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Abstract

On the valuation of and returns to project flexibility within se-
quential investment
When tackling sequential investment problems, traditionally the first step

is specification of the underlying process diffusion and differential equation.
Solutions are then customized to suit conditions at boundaries, where dif-
ferent forms are stitched together in reverse order, i.e. backward in time,
from a final often inflexible condition to the initial state. This makes it hard
to change flexibility paths in order to investigate the value of a different se-
quence and work must also start afresh if a different diffusion is suggested.
Moreover it is not easy to solve problems that have no final inflexible state
to aim for. Since few projects lose all flexibility, these methods are not well
suited to solving many realistic investment cases, particularly cyclical ones
that consume and generate flexibility.
In this paper, we separate the flexibility sequencing from the choice of

diffusion/differential equation. This is done using the structure within a
mathematical graph to capture the investment sequences. In order to value
flexibility, discount functions standardized for diffusion choices are placed
within a matrix representing the sequence’s graph. This is done in a manner
that facilitates location of optimal, smooth pasted, policies.
Under a range of diffusion choices, for perpetual and cyclical investment

sequences this allows project value and cost to be determined explicitly as
a function of trigger points; even for situations with very many states, new
insights are made concerning the valuation of and return to flexibility. It also
facilitates the numerical location of trigger points as a function of investment
costs, the direction in which problems are typically presented.
Keywords: real options, investment sequences, flexibility values, discount

functions and bi—partite directed graphs.



1 Introduction

Great strides have been made in valuing both financial and operational flex-
ibility; furthermore the delta hedging activity and attendant risk neutral
valuation technique1 has migrated from stock options to other tradeable as-
sets with the result that many operational concerns, especially in the energy
sector, have benefitted from the study of these so called real options.2

At the heart of real option valuation is the idea that operational flexibility
can be valued in a similar manner to financial optionality. Whilst many
have questioned the applicability of risk neutral valuation to corporate or
operational situations (especially where the underlying risk asset may not
be fully traded) this assumption has allowed progress where many papers,
tailored to individual situations, have adopted this technique to solve a range
of problems.
However, the complexity of the operational flexibilities that have been ac-

commodated to date is very limited. This is because the valuation functions
containing the embedded options are non—linear and are difficult to solve for
general cases. Too often a phrase similar to “these equations are highly non—
linear and cannot be solved analytically” appears where the best that can
follow is a limited numerical investigation of properties for certain parame-
ters. Even for the numerical methods provided for specific parameters and
choices, it is often very difficult to see useful generalizations or heuristics.
For a range of multistage problems, in this article we advance solution

techniques by producing tractable sytems that solve for investment quantities
as a function of thresholds. This is accomplished via examining at each
decision point, what flexibility is consumed and what is generated. Linking
these functions together, we form a valuation system that is expressed in
matrix form, where the passage of flexibility and decisions is marked on
a graph by transitions from one valuation and flexibility state to another.
Especially for those systems that contain recursive or circular flexibilities,
this facilitates the solution of many simultaneous equations. We demonstrate
this with a system of twelve levels and flexibility states (although larger ones
are possible) whilst to date the most states that have been described in
multistage projects is four or more typically two.
For each project stage and progression decision, we identify the key in-

gredients that allow them to be modularized. Using a discount factor
approach (see Dixit, Pindyck and Sødal (1999) [7] and Sødal (2006) [8]),
stages are delineated and then coupled together using matrix methods

1Black and Scholes (1973) [1], Merton (1973) [2] and Cox, Ross Rubinstein (1976) [3].
2The term dates from Myers (1977) [4] but the texts of Dixit and Pindyck (1994) [5]

and Trigeorgis (1996) [6] have proved influential.
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that embed the optimal control techniques of value matching and smooth
pasting.
This paper proceeds as follows, in Section 2 we outline the two key hori-

zons and flexibility types that real options paper have used and how they are
both accommodated by a discount factor approach. In Section 3 we outline
a typical sequence of flexible timing decisions and events and the notation
required to embrace the matrix algebra. In Section 4 two way timing is ac-
commodated whilst in section 5 components are assembled including finite
maturity decisions. Section 6 presents a unifying numerical example (with
parameters choices to come), while Section 7 concludes.

2 Sequential flexibility

When putting a value on the opportunity to enter into a project, the in-
vestor must assess what options exist after the first decision. Many project
have several decision points at which flexibility is either forfeited or gained
therefore these must be tracked carefully and the knock on impact of each
on the next stage noted. Finally, no project or investment will last forever;
an understanding of what happens at the end of the project’s life is key to
determining what final value if any can be reclaimed upon termination.

2.1 Measurement of time and flexibility indices

When moving from one project stage to another leads to progress, every
time a decision is made, some flexibility is used up. Early in a project, little
may be complete but maximum flexibility in terms of uncommitted decisions
remain. Later in the project, although considerable progress may have been
made, remaining flexibility will be much more limited.
Thus when examining exercise of an investment option at a potential

threshold, the manager must chose a course of action that maximizes the
project value including immediate and future flexibility values. The trade-
off that must be made compares the benefits to immediate value of exercise
(e.g. current project value less investment cost) less the current flexibility
(or option) value to waiting. This has been well documented in the so called
real options literature.
Most generally, we label P as the market value of a project which can

be activated or suspended with investment cost (or divestment benefit) X.
Since we are interested in particular as to the critical project values that
trigger investment and divestment, the net benefit P −X is of concern. On
occasions when investment occurs we would expect P > X and divestment
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with P < X. In order to render P − X positive, we use a sign operator Ω
that is 1 on investment and −1 on divestment so that Ω (P −X) remains
positive.
Time is principally measured through the passage of a project’s price pro-

