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Abstract 

This paper investigates the forecasting ability of five different versions of GARCH models. 

The five GARCH models applied are bivariate GARCH, GARCH-ECM, BEKK GARCH, 

GARCH-X and GARCH-GJR.  Forecast errors based on four emerging stock futures 

portfolio return (based on forecasted hedge ratio) forecasts are employed to evaluate out-of-

sample forecasting ability of the five GARCH models.  Daily data from December 1999 to 

December 2009 from Brazil, Hungary, South Africa and South Korea are applied.  Forecasts 

are conducted over two out-of-sample periods, one 2-year period 2008-2009 and one 1-year 

period 2007.  Results show that BEKK model outperforms the other models during the 2-year 

forecast horizon and the GARCH-X is the best model during the 1-year forecast horizon.  The 

GARCH model performs the worst during both forecast horizons.   
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1. Introduction 

Lately there has been high interest towards the modelling of the optimal hedge ratios (OHR) 

and alternative hedging strategies applied to the commodity and financial futures (see 

Choudhry, 2009 for citations).  It is now well-known that the principal functions of futures 

markets are price discovery, hedging, speculation and risk-sharing.  Hedgers use these 

markets as a means to avoid the risk associated with adverse price change in the related cash 

markets.  A hedge is performed by taking simultaneous positions both in cash and future 

markets--which result in the offset of any loss sustained from an adverse price movement in 

one market by a favourable price movement in another market.  The hedge ratio is simply the 

number of futures contracts needed to minimize the exposure of a unit worth position in the 

cash market.
1
   

Given the plethora of literature in this field, there are serious gaps in the current research 

strand in two directions.  Firstly, most previous studies confined their attention to more 

developed and mature financial markets and exchanges.  Thus there is a lack of studies 

involving emerging markets and exchanges.  This gap in the literature is more acute in view 

of the fact that there are informational linkages across global financial markets, which is 

evidenced in the recent global financial market crisis and the consequent melt down effect of 

the crisis.  Secondly, previous research has evaluated the relative effectiveness of alternative 

hedging strategies by examining the in-sample and out-of-sample performance of variance 

reduction of portfolios of returns in the cash and futures markets based on the information of 

hedge ratios, spot and futures prices of the assets.  Surprisingly, however, from a risk 

management perspective, there has been no attempt to evaluate the forecasting accuracy and 

                                                           
1
 Therefore, an investor holding a long position in the cash market should short h units of futures contracts, 

where h would be the hedge ratio. 
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performance of the estimated hedge ratios derived from different econometric models.  

Indeed, forecasting of optimal hedge ratio/dynamic hedge ratio is important for understanding 

the role of futures markets in equity trading, program trading, index arbitrage and the 

development of optimal hedging and trading strategies in fund management.  One of the most 

important properties of forecasting is that it is expansively used in planning or decision-

making situations. The forecasting of optimal hedge ratio helps hedger choose appropriate 

portfolio and allows for portfolio adjustment in dynamic hedging.  Generally speaking, given 

that hedge ratios of various portfolios are predictable, an investor always prefers a portfolio 

with lower financial capital to reach the maximum of risk reduction. The forecasts of optimal 

hedge ratio helps investor choose optimal portfolio with suitable futures and reasonable 

number of futures contract.  This paper attempts to fill both of these gaps in the literature.  

This article investigates the behaviour of dynamic hedge ratios in four emerging markets 

using alternative variants of GARCH models and compares the forecasting performance of 

optimal hedge ratios across those models.  More specifically, using daily data from the spot 

and futures markets of Brazil, Hungary, South Africa and South Korea we estimate the time-

varying hedge ratios and compared the forecasting performances of five different GARCH 

models.  The five GARCH under study are the standard GARCH, GARCH-ECM, BEKK 

GARCH, GARCH-X, and asymmetric GARCH-GJR models.  To our knowledge, no 

previous study empirically investigates the out-of-sample forecasting by different GARCH 

models of time-varying optimal hedge ratio and then compares the forecasting performance 

of these models based on the forecasting results.
2
  Given the widespread application of the 

GARCH modelling technique in this area of research, this study provides an illuminating 

opportunity to investigate this issue as an interesting research strand--filling a gap in the 

                                                           
2
 In previous studies different version of the GARCH models have been used for forecasting of volatility, time-

varying beta, etc and then the models compared.  See Choudhry and Wu (2008) for citations of some these 

previous studies. 
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existing literature.  Therefore, this result has important implications for academics, 

researchers, financial practitioners, and policy-makers. 

Choosing of appropriate forecasting methods is an important issue. A large number of 

different GARCH models have been employed in previous research for forecasting purposes 

(see Choudhry and Wu, 2008). These different models have different forecasting ability and 

no superiority is suggested for any particular forecasting model in predicting hedge ratio.  

The reasonable assumptions are essential for forecasting. For example, the relationship 

between futures and cash prices for most financial assets is not assured, and if this 

presupposition is not tenable, forecasts of hedge ratio is not reliable.  Time horizon influences 

hedge ratio forecasts. Different hedging horizon might affect forecasting accuracy for various 

forecasting methods (Chen et al. 2003). The longer the forecasting horizon, the more data are 

included and the more accurate the forecasts is. But the market environment might change or 

unexpected events happen which occurs assumptions less reasonable in a long time horizon 

(Michael, 1977). Some activities of competitors will affect forecasting accuracy as well.  The 

more competition in the market, the more difficult it is to forecast hedge ratio. In the market 

that has great competition, competitors can change the course of future events after they 

make forecast, in order to make themselves more competitive, which makes forecasts invalid 

(Markridakis, Spyros G., 1989). Forecasting has limitations on its accuracy, but we cannot 

deny the significance of forecast and neglect its merits with this shadow. In the active 

derivatives’ market, decision-making depends on the quality of the forecasts, and hence 

forecast of hedge ratio is important and meaningful for hedgers (Roger and Gilbert, 1971).   

2. Estimation of Optimal Hedge Ratios and GARCH Models 

The notion of OHR emanates within the mean-variance utility framework with the choice of 

portfolio returns from a simultaneous position both in cash and futures markets that minimize 
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the hedged portfolio variance and maximize the risk-averse investors expected utility 

(Johnson, 1960, Ederington, 1979).  Let FT and FT+1 be the purchase price and settlement 

price of a future contracts, and CT and CT+1 be the corresponding purchase price and 

settlement price in the cash market, respectively [see Cecchetti et al. (1988), Baillie and 

Myers (1991), and Kroner and Sultan (1993) for more]
3
.  Then p = CT+1 – CT + h (FT+1 – FT) 

signifies the random return of simultaneously holding one unit of spot and h units of futures 

contracts in the portfolio.  The hedger’s expected return on a simple one-period wealth 

function is: 

E(p) = E(CT+1 – CT) + hE(FT+1 – FT)                            (1) 

        = E(c) + hE(f)       

where the lower case variables refer to change in the asset price.  In the cash market, the 

hedger has a long commitment of one unit of cash positions which is hedged by shorting h 

units of opposite position in the futures market.  The variance of the hedger’s portfolio return 

is: 

fcfcp hb ,

2222 2 σσσσ ++=        (2) 

where the sources of risk in the portfolio are the volatility of the cash market, the volatility of 

the futures market, and the covariance between the cash and the futures market.  The investor 

maximizes the following expected utility function, which specifies the trade-off between 

expected wealth and the volatility of the wealth, 

2)()(max prpEpU σ−=        (3) 

                                                           
3
This section draws extensively from Kroner and Sultan (1993), and Sultan and Hasan (2008). 
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where r > 0 is the degree of risk aversion.  By substituting the definition of volatility from 

equation (2), the utility maximization function is rewritten as: 

]2[)()()(max ,

222

fcfc hhrfhEcEpU σσσ ++−+=     (4) 

After taking the first order condition for an extremum with respect to h and solving under the 

condition that the futures returns follow a martingale process, i.e., E(FT+1)=FT, yields 

Johnson’s (1960) risk minimizing hedge ratio h
*
: 
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where Rc and Rf denotes return on spot and future indices.
4
  It is now well-known in the 

literature that the conventional hedging model has shortcomings.  As the distribution of 

futures and spot prices are changing through time, h
*
 which is expressed as the ratio of  

covariance between futures returns and cash returns and variance of futures returns, moves 

randomly through time [Checchetti et al. (1988), Baillie and Myers (1991), Kroner and 

Sultan (1993)].  Therefore eq.(5) should be modified as: 
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In eq. (6), conditional moments are changing as the information set, ΩT, is updated, 

consequently, the number of futures contracts held and the optimal hedge ratio will also 

change through time--hence the t subscripts of hT
*
.   

