ܸ, defined as a fraction ߚ of the 

nominal value of total debt ܲ: 

ܸ ൌ (2) .ܲߚ

The value of an individual bond ݀, with maturity ߬, principal , and constant 

coupon flow ܿ, is given by: 

     ݀ሺ ௧ܸ, ߬ሻ ൌ ܿݎ  ݁ିఛ ቂ െ ܿݎ ቃ ሾ1 െ ௧ሺ߬ሻሿܨ  ቂሺ1 െ ݊ߚሻߙ െ ܿݎ ቃ  ௧ሺ߬ሻ, (3)ܩ

for ݊ ൌ ሼ1, … , ܰሽ, where ݎ is the risk-free rate, ߙ represents bankruptcy costs, and 

expressions for  ܨ௧ሺ߬ሻ and ܩ௧ሺ߬ሻ are given in Appendix A. The total debt value is then 

represented by the sum of all outstanding bonds:  

ሺܦ ௧ܸሻ ൌ  ݀ሺ ௧ܸ, ߬ሻே
ୀଵ . (4)

Finally, the equity value is expressed as: 

ܵ௧ ൌ ݃ሺ ௧ܸሻ ൌ ௧ܸ െ ሺܦ ௧ܸ|ߙ ൌ 0ሻ, (5)

where ܦሺ ௧ܸ|ߙ ൌ 0ሻ is the market value of total debt when bankruptcy costs equal zero. This 

expression follows from the reasoning that the presence of bankruptcy costs affects only 

creditors who, in case of default, receive only a fraction ሺ1 െ   .ሻ of the firm’s asset valueߙ
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2. Standard Maximum Likelihood Estimation 

In order to overcome the problem of unobservability of the asset value process and the 

default barrier parameter ߚ, it is possible to apply ML estimation using the transformation of 

variables technique – an idea originally introduced by Duan (1994, 2000). When applied to 

this specific problem, the observable data set of equity values ܵ ൌ ሼܵ௧; ݐ  ൌ 1, … , ܶሽ, can be 

treated as a transformed data set of the unobservable underlying firm asset values ܸ ൌሼ ௧ܸ; ݐ  ൌ 1, … , ܶሽ. The ML procedure is then carried out by deriving the log-likelihood function 

for the transformed equity values ܮ௦ሺܵ;  ሻ, where the theoretical equity pricing formula of theߠ

structural model at hand, ܵ௧ ൌ ݃ሺ ௧ܸ; ;ሻߠ ݐ  ൌ ሼ1, … , ܶሽ, serves as a strictly monotonic, one-to-

one transformation function. Accordingly, ߠ represents the set of unknown parameters to be 

estimated, along with the complete vector of unobservable firm asset values ܸ.  

Regardless of the specificities of the underlying structural model, a complete closed-

form solution for the log-likelihood function of the observable data set ܵ, could be derived 

using standard results on differentiable transformations. Accounting for the survivorship 

issue under the first-passage time framework, and in the simplest case of exogenous and 

constant default barrier, such a log-likelihood function can be expressed as (Duan et al., 2003, 

2004):7 

;௦ሺܵܮ           ሻߠ ൌ ൫ܮ ܸ ; ,ߪ ,ߤ ൯ߚ                       
ൌ ௩൫ܮ ܸ ; ,ߪ ൯ߤ   ln ቈ1 െ ݁ቀ ିଶఙమ∆௧ቁ൬షభ್ ൰൬ ್൰்

௧ୀଶ
െ lnሾ ܲௗሺߪ, ,ߤ ሻሿߚ െ  ln ቤ߲݃൫ ܸ௧; ,ߪ ൯߲ߚ ܸ௧ ቤ்

௧ୀଶ , 
(6)

where ܸ  represents the vector of implied firm asset values for a given set ሼߪ,  ሽ, and for theߚ

invertible equity pricing equation ܸ௧ ൌ ݃ିଵሺܵ௧; ,ߪ  .ሻߚ
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The first term in expression (6) reflects the log-likelihood function for the time series 

of the log-normally distributed firm asset values: 

௩൫ܮ ܸ ; ,௩ߪ ൯ߤ ൌ െ  ln ܸ௧ െ ܶ െ 12்
௧ୀଶ ݈݊ሺ2ߪߨଶ∆ݐሻ

െ ݐ∆ଶߪ12  ቈln ቆ ܸ௧ܸ௧ିଵቇ െ ቆߤ െ ߜ െ ଶ2ߪ ቇ ଶ்ݐ∆
௧ୀଶ . (7)

The next two terms account for the survivorship issue, with ܲௗሺߠሻ actually denoting 

the survival probability during the entire sample period: 

ܲௗሺߪ, ,ߤ ሻߚ ൌ ࢶ ൦ቀߤ െ ߜ െ 12 ଶቁߪ ሺܶ െ 1ሻ∆ݐ െ ݈݊ ൬ ܸܸଵ൰ߪඥሺܶ െ 1ሻ∆ݐ ൪
െ ݁ቀ ଶఙమቁ൬ఓିఋିఙమଶ ൰൬್భ ൰ࢶ ൦ቀߤ െ ߜ െ 12 ଶቁߪ ሺܶ െ 1ሻ∆ݐ  ݈݊ ൬ ܸܸଵ൰ߪඥሺܶ െ 1ሻ∆ݐ ൪, (8) 

where ࢶሺ·ሻ refers to the standard normal distribution function. 

The fourth and final term in expression (6) reflects the Jacobian of the transformation. 