cess Pt from an initial P0 level to subsequent thresholds P1, P2 etc. defined by
Pt1 = P1, Pt2 = P2. For American style stopping problems, these thresholds
may be fixed in project value and indexed sequentially P0, P1, P2 at times
0 < t1 < t2 (although sequences may vary 0 < t2 < t1).
Alternatively for European style valuations, the times can be fixed

t = 0, T etc. in which case at a fixed time from its start point, the process is
measured and compared to a threshold PT ≶ P1.
Either way the thresholds are numbered in what is likely to be the se-

quence in which they are encountered and this index is useful when relating
thresholds to each other by stacking them into a vector. The occupation of
the states and thresholds can occur at either random times or at a fixed time
but with random level.
Between the transitions that will occur at these threshold, different flexi-

bility states s will pertain. For instance between the start and first threshold
P0, P1 the value of the flexibility that is created at time 0 and used at time
t1 is labelled Vs (P ) ; a function of the price process throughout this period
but in particular it has two special values, one at the beginning of its life
and one at the end Vs (P0) , Vs (P1) . After the P1 transition (which occurs
at time t1) Vs (P1) ceases to exist and another flexibility state S will pertain,
namely VS (P1) at the start of its life.
It is the transition between, and joint valuation of, these sequential flex-

ibilities Vs, VS that is of concern to this paper.

2.2 Discount factors

Consider one of these values of future flexibility Vs (PT ) when at time T it
is may be exercised and converted into payoffs or other forms of flexibility
dependent upon the value of the project process PT at time T. Assuming the
future flexibility value does not depend upon any interim cashflows3, only a
payoff, if we wish to determine its current value Vs (P0) as a function of an ini-
tial (time 0) project process P0 we can treat it as a pure discount instrument
as with financial options. Using risk neutral expectations and discounting at
r, the continuous risk free rate, the condition for such a discount instrument

3Investment costs and benefits that generate and consume cash are accounted for sep-
arately.
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with no interim cashflows is

Vs (P0) = EQ
P0

£
e−rTVs (PT )

¤
.

This expression is quite general but in particular we most often take expecta-
tions with respect to one of two possible random variables. Either4 T could
be random in which case a stopping threshold PT is typically fixed, or T fixed
in time with the uncertain variable being the project value at this fixed time
PT . This paper uses both forms of uncertainty and option pricing allowing it
to combine multiple forms of real option flexibility.
In the notation of this paper, if the flex value contains one a fixed thresh-

old Vs(P1), then the flexibility does not depend explicitly on time, only
through changes in P ; this is true with perpetual style American valuation.
Otherwise with Vs(PT ) its flexibility comes into play at fixed T units of time
after the last transition and its value depends explicitly on both the state
variable (PT stochastic) and time (T deterministic) as with finite European
style valuation.

2.3 Random stopping time, one fixed threshold,

Consider first the former case, where the stopping time T is random and
determined by the time taken for P0 to diffuse to PT coincident with P1, a
threshold of choice which is known in advance and optimally chosen. Since
the payoff to exercise is fixed, the expectation operator in the equation above
applies to the random time alone

Vs (P0) = EQ
P0

£
e−rTVs (P1)

¯̄
PT = P1

¤
= EQ

P0

£
e−rT

¤
Vs (P1) = D (P0, P1)Vs (P1) .

This says that the current value of flexibility is a discounted version of future
flexibility, where the discount function5 D (P0, P1) does not depend on time,
only on the proximity of P0 to P1, (when D (P1, P1) = 1). Furthermore it
has an index which is used to indicate the type of flexibility that is in play
until P1 is hit.

6

4Another possibility is that both are random but since this leads to untractable results,
we limit our study here.

5We also use the growth function G which is reciprocal of the discount function

Gs (P0, P1) = Ds (P0, P1)
−1

.

6In line with the form of flexibility, this subscript can also denotes the elasticity of the
discount factor

ε (P0) =
P0

D01 (P0, P1)

∂D01 (P0, P1)

∂P0
.
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It is the functional form of the discount factor that does carries the elas-
ticity whilst specific values at beginning and end Vs (P0) , Vs (P1) should be
treated as quantities to be determined. The values of flexibility in between
can be recovered from knowledge of these discount functions and the two
known flex values.
Note that D (P0, P1) will have different forms for P0 ≶ P1.

2.4 Random stopping time, two fixed thresholds

We also anticipate that both forms of flexibility may be in play at the same
time, one coming into effect at P1 > P0 and another at P2 < P0 in which
case two way discount factors may be required7

VS (P0) = D (P0, P1, P2)VS (P1) +D (P0, P2, P1)VS (P2) .

Here the extended discount factor D (P0, P1, P2) allows for diffusion from
the first to the second threshold conditional on not touching the third at
any prior time. The alternative outcome is represented in the present value
condition by D (P0, P2, P1) which as a decreasing function of P0 (has negative
elasticity). The second type of discount function with two thresholds nest
the first with one when the “knock out” conditions becomes irrelevant.8

Note that these functions take care of both the discounting until and
the probability of threshold P1, P2 hitting. Although they require the
elasticity of the flexibilities over the period to be known, since they are
terminated at a level of choice, no knowledge of the way VS then transforms
into further flexibility is required for their valuation.9 This last point is not
true in the next case, where the payoff time is known but not the value of
the payoff.

This quantity will be different for the option to open a project (or call, ε > 1) compared
to closing (put, ε < 0). In the call case the stopping threshold must be above the initial
price P1 > P0 and the discount function increases with P0, while in the latter it must
be the other way round; the threshold is below the current value, the discount function
decreases in P0 and the elasticity is negative. See Sodal (2006) [8].