                                                           
4
 The OHR (equation 5) then is computed as the slope coefficient of the following regression: 

 ttt fc εβα ++=         (7) 

where ct and ft and β (h) are defined as before and εt is an error term.
4
 A β = 0 implies 

unhedged position; β = 1 signifies a fully hedged position; and β < 1 implies a partial hedge. 
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Bivariate GARCH Model 

The time-varying hedge ratios are estimated using the following five different variants of 

GARCH models: standard bivariate GARCH, GARCH-ECM, GARCH-BEKK, GARCH-X, 

and GARCH-GJR.  The following bivariate GARCH(p,q) model is applied to returns from 

the stock cash and futures markets: 

tty εµ +=        (8) 

1/ −Ω ttε ~ ),0( tHN       (9) 

)

1

2

1

()()( jt

q

j

jit

p

i

it HvechBvechACHvech −

=
−

=
∑∑ ++= ε   (10) 

Where ),( f

t

c

tt rry =  is a (2x1) vector containing stock returns from the cash and futures 

markets.  Ht is a (2x2) conditional covariance matrix, C is (3x1) parameter vector of constant, 

Ai and Bj are (3x3) parameter matrices, and vech is the column stacking operator that stacks 

the lower triangular portion of a symmetric matrix.   

To make estimation amenable, Engle and Kroner (1995) have suggested various restrictions 

to be imposed on the parameters of Ai and Bj matrices.  A parsimonious representation may 

be achieved by imposing a diagonal restriction on the parameters matrices so that each 

variance and covariance element depends only on its own past values and prediction errors.  

The following equations represent a diagonal vech bivariate GARCH(1,1) conditional 

variance equation(s): 

)(( 1,1111
2

)1,1111,11 −− ++= ttt HBACH ε    (11a) 

)()( 1,12221,2,1,1222,12 −−− ++= tttt HBACH εε    (11b) 

)()( 1,2233
2

1,233322 −− ++= tt HBACH ε    (11c) 
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In the bivariate GARCH(1,1) model, the diagonal vech parameterization involves nine 

conditional variance parameters. 

Using the bivariate GARCH model, the time-varying hedge ratio can be computed as: 

ttt HHh ,22,12
* ˆ/ˆ=       (12) 

Where tH ,12
ˆ  is the estimated conditional covariance between the cash and futures returns, 

and tH ,22
ˆ  is the estimated conditional variance of futures returns.  Since, the conditional 

covariance is time-varying, the optimal hedge would be time-varying too. 

Bivariate GARCH-ECM Model 

When the bivariate GARCH model incorporates the error correction term in the mean 

equation, it becomes the GARCH-ECM model which is presented as: 

ttt uy εδµ ++= − )1(       (13) 

where ut-1 denotes the lagged error-correction term, retrieved from the cointegration 

regression.  Kroner and Sultan (1993), and Sultan and Hasan (2008) noted that the traditional 

method of estimating the hedge ratio does not incorporate the no-arbitrage condition between 

the spot and futures markets.  For financial markets, the difference between the cash and the 

futures is the basis, and when the basis becomes large, the markets will correct as arbitrageurs 

execute trading strategies to exploit this temporary disequilibrium.  Econometrically, this is 

known as the error correction term which is a result of a cointegrating relationship between 

the cash and futures markets.
5
  Therefore, a bivariate GARCH-ECM model will be employed 

to account for the long-run relationship and basis risk.  The time-varying hedge ratio based on 

the GARCH-ECM model is also expressed as equation 12. 

Bivariate GARCH-BEKK Model 

                                                           
5
See Brenner and Kroner (1995) for further discussion why the basis represents the cointegrating relationship for 

financial asset prices and their futures contracts. 
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In the BEKK model as suggested by Engle and Kroner (1995), the conditional covariance 

matrix is parameterized to: 

∑∑∑∑
= =
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= =
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1 11 1

1)( εε    (14) 

Eqs. (8) and (9) also apply to the BEKK model and are defined as before.  In eq(14) kiA , i = 

1,...q, k = 1,...k, and kjB  j = 1,...q, k = 1,..k are NxN matrices.  The GARCH-BEKK model is 

sufficiently general that it guarantees the conditional covariance matrix, Ht to be positive 

definite, and renders significant parameter reduction in the estimation.  For example, a 

bivariate BEKK GARCH(1,1) pamerization requires to estimate only 11 parameters in the 

conditional variance-covariance structure.  The time-varying hedge ratio from the BEKK is 

again represented by equation 12. 

Bivariate GARCH-X Model 

The GARCH-X model is an extension of the GARCH-ECM model as it incorporates the 

square of error correction term in the conditional covariance matrix.  Lee (1994) contends 

that, as short-run deviations from the long-run relationship between the cash and futures 

prices may affect the conditional variance and covariance, then they will also influence the 

time-varying optimal hedge ratio.  In the GARCH-X model, conditional heteroscedasticity 

may be modelled as a function of lagged squared error correction term--in addition to the 

ARMA terms in the variance/covariance equations: 

2
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A significant positive effect may imply that the further the series deviates from each other in 

the short run, the harder they are to predict.  Equation 13 also apply in GARCH-X.  The time-

varying hedge ratio is again represented by equation 12. 

Bivariate GARCH-GJR 
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Along with the leptokurtic distribution of stock returns data, empirical research has shown a 

negative correlation between current returns and future volatility (Black, 1976; Christie, 

1982).  This negative effect of current returns on future variance is sometimes called the 

leverage effect (Bollerslev et al. 1992).
6
  In the linear (symmetric) GARCH model, the 

conditional variance is only linked to past conditional variances and squared innovations (εt-

1), and hence the sign of return plays no role in affecting volatilities (Bollerslev et al. 1992).  

Glosten et al. (1993) provide a modification to the GARCH model that allows positive and 

negative innovations to returns to have different impact on conditional variance.
7
  Glosten et 

al. (1993) suggest that the asymmetry effect can also be captured simply by incorporating a 

dummy variable in the original GARCH.  

2

11

2

1

2

10

2

−−−− +++= ttttt Iuu βσγαασ                         (16) 

 

Where 11 =−tI  if 01 >−tu ; otherwise 01 =−tI . Thus, the ARCH coefficient in a GARCH-GJR 

model switches between γα +  andα , depending on whether the lagged error term is positive 

or negative. Similarly, this version of GARCH model can be applied to two variables to 

capture the conditional variance and covariance.  Equations 8 and 9 also apply here.  The 

time-varying beta based on the GARCH-GJR model is also expressed as equation 12. 

                                                           
6
 The leverage effect is due to the reduction in the equity value, which would raise the debt-to-equity ratio, 

hence raising the riskiness of the firm as a result of an increase in future volatility.  Glosten et al. (1993) provide 

an alternative explanation for the negative effect; if most of the fluctuations in stock prices are caused by 

fluctuations in expected future cash flows, and the riskiness of future cash flows does not change proportionally 

when investors revise their expectations, the unanticipated changes in stock prices and returns will be negatively 

related to unanticipated changes in future volatility.   