Appendix B provides the exact analytical expression for the derivative of the transformation, ݃ሺ ௧ܸ; ,ߪ  .ሻ, in the particular case of the model proposed by Forte (2009)ߚ

Following the conventional principle of likelihood maximization, the standard 

approach derives the entire set of unobservable parameters by solving the maximization 

problem:  

ሼఙ,ఓ,ఉሽݔܽܯ ൫ܮ ܸ ; ,ߪ ,ߤ ൯.  (9)ߚ

 



9 
 

3. Pseudo Maximum Likelihood Estimation 

In most empirical applications, the exogenous default barrier is predefined, either at 

the face value of the debt, or at a given fraction of this value (e.g. KMV’s default point). In 

such cases, the likelihood function is well-behaved in the parameter space ߠ ൌ ሼߪ,  ሽ, andߤ

numerical maximization is always feasible. The complexity of the problem, however, is 

further augmented when the default barrier itself belongs to the parameter space, ߠ ൌሼߪ, ,ߤ  ሽ. In this case, the likelihood function sometimes exhibits a nonstandard behaviorߚ

when applied to real data, and numerical routines may converge to spurious parameter values, 

particularly for the default barrier. 

As an alternative to the standard ML approach described in the previous section, we 

suggest a pseudo ML estimation method. Note first that the unrestricted maximization 

problem in the parameter space ሼߪ, ,ߤ  ሽ described in (9) could be actually thought of as aߚ

restricted maximization problem in the space ሼܸ, ,ߪ ,ߤ  ,ሽ, specificallyߚ

ሼ,ఙ,ఓ,ఉሽݔܽܯ ,ሺܸܮ ,ߤ ,ߪ ሻߚ .ݏ .ݐ ሼ ௧ܸ ൌ ݃ିଵሺܵ௧; ,ߪ ;ሻߚ ݐ ൌ 1, … , ܶሽ, (10)

where the restriction ௧ܸ ൌ ݃ିଵሺܵ௧; ,ߪ ,ߪሻ states that for any possible set of parameter values ሼߚ .is derived by inverting the transformation function ݐ ሽ, the firm asset value atߚ Referring 

specifically to the problem that default barrier estimates could often reach unreasonable 

values under the standard maximization approach, we propose an estimation of the set of 

unknown parameters ߠ ൌ ሼߪ, ,ߤ  ሽ, along with the whole vector of a firm’s asset values ܸ, byߚ

means of the following iterative algorithm: 

Step 1. Propose an initial value for the default-to-debt ratio ߚ, and estimate the time series of 

the firm’s asset values ܸ, the volatility ߪ, and the expected rate of return ߤ, by solving the 

restricted maximization problem: 
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ሼ,ఓ,ఙሽݔܽܯ ,ሺܸܮ   ,ߪ .ݏ  ሻߚ|ߤ .ݐ ሼ ௧ܸ ൌ ݃ିଵሺܵ௧; ,ߪ ;ሻߚ ݐ ൌ 1, … , ܶሽ. (11)

In this way a set of ML estimates ܸ, ߪ and ߤ is derived conditional on the predefined value 

of ߚ ,ߚ. 

Step 2. Departing from the obtained set of ML estimates in Step 1, solve the unrestricted 

maximization problem: 

ሼఉሽݔܽܯ |ߚሺܮ ܸ, ,ߪ ;ሻߤ  (12)

This will generate a pseudo ML estimate of  ߚ  ,ߚଵ, given the predefined values ܸ , ߪ and ߤ. 

Step 3. If ߚଵ ൌ ߚ , convergence is attained. If not, setߚ ൌ  ଵ in Step 1 and repeat untilߚ

convergence is achieved.  

This algorithm provides estimates of parameter values ߤ ,ߪ, and ߚ, and of the whole 

vector of the firm’s asset values ܸ that do not necessarily maximize the log-likelihood 

function globally, as in the standard procedure. It does, however, offer several noteworthy 

properties. (a) Estimates of ߤ ,ߪ, and the whole vector of the firm’s asset values ܸ are 

estimates obtained at the global maximum point of the log-likelihood function, conditional 

upon the default barrier level (Step 1). (b) The default barrier is not arbitrarily fixed, but is 

determined conditional on the other parameter values and on the whole set of the firm’s asset 

values (Step 2). (c) The final solution of the algorithm guarantees that the equity pricing 

equation is satisfied for all ݐ, providing a consistent overall set of final parameter estimates 

(Steps 1 and 3). (d) Empirical results confirm that this final outcome is, in fact, unique, 

independent of the initial value of ߚ ,ߚ. (e) The proposed procedure offers the major 

advantage of generating much more meaningful default barrier estimates than the standard 

ML approach does. This property is further discussed in Section 5. 
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4.  Other Default Barrier Specifications 

For completeness, it seems suitable to include in our analysis other approaches that 

are usually considered in determining the default barrier. In particular, we account for the 

endogenous value, KMV’s default point, and nominal debt value. 