7One a function of positive and one negative ε.
8

Ds (P0, P1) = DS (P0, P1, 0) : Ds (P0, P2) = DS (P0, P2,∞)
DS (P0, P1, P1) = 1 : DS (P0, P2, P2) = 0 : DS (P0, P1, P1) = 0 : D021 (P0, P2, P2) = 1

The betas or elasticities will be a weighted average of the elasticities of the two components.
9However, the elasticity at this payoff point is required to evaluate the first order

condition.
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3 Serial/double hysteresis

In this section we annotate a system for tracking switching decisions at differ-
ent times and thresholds, that is to say decisions that can be timed to occur
at an optimal level of production or cessation. Initially these correspond
to infinite horizon (action can be postponed indefinitely) option valuation
problems with early exercise, i.e. American style but later we can incorpo-
rate fixed time intervals with random value outcomes.
Ekern (1993) [9] evaluates the value of operational flexibility in a se-

quential investment/divestment situation. In particular his firm can “open
or close” a project a limited number of times and therefore switch between
“idle and operating” status. The remaining flexibility value depends on the
number of limited switching opportunities; so these must be carefully counted
and indexed. Since they may not come in a fixed sequence, we try and cap-
ture their magnitude in a hierarchy P4 > P3 > P2 etc. We proceed to link
value sequential states Vs, VS together; thus Vs(P ), VS (P ) represents the flex-
ibility values (as a function of the state variable P represent project value)
at a transition P1.
Following Dixit (1989) [10], Ekern (1993) [9] attaches a cost rate to project

operation10 as well as a capital entry cost. In addition to capital investment
costs, here to simplify matters we roll all operational costs into a fixed sum
that must be borne on activation. Not all of this PV of cost can be recuper-
ated on cessation of activity. Although the operating costs can be spared,
it is unlikely that this laying up can occur costlessly, i.e. a small residual
cost rate that keeps the plant alive whilst dormant will still be present. We
thus here use investment and divestment quantities11 X3, X2 as lump sum
investment and operating costs that must be expended upon the transi-
tion from idle to active, or partially regained upon the transition from active
to idle.
There are three types of equation labels used in this section, i) transi-

tions where one type of asset and flexibility is instantaneously turned into
another, ii) discount equations where one type of asset/flex is represented by
a discounted version of itself at a later date and iii) optimality, or first order

10Also these two papers use P to denote a flow rate (say lower case p), unlike this paper
where P is a project value. In most models, the flow and stock value have a constant scale
factor, the dividend yield δ (P = p/δ).
11The relationships between variables in this paper and cost flows w = x in Dixit (1989)

[10] and Ekern (1993) [9] is

X3 =
x

r
+K : X2 =

x

r
: X3 > X2.
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conditions. It is important to label them differently so transition equations
are labelled T1, discount D1 and optimality O1 etc. Others equations which
are mixed may be numbered but have no specific label.

3.1 Flexibility and switching timeline

Table 1 reflects the time line and usage of decision flexibility. Transition
thresholds (opening or closing in rows) at project values occur sequentially
and are labelled in the lefthand column. Ongoing states (in remaining
columns) can either be idle or active and the flexibility value in this region
is labelled in its subscript, e.g. Vi(P ), Va (P ) represents the flexibility that
exists whilst idle and active. Since the states re-occur later but with differ-
ent transition costs, they have different labels VI , VA. At the two thresholds
P4, P3 opening occurs whilst at P2, P1 closing occurs.
States are linked by (horizontal) transitions at which a net payoff P −X

or X −P is realised along with the transfer from of one type of flexibility to
another. Within states (vertical boxes) the project process P is allowed to fol-
low its diffusion, control only occurs at the transit points indicated (note that
although a sequence is implied here, on occasion this investment/divestment
pattern can get stuck, either open with a very high price, or closed with a
low one; this is indicated by a box having an open top or bottom).
Upon opening at P4 or P3, a value gain is derived from the project value

P less the value of investment capital and running costs X; therefore the
payoff upon opening is P4−X4 or P3−X3, upon suspension of activities, the
gain is either X2−P2, X1−P1 but both these are considered before the loss
and gain of flexibility.
If no further flexibility existed beyond P4 then Vi(P4) = 0 and the usage

of Vi (P ) would not beget another option term
(Ekern (1993) presents finite switching).
However here to illustrate a recursive system we have drawn up a circu-

larity where not only does Vi beget Va but in turn Va begets VI and then VA
before returning to Vi.
By allowing for a difference between X1 and X3 (or X0 and X2) this gen-

eralises single (Dixit (1989) [10]) to double hysteresis allowing for different
cost rates with each mode of operation.
For example if costs rates and required capital in active state a are higher

than those in region A, then X4 > X3. Similarly, and most generally, the
present value of spared operational costs and recovered capital at the closing
thresholds may be different X1 <> X2 but the savings on closure at each
point (of depressed project worth) will be the positive quantities X1−P1 and

7



action, thr. idle Vi p.off act. Vp p.off idle VI p.off act. VA

open, P4 Vi (P4)
P4−X4→ Va (P4)

↑ ↓
open, P3 VI (P3)

P3−X3−→ VA (P3)
↑ ↓ ↑ ↓

close, P2 Va (P2)
X2−P2→ VI (P2)

↑ ↓
close, P1 Vi (P1)

X1−P1← VA (P1)

Table 1: Serial or double hysteresis flexibility values Vi,a,I,A red before and
blue after transitions (horiz arrows) occuring at P4,2,3,1 with payoffs net of
PV costs X4,2,3,1 (vertical arrows are diffusions).

X1 − P1. We call this is double hysteresis.
12

Now consider a decision to move forward one stage by investing or open-
ing. Since there will be “no going back”13, the irreversible flexibility used
to gain P4 −X4 on exercise (the current project benefit P4 less its cost X4)
must be considered against the change in flexibility. This flexibility used
is Vi(P4) evaluated at this threshold but simultaneously closing flexibility
Va(P4) (evaluated at the same threshold again) is acquired. Thus opening
flex has been transferred into a payoff and it attendant closing flex.

