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Abstract

Previous studies document that volatility risk isced in the cross-section of stock returns.
Driven by evidence from option pricing literaturbat stock prices exhibit both stochastic
volatility and jumps, | test whether market jumgkris priced differently from volatility risk. In
addition to earlier findings which document a negaprice for volatility risk, | find that jump
risk is priced separately, and is negative. Funtioee, | document significant differences
between volatility and jump risk factor loadingsvaiue vs. growth, and small vs. big portfolios.
Due to differences in their volatility and jump ki¢oadings, investors require an additional
return of 0.86% per month on a portfolio, which denstocks in the smallest size decile and
shorts stocks in the biggest size decile. SimiJalportfolio which longs value stocks and shorts
growth stocks will on average require an additioe#&lirn of 0.59% per month.
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Stocks with small market capitalizations tend tonehigher returns than stocks with larger
market capitalizations, also known as the size aipMmA very much related phenomenon that
has been observed in common stock returns is tlaevstocks earn higher average returns
compared to their growth counterparts, known asvéiiee premiunf. Fama and French (1993,
1996) argue that the size and value premium argeasations for risks that are not captured by
the capital asset pricing model (CAPM), and docuntleat including factors such as SMB and
HML helps explain a large cross-section of expecttdrns. According to Cochrane (2001),
Fama-French mimicking portfolios indicate the exmste of a distress or recession factor, which
affects small and value stocks fundamentally infi@r@nt way than big and growth stocks. On
the other hand, according to the investor overr@actheory of Lakonishok, Shleifer, and Vishny
(1994), size and value premium in average retursge decause investors undervalue distressed
stocks and overvalue big and growth stocks. Whesethpricing errors are corrected, value
stocks have lower returns and growth stocks hagleehnireturns.

Do investors really behave sub-optimally and owastéo prices as argued by behavioral
explanations, or are value and small firms fundaaignriskier than their growth and big
counterparts? If we assume that investors aren@tiand the former are indeed riskier, what are

the economic factors that generate common variatioime earnings of these firms? In other

! See Banz (1981) and Reinganum (1981) for firstisgidocumenting the size anomaly.

2 Firms with high ratios of book-to-market equity/kB, earnings to price (E/P), cash flow to price/RE or
dividend yield (D/P) are often referred to as “wdlsgtocks, whereas firms with low B/M, E/P, C/P P ratios are
referred to as “growth” stocks.

% La Porta (1996) and La Porta, Lakonishok, Shle#ied Vishny (1997) also reach similar conclusions.



words, what are the specific risk factors that le@aestors to demand higher returns on small
and value stocks, and lower returns on big and tir@tocks, than predicted by the CAPM? The
purpose of this paper is to answer these questiutthin a rational expectations framework, and
from a volatility and jump risk perspective. | aeguhat it is the sensitivity of stocks to
innovations in aggregate volatility and market jungk, which determines investors’ associated
risk-return tradeoffs. In other words, aggregatatay and market jump risk are the economy-
wide factors that drive the differences in the eays of small vs. big, and value vs. growth
stocks. If this is the case, it implies that vaitgtiand jump risk must be priced risk factors, and
should help explain the cross-section of commoaoksteturns.

To test the above hypotheses, one has to findldeitand observable proxies that take
into account investors’ true measures of volatéibd jump risks. To do that, | use two measures
from the options market that are able to summainxestors’ information set on aggregate
volatility and jumps in the market. There are fouain reasons in resorting to measures from the
options market. First, prices formed in options keaiare forward looking, and contain valuable
information about investors’ expectations about te&urn process of the underlying. For
example, VIX index gives information about investoexpectations on the evolution of future
volatility in the market, also known as the investentiment. Second, in the presence of real-
life market frictions, options are non-redundantusgies, and help investors replicate their

consumption-payoff patterns, which otherwise is possible with the existing assets in the

* The VIX Index is an implied volatility index thateasures the market's expectation of 30-day S&PvelHlility
implicit in the prices of near-term S&P 500 options



market® For example, Liu and Pan (2003) show that whenkspice dynamics are driven by
stochastic volatility and jumps, holding a riskydaa risk-free asset is not sufficient to replicate
certain payoff patterns due to volatility and jumgks, which leads investors to hold at-the-
money straddles, and out-of-money puts in theiinogt portfolios. Third, when markets are
incomplete, Detemple and Selden (1991) show tleetehould be a general interaction between
options market and the stock market. In line wiils theory, recent stream of studies explore
this relationship by using option returns as exglary factors in the cross-section of stock
returns® Finally, because options themselves are tradaisiets, using straddle returns as a proxy
for volatility risk helps avoid the problem of micking portfolios, and helps better represent a
dynamically managed portfolio that correspondsit@stors’ true investment opportunity set.

In line with the spirit of this paper, recent seslidocument that volatility risk and
downside risk are priced risk factors in the cresstion of stock returns. In separate studies,
Ang et al. (2006), and Moise (2007) document tlodétdity risk is priced in the cross-section of
U.S. stock returns, and is negative. Furthermorgg, Chen, and Xing (2006) find that stocks
that covary strongly with the market when the marteclines have high average returns,
estimating a positive downside risk premium of appnately 6% per annum. Although similar
in spirit, this paper differs from the three in el ways. First of all, as opposed to the above

studies, | separate jump risk from volatility riSkhere is now considerable evidence from the

® See Back (1993), Grossman and Zhou (1996), Ealé¢yara, and Srinivas (1998), Basak and Croitor@0(®,
Bates (2001), Lee and Yi (2001), Buraschi and alilt§2003) for articles that motivate options tragiander
different market imperfections.

® See Coval and Shumway (2001), Vanden (2004), aisby Salih, and Akdeniz (2007) for articles thacument
the explanatory power of option returns in the sfssction of equity returns.



option pricing literature that stock prices exhibith stochastic volatility and sudden junips.
Furthermore, as reported by French, Schwert, aachl&ugh (1987), and Glosten, Jagannathan,
and Runkle (1993), periods of high volatility areually associated with jumps and downward
market moves. However, studies that examine vijatisk and jump risk usually ignore this
intertwined relation between the two, and assurtieeiolatility, or jump risk component is
priced. The analysis here instead builds up oraisamption that investors care not only about
innovations in aggregate volatility, but also abontavorable sudden jumps in the market. Thus,
| argue that aggregate volatility and market junisg are priced differently, and both risk factors
need to be examined separately by disentangling éffects in the cross-section of returns.
Second, our measures of volatility and jump ridkedifrom the three considerably. Ang, Chen,
and Xing (2006) define downside risk as the covamaof an asset’'s return with that of the
market when the market is declining. Moise (200s§suinnovations in realized market volatility
as a proxy for systematic volatility risk, and figaAng et al. (2006) use innovations in the VIX
index to proxy for aggregate volatility risk. Thadter is closer to the one presented here by using
a measure from the options market.

More specifically, | use tradable assets from théekx option market that have the
advantage of representing investors’ true oppadyguset more realistically than statistical
measures. In particular, | measure volatility dfskusing returns on crash-neutral at-the-money

(ATM) straddles of the S&P 500 index. The crashtreduat-the-money straddle consists of a

" See Bakshi, Cao,and Chen (1997), Chernov and @hy2@00), Bates (2000), Andersen, Benzoni, anddLun
(2001), Bakshi and Kapadia (2001), Benzoni (20@2d Pan (2002) that document the importance ohasiic
volatility and jumps in stock returns.



long position in an at-the-money straddle, and @tsposition in a deep out-of-money (OTM)
put option (with 0.96 strike-to-spot ratid)Adding an opposite position in a deep OTM put
option reduces the sensitivity of the crash-neukdM straddle to downward jump risk
considerably, and helps orthogonalize the two faskors, so that volatility and jump risk factors
can be disentangled, and separately analyzed. léayipg jump risk, | use returns on out-of-
money puts of the S&P 500 index (with 0.98 stri@espot ratio), where it is assumed that
investors are averse to daily jumps of -2%, or nidrke results can be summarized as follows.

| document that small and value stocks consistehlye negative and significant
volatility and jump factor loadings, whereas bigdagrowth stocks exhibit positive and
significant volatility and jump loadings. Togetheith the fact that crash-neutral ATM straddles
on average earn positive (negative) returns atstiofehigh (low) volatility, this implies small
and value stocks are expected to lose (earn) rharetheir big and growth counterparts at times
of high (low) aggregate volatility. Similarly, OTMut options experience significant positive
(negative) returns in the case of negative (pasjitiumps in the market. This empirical
observation together with the observed negativepjloadings for small and value stocks imply
that they are expected to lose (earn) more thain lihg and growth counterparts at times of
negative (positive) jumps in the market.