• Endogenous value: Endogenous default models assume the default point to be 

optimally chosen by equity holders. It is specifically derived by invoking the smooth-pasting 

condition (e.g. Leland and Toft, 1996): 

߲݃ሺ ௧ܸሻ߲ ௧ܸ ቤୀ್ ൌ 0. (13) 

In the case of the model suggested by Forte (2009), the endogenous default-to-debt 

ratio is given by: 

ாேߚ ൌ ∑ ቄ݁ିఛ ቂ െ ܿݎ ቃ ሺ߬ሻܣ  ܿݎ ሺ߬ሻቅேୀଵܤ ܲ  ∑ ேୀଵ ሺ߬ሻܤ , (14)

where exact expressions for ܣሺ߬ሻ and ܤሺ߬ሻ are given in Appendix C.8  

• KMV’s default point: In the KMV methodology, the default point is determined as 

short-term liabilities plus 50% of long-term liabilities. In terms of the default-to-debt ratio, 

ெߚ ൌ ܮܶܵ  0.5 ൈ ܲܮܶܮ . (15)

• Nominal debt value: Under the simplest assumption, the default barrier is set at the 

face value of the debt: 

ߚ ൌ 1. (16)

 It is also worth noting that under these default barrier specifications, estimates of the 

firm’s asset value and volatility must still be defined. In further empirical tests, and for the 
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aim of rational comparisons, the ML approach will be used in these cases. More formally, we 

will solve the restricted maximization problem 

ሼ,ఙ,ఓሽݔܽܯ ,൫ܸܮ   ,ߤ .ݏ  ൯ߚ|ߪ .ݐ ൛ ௧ܸ ൌ ݃ିଵ൫ܵ௧; ,ߪ ;൯ߚ ݐ ൌ 1, … , ܶൟ, (17)

for ݆ ൌ ሼܦܰܧ, ,ܸܯܭ ܲሽ. 

5. Data 

Our data set corresponds to the final sample of 96 nonfinancial companies (41 

European, 32 US, and 23 Japanese) analyzed by Alonso et al., (2008). This data set comprises 

the entire period 2002-2004, containing:  

• Daily data on market capitalization (close of business) obtained from DataStream. 

• Daily data on 1- to 10-year locally denominated swap rates, also gathered from 

DataStream.  

• Accounting items referring to short- and long-term liabilities, interest expenses, and cash 

dividends, collected from WorldScope. 

• Daily data on CDS spreads (mid bid-ask quotes) obtained, at the close of business in 

London, New York and Tokyo, from CreditTrade. These data include only 5-year 

contracts denominated in local currency (euro, dollar, or yen). Furthermore, each 

company contains CDS data for at least two consecutive years, with a minimum of 150 

observations per year.9  

Using these data, we define those model inputs that are treated as known or 

observable, whether we deal with the standard or pseudo ML estimation method. Namely, 

a) Equity value: Daily data on equity value, ܵ௧; ݐ  ൌ 1, … , ܶ, will correspond to daily 

data on market capitalization.  
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b) Debt’s principal value ܲ: Given that ܲ is treated as a constant, we use the sum of the 

average short-term liabilities ሺܵܶܮሻ and long-term liabilities ሺܮܶܮሻ. 

c) Debt structure: In line with expression (4), we need to define the debt structure – the 

number of individual bonds ሺܰሻ and their corresponding characteristics: time to maturity ሺ߬ሻ, coupon ሺܿሻ, and principal ሺሻ. In order to resemble the true debt structure as much as 

possible, we adopt Forte’s (2009) approach, and assume that at each instant ݐ the company 

has ten bonds – one with a maturity of one year and principal equal to ܵܶܮ and nine with 

maturity ranging from two to ten years, each with principal equal to 1/9 of ܮܶܮ. The coupon 

of each bond is determined as the fraction of average interest expenses ሺܧܫሻ proportional to 

the weight of the principal of each individual bond , over the total principal value of debt ܲ.  

d) Payout rate: The payout rate ߜ is determined as the average annualized payment of 

interest expense ሺܧܫሻ and cash dividends ሺܦܥሻ to the proxy value of the firm, calculated as 

the sum of market value of equity and book value of total liabilities.  

e) Risk-free interest rate: The risk-free rate for each individual bond is determined 

according to the swap rate for the corresponding maturity. 

f) Recovery rate: Once the estimation of the unknown parameter values and firm asset 

values has been completed, theoretical stock market implied credit spreads (ICS) can be 

derived as the spread from issuing, at par value, a hypothetical bond with the same maturity 

as the CDS spread that serves as a benchmark (five years in our case).10 In principle, this 

requires that we define a value for the bankruptcy costs  ߙ, which enters in expression (3) 

through the recovery rate, ሺ1 െ  In terms of CDS spread valuation, however, the market .ߚሻߙ

practice is to consider a fixed recovery rate of 40%. For the aim of simplicity and more robust 

comparisons, we also adopt this convention. 
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Main descriptive statistics for the sample considered are depicted in Table 1. The 

average company in the sample has market capitalization of approximately $26.7 billion. 

Equity volatility, defined as the unconditional annualized standard deviation of the 

continuously compounded returns on equity, ranges around 36.9%. The mean leverage, 

calculated as the book value of total liabilities over the sum of market capitalization and book 

value of total liabilities, amounts to 52.7%. Yet the leverage of the companies in the sample 

varies, with indebtedness ranging from 3.8% to 92.1%. Regarding CDS spreads, the mean 

level for the entire period considered ranges from 11.33 bp to 306.40 bp on an individual firm 

basis, with the overall cross-sectional mean for all entities being 71.82 bp. The average 

number of daily observations per company is 630, whereas the majority of the companies in 

the sample refer to A and BBB rated issuers. 