7
 There is more than one GARCH model available that is able to capture the asymmetric effect in volatility.  

Pagan and Schwert (1990), Engle and Ng (1993), Hentschel (1995) and Fornari and Mele (1996) provide 

excellent analyses and comparisons of symmetric and asymmetric GARCH models.  According to Engle and 

Ng (1993), the Glosten et al. (1993) model is the best at parsimoniously capturing this asymmetric effect. 
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The methodology used to obtain the optimal forecast of the conditional variance of a time 

series from a GARCH model is the same as that used to obtain the optimal forecast of the 

conditional mean (Harris and Sollis 2003, p. 246)
8
. The basic univariate GARCH(p, q) is 

utilised to illustrate the forecast function for the conditional variance of the GARCH process 

due to its simplicity.  
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− ++=
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Providing that all parameters are known and the sample size is T, taking conditional 

expectation, the forecast function for the optimal h-step-ahead forecast of the conditional 

variance can be written: 
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where 
TΩ  is the relevant information set. For 0≤i , 22 )( iTTiT uuE ++ =Ω and 

22 )( iTTiTE ++ =Ω σσ ; for 0>i , )()( 22

TiTTiT EuE Ω=Ω ++ σ ; and for 1>i , )( 2

TiTE Ω+σ  is 

obtained recursively. Consequently, the one-step-ahead forecast of the conditional variance is 

given by: 
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8
 Harris and Sollis (2003, p. 247) discuss the methodology in detail. 
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Although many GARCH specifications forecast the conditional variance in a similar way, the 

forecast function for some extensions of GARCH will be more difficult to derive. For 

instance, extra forecasts of the dummy variable I is necessary in the GARCH-GJR model. 

However, following the same framework, it is straightforward to generate forecasts of the 

conditional variance and covariance using bivariate GARCH models, and thus the conditional 

beta.  

3. Data, Data Diagnostics and Forecasting the Time-Varying Hedge Ratio 

This paper employs daily data spanning the period from December 1999 to December, 2009 

on stock indices and their counterpart futures contracts from Brazil, Hungary, South Africa 

and South Korea.  Forecast of hedge ratio using daily data has tremendous value to money 

managers who adjust their portfolio as often as daily (Figlewski 1986).  The Bovespa index is 

a total return index weighted by traded volume and is comprised of the most liquid stocks 

traded in the Sao Paulo Stock Exchange, Brazil.  The Sao Paulo Stock Exchange (Bovespa) 

and the Brazilian Mercantile and Futures Exchanges (BM&F) merged on May 8, 2008, 

creating BM&FBOVESPA.  There are 450 companies traded at Bovespa as on April 30, 

2008.
9
  The BUX index is the official capitalization-weighted index of the blue-chip shares 

listed on the Budapest Stock Exchange (BSE).
10

  The Johannesburg Stock Exchange (JSE) 

acquired the South African Futures Exchanges (SAFEX) in 2001 and became the leader in 

both equities and equity and agricultural derivatives trading in the South African Market.  

                                                           
9
  The BM&FBOVESPA is a Sao Paulo-based stock and futures exchange which is the fourth largest exchange 

in the America in terms of market capitalization, behind the New York Stock Exchange, NASDAQ, and Toronto 

Stock Exchange.  It is also the tenth largest exchange in the world in terms of market capitalization. 
10

 The Budapest Commodity Exchange (BCE) and the Budapest Stock Exchange (BSE) merged on October 

2005, which made BSE as one of the main derivatives centres in Central Europe.  The BSE played a significant 

role in the privatisation of many leading Hungarian companies.  BSE was one of the first in the world who 

started to use free-float capitalization weighting instead of the traditional market capitalisation weighting in 

October 1999. 
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The FTSE/JSE 40 index consists of the largest 40 South African companies ranked by full 

market value in the FTSE/JSE All-Share index.
11

  The KOSPI 200 index consists of 200 big 

companies of the stock market division of the Korea Exchange.  The KOSPI is calculated as 

current capitalization (at the time of comparison) divided by the base market capitalization.  

KOSPI 200 is important because it is listed on futures and option markets and is one of the 

most actively traded indexes in the world.
12

  All futures price indices are continuous series.
13

   

The data are collected from Datastream.  To avoid the sample effect and overlapping issue, 

two forecast horizons are considered, including one 1-year forecast horizon (2007) and one 2-

year forecast horizon (2008 to 2009).  All models are estimated for the periods 1999-2006 

and 1999-2007, and the estimated parameters are applied for forecasting over the forecast 

horizons of 2007 and 2008-2009. 

Descriptive statistics relating to the distribution of return are presented in Table 1.  These 

statistics are: mean; standard deviation; variance; a measure of skewness, a measure of excess 

kurtosis (normal value is 3); the Jarque-Bera statistics; and unit root test results of cash and 

future price indices.  Returns are created by taking the difference of the log of the cash and 

futures indices.  The table also presents higher order autocorrelation Q, and ARCH effects in 

the returns indices series.  The values of the skewness statistics indicate that the density 

function is negatively skewed for both cash and future indices returns for all markets except 

the cash market of Korea.  The values of the excess kurtosis statistic are more than 2 for all 

countries which suggest that the density function for each country has a fat tail.  The values 

of the Jarque-Bera statistic are high, suggesting the return indices are not normally-

                                                           
11

 South Africa became the second emerging market to trade index futures when All Share futures were 

launched on 30 April 1990 in JSE and SAFEX (Smith and Rogers 2006). 
12

 On Korea Stock Exchange, the Korea Stock Price Index 200 future was launched in May 1997. 
13

 The continuous series is a perpetual series of futures prices.  It starts at the nearest contract month, which 

forms the first values for the continuous series, either until the contract reaches its expiry date or until the first 

business day of the actual contract month. At this point, the next trading contract month is taken.  As indicated 

by one of the referees, splice bias is introduced when the nearby futures contract are used for estimation 

changes. 
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distributed.  Judged by the skewness, excess kurtosis and Jarque-Bera statistics, it can be 

inferred that the returns indices exhibit 'fat-tails' in all markets.  The data series have also 

been checked for stationarity using the Elliott-Rothenberg-Stock Dickey-Fuller generalized 

least squares (DF-GLS) unit root test.
14

  The DF-GLS test results indicate that each of the 

returns series has no unit root.  Tests for autocorrelation in the first moments using the Q(20) 

statistic indicate that none is present in the any of the indices.  Finally, tests for ARCH using 

Engle's (1982) LM statistic generally support the hypothesis of time-varying variances. 

It is important to point out that the lack of a benchmark is an inevitable weak point for studies 

on time-varying hedge ratio forecasts, since the hedge ratio value is unobservable in the real 

world. Although the point estimation of hedge ratio generated by the GARCH model is a 

moderate proxy for the actual hedge ratio value, it is not an appropriate scale to measure a 

hedge ratio series forecasted with time variation. As a result, evaluation of forecast accuracy 

based on comparing conditional hedge ratios estimated and forecasted by the same approach 

cannot provide compelling evidence of the worth of each individual approach. To assess 

predictive performance, a logical extension is to examine out-of-sample returns.        

Evaluation of forecast accuracy is thus conducted by forecasting out-of-sample returns of 

portfolios implied by the computed hedge ratios.  The portfolios are constructed as (r
c
t - 

βt
*
r
f
t), where r

c
t is the log difference of the cash (spot) prices, r

f
t is the log difference of the 

futures prices, and βt
*
 is the estimated optimal hedge ratio. With the out-of-sample forecasts 

of time-varying hedge ratio, the out-of-sample forecasts of returns based on the portfolio 

above can be easily calculated, in which the cash return and futures return are actual returns 

observed. The relative accuracy of time-varying hedge ratio forecasts can then be assessed by 

                                                           
14It is well known that Augmented Dickey-Fuller (ADF) and Phillips-Perron unit root tests have low power in 

rejecting the null of a unit root and are prone to size distortion.  Elliott, Rothenberg and Stock (1996) proposed 

an alternative DF-GLS test which involves the application of a generalized least squares method to de-trend the 

data.  In the process of performing this test, the autoregressive truncation lag length is determined by the 

modified Akaike Information Criterion (AIC). 
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comparing the return forecasts with the actual returns. In this way, the issue of a missing 

benchmark can be settled. 