Furthermore, portfolio sensitivities with respeataggregate volatility and market jump

risk are also time-varying. Especially, the volgtilbeta dispersions between big and small

8 See Coval and Shumway (2001), and Driessen andidae (2006) on the construction of crash-neutraldslles.

° | try different magnitudes of daily jumps rangifrgm -2% to -4%. The findings are robust to chanigepimp
magnitudes.



portfolios, and growth and value portfolios chargasiderably (nearly halves) when going from
a high volatility regime to a low volatility regimeand when going from months that exhibit
significant negative jumps to months that do ndtisTimplies that small and value stocks are
much riskier at times of high volatility and negatijumps on the market compared to their big
and growth counterparts.

Finally, 1 document that aggregate volatility riakd market jump risk are priced risk
factors. Consistent with Ang et al. (2006), and $40{2007), | document a negative price for
aggregate volatility risk. More interestingly, thisk premium estimates indicate that, market
jump risk is also priced in the cross-section. Bgrihe sample period studied, the cross-section
of stock returns exhibit a negative and significaump risk premium. The result confirms the
hypothesis that investors indeed treat jump ristedintly than volatility risk, and reflect this as
a separate risk factor in their risk-return tradeof

This work is closely related to recent studies #hgilain value and size premium within
a rational expectations framework. The businesdecgzplanation of Lettau and Ludvigson
(2001), and Petkova and Zhang (2005) argue thattlite time variation in the conditional betas
of value and growth stocks in bad and good timeb@fconomy that create the value premium.
In CCAPM and CAPM settings, respectively, the atghiind that value and small stocks have
lower consumption (market) betas during bad tinedstive to big and growth stocks, while the
opposite holds during good times. | argue thas ithe difference in volatility and jump risk
loadings of small and big, and value and growtmdirthat drives the observed size and value

premium in the market. Investors demand sharesigpfabd growth firms in order to hedge



against deteriorations in their wealth during pasi@f high volatility and negative jumps in the
market. Overall, the findings lend support to aoral markets asset pricing theory, and a risk-
based explanation.

The rest of the paper is organized as follows. fiils¢ section sets the theoretical and
empirical framework on the need of separating jumk from volatility risk. Section Il details
data and the construction of tradable proxies.i@etli presents estimates of volatility and jump
risk loadings for size and book-to-market portfeliGections IV and V test i) whether there
exists time variation in volatility and jump riskddings, and ii) whether jump risk is priced

separately from volatility risk, respectively. Theal section offers concluding remarks.

|. Separating Jump Risk from Volatility Risk

A. Theoretical Motivation

Economic theory suggests that if investment opmitres vary over time, then investors
should not only care about market risk, but alsoualinnovations in state variables that capture
this time-variation in the investment opportunitgt.sThis implies that risk-averse investors
would demand a risk premium for those assets, wiiigr a hedge against deteriorations in their
respective investment opportunity sets. In linehwthis theory, Campbell (1993) and Chen
(2002) argue that risk-averse investors want togledot only against market risk, but also
against innovations in market volatility. This isdause investors are reluctant to lose wealth in

periods of high volatility, which represents a det@tion in investment opportunities, and



which usually coincides with periods of low consuiop (recessions). For pricing purposes, this
implies that an asset that has positive covarid@teeen its return and variables that correctly
predict innovations in aggregate volatility shobhlave lower expected returns. In other words,
assets whose returns correlate positively with wations in market volatility would be seen as
hedges against volatility risk, and demanded bl-aigerse investors, driving their prices up,
implying lower average returns.

On the other hand, according to the mean-seminegi&ramework of Markowitz (1959),
and the prospect theory of Kahneman and TverskyQJl9nvestors care downside losses more
than upside gains. Thus, investors who are seadibivdownside losses, relative to upside gains,
should require a risk premium not only for aggregeaslatility risk, but also a premium for
holding assets that covary strongly with the markieéen the market exhibit downward market
moves. Moreover, as documented by French, Schwed, Stambaugh (1987), and Glosten,
Jagannathan, and Runkle (1993), periods of hightMty usually coincides with jumps and
downward market moves. Furthermore, there is stemdence from the option pricing literature
that stock price dynamics exhibit both stochastitatility and jumps® This relationship
between volatility and jump processes raises aralatuestion. Is it the volatility risk being
priced in securities returns as documented by pusvstudies, or is there a separate jump effect
which is otherwise subsumed by aggregate markeittiligl? If the true behavior of the stock

price process is characterized by a diffusion peand sudden jumps, and if investors care

19 By comparing alternative option pricing modelsttaasume different stock price dynamics, Bakship,Gand
Chen (1997) document that models that take intowticstochastic volatility and jumps in stock psdeve lower
pricing and hedging errors.



downside losses more than upside gains, then thestong reason to believe that jump risk
should also be priced in the cross-section of stetirns. In this case, it becomes crucial to
separate jump risk from volatility risk. Otherwisapdels with volatility risk or jump risk alone
would not correctly reflect the true time-variationinvestors’ opportunity set.

Motivated by the above findings, in this paperdwase that investors are averse not only
to changes in market return, and changes in aggregerket volatility, but also to the
occurrence of negative jumps in the market. Thostrary to previous studies, | assume that
jump risk is priced differently from volatility rks The prediction of such a model is that an asset
that has positive covariance between its returd,vamiables that correctly predict innovations in
aggregate volatility and negative jumps in the ragrishould have lower expected returns. If
aggregate market volatility and market jump risk priced risk factors, then they should play a
role in determining the time-variation in the intraent opportunity set. This implies, in

equilibrium, the conditional average return on atock is given by,

E ()= Brdn + BiAi + B A+ BiiA (1)
k=1

wherein, is the price of risk of the market factay, is the price of aggregate volatility risk,
is the price of market jump risk, and the are the prices of risk of other factors.

The above model constructs the basis of the enapiests. More precisely, | examine, i)
whether volatility and jump risk are priced riskctars in the cross-section of expected returns,
i) whether different asset classes have diffefantor loadings with respect to volatility and

jump risk, and finally iii) whether these factoalitings are time-varying.



B. Empirical Framework

To test the above hypotheses, one has to use ab$erinarket proxies. In order to
summarize investors’ information set on aggregalatility, and market jumps, | resort to two
measures from the options market. There are thr@@ neasons for doing that. First, when
markets are incomplete, Detemple and Selden (198dj that there should be a general
interaction between option prices and stock pri&scond, in the case of market frictions,
options are non-redundant securities, and theurmstcan help explain securities returns. For
example, proxying volatility risk with returns oerp-beta at-the-money straddles written on the
S&P 100 index, Coval and Shumway (2001) document tbortfolios sorted on market
capitalizations have different volatility loadingsnd small sized portfolios are more prone to
volatility risk. Finally and more importantly, bacse options themselves are tradable assets,
using their returns as proxies for volatility anginjp risk helps avoid the problem of mimicking
portfolios, and helps better represent a dynanyicalanaged portfolio that corresponds to
investors’ true investment opportunity set.

More precisely, | use returns on at-the-money (AT#addles and returns on out-of-
money (OTM) puts written on the S&P 500 index tcasw@e an asset’s sensitivity to aggregate
volatility and market jump risk, respectively. Stdées are volatility trades and their returns are
very sensitive to innovations in volatility, makitigem ideal to study the effect of innovations in
aggregate volatility. On the other hand, investdesnand out-of-money puts to hedge their

positions against significant downward moves in tharket. By paying a relatively small
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premium and buying an out-of-money put option,rarestor can protect herself against negative
and unfavorable jumps in the market. Because outafey put options are highly sensitive to
negative jumps in the market, their returns aralif® proxying market jump risk.

There are two main issues to be noted here. Fiesisume that investors price volatility
and jump risk separately. However, as reported tnéh, Schwert, and Stambaugh (1987),
periods of high volatility usually coincides witlegative stock returns. Thus, in order to test for
the effects of volatility and jump risk separatedype has to control for this intertwined relation,
and separate the dynamics between the two. Irréineefvork of this paper this translates to “the
price of an at-the-money straddle should not cantay information on the occurrence of
negative jumps in the market”. To do that, | foll@wessen and Maenhout (2006), and form a
crash-neutral ATM straddle. The crash-neutral ATik&ddle consists of a long position in an
ATM straddle, and a short position in a deep OTM gpption. Crash-neutralizing the ATM
straddle makes it insensitive to significant dowrdvenoves in the market. This, in turn, helps
partially orthogonalize the two risk factors, sattkthe pricing of volatility and jump risk factors
can be isolated, and separately analyzed. Seceund is the price of market jump risk. It is not
an easy task to correctly specify the exact madeitaf market jump that the investors are averse
to. As there are theoretically infinite number ofmp sizes ranging from 0 to -100%, one has to
define a meaningful jump size. | assume that iroresare averse to daily jumps of -2% in the
market (-9.6% weekly), and thus, use returns orobutoney puts with 0.98 strike-to-spot ratio
in order to capture investors measure of markefpjuisk. The prices of OTM puts with 0.98

strike-to-spot ratio contain information about ist@s’ expectations on jumps of magnitude -2%
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or more, and by construction, their returns arey wansitive to the occurrence of jumps in the
market. Thus, the covariance of an asset's retuth the return on this option will yield
information about the sensitivity of the assetumps in the market.