<Table 1 about here> 

 

6. Results 

6.1. Parameter Values 

 Final results on parameter values are shown in Table 2, where we include estimates 

provided by the standard ML approach (MLE), estimates from the pseudo ML approach 

(ALG), and estimates resulting from the assumption of an endogenous default barrier 

(END).11 Main descriptive statistics in Panel A indicate that standard maximization of the 

log-likelihood function leads to default barriers which are, on average, higher than the face 

value of the debt (mean ߚொ of 1.093). In addition, the dispersion is significant, with a 

minimum of 0.025 and a maximum of 6.762. We should reiterate that these types of results 

are difficult to reconcile with economic intuition. In the first case, the probability of default is 

almost nil; in the second situation, the firm is not able to continue running operations, even 
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when the firm asset value is worth as much as 6.7 times the face value of the debt. Moreover, 

predicted credit spreads will be lack of sense in both cases.12  

These puzzling results are an indication of a likelihood function that is not well-

behaved. Figure 1, for example, presents the behavior of the log-likelihood function for 

BASF AG. It is apparent that a global maximum is not achieved in this case for any 

reasonable default-to-debt ratio, and standard log-likelihood maximization actually converges 

to a misleading value of 2.085. If we look at the whole distribution of default-to-debt ratios in 

Table 2, Panel B, we conclude that a similar situation is, in fact, repeated for a significant 

number of companies. Notwithstanding, reasonable values are also achieved for many of the 

cases. Take, for instance, the log-likelihood function of Bouygues SA shown in Figure 2. 

Even though this log-likelihood function is relatively flat in terms of the default-to-debt ratio, 

the obtained value from the standard approach (0.783) represents a reasonable estimate. In 

summary, we can conclude that the standard ML approach neither rules out nor guaranties 

reasonable results. 

On the opposite side, parameter estimates from both the pseudo ML approach and the 

endogenous default barrier approach represent meaningful values for all of the companies. 

More precisely, the default-to-debt ratio ߚீ ranges from a minimum of 0.503 to a 

maximum of 0.969, with an average value of 0.801. On the other hand, the minimum, 

maximum, and mean values of  ߚாே are 0.438, 0.945 and 0.752, respectively. If we compare 

estimates of the firm asset volatility and of the expected rate of return, both methods provide 

virtually identical results; besides, they are typically higher than those provided by the 

standard ML approach. Going back to the instance of BASF AG in Figure 1, we observe that, 

in effect, both methods generate more rational results than does the standard ML approach. 

Moreover, analysis of the results for Bouygues SA in Figure 2 reveals an interesting feature: 

pseudo ML estimates in the case of a well-behaved log-likelihood function as the one of this 
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company are similar to those provided by the standard ML approach. We explore this issue 

further in Table 3, where the main descriptive statistics for the difference between pseudo 

ML and standard ML parameter estimates are provided. Although the mean absolute 

difference between default-to-debt ratios for all companies is 0.431 (median of 0.099), the 

mean difference among the group of companies with the most reasonable ߚொ values (higher 

than 0.3 and lower than 1) is merely 0.044 (0.016). 

<Table 2 about here> 

<Figure 1 about here> 

<Figure 2 about here> 

<Table 3 about here> 

Previous results allow for several conclusions. (a) The standard ML approach does 

not represent a good candidate for the preferred method, as it often provides puzzling results. 

(b) In cases in which the log-likelihood is well-behaved and the standard ML approach 

generates rational values, the pseudo ML approach leads to similar results. Notwithstanding, 

the pseudo ML approach provides reasonable values, even when the standard ML approach 

seems to fail. (c) We could naturally think of the endogenous default-to-debt ratio as a lower 

bound for the true value. In other words, factors that differ from the interest of equity holders 

(e.g. debt covenants, liquidity restrictions, bankruptcy codes) – if present – are expected to 

move the default barrier upwards.13 We find further support for the pseudo ML approach in 

view of this argument, as not only is ߚீ higher than ߚாே on average, but this seems to be 

the general rule on a firm-by-firm basis: it holds for 94 out of the 96 companies in our 

sample. Yet,  ߚீ values within reasonable bounds are only a minimum requirement. 

Assessment of the real precision – and utility – of the proposed method, requires an 
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investigation of its ability to generate sensible credit spread estimates as well; this point is 

addressed in the next sub-section. 

6.2. Implied Credit Spreads 

Results on model implied credit spreads (ICS) on the basis of the different estimation 

methods are provided in Table 4, along with the corresponding CDS spreads. We observe 

that, in fact, replication of CDS spreads is highly influenced by the chosen estimation 

method. Although the cross-sectional mean level of CDS spreads (71.82 bp) is almost fully 

matched by ICSALG estimates (71.34 bp), this does not hold for other options that either 

underestimate (45.49 bp for ICSEND and 41.07 bp for ICSKMV) or considerably overestimate 

(194.98 bp for ICSMLE and 223.29 bp for ICSP) CDS premia. In addition, ICSALG have 

another desirable characteristic: contrary to other methods – particularly the standard ML 

approach and the KMV approach – ICSALG completely follow the pattern and the level of 

CDS spreads over different rating categories.14  

<Table 4 about here> 

More formal, standard measures of price discrepancy between ICS and CDS series are 

summarized in Table 5. In particular, pricing errors are measured by: average basis – avb; 

percentage average basis – avb(%); average absolute basis – avab; percentage average 

absolute basis – avab(%); and root mean squared error – rmse. Results confirm the initial 

conclusion set forth in Table 4; that is, among all possible estimation methods, the pseudo 

ML approach provides the best predictions on CDS spreads. Specifically, the ICSALG – CDS 

basis is, on average, -0.48 bp, suggesting that the ICSALG represent, in practice, an unbiased 

estimator of the CDS spread; furthermore, the mean absolute basis amounts to 43.01 bp. The 

second-best option corresponds to ICSEND, with an average basis of -26.33 bp and an average 

absolute basis of 46.88 bp. The systematic underestimation of credit spreads, as suggested 
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also by results in Table 4, is, however, consistent with the underestimation of the default 

barrier discussed in previous sub-section. The third-best option seems to be provided by 

KMV’s default point: average basis of -30.75 bp and average absolute basis of 58.66 bp. As a 

counterpart, pricing errors in the light of other methods are sizable, with ICSMLE and ICSP far 

above CDS spreads (average basis of 123.16 and 151.47 bp, respectively). The overall 

conclusion is clear support for the pseudo ML estimation method in comparison with other 

methods, and particularly in comparison with the standard ML approach. Among all possible 

options, the endogenous default barrier method represents the second-best option.  