12The total investment quantities X4,3,2,1 etc. can be related to an operational cost
variable x, its perpetruity x/r and switching or net investment and divestment costs
K4..K1 so

X4 =
x

r
+K4 : X3 =

x

r
−K3

X2 =
x

r
−K2 : X1 =

x

r
−K1.

Thus K4 represents a frictional cost in moving from idle i to active a and K3 from I to A,
K2,K1 are also frictional costs in the sense that on closing, present value costs of

w
r will

be spared but these may be offset by (other) closure costs, K2,K1.
13See also Bjerksund and Ekern (1990) [11]. Other systems, like those of Ekern (1993)

[9], can be solved sequentially in reverse order and do not require the matrix inversion
employed later.
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3.2 Begin and end state labelling

The items used in this section’s equations are stacked into vectors so

thr. PV costs end flex beg flex pay off
P X Ve Vb Ω⎡⎢⎢⎣
P4
P3
P2
P1

⎤⎥⎥⎦
⎡⎢⎢⎣

X4

X3

X2

X1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x
r
+Ki−a

x
r
+Ka−I

x
r
−KI−A

x
r
−KA−i

⎤⎥⎥⎦
⎡⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎦
⎡⎢⎢⎣

Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎦
⎡⎢⎢⎣

P4 −X4

P3 −X3

X2 − P2
X1 − P1

⎤⎥⎥⎦
where x is the operational cost rate associated with the project, and r the
risk free rate so that the PV of perpetual cost is x/r. Opening and closing
frictions K are incurred on opening and closing, i.e. on opening the PV cost
rate must be borne plus an additional amount whilst on closing, the saving
is less than the PV operational cost.

3.3 Flexibility transitions

At the optimal transition threshold P4 the value matching condition balances
sacrificing the valuable option used against those gained. Not only is this
true at P4 but P2 also although the next threshold involves closing so that the
correct sign of the payoffmust be included. These equations at the thresholds
can be written in stacked form and represent instantaneous transitions all a
function of the instantaneous threshold P⎡⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎦+
⎡⎢⎢⎣

P4 −X4

P3 −X3

X2 − P2
X1 − P1

⎤⎥⎥⎦ (T1)

Ve = Vb + Ω

These, T1, are transition equations in individual and matrix form.

3.4 Discount matrix

Note that the flexibility values Vi (P ) etc. generate no cashflows of their own,
they are discount instruments that capture the present value benefit of being
able to optimally time the investment/divestment in the future. Before an
investment threshold is reached and its latent value realised, each flexibility
can be valued using the discount factor approach as a fraction of its future
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self at a different threshold. This is what occurs within the boxes by the
passage of time indicated by the vertical arrows in Table 1.⎡⎢⎢⎣

Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 D42 0
0 0 0 D31

0 D23 0 0
D14 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎦ (D1)

Vb = D Ve

D1,2 = D (P1, P2) = EQ
P1

£
e−rT

¯̄
PT = P2

¤
etc.

Each state having its own flexibility has a discount function for that flexi-
bility, these are represented individually and collectively discount equations
D1.
This matrix also has an inverse, which corresponds to growth factors.

For the example at hand it is easy to visualise and solve (but with other
problems, it becomes less intuitive).⎡⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0 D−1

14

0 0 D−1
23 0

D−1
42 0 0 0
0 D−1

31 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎦
Ve = G Vb

3.5 System graph and matrix

Overall the eight variables of concern form a “bipartite, directed graph” (see14

Wilson 85 [14]), that is to say that Ve can only change into Vb (with an
attendant payoff) whilst Vb becomes Ve by the passing of a diffusion over
time and it associated discount function.∙

Ve
Vb

¸
=

∙
0 I
D 0

¸ ∙
Ve
Vb

¸
+

∙
Ω
0

¸
3.6 Value matching

Now we have two expressions for the beginning and end flexibility values
Vb,Ve, these can be used to identify their value as a function of the the net
payoff at thresholds (and also the growth or discount matrices)

[I−D]Ve = Ω = [G− I]Vb. (F1)

14Nagae and Akamatsu 04 [12] also propose a graph structure whilst Nagae and Aka-
matsu 08 [13] employ a complementarity solution approach to real option problems.
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This says that usage, i.e. change in (discounted end flexibility or grown
beginning) equals “payoff” (net non—flex PV). Equation F1 determines the
relative but not absolute values of Vb,Ve. In this equation it can be seen
that for every P,X combination, (assuming invertibility of relevant matrices)
for arbitrary X the flexibility is determined uniquely but possibly not opti-
mally. Therefore apart from the (eight) conditions used so far, another (four)
conditions must be used to determine optimal flex values15 or equivalently
to determine optimal X.
This is done by combining the transition and discounting equations, which

have been constructed in a manner that facilitates smooth pasting at each
threshold and therefore overall optimality. Equations C1 show the key vari-
ables required at each threshold.

prev trans P1 curr trans P4 next trans P2

vm
G (P1, P4)Vi (P1) = Vi (P4) = P4 −X4

+Va (P4)
= P4 −X4+

D (P4, P2)Va (P2)

sp ∂G(P1,P4)
∂P4

Vi (P1) = ∂D(P4,P2)
∂P4

Va (P2) + 1

(C1)

3.7 Optimal flexibility

So far we have presented four equations in a matrix that describe accurate
but not necessarily optimal valuation. Four first order conditions are re-
quired to pin these optimal thresholds down. These so called smooth past-
ing conditions ensure that the value of flexibility at each stage is maximised
(conditional on the next stage level). In addition to the value matching con-
dition, they also ensure continuity of both the local elasticity (Sødal (1998)
[15]) and rate of return (Shackleton and Sødal (2005) [16]) of the total flexi-
bility value either side of the decision point.
Stacking the first differential of each smooth pasted row into another

vector expression, the last set of conditions for optimality can be found

vm G

⎡⎣ Vi (P4)
...