Finally, because the true conditional factor logdim Equation (1) are unobservable, |

do not directly use it in empirical estimationsstiad, | specify the full model as,

rti =a,t lgvi\AKT MKT, + IB,iATM ATM , + :BiOTM OT™M  + ‘sti - (@)

Here,r'; is the excess return of test asset i, MKT is theess market return, and ATM, and OTM
are excess returns on crash-neutral at-the-monagdées, and out-of-money puts written on the
S&P 500 index, which proxy for aggregate markeatibly and market jump risk, respectively.
Bk, Batw, andflomm are the estimated factor loadings of market @sjgregate volatility risk,
and market jump risk, respectively.

The following section details the construction r@idable proxies for aggregate volatility

and market jump risk, presents the data, and doatsniee results of empirical tests of Equation

2).

I1. Data and Construction of Tradable Proxies

For tests of Equation (2), and to see whethertVitfaand jump risk factors can
potentially explain the observed size, and valuegrswth anomalies in U.S. returns, | use

portfolios with stocks sorted according to theirrked capitalizations, and book-to-market ratios
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as test portfolios' For market proxy, | use CRSP’s value-weighted mtitdex for all NYSE,
AMEX, and NASDAQ stocks. The risk-free rate is thenonth T-Bill rate. Daily closing prices
of calls and puts on S&P 500 index (SPX) are olethiinom Chicago Board Options Exchange’s
(CBOE) Market Data Express (MDX). Overall, the séengovers the period from January 1987
to March 2007, with a total of 243 months. Nexdgelail the construction of tradable proxies for
aggregate volatility risk and market jump risk.

For proxying aggregate volatility risk, | use retsiron crash-neutral ATM straddles that
consist of one long position in an ATM straddle ame& short position in a deep OTM put. More
specifically, an ATM straddle return is the equallgighted return on 1 long call and 1 long put
with strike prices just above the spot price, -54K < 0, and 1 long call and 1 long put with
strike prices just below the spot price, 0 < S-K.A deep out-of-money put has a strike-to-spot
ratio of 0.96, which guarantees that the crashrabNTM straddle is insensitive to daily crash
magnitudes of 4%, or above. For market jump risisé returns on out-of-money put options
with a strike-to-spot ratio of 0.98.

Before computing the returns on crash-neutral ASivaddles and OTM puts, the
following filtering criteria is applied. First, |lieninate all options with prices that violate
arbitrage pricing bounds and put-call parity by enttan 1%. Then, options that expire during

the following calendar month are identified. Thasen for choosing options that expire the next

™ More precisely, | use value-weighted returns orpaffolios sorted according to their market cdjggdions, 10
portfolios sorted according to their book-to-markaios, 25 portfolios (5x5) sorted according tresand book-to-
market ratios, and 6 portfolios (2x3) sorted actgydo size and book-to-market ratios, all of whare downloaded
from Ken French'’s data library.
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calendar month is that they are the most liquich dahong various maturitié$.Options that
expire within 10 days are also excluded from the@a because they show large deviations in
trading volumes, which casts doubt on the religbitif their pricing™® Next, each option is
checked whether it is traded the next trading dawyai. If no option is found in the nearest
expiry contracts, then options in the second-néamegsiry contracts (expiring in two calendar
months) are used.

After applying these criteria, | compute daily cald put returns by using raw net
returns. Then, the daily return on a crash-newr@ddle is simply the difference between the
equally-weighted return on two ATM straddle posiBawith strike prices right above and below
spot price, and the return on a deep OTM out op#itth a 0.96 strike-to-spot ratio. For returns
on OTM puts, | apply the following criteria. Firdtcheck whether an out-of-money put option
exists with a strike-to-spot ratio of 0.98. As désed previously, this option strategy guarantees
to protect its investor from daily jumps of maguiés -2% or above. If no option is found in that
moneyness bin that expire within next two calermdanths, then | look for an out-of-money put
in the moneyness bin closest to and higher tha® @Boosing an OTM put with a strike-to-spot
ratio of less than 0.98 would always leave soméigoof the jump risk be unhedged. Thus, by
choosing the second best alternative, i.e. an OliMyith a strike-to-spot ratio of 0.98 or higher,

the investor is always protected against jumps agmtude of -2% or higher.

12 According to Buraschi and Jackwerth (2001), mdghe trading activity in S&P 500 options is contrated in
the nearest (0—30 days to expiry), and second sigE@@-60 days to expiry) contracts.

13 Stoll and Whaley (1987) report abnormal tradintumees for options close to expiry.
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<< |nsert Table 1 about here>>

Before proceeding with the formal tests, Table dspnts the descriptive statistics of the
data used in this study. Panels A and B summag#g ceturns of calls and puts written on the
S&P 500 index with respect to 8 moneyness levetsisidtent with previous studies, average
daily call (put) returns during the period from dary 1987 to March 2007 are positive
(negative) regardless of their moneyness levelsthEumore, daily call returns increase
monotonically from the deepest in-the-money callsiéepest out-of-money calls. The deepest-
out-of-money calls earned an impressive daily retfrl.97% on average throughout the sample
period. A similar pattern is observed for averagenturns. Although not monotonically, daily
put returns seem to decrease from deepest in-tmeynouts to deepest out-of-money puts, with
deepest out-of-money puts losing 5.69% on averagdg. d

Panel C of Table 1 reports monthly average retamATM straddles, OTM puts, crash-
neutral ATM straddles which form the basis for $esft Equation (2). It is clear that selling ATM
straddles, and OTM puts earned their investorgmfgant return throughout the sample period.
On average, selling ATM straddles earned 8.16%npanth, while selling out-of-money puts
with a 0.98 strike-to-spot ratio earned an impress36.83% per month, compared to 1.01%
earned from investing in the market portfolio. Timelings are in line with previous studies. For
example, Coval and Shumway (2001) report weeklyrnst of -3.15% and -3.24% for ATM
straddles and crash-neutral ATM straddles, resgaygti Driessen and Maenhout (2006)

document weekly returns of -1.67% and -4.78% ferrgturns on ATM straddles and OTM puts
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with 0.96 strike-to-spot ratio. Broadie, Chernongdaohannes (2007) report monthly returns of -
15.7% and -44.7% for ATM straddles and out-of-mompeys with 0.98 strike-to-spot ratio.
Finally, Bondarenko (2006) reports an average mgm#turn of -54% for OTM puts with 0.98
strike-to-spot ratio.

Finally, Panel D of Table 1 presents correlatioetween monthly returns on ATM
straddles, OTM puts, crash-neutral ATM straddles] the market portfolio. As can be seen,
crash-neutralizing the ATM straddle significantgduces its correlation with the OTM put. This
in turn helps orthogonalize the returns betweenwwoe which is crucial in order to examine the
effects of volatility and jump risk separately.

The next section presents the results for testheofirst hypothesis of this paper, which
tests whether there exist differences in the sergitof returns of different portfolios with

respect to aggregate volatility and jump risk fagto

[11. Volatility and Jump Risk Factor L oadings

This section presents volatility and jump riskdways of different portfolios consisting of
stocks sorted with respect to their market capgiddlons and book-to market ratios. More
specifically, | estimate Equation (2) using excaesmthly returns on the CRSP value-weighted
market index as a proxy for market risk, and exaessithly returns on crash-neutral ATM

straddles and OTM puts as proxies for volatilitd gommp risk, respectively.
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<< |nsert Table 2 about here>>

Table 2 presents the factor loadings of 10 podfolsorted according to their market
capitalizations. As can be seen, portfolios inghmllest 9 deciles consistently have negative and
significant volatility and jump loadings. On thentrary, the biggest size decile exhibits positive
and significant loadings for both volatility andmp risk factors. More interestingly, volatility
and jump risk loadings increase almost monotono@isiyn the smallest size decile to the
biggest. As far as the author knows, this is th&t Btudy that documents the difference in the
sensitivities of portfolios with respect to aggregeolatility and market jump risk. The resuilts,
if persistent, might offer an alternative explaaatio the previously documented size anomaly,
and can have important pricing implications.