<Table 5 about here> 

As a final illustration of the empirical performance of the pseudo ML procedure, we 

assess risk-neutral default probabilities for time horizons ranging from 1 to ten 10 years. 

Risk-neutral default probabilities across the different rating categories, and on a cross-

sectional basis, are presented in Figure 3. Following economic intuition, the estimated 

probabilities of default increase with both the time horizon and the average credit riskiness. 

By way of example, the estimated risk-neutral default probabilities for the 5-year horizon are: 

1% for an AAA-AA rated company, 2.8% for A, 5.2% for BBB, and 9.3% for BB. 

<Figure 3 about here> 

6.3. Robustness Check 

In order to attain robustness, it seems suitable to verify whether the estimation method 

suggested in this paper is also capable of providing reasonable results for other structural 

models, and not merely for the one considered in this study. Of particular interest is the 

down-and-out call (DOC) barrier option model discussed by Brockman and Turtle (2003), 

Predescu (2005), and Wong and Choi (2009). Analytical expressions for the DOC pricing 
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equation and the first derivative of the element-by-element transformation are given in 

Appendix D.15 

Results from both the standard and pseudo ML estimation method are provided in 

Table 6. In line with Wong and Choi (2009), standard likelihood maximization results in 

unreal default-to-debt ratios for a substantial number of companies. Namely, this parameter is 

higher than the one for as many as 39 companies (41% of the sample), with a maximum of 

4.410. On the other hand, pseudo ML estimates represent reasonable values that fall in the 

range of 0.156 to 0.891, with a mean value of 0.616. Although estimated values for the 

default-to-debt ratio are lower than those provided in Table 2, this should be interpreted as a 

product of the differences in the underlying structural models. In fact, results in this case are 

consistent with those in Predescu (2005): in the light of the same DOC model, while using 

additional data on CDS spreads, she reports a mean default-to-debt ratio of 0.591. All things 

considered, we conclude that the proposed method leads to more meaningful results than does 

the standard ML approach, irrespective of the underlying model. 

<Table 6 about here> 

7. Conclusions 

 In this paper we present a new approach for the estimation of structural credit risk 

models with an exogenous default barrier. Specifically, we introduce an iterative algorithm 

that provides pseudo ML estimates of the default barrier and estimates of the value, volatility, 

and expected return on the firm’s assets. This new approach is tested empirically on the basis 

of an international sample of 96 companies. Taking as the reference credit risk model, the 

modified version of Leland and Toft’s (1996) model suggested by Forte (2009), it is 

confirmed that standard maximization of the log-likelihood function often results in unreal 

barriers. On the contrary, the pseudo ML approach proposed in this paper generates 
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reasonable values that fall in the range of 50.3% to 96.9% of the nominal debt value. In terms 

of CDS spread estimation, theoretical credit spreads based on the suggested method generate 

the lowest pricing errors when compared to the other options that are usually considered 

when specifying the default barrier: standard ML estimate, endogenous value, KMV’s default 

point, and principal value of debt.  

 

 

 

 

 

 

 

 

 



21 
 

Appendix 

Appendix A 

 We provide specific expressions for ܨ௧ሺ߬ሻ and ܩ௧ሺ߬ሻ: 

௧ሺ߬ሻܨ ൌ Φሾ݄ଵ௧ሺ߬ሻሿ  ቀ ್ቁିଶ
Φሾ݄ଶ௧ሺ߬ሻሿ; (A.1)

௧ሺ߬ሻܩ ൌ ൬ ௧ܸܸ൰ିା௭
Φሾݍଵ௧ሺ߬ሻሿ  ൬ ௧ܸܸ൰ିି௭

Φሾݍଶ௧ሺ߬ሻሿ; (A.2)

where 

ଵ௧ݍ ൌ െܾ௧ െ ඥ߬ߪଶ߬ߪݖ ; ଶ௧ݍ ൌ െܾ௧  ඥ߬ߪଶ߬ߪݖ ; 
݄ଵ௧ ൌ െܾ௧ െ ඥ߬ߪଶ߬ߪܽ ; ݄ଶ௧ ൌ െܾ௧  ඥ߬ߪଶ߬ߪܽ ; 

ܽ ൌ ݎ െ ߜ െ ଶߪଶ2ߪ ;              ܾ௧ ൌ ln ൬ ௧ܸܸ൰ ; ݖ ൌ ඥሺܽߪଶሻଶ  ଶߪଶߪݎ2 .       
 