The methodology of forecasting time-varying hedge ratios will be carried out in several steps.  

For example for the 2-year forecasting horizon (2008-2009), in the first step, the estimated 

hedge ratio series will be constructed by GARCH models, from 1999 to 2007.  In the second 

step, the forecasting models will be used to forecast returns over the forecast horizon based 

on the estimated time-varying hedge ratios and will be compared in terms of forecasting 

accuracy.  In the third and last step, the empirical results of the performance of various 

models will be produced on the basis of hypothesis tests, looking at whether the estimate is 

significantly different from the real value, which will provide evidence for comparative 

analysis of the merits of the different forecasting models. 

 4. GARCH Results 

The GARCH results are reported in tables 2A, 2B, 2C and 2D.
15

  The ARCH coefficients 

(A11 and A22) are significant.  These parameters indicate the amount of influence past 

residuals have on current residuals.  The GARCH coefficients (B11 and B22) represent the 

influence of past volatility on future volatility.   The coefficients are positive and significant 

in all cases.  First, the parameters representing the error correction term (δ1) in the GARCH-

ECM models for each market are negative, large and economically significant.
16

  The size of 

coefficients ranges from -0.2872 (Hungary) to -0.7681 (Korea).  The absolute sizes of the 

parameters suggest that day-to-day deviations do have significant impact on the absolute 

levels of the cash indices.  The result is in sharp contrast to Sultan and Hasan (2008), and 

Choudhry (2009) whose studies are featured on developed exchanges and commodities’ 

                                                           
15

 Many diagnostic tests are not reported or discussed to conserve space.  However, they are available upon 

request. 
16

 We find cointegration between cash and futures indices for all four markets.  In order to save space these 

results are not presented but are available on request. 
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markets. The error correction coefficient in the mean equation of futures return is positive 

and statistically significant in the cases of Hungary and South Africa.
17

  This result may 

alternatively be interpreted as an increase in short-run deviation lowers the cash returns but 

increases the future returns.  This is a distinguishing feature of the emerging markets as 

opposed to developed and mature markets where day-to-day deviations do not have much an 

impact on the absolute levels of the cash and futures returns as such deviations are arbitraged 

anyway.  The error correction coefficients in the mean equation of the cash and futures 

returns in the GARCH-X model provide very similar results.  The error correction 

coefficients in the conditional variance equations are positive and significant in all tests.  This 

is true for both the cash and futures returns.  A significant positive effect may imply that the 

further the series deviates from each other in the short run, the harder they are to predict.  The 

unconditional variance/covariance terms (C11, C12, C21 and C22) are small and significant--

suggesting the notion of unconditional risk in these hedging portfolios.  Finally, the sign and 

significance of the covariance parameters indicate positive and significant interaction 

between the two prices in most cases.  For the GARCH models, except the BEKK, the 

BHHH algorithm is used as the optimisation method to estimate the time-varying beta series.  

For the BEKK GARCH, the BFGS algorithm is applied.  Figure 1 shows the BEKK 

estimated hedge ratio for all four markets.  The graph clearly shows the four hedge ratios are 

very different from each other.  The graphs of other hedge ratios are not provided to save 

space but are available on request.   

5. Measures of Forecast Accuracy 

A group of measures derived from the forecast error are designed to evaluate ex post 

forecasts.  To evaluate forecasts, different measures of forecast errors (MAE and MSE) are 

                                                           
17

 The result is quite plausible, pointing to the notion that if the error correction term is statistically negative and 

significant in one equation, then the term would be positive in another equation in a bivariate model. 
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employed. Mean errors (ME) are employed to assess whether the models over or under-

forecast return series.
18

  Among them, the most common overall accuracy measure is MSE 

(Diebold 2004, p. 298): 

                       ∑
=

=
n

t

te
n

MSE
1

21
                      (20) 

                                                                        (21)                                                             

                                                                                         

                                                                         (22) 

 

where e is the forecast error defined as the difference between the actual value and the 

forecasted value. 
19

   

      Diebold and Mariano (1995) develop a test of equal forecast accuracy to test whether two 

sets of forecast errors, say te1 and te2 , have equal mean value. Using MSE as the measure, the 

null hypothesis of equal forecast accuracy can be represented as 0][ =tdE , 

where 2

2

2

1 ttt eed −= . Supposing, n, h-step-ahead forecasts have been generated, Diebold and 

Mariano (1995) suggest the mean of the difference between MSEs ∑
=

=
n

t

td
n

d
1

1
 has an 

approximate asymptotic variance of  

 

                                                           
18

 A negative ME indicates model under forecast and a positive ME indicates over forecast.  
19

 The lower the forecast error measure, the better the forecasting performance. However, it does not necessarily 

mean that a lower MSE automatically indicates superior forecasting ability, since the difference between the 

MSEs may be not significantly different from zero. 
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Where kγ is the kth autocovariance of td , which can be estimated as: 
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Therefore, the corresponding statistic for testing the equal forecast accuracy hypothesis 

is )(/ dVardS = , which has an asymptotic standard normal distribution. According to 

Diebold and Mariano (1995), results of Monte Carlo simulation experiments show that the 

performance of this statistic is good, even for small samples and when forecast errors are 

non-normally distributed. However, this test is found to be over-sized for small numbers of 

forecast observations and forecasts of two-steps ahead or greater.  

Harvey et al. (1997) further develop the test for equal forecast accuracy by modifying 

Diebold and Mariano’s (1995) approach. Since the estimator used by Diebold and Mariano 

(1995) is consistent but biased, Harvey et al. (1997) improve the finite sample performance 

of the Diebold and Mariano (1995) test by using an approximately unbiased estimator of the 

variance of d . The modified test statistic is given by 
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Through Monte Carlo simulation experiments, this modified statistic is found to perform 

much better than the original Diebold-Mariano test at all forecast horizons and when the 

forecast errors are autocorrelated or have non-normal distribution.   In this paper, we apply 

the modified Diebold-Mariano test.   

6. Forecast Error Based on Returns Forecasts and Modified Diebold and Mariano Tests 

Results  

As stated earlier, MAE, MSE and ME are the criteria applied to evaluate return forecasting 

performance.  Tables 3A, 3B, 3C and 3D present the MAE, MSE, and ME of return forecast 

for Brazil, Hungary, South Africa and South Korea, respectively.  Each table shows results 

for both forecast horizons.  The results fail to show any one model being superior to the 

others.  Superiority of the models depends upon the market under study and the forecast 

horizon under consideration.  In the case of Brazil, GARCH-ECM seems to perform the best 

for both periods and the same is true for GARCH-GJR for South Korea.  The BEKK 

outperforms other models for Hungary and South Africa but only for the 1-year (2007) 

forecast horizon.  This mixture of results is not surprising as indicate by Chen et al. (2003) 

different hedging horizon might affect forecasting accuracy for various forecasting methods.  

The ME statistics indicates that majority of the models tend to under-predict returns.  This is 

true during both forecast horizons. 

Figure 2 shows the return forecast by the different methods and the actual returns over both 

the forecast horizon for South Africa.  All estimates seem to move together with the actual 

return, but because of the high frequency of the data it is difficult to say which method shows 

the closest correlation.  Figures for other countries are not provided to save space but are 

available on request.     
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 As stated earlier, Harvey et al. (1997) propose a modified version that corrects for the 

tendency of the Diebold-Mariano statistic to be biased in small samples.  Two criteria, 

including MSE and MAE derived from return forecasts, are employed to implement the 

modified Diebold-Mariano tests. Each time, the tests are conducted to detect superiority 

between two forecasting models, and thus there a twenty groups of tests for each market for 

each forecast horizon.  

Each modified Diebold-Mariano test generates two statistics, S1 and S2, based on two 

hypotheses: 

1. 1

0H : there is no statistical difference between the two sets of forecast errors.  

1

1H : the first set of forecasting errors is significantly smaller than the second. 

2. 2

0H : there is no statistical difference between the two sets of forecast errors. 