ATM straddles are volatility trades, and their resi are positive (negative) when
aggregate volatility is high (low). This relatiomshmplies that, assets with negative volatility
risk loadings, i.e. small stocks, are expectedatm éower returns at times of high volatility. On
the contrary, due to their positive volatility rikkadings, stocks in the biggest size decile ptotec
their investors against innovations in volatilitysfmilar pattern is observed with respect to jump
risk. OTM puts exhibit positive (negative) returaistimes of negative (positive) jumps in the
market. This implies, when market exhibit negafjweps, an asset with a negative (positive)
jump risk loading will earn lower (higher) returtiean predicted by the CAPM. Thus, because of

their negative covariation with innovations in agggte volatility and negative jumps in the

4 The difference in the volatility factor loadingsttveen small and big portfolios was a phenomenenripusly
reported by Coval and Shumway (2001).
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market, investors will require an additional premitor holding small stocks. Furthermore, big
stocks covary positively with innovations in aggueg volatility, and negative jumps in the
market. Because of their positive volatility andmju betas, stocks with higher market
capitalizations will earn more (or lose less) thhrir small counterparts, thus will be more
attractive compared to stocks with lower marketitedipations at times of high aggregate
volatility and negative jumps in the market. Pegtvolatility and jump risk loadings for the

biggest size decile imply that stocks with big nedricapitalizations offer a hedge against
volatility and jump risks, and thus will be demadday investors who would like to protect

themselves against deteriorations in their investno@portunity sets due to those risks. This
implies a higher demanded for big stocks by riskrag investors, implying higher prices, thus
lower returns for them. The results support a Hiigp-quality” explanation at times of high

aggregate volatility, and downward market moves.

<< |nsert Table 3 about here >>

Next, | examine factor loadings of portfolios witocks sorted according to their book-
to-market ratios. Looking at Table 3, one can olsaimilar, but slightly weaker results. The
volatility factor loadings are negative for 8 oktportfolios with high book-to-market ratios, and
positive for 2 portfolios with low book-to-markedtros. The jump loadings are negative for 7 of
the highest book-to-market ratio portfolios, andipwee for 3 of the lowest book-to-market ratio

portfolios. However, volatility and jump loadingeeasignificant only for the three highest book-

18



to-market portfolios (value portfolios), and posiiand significant only for the lowest book-to-
market portfolio (growth portfolio). Again, it seanthat growth stocks tend to offer a natural
hedge against volatility and jump risk in the markéo the best of my knowledge, this

difference in the sensitivities of value and growtirtfolios with respect to volatility and jump

risk factors has not been documented before.

However, the results regarding the book-to-marketfplios should be approached with
care. Because, by definition, the book-to-markeioraf a firm already contains some
information on the market capitalization of thahfj thus there could potentially be a hidden size
effect for value and growth portfolios, i.e. thgrsficance of volatility and jump risk loadings
might be due to the possible existence of many (lgh) market capitalization firms in value
(growth) portfolios. In order to overcome this, aredify that the significant results for value and
growth portfolios are not due to a potential sifieat, | further refine the test portfolios, and
examine the factor loadings of 25 portfolios somath respect to 5 size, and 5 book-to-market

portfolios.

<< |nsert Table 4 about here >>

Looking at Table 4, one can see that volatilitk lisadings are significant for 16 out of

25 portfolios, and jump risk loadings are signifitdor 17 out of 25 portfolios. Among value

portfolios, it is only the portfolios in the smadtehree quintiles (S-H, 2-H, and 3-H), which have

significant and negative volatility and jump riskabings. Furthermore, looking at the growth
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quintiles, one can see that it is only the portfahi the biggest size quintile (B-L), which exhgbit
significant and positive volatility and jump loads This finding, if persistent, indicates that not
all growth stocks but only growth stocks among bigcks, actually act as a hedge against
innovations in aggregate volatility and market jungk. To further examine this hypothesis, |
refine the test portfolios to 6 portfolios sortedcarding to 2 size and 3 book-to-market

portfolios. Table 5 presents the results of vatgtdnd jump loadings for those 6 portfolios.

<< Insert Table 5 about here >>

Consistent with the above hypothesis, one cantsgeatmong the two value portfolios, it
is the one small-value portfolio which exhibits age and significant volatility and jump
loading. Similarly, when one compares the two gloprtfolios, it is the big-growth portfolio
which provides investors a hedge against volatiditg jump risks. At times of high volatility and
negative jumps in the market, due to their sigaificand positive volatility and jump loadings,
only growth stocks among big stocks provide thewestors with returns higher than predicted
by the CAPM. This implies a higher demand for bigwgth stocks by risk-averse investors,
which in turn imply higher prices, and lower retsithan the CAPM predicts.

Next, | examine the hypothesis whether the docuetenolatility and jump factor
loadings of different portfolios exhibit time-vatian between different volatility and jump

regimes.
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IV.IsThereTime-Variation in Volatility and Jump Risk L oadings?

It has been widely documented that equity retuxisbit stochastic volatility” It is also
documented that equity returns show continuationtheé short-term, and reversals in the long-
term® Furthermore, periods with negative jumps are oftdiowed by prices going down even
more, or going up by an unusual amount. Also, plsriwhen prices rise quickly may often be
followed by prices going up even more, or on theeothand by crashes. These empirical
observations coupled with the theoretical suppamfthe option pricing literature that equity
returns exhibit stochastic volatility and jumps,ghti indicate that the sensitivity of firms with
respect to volatility and jump risk might also beé-varying. The volatility loading of a stock at
a highly volatile market might not be the same caregd to that of a calmer market. Similarly,
the jJump loading of a stock might be very differenbear markets compared to bull markets.

To test the above hypotheses, | construct two rdiffevolatility and jump settings. In the
first setting, | divide the sample into two subs&spwith high and low volatility regimes. In the
second setting, | differentiate months that contegative jumps of -2% or more, from the rest
of the sample. The next section details the coostm of those subsamples, and presents the

results of time-series estimations of volatilitydgamp loadings for each of the 4 subsamples.

15 See Engle and Ng (1993), Canina and Figlewski 319Buffee (1995), Braun, Nelson, and Sunier (1995)
Andersen (1996), Bollerslev and Mikkelsen (1999)d 8ekaert and Wu (2000) for a theoretical disarssind
distributional aspects of stochastic volatilityazfuity returns.

16 Jegadeesh and Titman (1993) find that short-texturms tend to continue, i.e. stocks with highéarres in the

past twelve months tend to have higher future nstuin contrast, DeBondt and Thaler (1985) docurtiatit stocks
with low long-term past returns tend to have higia¢ure returns.
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A. High vs. Low Volatility Regimes

In order to test whether volatility and jump loagknexhibit time-variation with respect to
levels of aggregate volatility, | divide the sampito months with high and low volatility. To do
that, | first compute monthly historical volatiés of the S&P 500 index. If volatility in a specifi
month is higher than the sample mean volatilitytled S&P 500 index, then this month is
identified as a high volatility month. Similarlyf, volatility in a specific month is lower than the
sample mean, then this month is identified as a Volatility month. Using this procedure, |
identify 97 months of high volatility, and 146 mhbstof low volatility. Table 6 presents the

volatility and jump factor loadings for the two wility regimes*’

<< Insert Table 6 about here >>

As can be seen, volatility and jump loadings foe thO size portfolios in the high
volatility regime exhibit a very similar pattern tbat of the whole sample. The smallest 9
portfolios consistently exhibit negative and sigraht volatility and jump loadings, whereas the
biggest size portfolio exhibits positive and sigraht volatility and jump loadings. This
confirms the previous finding that when aggregatdamdity is high, small (big) firms are

expected to lose (earn) more than what the CAPMigie

| present the results for size portfolios. Theulissfor book-to-market, and other portfolios akaitable upon
request.
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While a similar pattern is observed at times of loslatility, one can see that portfolio
volatility and jump loadings are less significaamd much smaller. The significance of volatility
loadings disappears for all size deciles and thegoime much smaller in absolute value.
Furthermore, jump loadings are only significant amelgative for the three smallest and
significant and positive for the biggest size paitf. Another interesting observation is the
volatility and jump beta dispersion between thegbgj and smallest size portfolios. Especially,
the change in volatility betas is striking. The atdity beta dispersion between biggest and
smallest portfolios decreases from 0.0346 to 0.Q4f#6g from volatile regime to a calm period,
which supports the hypothesis that the sensits/ité size portfolios with respect to volatility
risk are time-varying. Portfolios sorted with resp® book-to-market ratios also have similar
results.

The documented findings are also in line with thesibess cycle risk framework of
Petkova and Zhang (2005). The authors documentsthatl and value firms are riskier during
recessions when expected market risk premium if. Higargue that it is the sensitivity to
aggregate volatility and market jump risk that davthe value and size premium. Small and
value stocks consistently have negative volatiéityd jump betas, and big and growth firms
consistently have positive volatility and jump letdhat is, when aggregate volatility is high,
small and value stocks are much riskier than thegrand growth counterparts. By providing
higher returns than CAPM predicts at those timaés,and growth firms offer a hedge against
innovations in aggregate volatility and sudden janip the market, which might deteriorate

agents’ investment opportunity set. On the contratytimes of low volatility, small and value
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firms tend to outperform their big and growth carparts, and since on average low volatility
regime dominates the high volatility regime, thigjht offer a potential explanation the observed

size and value premium.