VA (P1)

⎤⎦ = D

⎡⎣ Va (P4)
...

Vi (P1)

⎤⎦ +

⎡⎣ P4 −X4

...
X1 − P1

⎤⎦
sp ∂G

∂P
Vb = ∂D

∂P
Ve + ∂Ω

∂P

.

Partial differentiation holding other thresholds constant, this separation
smooth pastes using discount factors; since D,G have no diagonal elements
can isolate for each threshold, i.e. for ∂

∂P
wrt P4,3,2,1 we have

∂DVe
∂P

= ∂D
∂P
Ve.

15This is to say that there are many possible payments and receiptsX that are consistent
with a given P,Vb,Ve. Given separation of levels P, not all of them however generate
optimality of flexibility values Vb,Ve which is still free variables.
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∂G

∂P
Vb =

∂D

∂P
Ve+

∂Ω

∂P
(O1)

This is a second independent equation which relates Ve to Vb and
therefore given any P this allows determination of the optimal flex values.

∂D

∂P
,
∂G

∂P
=

⎡⎢⎢⎣
0 0 D402 0
0 0 0 D301

0 D203 0 0
D104 0 0 0

⎤⎥⎥⎦ ,
⎡⎢⎢⎣

0 0 0 D−1
140

0 0 D−1
230 0

D−1
420 0 0 0
0 D−1

310 0 0

⎤⎥⎥⎦
Vb =

∙
∂G

∂P
− ∂D

∂P
G

¸−1
∂Ω

∂P

=

⎡⎢⎢⎣
−D402D

−1
42 0 0 D−1

140

0 −D301D
−1
31 D−1

230 0
D−1
420 0 −D203D

−1
23 0

0 D−1
310 0 −D104D

−1
14

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎦
Also the final expressions for the other flex value and the attendant invest-
ment cost change that is optimal given the set P are

Ve =

∙
∂G

∂P
D− ∂D

∂P

¸−1
∂Ω

∂P
: Vb =

∙
∂G

∂P
− ∂D

∂P
G

¸−1
∂Ω

∂P
(1)

Ω = Ve−Vb.

If ∂D
∂P

,∂G
∂P
are available in closed or numerical form, they greatly facilitate

retrieval of optimal levels. This is because the functional form of the discount
factors can be used to pin down the relationship between the beginning and
end flex values and therefore can be substituted into the value equation to
eliminate one variable set.
Equivalently if the functional forms ofVb as a function ofP are known up

to a free constant, this extra condition is the one that is required to pin down
each such constants. Presenting it in these terms, “takes the constants out”
and allow differentiation (elasticities) of discount functions to be used. The
terms in Ve and Vb come out of the differentiation because by construction
the differential is carried in ∂D

∂P
,∂G
∂P
.

4 Elasticity ladder

Now consider a system with three modes of operation; idle/power/full and
the flexibility to ratchet up or down a value “ladder” of non—flex present

12



from/to thr. idle Vi p.off power Vp p.off full Vf

power/full P4 Vp (P4)
P4−Pγ

4 −X4→ Vf (P4)
↑ ↓

full/idle P3 Vp (P3)
−P3+Pγ

3 +X3← Vf (P3)
l

idle/power P2 Vi (P2)
Pγ
2 −X2→ Vp (P2)

↑ ↓
power/idle P1 Vi (P1)

−Pγ
1 +X1← Vp (P1)

Table 2: Elasticity ladder with flexibility states Idle, Power and Full flow
Vi,p,f ; red before and blue after transitions (horiz arrows) occuring at P1,2,3,4
with payoffs net of investment/divestment costs X1,2,3,4 (vertical arrows are
diffusions).

values that depend on different powers16 of an underling flow; idle 0, power
P γ and full P.
Again with four thresholds P1−4 and switching costs X1−4 this can admit

a new investment/divestment graph (Table 2), one with two way discount
factors (note that the elements within Ve,Vb have changed)
Now since in the power state, reversion to the off state is possible (at P1)

as well as elevation to the full state (at P4), the discount matrix is populated
with more elements, and in particular each row now contains complementary
discount factors that are mutually exclusive and conditional upon each others
non occurrence.

D132 = EQ
P1

£
e−rT

¯̄
P3 = PT <> P2

¤
: D123 = EQ

P1

£
e−rT

¯̄
P2 = PT <> P3

¤
The first of these D132 indicates the PV factor at P1 for the value of a dollar
paid at P3 if P2 is not reached first, and the secondD123 is the complementary
condition.

⎡⎢⎢⎣
Vp (P1)
Vf (P2)
Vp (P4)
Vi (P3)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 D123 0 D132

0 0 D24 0
0 D423 0 D432

D31 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

Vi (P1)
Vp (P2)
Vf (P4)
Vp (P3)

⎤⎥⎥⎦ (D2)

Vb = D Ve

160 < γ < 1 is generally a sufficient convergence condition for the PV of the power of a
diffusion P γ = EQ

P

R∞
0
p (t)γ e−rtdt.

13



action, thr. act. Va p.off idle Vi

open, P+ Va (P+)
P+−X+← Vi (P+)

close, P− Va (P−)
X−−P−→ Vi (P−)

Table 3: Standard hysteresis/perfect reversibility values Vi,a red before and
blue after transitions (horiz arrows) converging at P+,− net of costs X+,−.⎡⎢⎢⎣

Vi (P1)
Vp (P2)
Vf (P4)
Vp (P3)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Vp (P1)
Vf (P2)
Vp (P4)
Vi (P3)

⎤⎥⎥⎦+
⎡⎢⎢⎣

P γ
1 −X1

P2 − P γ
2 −X2

P γ
4 − P4 +X4

−P γ
3 +X3

⎤⎥⎥⎦ (T2)

Ve = Vb +Ω

The inverse discount matrix still exists but is harder to interpret since it has
some negative elements.