2

1H : the second set of forecasting errors is significantly smaller than the first. 

It is clear that the sum of the P values of the two statistics (S1 and S2) is equal to unity. If we 

define the significance of the modified Diebold-Mariano statistics as at least 10% 

significance level of t distribution, adjusted statistics provide three possible answers for 

superiority between two rival models:  

1. If S1 is significant, then the first forecasting model outperforms the second. 

2. If S2 is significant, then the second forecasting model outperforms the first. 

3. If neither S1 nor S2 is significant, then the two models produce equally accurate forecasts. 

 

Tables 4 to 7 presents the numerical and comparison results using the modified Diebold-

Mariano tests between the five GARCH models for the four markets during the two different 
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out-of-samples forecast horizons (2008-09 and 2007).  The comparison results provide a 

more clear analysis between two models at a time indicating which model performs better.  

The Brazilian results (table 4) show that during the 2-year out-of-sample period (2008-09) the 

BEKK performs the best and the standard GARCH and GARCH-ECM performs the worst.  

During the shorter period of 1-year GARCH-X does the best and GARCH the worst.  During 

the shorter period using the MSE, the BEKK and the GJR are found to perform equally.  For 

Hungary (table 5) BEKK is the best model and the GARCH-ECM the worst during the longer 

period.  The standard GARCH is the worst and the remaining four models provide similar 

performance during the shorter out-of-sample period.  Both MSE and MAE statistics indicate 

that GARCH-X and BEKK, GARCH-X and GARCH-GJR, and GARCH-ECM and GARCH-

GJR perform equally good.  The South African results (table 6) indicate that during the 

longer period BEKK does the best and GARCH-ECM the worst.  During the shorter period, 

GARCH-X is the worst and GARCH-GJR is the best.  Table 7 shows the results from the 

South Korean tests.  The BEKK and the GARCH-ECM provide the best results and the 

standard GARCH the worst during the longer period.  During the shorter period, GARCH-X 

is the best model and the standard GARCH is the worst.  Results also show that the BEKK 

and the GARCH-GJR perform very similar based on both statistics.  

In summary based on the modified Diebold Mariano test across the four markets during the 

2-year forecast horizon the BEKK seems to perform best compared to the four models.  

While the GARCH-X seems to perform the best during the shorter 1-year forecast horizon.  

Once again different hedging horizon might affect forecasting accuracy for various 

forecasting methods.  The standard GARCH performs the worst during both forecast 

horizons.   

8. Conclusion  
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This paper empirically estimates the daily time-varying hedge ratio and attempts to forecast 

the estimated daily hedge ratio of four emerging stock futures markets; Brazil, Hungary, 

South Africa and South Korea.  Knowledge of forecasting ability of optimal hedge 

ratio/dynamic hedge ratio is important for understanding the role of futures markets in equity 

trading, program trading, index arbitrage and the development of optimal hedging and trading 

strategies in fund management.  The forecasting of hedge ratio helps hedger choose 

appropriate portfolio and allows for portfolio adjustment in dynamic hedging.   

 The paper employs five different GARCH models: standard bivariate GARCH, bivariate 

GARCH-ECM, bivariate BEKK, bivariate GARCH-X and bivariate GARCH-GJR filter 

approach to estimate and forecast the beta.  The paper thus also provides a comparison 

between the forecasting ability of the five models.  The tests are carried out in two steps.  In 

the first step the estimated hedge ratio series are constructed by GARCH models.  In the 

second step, the forecasting models are used to forecast returns based on the estimated time-

varying hedge ratios and are then compared in terms of forecasting accuracy. To avoid the 

sample effect and overlapping effect, two forecast horizons are considered, including one 1-

year forecasts 2007, and one 2-year horizon from 2008 to 2009.  Two sets of forecasts are 

made and the different methods applied are compared.  In the third and last step, the 

empirical results of the performance of the various models are produced on the basis of 

hypothesis tests, which look at whether the estimate is significantly different from the real 

value.   These will provide evidence for comparative analysis of the merits of the different 

forecasting models.   

Various measures of forecast errors are calculated on the basis of hedge ratio forecasts to 

assess the relative superiority of alternative models.  In order to evaluate the level of forecast 

errors between portfolio returns based on conditional hedge ratio forecasts and actual returns 

values, mean absolute errors (MAE), mean squared errors (MSE), and mean errors (ME) are 
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applied.  The results from these tests fail to show any one model being superior to the others.  

Superiority of the models depends upon the country and the forecast horizon under 

consideration.  This mixture of results is not surprising as shown by Chen et al. (2003) 

different hedging horizon might affect forecasting accuracy for various forecasting methods.  

The ME statistics indicates that majority of the models tend to under-predict returns.  This is 

true for both forecast horizons.     

The last comparison technique used is the modified Diebold-Mariano test.  This test is 

conducted to detect superiority between two forecasting models at a time.  Results show 

during the 2-year forecast horizon the BEKK seems to outperform the other four models.  

While the GARCH-X seems to perform the best during the shorter 1-year forecast horizon.  

Once again different hedging horizon might affect forecasting accuracy for various 

forecasting methods.  The standard GARCH performs the worst during both forecast 

horizons.  Thus, if the forecasted hedge ratio is used to provide information of expected 

return, BEKK is a better choice than other GARCH models for a longer forecast horizon and 

GARCH-X is a better choice for shorter horizon.  The standard GARCH model is the worst 

during both horizons.  The success of GARCH type models in forecasting the time-varying 

hedge ratio also implies their competence in forecasting conditional second movement, which 

is crucial in a wide range of decision-making processes involving information of variance and 

covariance, such as derivative pricing and risk management.    

Results presented in this paper advocate further research in this field, applying different 

markets, time periods and methods.  There are potential insights to be gained from examining 

markets with different institutional features.  
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Table 1 

Descriptive statistics of stock spot and futures indices return 

Statistics Brazil Hungary Korea South Africa 

 Cash 

Return 

Future 

Return 

Cash 

Return 

Future 

Return 

Cash 

Return 

Future 

Return 

Cash 

Return 

Future 

Return 

Mean .000584 .000573 .000451 .000446 .000232 .000207 .000365 .000358 

Variance .000631 .000768 .000368 .000362 .000257 .000552 .0003136 .0003485 

Std. Dev. .025130 .027715 .019206 .019046 .050726 .023509 .017710 .018670 

Skewness -.265225 -.190646 -.328944 -.293191 0.01479 -0.40041 -.309725 -.81671 

Kurtosis 6.92300 5.84232 10.7273 11.6078 16.3872 10.1907 7.38807 12.4973 

Jarque-Bera 1703.60 894.03 6538.17 8092.09 19482.5 5690.70 2134.91 10095.46 

Stationaryity: tµ -8.557
a 

-10.215
a 

-5.675
a 

-4.190
a 

-1.850
c 

-7.624
a 

-5.5801
a 

-6.758
a 

                     tτ -13.599
a 

-15.205
a 

-10.293
a 

-7.988
a 

-3.917
a 

-12.742
a 

-10.127
a 

-11.50
a 

ARCH(1) 51.96 61.43 172.60 144.35 92.42 39.82 672.34 582.08 

Q(20) 64.81 41.03 112.08 93.32 274.17 34.07 34.40 28.82 

Note: tµ  and tτ are the Elliot-Rothenberg-Stock Dickey-Fuller generalised least squares (DF-GLS) unit root test 

statistics with allowance for a constant and trend, respectively.  5% critical values of tµ  and tτ are -1.948 and -3.190 

(see Elliot-Rothenberg-Stock 1996, Table 1).  L and∆ signify the level and first difference of a variable respectively. 
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Table 2A  

Parameter Estimates of Conditional Hedging Model of Brazil 

Dependent 

Variable 

GARCH GARCH-ECM GARCH-X
 

GARCH-BEKK GARCH-GJR
 

1µ  0.00167 

(4.1869) 

0.00171 

(4.0788) 

0.00153 

(3.5016) 

0.0015
a
 

(3.5700) 