B. Jumps vs. No-Jumps

| finally examine whether firms have different séingies to volatility and jump risk,
between months that exhibit negative jumps and hsothat do not. To do that, | identify
months that exhibit at least one significant negatlaily jump, i.e. -2% or more, as a jump
regime, and the remaining months as no-jump regirhe partitioning results in 70 jump, and
173 no-jump months throughout the whole sampleogerifable 7 presents the associated

volatility and jump loading estimates within théa® regimes.

<< |nsert Table 7 about here >>

Looking at Table 7, one can see very similar restdtthat of high and low volatility
regimes. In periods of significant negative jumibe smallest 9 portfolios have significant and
negative volatility and jump loadings, and the lasgfgportfolio exhibit significant and positive
loadings. A similar but less significant patternoisserved for months that do not experience
significant downward jumps. Furthermore, the vdigtibeta dispersion between biggest and

smallest portfolios goes down from 0.0373 to 0.01®dm months that exhibit significant
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downward jumps to months that do not. Results emdas for the unreported book-to-market
portfolios. Overall, there is significant evidenitet volatility risk might be time-varying, and
small and value firms are riskier at times of highgregate volatility and when markets
experience significant downward moves.

As Cochrane posits, Fama-French mimicking portboloe proxies for macroeconomic
risk, and the differences in the returns of smiadl big firms (SMB), and value and growth firms
(HML) indicate that there is some sort of distregsrecession factor at work. However,
empirical studies thus far, have failed to find appropriate measure for aggregate financial
distress factor sthat covary strongly with smaf);l@nd value-growth portfolios. | document that,
it is the difference in the sensitivity of smallgbiand value-growth stocks to volatility and jump
risk (recession and distress proxies), which datemthe size and value premium. The findings
documented here support the concept of “rationalketa theory”, and indicate a "flight to
quality" during high volatility and jump periodsnvestors shift their preferences away from
small and value stocks, which are considered asgh®iore risky at those times. Instead, they
use big and growth stocks, whose returns co-vasjtigely with innovations in volatility and
jumps in the market, and therefore are expectegrdtect their investors during times of low
market returns. This leads to higher hedging demdodbig and growth stocks, higher prices

and lower expected returns.
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V. IsJump Risk Priced Separately from Volatility Risk?

Up to now, | have documented significant evideried the returns on small and value
portfolios covary negatively with the returns oagin-neutral ATM straddles and OTM puts, and
big and growth portfolios covary positively, imphg that small and value stocks are much
riskier than their big and growth counterparts wlagigregate volatility is high, and when the
market experiences sudden negative jumps. The datieah findings lend support to a rational
asset pricing theory setting, confirming that ithe existence of economy-wide risk factors that
drives the observed size and value premium. Iftityeand jump risk (proxied by the returns on
crash-neutral ATM straddles, and OTM puts, respebt) are able to explain differences in
factor loadings of different firms, then there isteong reason to think that investors should use
this information while forming their expectationsaat future returns. That is, if volatility and
jump risk are priced risk factors, the returns oamsh-neutral ATM straddles, and out-of-money
puts should be among factors that determine inv@dtwie investment opportunity set, and help
constructing the pricing kernel of the economy.

To test the hypotheses that whether aggregateilitgland market jump risk are priced
risk factors, | follow the standard Fama and MatB@©973) methodology. The full model to be

tested is,

rti =a' +181i/IKT/1MKT +ﬁ\i/OL/1VOL +183MP/1JMP +/8;1ws/]sws +ﬁli-|ML/1HML +£ti , 3

where)’s represent unconditional prices of risk of vasdactors.
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More specifically, in the first pass, portfolio bstare estimated from a single multiple
time-series using the full sample. In the secorgkpa cross-sectional regression is run at each
time period, with full-sample betas obtained frohe tfirst pass regressions. The associated
estimates for the intercept terml,, and the risk premia,’s, are then given by the average of
those cross-sectional regression estimates. TaflenBnarizes the risk premium estimates of the

model given by Equation (3), or subsets of it.

<< |nsert Table 8 about here >>

| test 6 specifications of Equation (3). The firstw represents the market model.
Consistent with earlier findings, CAPM is not aetrtepresentation of the pricing kernel of the
economy. The market risk premium is negative arsilgmficant, and a single factor market
model poorly explains the cross-section of returith an adjusted Rof 26%. The second row
estimates the price of aggregate volatility risgether with the market factor. Consistent with
Ang et al. (2006) and Moise (2007), | document gatige price for volatility risk. Furthermore,
adding volatility risk as a risk factor increashe explanatory power of the model significantly.
The third row estimates the price of jump risk. @ae see that the cross-section of stock returns
exhibits a negative and significant price for markenp risk. This is in line with the loss
aversion theory of Kahneman and Tversky (1979) whgue that investors care more about
downside losses than upside gains. Risk-averséoirsvaould like to pay a premium for holding

stocks whose returns covary negatively with junmpthe market.
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Row 4 of Table 8 tests the main hypothesis of faiper - whether jump risk is priced
separately from volatility risk. The results imglyat both volatility and jump risk are priced in
the cross-section of stock returns. The price ddtidy risk is estimated to be —12.27%, which
is statistically significant at the 5% level. Fietimore, jump risk is also priced separately in the
cross-section. The price of jump risk is estimatedbe -32.82%, and is also statistically
significant. The results are consistent with tlypdthesis that the cross-section of stock returns
reflects exposure to not only aggregate volatiigyk, but also to market jump risk.

A negative price for volatility risk and market jpnrisk imply that stocks which have
positive volatility and jump risk loadings are ekt to have lower returns. In contrast, stocks
that covary negatively with innovations in volagiliand with jumps in the market tend to have
higher average returns. Agents who are aversentwvations in volatility will demand additional
compensation for holding stocks that have highiseites to aggregate volatility in the market.
In other words, a stock whose return covaries meggtwith the returns on crash-neutral at-the-
money straddles (with negative volatility loadingd)l be deemed as riskier. Similarly, agents
who are more averse to the occurrence of negativgps in the market compared to positive
jumps (i.e. who puts more weight on losses thariitpyowill pay an additional premium for
holding stocks that have low sensitivities to negajumps in the market. Overall, the findings
imply that it is the joint interaction between adt's sensitivity to volatility and jump risk that
determines investors’ risk-return tradeoffs.

To give an example, because of its negative expadsuvolatility and jump risk factors,

investors will require an additional return of ®4@®er month [(-0.0206) x (-12.27) + (-0.0134)
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x (-32.82)] for a portfolio that consists of stocks the smallest size decile. Again, due to
differences in their sensitivities to aggregateatibty and market jump risk, a portfolio which
longs the smallest decile firms and shorts the dsgyglecile firms will be expected to earn an
additional return of 0.86% per month [(-0.0206 ©60&KO0) x (-12.27) + (-0.0134 - 0.0029)
x (-32.82)]. Similarly, a portfolio which longs th&mallest book-to-market decile, i.e. value
firms, and shorts the biggest book-to-market decie growth firms, will on average require an
additional return of 0.59% per month [(-0.0132 00R4) x (-12.27) + (-0.0050 - 0.0047)
X (-32.82)].

Finally, Rows 5 and 6 of Table 8 summarize the pskmium estimates for the Fama-
French 3-factor model, and the full specificationdal as given by Equation (3), respectively.
One can see that SMB portfolio does not have aifgignt risk premium during the sample
period studied, however the HML strategy yieldsosifive risk premium of 0.41% per month
between 1987 and 2007, which is significant at 169&l. Looking at Row 6, one can see that
including SMB and HML factors in the full specifitan does not affect the significance of
volatility and jump risk premia. Overall, the resuimply that the cross-section of stock returns
exhibits negative volatility and jump risk premand confirms the hypothesis that jump risk is

priced separately from aggregate volatility risk.
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V1. Conclusion

In separate studies, Ang et al. (2006), and MoR@0T) document that aggregate
volatility risk is priced in the cross-section @bek returns. On the other hand, it is empirically
documented that high volatility periods usuallymde with negative jumps and downward
market moves. Furthermore, there is strong evidéooe the option pricing literature that stock
prices exhibit both stochastic volatility and jumpBhis intertwined relationship between
volatility and jump processes raises a natural iues Is it the volatility risk that is being
priced, or is it the sensitivity of stocks to markenp risk that creates variation in their retyrns
or a combination of both? Using crash-neutral attioney straddles and out-of-money puts
written on the S&P 500 index as proxies for aggregelatility risk and market jump risk, |
document the following.