D−1 = G =

⎡⎢⎢⎣
0 0 0 1

D31
D432

D123D432−D132D423
0 −D132

D123D432−D132D423
0

0 1
D24

0 0
−D423

D123D432−D132D423
0 D123

D123D432−D132D423
0

⎤⎥⎥⎦
However the logic can still be applied by differentiating D,G line by line,

then solving by Vb =
£
∂G
∂P
− ∂D

∂P
G
¤−1 ∂Ω

∂P
.

5 Reversible switching at common threshold

The solution system proposed here can also accommodate reversible switch-
ing at a common threshold. Consider the degenerate system below as the
thresholds merge, P+ → P− we would expect the costs to align as well but
the matrix may become invertible.

thr. PV costs end flex beg flex pay off Ωelast
P X Ve Vb Ω [P−X] ∂Ω

∂P∙
P+
P−

¸ ∙
X+

X−

¸ ∙
Vi (P+)
Va (P−)

¸ ∙
Va (P+)
Vi (P−)

¸ ∙
P+ −X+

X− − P−

¸ ∙
1
−1

¸
In fact the key matrices will have non—zero determinant if P+ <> P− and

inversion will only be problematic numerically as the limit is approached.
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However, analytical progress can be made before the limit is taken in which
case it is possible to show that as P+ → P− discounting between thresholds
disappears

D,G →
∙
0 1
1 0

¸
det

∙
∂G

∂P
− ∂D

∂P
G

¸
→ 0 but

lim Vb
P+,−→P

=

∙
P a−1

b2−ab
P 1−b

a2−ab

¸
: (X+,−) = X =

δ

r
P =

µ
δ

r
P+,−

¶
and using L’Hôpital’s rule the GBM system returns finite values Vi (P ) ,
Va (P ) . This corresponds to a flow condition δP ≷ rX which relates the
exercise threshold to “strike price”.
However in practice, this situation can actually be tackled non—analytically

(without further differentiation) using a fixed level of numerical precision.

6 Mixing other processes

Finally before showing specific examples, Dixit, Pindyck, Sødal (99) [7] detail
other discount factors, e.g. for mean reverting processes (where H is the
hypergeometric function)

dP

P
= η

¡
P − P

¢
dt+ σdZ : q (θ) =

1

2
θ2 (θ − 1) + ηPθ − r = 0

DH (P1, P2) =

µ
P1
P2

¶θ H
³
2η
σ2
P1, θ, 2

³
θ + ηP

σ2

´´
H
³
2η
σ2
P2, θ, 2

³
θ + ηP

σ2

´´
∙
Vi (P2)
Va (P1)

¸
=

∙
0 D (P2, P1)

DH (P1, P2) 0

¸ ∙
Va (P2)
Vi (P1)

¸
Modular diffusions can be examined at the same stage as the flexibility
“graph” and combined at will, e.g. GBM while idle but MR whilst oper-
ational, allowing the investment to have consequences for the process.

7 Examples under GBM (see xls)

Discount functions, their inverses and derivatives are well known under GBM

dP

P
= (r − δ) + σdZ : q (ε) =

1

2
ε2 (ε− 1) + ε (r − δ)− r

q (a, b) = 0 : a > 1, b < 0 =
1

2
− r − δ

σ2
±

sµ
r − δ

σ2
− 1
2

¶2
+
2r

σ2
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D (P1, P2 > P1) =

µ
P1
P2

¶a

: D (P, P2 < P1) =

µ
P1
P2

¶b

D (P1, P2 > P1, P3 < P1) =

³
P1
P2

´a
−
³
P1
P3

´b ³
P3
P2

´a
1−

³
P3
P2

´a−b .

These can be used to evaluate the examples in Sections 3,4. This is done
in Excel with analytical expressions for D,G, ∂G

∂P
, ∂D
∂P

. For other cases, nu-
merical differentiation would also suffice (if stable) and indeed other discount
factors might only be available in numeric form (e.g. Heston (1993) [17] affine
diffusions).

8 Conclusions

Sødal et al. (1999, 2006) [7], [8] developed a useful discount factor approach.
This can be extended and generalised to incorporate multiple levels and mul-
tiple processes.
This is achieved via an investment “graph” that separates flexibility states

from discount functions and this often yields explicit solutions to more gen-
eral and complex problems than have been tackled to date.
This breaks down two difficult and complex steps within the pricing

framework deferring the diffusion/pde choice and allows investigation of the
system flexibility separately to the diffusion choice.
Although there are many ways to potentially capture all the information

associated with the flexibility paths, the one adopted here ensures a smooth
pasting condition for optimality can be implemented using discount, growth
matrices, their partial derivatives and inverses. This is key to making the
solution work automatically.
The set assumes that thresholds are known and optimal investment costs

are to be recovered. If these are not equal to target costs (i.e. if thresholds
are required as output) then the system presented here can be used to iterate
on thresholds until the required costs are achieved.
Finally, these threshold to cost conditions could also be used to infer hid-

den costs empirically, given an observed level of action. This offers empiricists
a practical way forward to use and test real options theory.
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Flexibility valuation and return: ESS 1

1 Overview

• Real options; maximising project/firm NPV with uncertainty but flexibility;

developed alongside financial options but less advanced theory and empirics

• Black Scholes (73) [1], Merton (73) [2], Cox Ross Rubinstein (76) [3]
• Link to operations research; using correctly determined discount rates
• Myers (77) [4], Brennan Schwartz (85) [5], Dixit Pindyck (94) [6] and Tri-
georgis (96) [7]

• Interactions are more important for real options (than traded), especially for
multi—stage and network investments

• Links to costly reversibility (Abel and Eberly 96, [8]), Q theory and marginal
cost of capital (Hayashi 82 [9], Abel et al. 96 [10])

• Discount factor approach; Dixit, Pindyck, Sødal (99) [11], Sødal (06) [12]



Flexibility valuation and return: ESS 2

1.1 Approaches to date, + this paper

− Choose diffusion, obtain pde, solve functions, identify boundary conditions

but customisation is hard analytically

− PV investment costs X treated as input, thresholds P output; P (X)

− Hard to solve large systems with many levels, very often “no closed form

solution” with numerics only

+ We graphically unpick flexibility sequence and components so that...