Appendix B 

The derivative of the transformation ݃ሺ ௧ܸ; ,ߪ  :ሻ is given byߚ

߲݃ሺ ௧ܸ; ,ߪ ሻ߲ߚ ௧ܸ ൌ ߲ሾ ௧ܸ െ ሺܦ ௧ܸ|ߙ ൌ 0; ,ߪ ሻሿ߲ߚ ௧ܸ ൌ 1 െ  ߲݀ሺ ௧ܸ|ߙ ൌ 0; ,ߪ ሻ߲ߚ ௧ܸ
ே

ୀଵ , (B.1)

where 

߲݀ሺ ௧ܸ|ߙ ൌ 0, ߬; ,ߪ ሻ߲ߚ ௧ܸ ൌ െ݁ିఛ ቀ െ ܿݎ ቁ ௧ሺ߬ሻ߲ܨ߲ ௧ܸ  ቀߚ െ ܿݎ ቁ ௧ሺ߬ሻ߲ܩ߲ ௧ܸ , (B.2)

and 
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௧ሺ߬ሻ߲ܨ߲ ௧ܸ ൌ ݂ሺ݄ଵ௧ሻ ߲݄ଵ௧߲ ௧ܸ െ ቈ2ܸܽ ൬ ௧ܸܸ൰ିଶିଵΦሺ݄ଶ௧ሻ  ൬ ௧ܸܸ൰ିଶ ݂ሺ݄ଶ௧ሻ ߲݄ଶ௧߲ ௧ܸ ; 
௧ሺ߬ሻ߲ܩ߲ ௧ܸ ൌ ቈെܽ  ܸݖ ൬ ௧ܸܸ൰ିା௭ିଵΦሺݍଵ௧ሻ  ൬ ௧ܸܸ൰ିା௭ ݂ሺݍଵ௧ሻ ଵ௧߲ݍ߲ ௧ܸ  

 ቈെܽ െ ܸݖ ൬ ௧ܸܸ൰ିି௭ିଵΦሺݍଶ௧ሻ  ൬ ௧ܸܸ൰ିି௭ ݂ሺݍଶ௧ሻ ଶ௧߲ݍ߲ ௧ܸ ; 
with ߲݄ଵ௧߲ ௧ܸ ൌ ߲݄ଶ௧߲ ௧ܸ ൌ ଵ௧߲ݍ߲ ௧ܸ ൌ ଶ௧߲ݍ߲ ௧ܸ ൌ െ 1௧ܸߪඥ߬ . 
Appendix C 

 In this case we provide exact expressions for ܣሺ߬ሻ and ܤሺ߬ሻ: 

ሺ߬ሻܣ ൌ 2݂൫ܽߪඥ߬൯ߪඥ߬  2ܽΦ൫ܽߪඥ߬൯; (C.1)

ሺ߬ሻܤ ൌ ሺܽ െ ඥ߬൯ߪݖሻܰ൫െݖ  ሺܽ  ඥ߬൯ߪݖሻܰ൫ݖ  2݂൫ߪݖඥ߬൯ߪඥ߬ . (C.2)

Appendix D 

The equity pricing equation in Brockman and Turtle (2003) is given by: 

ܵ௧ሺ߬ሻ ൌ ௧ܸΦሺܽ௧ሻ െ ܲ݁ିఛΦ൫ܽ௧ െ ൯߬√ߪ െ ௧ܸ ൬ ܸܸ௧ ൰ଶఎ
Φሺܾ௧ሻ 

ܲ݁ିఛ ቀ್ ቁଶఎିଶ
Φ൫ܾ௧ െ  ,൯߬√ߪ

(D.1)

where 
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ܽ௧ ൌ
۔ۖەۖ
lnۓ ቀ ௧ܸܲቁ  ൬ݎ  ଶ2ߪ ൰ ߬√ߪ߬ , ܲ ݎ݂  ܸln ቀ ௧ܸܸቁ  ൬ݎ  ଶ2ߪ ൰ ߬√ߪ߬ , ܲ ݎ݂ ൏ ܸ

 

ܾ௧ ൌ
۔ۖۖەۖۖ
lnۓ ൬ ܸଶܲ ௧ܸ൰  ൬ݎ  ଶ2ߪ ൰ ߬√ߪ߬ , ܲ ݎ݂  ܸln ቀ ܸܸ௧ ቁ  ൬ݎ  ଶ2ߪ ൰ ߬√ߪ߬ ܲ ݎ݂             , ൏ ܸ

 

and 

ߟ ൌ ଶߪݎ  12.  

For tractability purposes, and in line with other empirical studies, rebate of zero for the 

original model is assumed. Finally, the derivative of the transformation is as follows: 

߲ܵ௧ሺ ௧ܸ; ,ߪ ܸሻ߲ ௧ܸ ൌ Φሺܽ௧ሻ  ௧ܸ݂ሺݍଵ௧ሻ ߲ܽ௧߲ ௧ܸ െ ܲ݁ିఛ݂൫ܽ௧ െ ൯߬√ߪ ߲ܽ௧߲ ௧ܸ
 ሺ2ߟ െ 1ሻ ൬ ܸܸ௧ ൰ଶఎ

Φሺܾ௧ሻ െ ௧ܸ ൬ ܸܸ௧ ൰ଶఎ ݂ሺܾ௧ሻ ߲ܾ௧߲ ௧ܸ
െ ܲ݁ିఛሺ2ߟ െ 2ሻ ൬ ܸܸ௧ ൰ଶఎିଷ ቆ ܸ௧ܸଶቇΦ൫ܾ௧ െ ൯߬√ߪ
 ܲ݁ିఛ ൬ ܸܸ௧ ൰ଶఎିଶ ݂൫ܾ௧ െ ൯߬√ߪ ߲ܾ௧߲ ௧ܸ , 

(D.2)

where ߲ܽ௧߲ ௧ܸ ൌ 1௧ܸߪ√߬ ; ߲ܾ௧߲ ௧ܸ ൌ െ 1௧ܸߪ√߬. 
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Footnotes 
                                                            