Throughout the 1987-2007 period, small and valugf@ams exhibit significant and
negative volatility and jump risk loadings. In caast, big and growth portfolios have significant
and positive loadings. Furthermore, | documentiigant time-variation in the sensitivities of
portfolios especially with respect to aggregateatibly risk. At times of increased aggregate
volatility, and when the market experiences negajumps, volatility dispersion between big-
small, and growth-value portfolios are about twahcee times compared to that of relatively
calmer periods. Small (big) and value (growth) fudids continue to exhibit significant negative

(positive) volatility and jump loadings at timestafjh volatility, and at periods with significant
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downward market moves. This implies small and vabestfolios are riskier during high
volatility periods and when market experiences hieggumps.

The findings are in line with Lettau and Ludvigs{®001), and Petkova and Zhang
(2005) who document that small and value stocks maveh riskier during bad times and
recessions, in conditional CCAPM and CAPM settingspectively. | take an alternative route,
and argue that it is the difference in the sensigty of stocks with respect to aggregate volatilit
and market jump risk that drives observed sizeaide premia. More particularly, | document
that big and growth stocks are seen as hedgeskraverse investors who are reluctant to lose
wealth in periods of high volatility and downwardarket moves, i.e. periods which are usually
associated with a deterioration in investment opputies, and which usually coincides with low
consumption (recessions). Thus, a “flight-to-qyaléffect is in charge. Assuming that investors
dislike innovations in aggregate volatility, ancéq¢ a bigger weight to downward market moves
than upward moves, positive and significant valgtiand jump loadings for big and growth
stocks imply that they will be demanded more bys&hoisk-averse investors, increasing their
prices, thus lowering their returns.

If investors are averse to both aggregate vokatdimd market jump risk, then these
factors should be priced in the cross-section oflsteturns Consistent with earlier findings, |
find that volatility risk is priced and has a nagatpremium. | further document that market
jump risk is also priced in the cross-section, @anchegative. The findings are robust to the
addition of Fama-French mimicking portfolios. OVgrthe results support the view of a rational

asset pricing theory, and offer a risk-based exgilan to the observed size and value premia.
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Tablel

Summary Statistics

Panels A and B of Table 1 report the descriptiatistics for the daily returns of short-maturityl @nd

put options written on the S&P 500 index with redpge 8 moneyness levels. S represents the spelt lev
of S&P 500 index, and K is the strike price specifon the contract. Panel C and D report the mgnthl
returns and correlations of at-the-money strad(#d<R), out-of money put options with 0.98 strike-to
spot ratio (OUT), crash-neutral at-the-money stleslfCN-STR) written on the S&P 500 index, and the
market portfolio (MKT). The market portfolio is CR% value-weighted index for all NYSE, AMEX,
and NASDAQ stocks. The sample covers the perioeh flanuary 1987 to March 2007 (243 months). All
the return figures are in percentages.

S-K <-15 -15t0-10 -10to-5 -5to0 Oto5 5to10 10to 15 >15
Panel A: Daily Call Returns
Mean 1.97 1.28 1.11 0.48 0.02 0.01
Median -466 -1.52 -0.89 -1.02 -0.56 -0.42 -0.19 0
Maximum 382.97 370.89 253.15 227.87 144.16 92.01 .9332
Minimum -96.73 -94.40 -89.66 -80.10 -84.07 -76.35 -66.67 -68.46
Skewness 2.50 2.43 1.40 0.75 0.33 0.42
Kurtosis 12.77 14.47 6.06 2.58 1.17 4.63
Panel B: Daily Put Returns
Mean -0.33 -1.15 -1.34 -1.53 -1.63 -1.76 -1.91 -1.64
Median -1.22 -3.03 -3.13 -3.91 -3.41 -3.64 -4.35 -5.69
Maximum 162.70 418.18 43556 464.29 477.35 550.9B.836
Minimum -58.39 -78.87 -81.75 -84.86 -87.17 -96.73 -98.31 -97.47
Skewness 1.03 3.43 2.11 3.47 2.88 3.31
Mean -0.33 -1.15 -1.34 -1.53 -1.63 -1.76 -191 -1.64
Panel C: Daily Factor Returns

STR ouT CN-STR MKT
Mean -8.16 -36.83 -11.03 1.01
Median -14.36 -64.68 -15.78 1.52
Maximum 281.80 590.73 251.98 12.85
Minimum -54.44 -99.33 -208.53 -22.54
Skewness 3.90 3.16 1.49 -1.07
Kurtosis 29.95 17.87 20.29 6.76

Panel D: Factor Correlations

STR ouT CN-STR MKT
STR 1.00
ouT 0.46 1.00
CN-STR 0.77 0.27 1.00
MRKT -0.31 -0.28 -0.39 1.00




Tablell
10 size portfolios

This table presents the estimates of time-serigiessions that test whether aggregate volatility jamp
risk have different loadings across 10 portfoliosted with respect to market capitalizationgris the
return on CRSP’s value-weighted index on all NYSEIEX, and NASDAQ stocks, v , is the return on
crash-neutral at-the-money straddles, aqng 1, is the return on out-of-money put options writien the
S&P 500 index. g is the 1-month T-bill rate. Each regression isnegted with monthly data from January
1987 through March 2007 (243 months). The numbersegmted at the top are the coefficient estimates o
time series regressions, and the numbers in trenthases are their associated t-statistics. Adlltes are
corrected for autocorrelation (with lag = 3), anetdroskedasticity as suggested by Newey and West
(1987). GRS F-statistic, and its associated p-value (iramtesis) reported at the bottom of the table is
from Gibbons, Ross, and Shanken (1989)., ™ denote significance levels at 10%, 5%, and 1%,
respectively.

Gi Pkt Barm Botm Adj- R2

Small -0.0042 0.8291 -0.0206 -0.0134 0.53
(-1.35) (13.847) (-2.877) (-3.337)

Decile 2 -0.0047 1.0330 -0.0184 -0.0104 0.65
(-1.78) (17.897) (-3.08™) (-3.197)

Decile 3 -0.0036 1.0223 -0.0162 -0.0094 0.73
(-1.77) (21.027) (-3.387) (-4.057)

Decile 4 -0.0042 1.0332 -0.0159 -0.0069 0.76
(-2.217) (21.907) (-3.517) (-3.307)

Decile 5 -0.0023 1.0666 -0.0093 -0.0061 0.80
(-1.46) (26.527) (-2.287) (-3.677)

Decile 6 -0.0018 1.0177 -0.0074 -0.0041 0.85
(-1.32) (31.017) (-2.36") (-2.757)

Decile 7 0.0001 1.0047 -0.0083 -0.0030 0.89
(0.13) (36.647) (-3.027) (-3.197)

Decile 8 -0.0008 1.0428 -0.0047 -0.0038 0.91
(-0.77) (41.977) (-1.97) (-3.14")

Decile 9 0.0008 0.9700 -0.0038 -0.0011 0.94
(1.04) (45.147) (-2.08") (-1.21)

Big 0.0016 0.9948 0.0060 0.0029 0.94
(2.227) (59.617) (3.127) (3.707)

GRS(10,230) = 1.1969 (0.29)




Tablelll
10 book-to-market portfolios

This table presents the estimates of time-serigiessions that test whether aggregate volatility jamp
risk have different loadings across 10 portfoliostesd with respect to book-to-market ratiogr is the
return on CRSP’s value-weighted index on all NYSEIEX, and NASDAQ stocks, s , is the return on
crash-neutral at-the-money straddles, aqng 1, is the return on out-of-money put options writien the
S&P 500 index. g is the 1-month T-bill rate. Each regression isnegted with monthly data from January
1987 through March 2007 (243 months). The numbersegmted at the top are the coefficient estimates o
time series regressions, and the numbers in trenthases are their associated t-statistics. Adlltes are
corrected for autocorrelation (with lag = 3), anetdroskedasticity as suggested by Newey and West
(1987). GRS F-statistic, and its associated p-value (iramtesis) reported at the bottom of the table is
from Gibbons, Ross, and Shanken (1989)., ™ denote significance levels at 10%, 5%, and 1%,
respectively.