+ The diffusion/pde choices are separated from, and can occur after, the

flexibility modelling

+ Gives matrix solutions for X(P ); input thresholds — output costs and

+ Offers new methods and insights for modular valuation of flexibility
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1.2 Variables and notation

Vs (Pn) The flexibility or timing value (excl. operating costs/benefits) associated

with state s at levels Pn,n+1 defined either at the beginning Vs (Pn) or end

Vs (Pn+1) of state s

Xn The PV perpetual operating costs (= x/r ±Kn) incurred (spared) by the

activation (cessation) of a project at...

Pn a project value threshold (= pn/δ) where investment (divestment) reaps a

payoff (cost) to activation (cessation); an input in this paper

DP1,P2,P3 The discount function associated with a diffusion from P1 to P2 without

hitting P3 (growth function G = D−1 also used) and ...

r, δ, σ Risk free, conv/div yield, diffusion volatility etc.
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2 Discount factor approach

• Dixit, Pindyck, Sødal (99), Sødal (06) [12]; P1 viewpoint, risk neutral ex-
pected present value of $1 at random stopping time/level P2 > P1 > P3 = 0

DP1,P2,P3=0 = E
Q
P1

h
e−rT

¯̄̄
PT = P2

i
ε (P1) =

P1
DP1,P2

∂DP1,P2

∂P1

• The convex function D depends on diffusion characteristics (solves pde sub-

ject to boundary conds) and has elasticity ε (linked to rate of return)

• It can conform to either the call (up, in) or put (down, out) options (for

GBMs ε is constant at either a, b which solve a quadratic q(ε) = 0)

• Value maximisation implies rate of return minimisation
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3 Serial/double hysteresis

• With frictions (±K1,2), inv thresholds P1,2 separate with a hysteresis in-
action zone. Extend single Dixit 89 [13] and finite serial Ekern 93 [14] to

double hysteresis with four input costs X1..X4; traditionally requires four

option constants and thresholds P1..P4 from eight conditions

• Assume P1..P4, identify flex states Vi, Va, .. but separate their eight begin-
ning and end values Vi(P1), Va(P4)..,Vi(P4), Va(P2).. adding four conditions

• Values Vs (Pn) , Vs (Pn+1) , form a bipartite, directed graph.∗ At P4 flex

Vi (P4) is sacrificed for payoff plus new flex Va (P4) , i.e.

• Vi (P4) = P4 −X4 + Va (P4) etc.

∗See Wilson 85 [15]. Without discount factors, Nagae and Akamatsu 04 [16] proposed a graph
structure whilst 08 [17] employed complementarity conditions to solve real option problems.
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act.n, thr.s idle Vi p.off act. Va p.off idle VI p.off act. VA

open, P4 Vi (P4)
P4−X4→ Va (P4)

↑ ↓
open, P3 VI (P3)

P3−X3−→ VA (P3)
↑ ↓ ↑ ↓

close, P2 Va (P2)
X2−P2→ VI (P2)

↑ ↓
close, P1 Vi (P1)

X1−P1← VA (P1)

Table 1: Serial—double hysteresis flex values Vi,a,I,A red before and blue af-

ter (dis)investment (horizontal conversions) occuring with payoffs at thresholds

P1 < P4 > P2 < P3 > P1 net of PV costs X4,2,3,1 (diffusions are vertical)
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3.1 Stacked variables in vectors

thr. PV costs end flex beg flex pay off Ω =
P X Ve Vb ±1[P−X]⎡⎢⎢⎢⎣
P4
P3
P2
P1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
X4
X3
X2
X1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

x
r +Ki−a
x
r +KI−A
x
r −Ka−I
x
r −KA−i

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
P4 −X4
P3 −X3
X2 − P2
X1 − P1

⎤⎥⎥⎥⎦
• Each vectors’ components depend on the same thresholds in P, i.e. the
common (dis)investment conversion point

• Payoffs Ω = ±1[P−X] are non—flex value changes; at P4,3 the project is
received and P2,1 lost (conversely with the running and switching costs X4,3
and X2,1); Ω represents other payoffs later
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3.2 Full (8× 8) matrix of system graph

"
Ve
Vb

#
=

"
0 I
D 0

# "
Ve
Vb

#
+

"
Ω
0

#
• Flex values at beginning are separated from end by diffusion paths; but end

values are separated from beginning by (dis)investment conversions

• Traditionally four inputs X with sufficient conditions (eight) to pin down

four option constants and four output thresholds P

• Here, from four inputs P we create and solve for eight flex values across

Ve,Vb also determining four outputs X from twelve conditions

• If necessary, iterate on P using numerical or analytical derivatives to target

“input” values of X. Need specification of discount or diffusion matrix D.
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3.3 Beginning flex as diffusion discount matrix op. of end flex

Vb = D Ve⎡⎢⎢⎢⎣
Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 0 D42 0
0 0 0 D31
0 D23 0 0

D14 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎥⎦
D1,2 = DP1,P2 = E

Q
P1

h
e−rT

¯̄̄
PT = P2

i
: G = D−1⎡⎢⎢⎢⎣

Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0 0 D−114
0 0 D−123 0

D−142 0 0 0

0 D−131 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎥⎦
Ve = G Vb
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3.4 (Dis)investment converts end flex to beg. flex plus payoff