0.00044 

(1.1623) 

1δ   -0.5517 

(-11.058) 

-0.5391 

(-9.6045) 

  

2µ  
0.00178 

(4.0558) 

0.00179 

(3.8751) 

0.00131 

(2.7487) 

0.0015
a
 

(3.1860) 

0.000152 

(0.3520) 

2δ  

 
0.0309 

(0.0552) 

0.0236 

(0.3642) 

  

C11 .000038 

(5.4301) 

0.000037 

(4.7584) 

0.00003 

(8.3680) 

0.0057
a 

(14.7939) 

0.000028 

(6.0484)
 

A11 0.08968 

(8.3020) 

0.0901 

(7.7493) 

0.0611 

(6.5836) 

0.9284
a 

(129.5480) 

0.0271 

(3.6965) 

B11 0.84008 

(43.0519) 

0.8394 

(37.737) 

0.8203 

(40.657) 

0.2882
a 

 (12.7988) 

0.8686 

(56.988) 

D11   0.3018 

(3.7133) 

 0.1008 

(7.5873) 

C21 0.000045 

(5.5816) 

.0000039 

(4.8117) 

0.000042 

(19.999) 

0.00192
a 

(3.5454) 

0.000029 

(6.4026) 

A12    0.4255
a 

(7.9279) 

 

A21 0.08581 

(8.5178) 

0.0809 

(8.2695) 

0.0556 

(7.6462) 

0.3429
a 

(6.5490) 

0.01662 

(2.5291) 

B12    -0.0453 

(-1.1904) 

 

B21 0.83174 

(38.2209) 

0.8479 

(40.859) 

0.8191 

(60.669) 

0.1489
a 

(4.1840) 

0.8746 

(61.703) 

D21   0.3382 

(3.8261) 

 0.1059 

(8.2422) 

C22 0.000060 

(5.1883) 

0.000048 

(4.6111) 

0.000052 

(20.884) 

-0.0000 

(-0.0263) 

0.000035 

(6.5017) 

A22 0.10297 

(8.3195) 

0.0910 

(8.4195) 

0.0677 

(8.6211) 

0.8640
a 

(55.5352) 

0.0140 

(1.9442) 

B22 0.81131 

(91.4276) 

0.8396 

(37.786) 

0.7982 

(61.094 

0.3844
a 

(10.5731) 

0.8726 

(60.592) 

D22   0.5234 

(4.474) 

 0.1266 

(8.7021) 

ρ 0.885     

L 14261.92 14523.12 14564.08 14060.95 14314.74 

φ 0.870 0.907 0.882 0.768 0.900 

a, b and c imply significance at 1%, 5% and 10% level respectively; figures in parentheses underneath the 

coefficients are t-statistics.  ρ is the within sample correlation coefficient between cash and futures returns.  Log-

L is the log-likelihood and φ signifies the first order serial correlation coefficient in the hedge ratio derived from 

an AR(1) model. 
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Table 2B:  

Parameter Estimates of Conditional Hedging Model of Hungary 

Dependent 

Variable 

GARCH GARCH-ECM GARCH-X
 

GARCH-BEKK GARCH-GJR
 

1µ  0.00070
b
 

(2.4880) 

0.000925 

(3.1959) 

0.00100 

(3.0583) 

0.0006
b 

(2.2056) 

0.000511 

(1.8639) 

1δ   -0.2872 

(-7.1421) 

-0.3259 

(-6.4825) 

  

2µ  
0.00077

a
 

(2.7391) 

0.000769 

(2.6250) 

.00080 

(2.3856) 

0.0007
b 

(2.4392) 

0.000546 

(2.0474) 

2δ  

 
0.2570 

(6.4762) 

0.1922 

(3.8415) 

  

C11 0.00001
a
 

(10.9715) 

.00000938 

(18.881) 

.0000165 

(23.639) 

0.0028
a 

(8.7123) 

0.0000077 

(5.4841) 

A11 0.1239
a
 

(20.4853) 

0.1160 

(41.316) 

0.1098 

(10.549) 

0.9381
a 

(102.4943) 

0.0723 

(6.6284) 

B11 0.8564
a
 

(150.1438) 

0.8623 

(189.89) 

0.8166 

(76.695) 

0.3276
a 

(12.8572) 

0.8815 

(83.751) 

D11   0.0668 

(3.0801) 

 0.06503 

(4.871) 

C21 0.00001
a
 

(12.0166) 

0.00000934 

(131.135) 

0.0000167 

(185.002) 

0.0026
a 

(7.5923) 

0.0000077 

(5.7945) 

A12    0.30721
a 

(11.007) 

 

A21 0.1228
a
 

(20.2455) 

 

0.1125 

(604.43) 

0.1096 

(10.893) 

0.47638
a 

(16.892) 

0.0703 

(6.7001) 

B12    0.05089
a 

(4.6618) 

 

B21 0.8546
a
 

(157.3800) 

0.8644 

(275.20) 

0.8178 

(82.907) 

0.07714
a 

(6.2765) 

0.8809 

(83.957) 

D21   0.000570 

(0.4294) 

 0.0644 

(4.9555) 

C22 0.00001
a
 

(11.8525) 

0.000010 

(24.397) 

0.0000174 

(28.538) 

0.0009
a 

(5.9948) 

0.0000083 

(5.8338) 

A22 0.1221
a 

(19.3211) 

0.1103 

(45.484) 

0.1095 

(10.401) 

0.9412
a 

(85.0817) 

0.0663 

(6.1583) 

B22 0.8549
a
 

(147.6708) 

0.8669 

(198.39) 

0.8197 

(73.739) 

0.3174
a 

(11.1192) 

0.8827 

(80.852) 

D22   0.0319 

(2.2910) 

 0.0667 

(4.9286) 

ρ  0.867    

L 21130.35 16608.88 16664.66 16370.42 16408.86 

φ 0.946 0.923 0.929 0.914 0.958 

a, b and c imply significance at 1%, 5% and 10% level respectively; figures in parentheses underneath the 

coefficients are t-statistics.  ρ is the within sample correlation coefficient between cash and futures returns.  Log-

L is the log-likelihood and φ signifies the first order serial correlation coefficient in the hedge ratio derived from 

an AR(1) model. 
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Table 2C:  

Parameter Estimates of Conditional Hedging Model of South Africa 

Dependent 

Variable 

GARCH GARCH-ECM GARCH-X
 

GARCH-BEKK GARCH-GJR
 

1µ  .0.00108 

(3.8703) 

0.00117 

(4.0502) 

0.00120 

(4.4157) 

0.0010
a 

(5.5532) 

0.000695 

(2.5851) 

1δ   -0.4338 

(-9.608) 

-0.4443 

(-9.4336) 

  

2µ  
0.00113 

(3.8665) 

0.00108 

(3.5139) 

0.00111 

(3.8266) 

0.0011
a 

(5.4526) 

0.000667 

(2.2946) 

2δ  
 0.1104 

(2.2390) 

0.1007 

(1.9726) 

  

C1 .0000118 

(13.878) 

0.0000103 

(7.5822) 

0.0000059 

(4.2084) 

0.0033
a 

(6.8414) 

0.000010 

(5.9980) 

A11 0.0973 

(12.978) 

0,0852 

(12.456) 

0.0773 

((9.7907) 

0.9296
a 

(74.8526) 

0.05622 

(4.6610) 

B11 0.8556 

(106.65) 

0.8716 

(84.570) 

0.8629 

(66.879) 

0.3135
a 

(12.6500) 

0.8740 

(68.139) 

D11   0.2244 

(4.6611) 

 0.05353 

(3.9538) 

C21 0.0000137 

(40.506) 

 0.0000062 

(4.0007) 

0.0043
a 

(4.4065) 

0.000011 

(5.6845) 

A12    0.5644
a 

(12.648) 

 

A21 0.0991 

(12.804) 

0.0668 

(12.455) 

0.0748 

(9.1471) 

0.1011
b 

(2.2068) 

0.06125 

(4.8399) 