O Pkt Bam Porm Adj- R2

High 0.0012 0.7983 -0.0132 -0.0050 0.62
(0.51) (12.977) (-2.497) (-1.97")

Decile 2 0.0021 0.7958 -0.0077 -0.0005 0.71
(1.15) (15.567) (-1.85) (-0.21)

Decile 3 0.0009 0.6920 -0.0084 -0.0033 0.69
(0.53) (14.097) (-2.147) (-1.78)

Decile 4 0.0028 0.7495 -0.0052 -0.0016 0.69
(1.54) (15.917) (-1.23) (-0.66)

Decile 5 0.0010 0.8553 -0.0037 -0.0037 0.81
(0.75) (19.787) (-1.02) (-0.79)

Decile 6 0.0006 0.8222 -0.0109 -0.0016 0.76
(0.42) (19.657) (-2.637) (-1.04)

Decile 7 0.0009 0.9006 -0.0060 -0.0007 0.79
(0.63) (18.547) (-1.64) (-0.38)

Decile 8 0.0011 0.9960 -0.0043 0.0011 0.87
(0.88) (32.33") (-1.29) (0.68)

Decile 9 0.0008 1.0321 0.0003 0.0026 0.90
(0.77) (33.507) (0.09) (2.047)

Low 0.0015 1.1532 0.0094 0.0047 0.88
(1.30) (40.477) (2.937) (3.857)

GRS(10,230) = 1.1079 (0.36)




TablelV
25 (5x5) portfolios sorted with respect to size and book-to-mar ket

This table presents the estimates of time-serigiessions that test whether aggregate volatility jamp
risk have different loadings across 25 (5x5) pdidg® sorted with respect to market capitalizati@msl
book-to-market ratios.ykr is the return on CRSP’s value-weighted index dnNMSE, AMEX, and
NASDAQ stocks, s , is the return on crash-neutral at-the-moneydsiess, and gty , is the return on
out-of-money put options written on the S&P 500exdy, is the 1-month T-bill rate. Each regression is
estimated with monthly data from January 1987 tghoMarch 2007 (243 months). The numbers presented
at the top are the coefficient estimates of timgeseregressions, and the numbers in the parargtese
their associated t-statistics. All t-values are rected for autocorrelation (with lag = 3), and
heteroskedasticity as suggested by Newey and W88F]. GRS F-statistic, and its associated p-value (in
paranthesis) reported at the bottom of the tableis Gibbons, Ross, and Shanken (1989, ~ denote
significance levels at 10%, 5%, and 1%, respedtivel

Size B/M Qi Pkt Batm Porm Ad. R

S L -0.0149 1.3151 -0.0104 -0.0160 0.57
(-4.057) (17.237) (-1.33) (-3.527)

S 2 -0.0046 1.0463 -0.0174 -0.0133 0.55
(-1.51) (15.387) (-2.58") (-3.747)

S 3 -0.0010 0.8368 -0.0218 -0.0080 0.60
(-0.38) (14.957) (-3.387) (-1.87)

S 4 0.0013 0.7554 -0.0237 -0.0080 0.59
(0.54) (13.317) (-3.317) (-2.56")

S H 0.0001 0.7570 -0.0246 -0.0121 0.58
(0.06) (13.337) (-3.617) (-4.297)

2 L -0.0082 1.3678 -0.0059 -0.0085 0.70
(-3.147) (22.397) (-0.99) (-2.937)

2 2 -0.0039 1.0104 -0.0188 -0.0062 0.71
(-1.83) (18.22™) (-3.187) (-2.687)

2 3 -0.0001 0.8180 -0.0201 -0.0070 0.71
(-0.12) (16.577) (-3.727) (-3.187)

2 4 -0.0005 0.7670 -0.0215 -0.0079 0.67
(-0.23) (14.717) (-3.747) (-3.467)

2 H -0.0023 0.8244 -0.0283 -0.0096 0.67
(0.96) (12.837) (-4.80™) (-3.547)

3 L -0.0047 1.3306 0.0003 -0.0037 0.72
(-1.92) (23.627) (0.06) (-1.39)

3 2 -0.0013 1.0136 -0.0128 -0.0039 0.80
(-0.75) (23.537) (-2.867) (-1.67)

3 3 -0.0002 0.8275 -0.0104 -0.0048 0.73
(-0.13) (16.317) (-2.147) (-2.46")

3 4 0.0006 0.7561 -0.0142 -0.0046 0.65
(0.29) (14.147) (-2.967) (-1.87)

3 H 0.0010 0.7896 -0.0173 -0.0076 0.66
(0.43) (12.357) (-2.66") (-2.427)

4 L -0.0014 1.2600 0.0015 -0.0033 0.80
(-0.83) (29.097) (0.31) (-1.82)

4 2 0.0001 0.9562 -0.0127 -0.0011 0.82
(0.09) (20.24™) (-2.707) (-0.59)

4 3 0.0011 0.8933 -0.0092 -0.0016 0.73
(0.63) (16.857) (-2.05") (-0.80)

4 4 0.0019 0.7758 -0.0073 -0.0051 0.70
(1.04) (15.56") (-1.82) (-2.327)

4 H 0.0020 0.7932 -0.0097 -0.0037 0.62
(0.87) (11.987) (-1.56) (-1.28)




TablelV - Continued

Size B/M Qi Pkt Bam Porm Ad. R

B L 0.0026 1.0871 0.0086 0.0052 0.89
(2.36) (45.947) (2.867) (4.417)

B 2 0.0018 0.9434 -0.0014 0.0013 0.82
(1.38) (24.697) (-0.43) (0.79)

B 3 0.0010 0.8291 -0.0051 -0.0004 0.74
(0.67) (20.317) (-1.37) (-0.23)

B 4 0.0025 0.7030 -0.0023 0.0007 0.56
(1.31) (13.307) (-0.55) (0.29)

B H 0.0025 0.7910 -0.0066 0.0025 0.52
(0.97) (12.297) (-1.29) (0.76)

GRS(25,215) = 1.3425 (0.14)




TableV
6 (2x3) portfolios sorted with respect to size and book-to-mar ket

This table presents the estimates of time-serigessions that test whether aggregate volatility jamp
risk have different loadings across 6 (2x3) poit®korted with respect to market capitalizatiomd book-
to-market ratios. i is the return on CRSP’s value-weighted index dMNaISE, AMEX, and NASDAQ
stocks, ktv , is the return on crash-neutral at-the-moneydsiess, anddry , is the return on out-of-money
put options written on the S&P 500 indey.is the 1-month T-bill rate. Each regression isnested with
monthly data from January 1987 through March 2@0%3(months). The numbers presented at the top are
the coefficient estimates of time series regressiand the numbers in the parantheses are theiciaksd
t-statistics. All t-values are corrected for autwetation (with lag = 3), and heteroskedasticitysaggested
by Newey and West (1987GRS F-statistic, and its associated p-value (iraptéwesis) reported at the
bottom of the table is from Gibbons, Ross, and 88ar{1989)., ", denote significance levels at 10%,
5%, and 1%, respectively.

Size B/M Qi Bkt Bam Borm Ad. R

S L -0.0083 1.2802 -0.0073 -0.0071 0.71
(-3.447) (22.917) (-1.31) (-3.597)

S M -0.0005 0.8533 -0.0187 -0.0090 0.73
(-0.30) (17.317) (-3.647) (-3.457)

S H -0.0001 0.7786 -0.0230 -0.0095 0.70
(-0.06) (14.137) (-3.917) (-3.927)

B L 0.0017 1.0911 0.0053 0.0039 0.95
(2.167) (67.367) (2.717) (4.487)

B M 0.0013 0.8318 -0.0046 -0.0006 0.79
(1.01) (20.117) (-1.29) (-0.45)

B H 0.0017 0.7523 -0.0069 -0.0005 0.66
(0.92) (14.487) (-1.63) (-0.24)

GRS(6,234) = 0.6917 (0.66)




Table VI
Volatility and Jump Beta Estimatesin High and Low Volatility Regimes

This table presents the results of time-serieses=ipns that test whether volatility risk and junsf are time-varying risk factors. To do that, #zsmple period

is divided into two subsamples. High volatility heg represents months where the volatility is abthee estimated average standard deviation of mpnthl
returns of the S&P 500 index, corresponding to @ntims. Low volatility regime represents months vehidnre volatility is below the estimated averagedsad
deviation of monthly returns of the S&P 500 indearresponding to 146 months. The dependent varialilee excess return on one of CRSP’s size deciles
ruxr IS the return on CRSP’s value-weighted index dINJISE, AMEX, and NASDAQ stocksafy , is the return on crash-neutral at-the-moneydstes, and
rotm , IS the return on out-of-money put options writtn the S&P 500 index, fs the 1-month T-bill rate. The numbers preseiatethe top are the coefficient
estimates of time series regressions, and the msnibb¢he parantheses are their associated ttitatigll t-values are corrected for autocorrelat{aith lag =

3), and heteroskedasticity as suggested by Neway\aast (1987)GRS F-statistic, and its associated p-value (iamthesis) reported at the bottom of the table
is from Gibbons, Ross, and Shanken (1989), ™ denote significance levels at 10%, 5%, and 1%eaetively.