1 Merton’s (1974) model was subsequently extended by Black and Cox (1976), Geske (1977), Longstaff and 
Schwartz (1995), Leland (1994), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001), Zhou (2001), 
and others. 
2 Traditional approaches dominate the literature (Jones et al., 1984; Ronn and Verma, 1986; Ogden, 1987; 
Anderson and Sundaresan, 2000; Lyden and Saraniti, 2001; Brockman and Turtle, 2003; Delianedis and Geske, 
2003; Eom et al., 2004). The maximum likelihood approach (Ericsson and Reneby, 2005; Ericsson et al., 2007; 
Li and Wong; 2008, Wong and Choi, 2009) is not the unique option, however. Other approaches include 
simulated maximum likelihood (Bruche, 2004, 2007; Duan and Fulop, 2009) and iterative schemes (Vassalou 
and Xing, 2004; Forte, 2009). 
3 In Merton’s (1974) model, default can occur only at maturity of the debt. Following the ideas of Black and 
Cox (1976), this assumption was subsequently surpassed by allowing a firm to default at any time if the market 
value of its assets falls below some critical lower threshold value – the default barrier. 
4 Wong and Choi’s results are not tested in light of their accuracy for credit spread estimation; it is very 
intuitive, however, that credit spreads will be equal to zero for zero default barriers. Furthermore, in the case of 
default boundaries in the order of two-and-a-half times (or more) the face value of the debt, reasonable credit 
spread estimates could be derived only at the cost of assuming unreasonably large bankruptcy costs. 
5 The use of CDS spreads as a reference is motivated by a second, not minor, problem in previous empirical 
tests: the traditional use of corporate-government yield spreads as a benchmark clashes with the evidence on 
non-credit risk factors in bond premia (Collin-Dufresne, et al., 2001). Accordingly, CDS spreads are 
increasingly seen as a preferred choice, further providing stronger support for structural credit risk models 
(Ericsson et al., 2007; Ericsson et al., 2009; Forte, 2009). 
6 Predescu also analyzes the case in which only equity data are employed for the estimation. She concludes that 
“using only equity prices, the estimation cannot pinpoint the optimal value for the default point for most of the 
firms” (Predescu, 2005; p. 19) 
7 Maximum likelihood estimation in this context is applicable only in the case where the default barrier is 
defined as a constant, or a certain time-dependent deterministic function. 
8 See also Alonso et al. (2008). 
9 In their final sample, Alonso et al. (2008) include the year 2001 as well. We decided to exclude that year, 
however, as CDS series satisfying the inclusion criteria were available for only eight companies. 
10 See Forte (2009) for details. 
11 The convergence criterion for the pseudo ML estimation algorithm is set at 1x10-6. 
12 Take, for instance, the upper bound, 6.7. In case of default, and assuming bankruptcy costs of around 30% 
(Leland, 2004), debt holders receive 4.7 times the face value of the debt. Under these circumstances, the credit 
spread will actually be negative. 
13 A default barrier below the endogenous value would need to be interpreted as the result of equity holders 
being forced to continue running a company, even when they wish to declare the firm bankrupt. Limited liability 
of equity holders rules out this situation, however. 
14 In order to insure that overall conclusions are not affected by the specific choice of the recovery rate, we have 
replicated the analysis by fixing the recovery rate at 51.31%, as in Huang and Huang (2003), and by setting 
bankruptcy costs ߙ equal to 0.3 as in Leland (2004). Results, not presented here, single out once again the best 
fit of ICSALG estimates. 
15 Maturity of the DOC option is chosen to correspond to the average maturity of the firm’s total liabilities of 
3.38 years as reported in Stohs and Mauer’s (1996) empirical study. In addition, this is close to the hypothetical 
average maturity of the company’s debt of 3.67 years, calculated by following the assumption made in this 
paper that the company’s debt at each instant consists of ten bonds: one with a maturity of one year and 
principal equal to ܵܶܮ, and nine with maturity ranging from two to ten years, each with principal equal to 1/9 of ܮܶܮ. The corresponding risk-free rate is determined by interpolating between 3- and 4-year swap rates. 
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Table 1. Descriptive statistics 

Mean 26,705.41 0.37 0.53 71.82 13.29 630 AAA-AA (14)
Median 14,431.07 0.36 0.53 53.37 10.40 712 A (41)
SD 37,858.73 0.09 0.20 62.24 10.31 129 BBB (35)
Min 1,082.89 0.16 0.04 11.33 4.72 418 BB (4)
Max 310,471.20 0.69 0.92 306.40 73.62 759 ND (2)

MC        
(mm $) 

Rating           
(No. of companies)

Bid-Ask
Spread  

(bp)

No. of daily 
observations 
per company

Equity    
Volatility Leverage

CDS     
(bp)

 

This table reports the main descriptive statistics on a cross-sectional basis. The overall sample includes 96 

nonfinancial companies. MC refers to market capitalization in millions of dollars. Equity volatility is defined as 

the unconditional historical volatility calculated as the annualized standard deviation of the continuously 

compounded returns on equity. Leverage is defined as the ratio of the book value of total liabilities over the sum 

of market value of equity and book value of total liabilities. CDS spreads refer to the mid bid-ask quote. 
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Table 2. Parameter estimates 

βMLE 1.093 0.909 0.823 0.025 6.762
σMLE 0.145 0.132 0.089 0.039 0.542
µMLE 0.021 0.026 0.060 -0.163 0.178

βALG 0.801 0.804 0.085 0.503 0.969
σALG 0.164 0.154 0.091 0.041 0.542
µALG 0.027 0.027 0.067 -0.164 0.239

βEND 0.752 0.762 0.097 0.438 0.945
σEND 0.164 0.154 0.091 0.039 0.541
µEND 0.027 0.027 0.067 -0.162 0.239