B12    1.6750
a 

(13.554) 

 

B21 0.8442 

(117.32) 

0.8633 

(80.866) 

.8570 

(63.329) 

0..03023 

(0.22365) 

0.8637 

(59.800) 

D21   0.2683 

(5.6221) 

 0.04998 

(3.7548) 

C22 0.0000183 

(43.338) 

 0.0000084 

(4.329)4 

0.0015
a 

(5.5141) 

0.000014 

(5.2586) 

A22 0.1182 

(13.274) 

0.0999 

(11.703) 

0.0841 

(8.8989) 

0.8959
a 

(34.5360) 

0.07294 

(4.9030) 

B22 0.8234 

(101.58) 

0.8488 

(65.017) 

0.8444 

(57.664) 

0.3718
a 

(10.1902) 

0.8471 

(48.007) 

D22   0.3297 

(6.1532) 

 0.05961 

(4.0224) 

ρ 0.892     

L 16282.23 16528.85 16551.99 16234.62 16295.46 

φ 0.901 0.905 0.904 0.685 0.911 

a, b and c imply significance at 1%, 5% and 10% level respectively; figures in parentheses underneath the 

coefficients are t-statistics.  ρ is the within sample correlation coefficient between cash and futures returns.  Log-

L is the log-likelihood and φ signifies the first order serial correlation coefficient in the hedge ratio derived from 

an AR(1) model.



Table 2D:  

Parameter Estimates of Conditional Hedging Model of South Korea 

Dependent 

Variable 

GARCH GARCH-ECM GARCH-X
 

GARCH-BEKK GARCH-GJR
 

1µ  0.00033 

(0.3875) 

-.000665 

(-1.4269) 

-0.00098 

(-5.1099) 

0.0002 

(0.1820) 

-0.000833 

(-0.9215) 

1δ   -0.7681 

(-38.837) 

-0.5162 

(-48.010) 

  

2µ  
0.00076 

(2.1196) 

.000574 

(1.5774) 

0.00077 

(28.053) 

0.0007
c 

(1.7670) 

.00037 

(1.0204) 

2δ  
 -0.0277 

(-2.8819) 

0.0241 

(24.205) 

  

C11 0.00029 

(9.4802) 

.000338 

(8.4840) 

0.000074 

(23.593) 

0.0177
a 

(5.8281) 

.00027 

(10.619) 

A11 0.1080 

(9.3424) 

0.9951 

(7.7938) 

0.1510 

(4173588.17) 

0.8700
a 

(22.6852) 

0.0616 

(5.5894) 

B11 0.7706 

(40.504) 

0.2788 

(4.9667) 

0.1906 

(49.758) 

0.3431
a 

(9.1313) 

0.7843 

(46.611) 

D11   1.1876 

(171.71) 

 0.0863 

(4.8802) 

C21 0.000029 

(3.8787) 

.000068 

(6.3436) 

0.000030 

(0.000) 

0.0017
a 

(5.1302) 

.000020 

(4.0582) 

A12    0.0152
b 

(2.2025) 

 

A21 0.0546 

(5.2968) 

0.1680 

(6.2368) 

0.0511 

(464.08) 

0.3783
a 

(7.9621) 

0.0446 

(4.0695) 

B12    0.0162
a 

(3.3122) 

 

B21 0.8862 

(41.955 

0.5889 

(12.825) 

0.4307 

(104.97) 

0.1783
a 

(7.3768) 

0.8859 

(41.126) 

D21   0.1018 

(206.98) 

 0.0179 

(1.1575) 

C22 0.000006 

(4.2071) 

.0000094 

(5.0700) 

0.000006 

(515.16) 

0.0016
a 

(5.0175) 

0.0000066 

(5.6595) 

A22 0.0705 

(8.0460) 

0.0772 

(7.2589) 

0.0561 

(4258.92) 

0.9626
a 

(194.853) 

0.0356 

(4.4173) 

B22 0.9184 

(97.010) 

0.9073 

(78.945) 

0.9190 

(634.87) 

0.2536
a 

(11.1066) 

0.9211 

(112.85) 

D22   0.0040 

(39.522) 

 0.0568 

(4.6967) 

ρ 0.362     

L 11037.72 11458.61 12029.40 11027.04 11060.60 

φ 0943 0.711 0.746 0.832 0.945 

a, b and c imply significance at 1%, 5% and 10% level respectively; figures in parentheses underneath the 

coefficients are t-statistics.  ρ is the within sample correlation coefficient between cash and futures returns.  Log-

L is the log-likelihood and φ signifies the first order serial correlation coefficient in the hedge ratio derived from 

an AR(1) model. 

 

 

 

 

 



 

 

  

Table 3A 

Brazil – Forecast Accuracy Results 

2008-09 

 ME MAE RMSE MSE Theil U 

BEKK 0.0001 0.006 0.0117 0.00014 0.6274 

GARCH-ECM 0.000003 0.00007 0.0002 0.00000 0.0138 

GARCH -0.000003 0.00023 0.0005 0.00000 0.0338 

GARCH-X -0.000097 0.00278 0.0041 0.000017 0.2542 

GARCH-GJR -0.000003 0.00010 0.0002 0.000000 0.0161 

 

2007 

 ME MAE RMSE MSE Theil U 

BEKK 0.00000 0.0002 0.0004 0.00000 0.051 

GARCH-ECM -0.0000005 0.00005 0.00009 0.00000 0.010 

GARCH -0.00018 0.00210 0.00290 0.000008 0.322 

GARCH-X -0.00124 0.01714 0.02333 0.000545 0.936 

GARCH-GJR -0.00002 0.00017 0.00023 0.000000 0.027 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

Table 3B 

Hungary – Forecast Accuracy Results 

2008-09 

 ME MAE RMSE MSE Theil U 

BEKK -0.00042 0.00370 0.0069 0.000048 0.6053 

GARCH-ECM -0.000001 0.00008 0.00016 0.00000 0.0191 

GARCH -0.000007 0.00014 0.00022 0.00000 0.0256 

GARCH-X -0.000003 0.00164 0.00024 0.00000 0.0286 

GARCH-GJR -0.000005 0.00014 0.00026 0.000000 0.0300 

 

2007 

 ME MAE RMSE MSE Theil U 

BEKK -0.0000017 0.00002 0.00005 0.00000 0.008 

GARCH-ECM -0.0000045 0.00006 0.00012 0.00000 0.019 

GARCH 0.0000039 0.00004 0.00008 0.00000 0.013 

GARCH-X -0.000011 0.00007 0.00017 0.00000 0.026 

GARCH-GJR -0.000013 0.00006 0.00013 0.000000 0.020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

Table 3C 

South Africa – Forecast Accuracy Results 

2008-09 

 ME MAE RMSE MSE Theil U 

BEKK -0.000007 0.0042 0.0080 0.000063 0.4940 

GARCH-ECM -0.00002 0.0012 0.00016 0.000003 0.0134 

GARCH 0.000002 0.00041 0.00073 0.000001 0.0615 

GARCH-X -0.000005 0.00017 0.00031 0.00000 0.0259 

GARCH-GJR -0.00001 0.00040 0.00076 0.000001 0.0621 

 

2007 

 ME MAE RMSE MSE Theil U 

BEKK 0.000006 0.00007 0.00013 0.00000 0.019 

GARCH-ECM -0.0000009 0.00014 0.00021 0.00000 0.031 

GARCH 0.000004 0.00030 0.00043 0.00000 0.063 

GARCH-X -0.00002 0.00011 0.00019 0.00000 0.027 

GARCH-GJR -0.000016 0.00025 0.00040 0.000000 0.056 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

Table 3D 

South Korea – Forecast Accuracy Results 

2008-09 

 ME MAE RMSE MSE Theil U 

BEKK -0.00143 0.01848 0.0404 0.00163 0.738 

GARCH-ECM 0.00248 0.00288 0.0046 0.00002 0.108 

GARCH -0.000026 0.00040 0.0006 0.00000 0.016 

GARCH-X -0.00058 0.00274 0.0055 0.000031 0.129 

GARCH-GJR -0.00001 0.00029 0.0005 0.000000 0.012 

 