aj Pkt Batm PBomm Adj- R Gi Bkt Bam Borm Adj- R
High Volatility Regime (97 months) Low Volatility @jime (146 months)
Small -0.0008 0.8295 -0.0261 -0.0143 0.56 Small -0.0045 0.8205 -0.0104 -0.0122 0.42
(-0.13) (8.84") (-2.50°) (-2.23") (-1.35) (11.38") (-1.98") (-3.7Z7)
Decile2 -0.0008 1.0333 -0.0247 -0.0113 0.67 Decile2 -0.0053 1.0252  -0.0069 -0.0093 0.57
(-0.15) (11.39") (-2.88") (-2.24") (-1.69) (13.28")  (-0.93) (-2.977)
Decile3 -0.0031 1.0304 -0.0185 -0.0109 0.77 Decile3 -0.0002 0.9761 -0.0073 -0.0051 0.60
(-0.81) (13.85") (-2.757) (-3.0Z27) (-0.05) (14.88") (-1.09) (-1.76)
Decile4 -0.0035 1.0175 -0.0225 -0.0078 0.79 Decile4 -0.0013 1.0188 -0.0038 -0.0040 0.65
(-0.98) (14.547) (-3.677) (-2.61") (-0.45) (16.307)  (-0.58) (-1.39)
Decile5 -0.0012 1.0766  -0.0133 -0.0067 0.83 Decile5 -0.0001 1.0227 -0.0002 -0.0039 0.72
(-0.38) (18.07") (-2.44") (-2.967) (-0.05) (19.777)  (-0.03) (-1.60)
Decile6 -0.0018 1.0058 -0.0109 -0.0046 0.87 Decile6 0.0001 1.0123 -0.0006 -0.0023 0.79
(-0.75)  (21.43") (-2.64") (-2.31") (0.02) (23.947) (-0.13) (-0.96)
Decile7 0.0006 0.9786  -0.0127 -0.0036 0.89 Decile7 0.0007 1.0317 -0.0020 -0.0017 0.86
(0.31) (25.89") (-3.437) (-2.42) (0.46) (28.02") (-0.51) (-1.34)
Decile8 0.0001 1.0203 -0.0065 -0.0054 0.90 Decile8 -0.0003 1.0754 -0.0018 -0.0011 0.91
(0.04) (27.49") (-1.73) (-3.397) (-0.23) (34.147) (-0.52) (-0.90)
Decile9 0.0001 0.9212 -0.0085 -0.0018 0.94 Decile9 0.0019 1.0272 0.0020 0.0007 0.93
(0.02) (32.27") (-3.06") (-1.76) (1.34) (36.227) (0.92) (0.52)
Big 0.0017 1.0049 0.0085 0.0029 0.95 Big 0.0008  0.9892 0.0021 0.0023 0.92
(1.24) (41.047) (3.207) (2.49) (0.74)  (40.76")  (1.75) (2.117)
GRS(10,84) = 1.2737 (0.26) GRS(10,136) = 1.1821 (0.31)




TableVII
Volatility and Jump Beta Estimates With and Without Significant Negative Jumps

This table presents the results of time-serieses=ipns that test whether volatility risk and junsf are time-varying risk factors. To do that, #zsmple period

is divided into two subsamples. Jump regime remtssmonths where the S&P 500 index has experieatéehst one negative jump of magnitude -2%, or
higher, corresponding to 70 months. No-jump regiamresents months where the S&P 500 index did xperéence any significant jumps, corresponding to
173 months. The dependent variable is the excass:ren one of CRSP’s size decilgg«r is the return on CRSP’s value-weighted index 6INHISE, AMEX,

and NASDAQ stocks,afy , is the return on crash-neutral at-the-moneyddtes, anddry , is the return on out-of-money put options written the S&P 500
index. k is the 1-month T-bill rate. The numbers presemtietthe top are the coefficient estimates of timéeseregressions, and the numbers in the parargthese
are their associated t-statistics. All t-values@mwected for autocorrelation (with lag = 3), dreteroskedasticity as suggested by Newey and \WW@87|. GRS
F-statistic, and its associated p-value (in paesit) reported at the bottom of the table is froitnbGns, Ross, and Shanken (1989)., " denote significance
levels at 10%, 5%, and 1%, respectively.

aj Pkt Batm PBomm Adj- R Gi Bkt Bam Borm Adj- R
Months with Daily Jumps < - 2% (70 months) MonthgwDaily Jumps > - 2% (173 months)
Small -0.0023 0.8089 -0.0277 -0.0138 0.53  Small -0.0040 0.8464 -0.0162 -0.0125 0.43
(-0.31) (7.14") (-2.09°) (-2.01") (-1.15) (12.34") (-2.627) (-3.137)
Decile2 -0.0037 0.9848 -0.0260 -0.0105 0.65 Decile2 -0.0054 1.0794 -0.0144 -0.0105 0.57
(-0.55)  (9.08") (-2.50°) (-2.03") (-1.63) (14.17") (-2.14) (-2.677)
Decile3 -0.0042 0.9886 -0.0220  -0.0099 0.75 Decile3 -0.0014 1.0373  -0.0089 -0.0072 0.63
(-0.83) (11.427) (-2.68") (-2.65) (-0.50) (16.20") (-1.73) (-2.42")
Decile4 -0.0041 0.9869 -0.0238 -0.0070 0.77 Decile4 -0.0029 1.0678 -0.0084 -0.0062 0.68
(-0.84) (11.92") (-3.047) (-2.27") (-1.07) (17.02")  (-1.47) (-2.09")
Decile5 -0.0010 1.0558  -0.0141  -0.0060 0.80 Decile5 -0.0022 1.0770  -0.0046 -0.0061 0.76
(-0.22) (14.74") (-2.08°) (-2.51") (-0.94) (20.77°) (-0.91) (-2.34")
Decile6 -0.0010 1.0016  -0.0109  -0.0051 0.86 Decile6 -0.0005 1.0291  -0.0029 -0.0021 0.80
(-0.31) (17.497) (-2.16") (-2.35) (-0.24) (26.38") (-0.80)  (-0.94)
Decile7 0.0019 0.9856 -0.0131 -0.0037 0.89 Decile7 -0.0001 1.0269  -0.0057  -0.0020 0.85
(0.70)  (23.93") (-2.79") (-2.357) (-0.03) (24.81") (-1.53)  (-1.56)
Decile8 0.0013 1.0231  -0.0082 -0.0057 0.91 Decile8 -0.0001 1.0666  -0.0020  -0.0011 0.90
(0.49) (23.48") (-2.06") (-3.467) (-0.13) (32.76") (-0.75)  (-0.90)
Decile9 0.0008 0.9511 -0.0066 -0.0020 0.95 Decile9 0.0024 0.9793  0.0001  0.0010 0.91
(0.44) (38.97") (-2.08") (-2.05") (1.80) (25.44")  (0.04) (0.68)
Big 0.0014 1.0141 0.0096  0.0028 0.94  Big 0.0013 0.9790 0.0032  0.0027 0.92
(0.77)  (33.28") (3.087") (2.22) (1.34)  (47.94") (1.62)  (2.49)
GRS(10,57) = 0.9461 (0.50) GRS(10,160) = 0.7627 (0.66)




Table VIl
Fama-M acBeth Risk Premium Estimates

This table reports the estimates for the crosseswdt Fama-MacBeth (1973) regressions specified by
Equation (3), or subsets of it, using the excessrme on 25 (5x5) portfolios sorted with respect to
market capitalizations and book-to-marker ratigstest portfolios. The sample period is from Japuar
1987 to March 2007 (243 months). The numbers iremtheses are the two t-statistics for each
coefficient estimate. The top statistic uses FansB&th standard errors. the bottom statistic uses
Shanken (1992) correction. The term adjustédenotes the cross-sectiof@lstatistic adjusted for the
degrees of freedom.

ai AMKT AVOL AJMP ASMB /]HML AdJ R2

Row1 1.63 -0.81 0.26
(3.117)  (-1.33)
(3.087) (-1.32)

Row?2 1.43 -0.76 -13.35 0.44
(2.40°)  (-1.19) (-2.47")
(2.31°)  (-1.15) (-2.38")

Row3 1.68 -0.97 -36.61 0.40
(3.337)  (-1.56) (-2.15")
(3.217)  (-1.49) (-2.08")

Row4 1.29 -0.62 -12.27  -32.82 0.53

(250°)  (-1.09) (-2.13) (-1.97")
(2.42°)  (-1.07) (-2.06") (-1.91)

Row5 1.96 -1.25 0.04 0.41 0.51
(5.477) (-2.757) (0.19)  (1.94)
(5.257) (-2.707) (0.18)  (1.86)

Row6 1.76 -1.06 -15.83  -31.97 0.04 0.39 0.62

(4.777) (-2.30°) (2.28") (-2.00) (0.17)  (1.87)
(4.427) (-2.147) (-2.167)  (-1.89) (0.16)  (1.74)