[0.0 - 0.1] 4 0 0
(0.1 - 0.2] 3 0 0
(0.2 - 0.3] 1 0 0
(0.3 - 0.4] 0 0 0
(0.4 - 0.5] 0 0 2
(0.5 - 0.6] 3 3 7
(0.6 - 0.7] 3 7 14
(0.7 - 0.8] 15 36 44
(0.8 - 0.9] 19 39 24
(0.9 - 1.0] 16 11 5
(1.0 - 1.1] 3 0 0
(1.1 - 1.2] 6 0 0

> 1.2 23 0 0

Range βMLE βALG βEND

Panel B. Distribution of Default‐to‐Debt Ratios

Panel A. Descriptive Statistics

Median

Standard ML Estimation

Pseudo ML Estimation

Endogenous Default Barrier

Mean SD Min Max

 

This table reports the main descriptive statistics of the parameter estimates (Panel A), along with the distribution 

of default-to-debt ratios (Panel B). Results from the standard ML approach, the pseudo ML approach, and the 

endogenous default barrier approach are considered.  
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Table 3. Differences among parameter values 
 

No. Mean Median SD

|βALG - βMLE| 96 0.431 0.099 0.784

|σALG - σMLE| 96 0.019 0.001 0.040

|µALG - µMLE| 96 0.006 0.000 0.019

|βALG - βMLE| 56 0.044 0.016 0.072

|σALG - σMLE| 56 0.001 0.000 0.002

|µALG - µMLE| 56 0.000 0.000 0.000

All Companies

0.3 < βMLE < 1.0

 

This table provides the main descriptive statistics for the difference between pseudo ML and standard ML 

parameter estimates.  
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Table 4. CDS spreads and ICS estimates 

CDS 71.82 22.00 51.39 107.02 151.95

ICSMLE 194.98 176.23 225.16 176.40 91.77

ICSALG 71.34 21.18 48.22 107.53 164.73

ICSEND 45.49 11.85 33.26 63.43 125.76

ICSKMV 41.07 13.18 43.68 50.39 24.25

ICSP 223.29 79.98 175.91 320.70 345.53

All AAA-AA A BBB BB

 

This table reports mean values for cross-sectional CDS spreads, along with model implied credit spread (ICS) 

based on the different estimation methods. 
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Table 5. Measures of Pricing Discrepancy 

ICSMLE 123.16 4.02 158.34 4.44 174.66
(49.95) (1.02) (82.37) (1.18) (92.33)

ICSALG -0.48 0.11 43.01 0.76 52.16
(-8.61) (-0.21) (27.03) (0.57) (32.72)

ICSEND -26.33 -0.23 46.88 0.76 54.94
(-25.07) (-0.55) (32.88) (0.71) (38.04)

ICSKMV -30.75 -0.26 58.66 0.89 66.93
(-29.09) (-0.69) (38.41) (0.86) (42.44)

ICSP 151.47 2.97 156.65 3.03 177.46
(98.24) (2.10) (105.60) (2.10) (124.28)

rmseavb avb (%) avab avab (%)

 

This table provides cross-sectional mean (median) values of the standard measures of credit spread differentials 

between ICS and CDS series: average basis – avb; percentage average basis – avb(%); average absolute basis – 

avab; percentage average absolute basis – avab(%); and root mean squared error – rmse. 
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Table 6. Parameter estimates: BT 

βMLE 1.077 0.934 0.615 0.178 4.410
σMLE 0.151 0.137 0.091 0.042 0.578
µMLE 0.001 0.002 0.059 -0.177 0.161

βALG 0.616 0.627 0.125 0.156 0.891
σALG 0.170 0.160 0.093 0.042 0.578
µALG 0.008 0.002 0.068 -0.177 0.243

2
5
7
20
9

Standard ML Estimation

0
1
0
0

Pseudo ML Estimation

Panel B. Distribution of Default‐to‐Debt Ratios

Range βALGβMLE

[0.0 - 0.1]
(0.1 - 0.2]
(0.2 - 0.3]
(0.3 - 0.4]

Panel A. Descriptive Statistics

Mean Median SD Min Max

(0.4 - 0.5]
(0.5 - 0.6]
(0.6 - 0.7]
(0.7 - 0.8]
(0.8 - 0.9]

26
37
19
5
0

0
1
0
7
3

0

(0.9 - 1.0]
(1.0 - 1.1]
(1.1 - 1.2]

> 1.2

0
0

13
10
9
20

 

This table reports, for the case of the Brockman and Turtle’s (2003) model, main descriptive statistics of the 

parameter estimates (Panel A), along with the distribution of default-to-debt ratios (Panel B). Results from the 

standard ML approach and the pseudo ML approach are considered.  
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Figure 1. Behavior of the Log-Likelihood Function for BASF AG 
 

βMLE 2.085

σMLE 0.079

µMLE 0.037

βALG 0.778

σALG 0.176

µALG 0.047

βEND 0.702

σEND 0.176

µEND 0.047

Endogenous Default Barrier

Company: BASF AG

Standard ML Estimation

Pseudo ML Estimation
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Figure 2. Behavior of the Log-Likelihood Function for Bouygues SA 
 

βMLE 0.783

σMLE 0.138

µMLE -0.006

βALG 0.789

σALG 0.138

µALG -0.006

βEND 0.779

σEND 0.138

µEND -0.006

Endogenous Default Barrier

Company: Bouygues SA

Standard ML Estimation

Pseudo ML Estimation
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 Figure 3. Risk-Neutral Default Probabilities  
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This figure represents cross-sectional risk-neutral default probabilities by rating category, calculated on the basis 

of the pseudo ML estimates, and for a default time horizon ranging from 1 to 10 years.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