2007 

 ME MAE RMSE MSE Theil U 

BEKK -0.00004 0.00019 0.00038 0.00000 0.014 

GARCH-ECM 0.00009 0.00272 0.00391 0.00002 0.149 

GARCH -0.00007 0.00028 0.00056 0.00000 0.021 

GARCH-X 0.00024 0.00307 0.00430 0.00002 0.161 

GARCH-GJR -0.00001 0.00018 0.00036 0.000000 0.013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

Table 4 

Brazil 

Modified Diebold-Mariano Numerical Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X 0.00012a 0.0051a 0.00039b 0.014b 

GARCH vs. BEKK 0.00031b 0.0082b 0.00003b 0.0035b 

GARCH vs. GARCH-ECM 0.00012a 0.0051a 0.00001b 0.0031b 

GARCH vs. GARCH-GJR 0.00013b 0.0054b 0.00003b 0.0034b 

GARCH-X vs. BEKK 0.00032b 0.0082b 0.00039a 0.014a 

GARCH-X vs GARCH-ECM 0.0001b 0.0046b 0.00039a 0.014a 

GARCH-X vs GARCH-GJR 0.00013b 0.0054b 0.00039a 0.014a 

BEKK vs GARCH-ECM 0.00032a 0.0082a 0.00003a 0.0035a 

BEKK vs GARCH-GJR 0.00032a 0.0082a 0.00003 0.0034a 

GARCH-ECM vs GARCH-GJR 0.00013b 0.0054b 0.00003b 0.0034b 

Note: 

a imply S1 is significant indicating the first forecasting model outperforms the second 

b imply S2 is significant indicating the second forecasting model outperforms the first. 

Modified Diebold-Mariano Comparison Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X > > < < 

GARCH vs. BEKK < < < < 

GARCH vs. GARCH-ECM > > < < 

GARCH vs. GARCH-GJR < < < < 

GARCH-X vs. BEKK < < > > 

GARCH-X vs GARCH-ECM < < > > 

GARCH-X vs GARCH-GJR < < > > 

BEKK vs GARCH-ECM > > > > 

BEKK vs GARCH-GJR > > = > 

GARCH-ECM vs GARCH-GJR < < < < 

 

 



 

 

  

Table 5 

Hungary 

Modified Diebold-Mariano Numerical Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X 0.000007
b 

0.0013
b 

0.000001
b 

0.0006
b 

GARCH vs. BEKK 0.00006
b 

0.0042
b 

0.000001
b 

0.0006
b 

GARCH vs. GARCH-ECM 0.0000006 0.0012
a 

0.000002
b 

0.0007
b 

GARCH vs. GARCH-GJR 0.000007
b 

0.0013
b 

0.000001
b 

0.0007
b 

GARCH-X vs. BEKK 0.00006
b 

0.0042
b 

0.000001 0.0006 

GARCH-X vs GARCH-ECM 0.000007
a 

0.0013
a 

0.000002
b 

0.0007 

GARCH-X vs GARCH-GJR 0.000007 0.0013
b 

0.000001 0.0007 

BEKK vs GARCH-ECM 0.00006
a 

0.0042
a 

0.000002
b 

0.0007
b 

BEKK vs GARCH-GJR 0.00006
a 

0.0042
a 

0.000001
b 

0.0007
b 

GARCH-ECM vs GARCH-GJR 0.000007
b 

0.0013
b 

0.000002 0.0007 

See note at the end of table 4 

Modified Diebold-Mariano Comparison Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X < < < < 

GARCH vs. BEKK < < < < 

GARCH vs. GARCH-ECM = > < < 

GARCH vs. GARCH-GJR < < < < 

GARCH-X vs. BEKK < < = = 

GARCH-X vs GARCH-ECM > > < = 

GARCH-X vs GARCH-GJR = < = = 

BEKK vs GARCH-ECM > > < < 

BEKK vs GARCH-GJR > > < < 

GARCH-ECM vs GARCH-GJR < < = = 

 



 

 

  

Table 6 

South Africa 

Modified Diebold-Mariano Numerical Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X 0.00001
 

0.0022
 

0.000008
a 

0.002
a 

GARCH vs. BEKK 0.0001
b 

0.0053
b 

0.000008
b 

0.002
 

GARCH vs. GARCH-ECM 0.00001
a 

0.0022
a 

0.000008
a 

0.002
 

GARCH vs. GARCH-GJR 0.00002
b 

0.0028
b 

0.000009
b 

0.002
b 

GARCH-X vs. BEKK 0.0001
b 

0.0053
b 

0.000008
b 

0.002 

GARCH-X vs GARCH-ECM 0.00001
a 

0.0022
a 

0.000007
b 

0.002
b 

GARCH-X vs GARCH-GJR 0.00002
b 

0.0028
b 

0.000009
b 

0.002
b 

BEKK vs GARCH-ECM 0.0001
a 

0.0053
a 

0.000009
b 

0.002
b 

BEKK vs GARCH-GJR 0.0001
a 

0.0053
a 

0.000009
b 

0.002
b 

GARCH-ECM vs GARCH-GJR 0.00002
b 

0.0028
b 

0.000009
b 

0.002
b 

See note at the end of table 4 

Modified Diebold-Mariano Comparison Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X = = > > 

GARCH vs. BEKK < < < = 

GARCH vs. GARCH-ECM > > > = 

GARCH vs. GARCH-GJR < < < < 

GARCH-X vs. BEKK < < < = 

GARCH-X vs GARCH-ECM > > < < 

GARCH-X vs GARCH-GJR < < < < 

BEKK vs GARCH-ECM > > > = 

BEKK vs GARCH-GJR > > < < 

GARCH-ECM vs GARCH-GJR < < < < 



 

 

  

Table 7 

South Korea 

Modified Diebold-Mariano Numerical Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X 0.0005
b 

0.013
b 

0.0002
b 

0.009
b 

GARCH vs. BEKK 0.0019
b 

0.022
b 

0.00003
b 

0.003
b 

GARCH vs. GARCH-ECM 0.0004
b 

0.010
b 

0.00006
b 

0.005
b 

GARCH vs. GARCH-GJR 0.0002
b 

0.007
b 

0.00003
b 

0.003
b 

GARCH-X vs. BEKK 0.0019
b 

0.022
b 

0.0002
a 

0.009
a 

GARCH-X vs GARCH-ECM 0.0004
a 

0.010
a 

0.0002
a 

0.009
a 

GARCH-X vs GARCH-GJR 0.0005
a 

0.013
a 

0.0002
a 

0.009
a 

BEKK vs GARCH-ECM 0.0019
a 

0.022
a 

0.00006
b 

0.005
b 

BEKK vs GARCH-GJR 0.0019
a 

0.022
a 

0.00003
 

0.003
 

GARCH-ECM vs GARCH-GJR 0.0004
a 

0.010
a 

0.00006
a 

0.004
a 

See note at the end of table 4 

Modified Diebold-Mariano Comparison Results 

 2008-2009 2007 

Models MSE MAE MSE MAE 

GARCH vs. GARCH-X < < < < 

GARCH vs. BEKK < < < < 

GARCH vs. GARCH-ECM < < < < 

GARCH vs. GARCH-GJR < < < < 

GARCH-X vs. BEKK < < > > 

GARCH-X vs GARCH-ECM > > > > 

GARCH-X vs GARCH-GJR > > > > 

BEKK vs GARCH-ECM < < < < 

BEKK vs GARCH-GJR > > = = 

GARCH-ECM vs GARCH-GJR > > > > 

 



 

 

  

Brazil - BEKK Hedge Ratio
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Figure 1 – BEKK Hedge Ratio 



 

 

  

ACTUAL GARCH GARCHX BEKK ECM GJR

South African Actual and Forecasted Portfolio Returns - 2008-09
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Figure 2 – Out-of-Sample return forecast. 

 