⎡⎢⎢⎢⎣
Vi (P4)
VI (P3)
Va (P2)
VA (P1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Va (P4)
VA (P3)
VI (P2)
Vi (P1)

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
P4 −X4
P3 −X3
X2 − P2
X1 − P1

⎤⎥⎥⎥⎦
Ve = Vb + Ω

• These traditional value matching (vm) equations track project (dis)investment
payoffs at P net of costs X using Ω = ±1[P − X], ∂Ωn/∂Pn tracks the

elasticity of states at Pn

• Row—wise differentiation wrt Pn forms an elasticity change vector used later
∂Ω/∂P = [∂Ω1/∂P1, .., ∂Ω4/∂P4]

0

• Vb = DVe (Ve = GVb) condition compensates for Ve,Vb separation
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3.5 Value matching gives relative, not absolute, flex value

Flex Usage = Ve−Vb = Ω = [I−D]Ve = [G− I]Vb

• When flexibility is exercised, value matching (vm) holds, i.e. usage or gain
in flex value equals net non—flex payoff Ω

• The PV change of each flex value (end less discounted or grown less begin-
ning) is also the same net payoff

• Through value matching, thresholds P (present in D,G) control relative or
differential, but not absolute flexibility values (X still free)

• Which P,X combination ensures maximum flex value? Optimal X given P

depends on a first order smooth pasting (sp) condition.
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3.6 Smooth pasting diffusions at conversions

• Many ways to stack variables†, here we chose D,G to ease smooth pasting

(sp); vm optimality implies equivalence of partial e.g. wrt P4

prev conv P1 curr conv P4 next conv P2

vm
G (P1, P4)Vi (P1) = Vi (P4) = P4−

X4 + Va (P4)
= P4 −X4+

D (P4, P2)Va (P2)

P4 sp
∂G(P1,P4)

∂P4
Vi (P1) = ∂D(P4,P2)

∂P4
Va (P2) + 1

• This separation ensures P4 and other smooth pastings because D,G have

no diagonal elements, i.e. row wise differentiation of [DVe] matrix simplifies

so ∂ [DVe] /∂P = ∂D/∂PVe

• Also ∂ [GVb] /∂P = ∂G/∂PVb now tackle GVb = DVe+Ω

†Shackleton Wojakowski (01) [18] solve GBM constants and level ratios with a different matrix
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3.7 Smooth pasting indicates absolute flex value

vm GVb = DVe + Ω

G

⎡⎢⎣ Vi (P4)
...

VA (P1)

⎤⎥⎦ = D

⎡⎢⎣ Va (P4)
...

Vi (P1)

⎤⎥⎦ +

⎡⎢⎣ P4 −X4
...

X1 − P1

⎤⎥⎦
sp ∂G/∂PVb = ∂D/∂PVe + ∂Ω/∂P

• Elasticity and rate of return equalization at (dis)investment conversions‡

• This third extra sp (rate of return) restriction, solves the three optimal
unknowns: beg/end flex Vb,Ve and optimal costs ±X as a function of

‡Shackleton Sødal 05 [19], X has zero elasticity
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inputs: levels P, discount D, growth G and profits ±P

Vb = Ve = ±1[P−X] =h
∂G
∂P −

∂D
∂PG

i−1 ∂Ω
∂P

h
∂G
∂PD−

∂D
∂P

i−1 ∂Ω
∂P Ve−Vb
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3.8 Matrix solution Vb =
∙
∂G
∂P −

∂D
∂PG

¸−1 ∂Ω
∂P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂D42
∂P4

D−142 0 0
∂D−114
∂P4

0 −∂D31
∂P3

D−131
∂D−123
∂P3

0

∂D−142
∂P2

0 −∂D23
∂P2

D−123 0

0
∂D−131
∂P1

0 −∂D14
∂P1

D−114

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣
1
1
−1
−1

⎤⎥⎥⎥⎦

∂D,G

∂P
=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 ∂D42

∂P4
0

0 0 0 ∂D31
∂P3

0 ∂D23
∂P2

0 0
∂D14
∂P1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 ∂G14
∂P4

0 0 ∂G23
∂P3

0
∂G42
∂P2

0 0 0

0 ∂G31
∂P1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
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4 Elasticity ladder

• Now consider three modes of operation; idle/power/full and the flexibility

to ratchet up or down a ladder of non—flex PVs

state idle power full
non—flex value at P 0 Pγ P

• 0 < γ < 1 is generally a sufficient convergence condition for the PV of the

power of a diffusion Pγ ∝ E
Q
P

R∞
0 p (t)γ e−rtdt

• Again with four thresholds P1−4 and switching costs X1−4 this admits a
new (dis)investment graph (Table 2)
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from/to thr. idle Vi Ω p.off power Vp Ω p.off full Vf

power/full P4 Vp (P4)
P4−Pγ

4−X4→ Vf (P4)
↑ ↓

full/idle P3 Vp (P3)
−P3+Pγ

3 +X3← Vf (P3)
l

idle/power P2 Vi (P2)
P
γ
2−X2→ Vp (P2)

↑ ↓

power/idle P1 Vi (P1)
−Pγ

1 +X1← Vp (P1)

Table 2: Elasticity ladder with flexibility states (vertical diffusions) Idle, Power

and Full Vi,p,f ; red before and blue after conversions (horizontal) at thresholds

P1 < P2 < P4 > P3 > P1 with PV costs X2,4,3,1 .
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⎡⎢⎢⎢⎣
Vf (P4)
Vp (P3)
Vp (P2)
Vi (P1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 D43 0 0

D341 0 0 D314
D241 0 0 D214
0 0 D12 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Vp (P4)
Vf (P3)
Vi (P2)
Vp (P1)

⎤⎥⎥⎥⎦
Vb = D Ve

Ve = Vb + Ω⎡⎢⎢⎢⎣
Vp (P4)
Vf (P3)
Vi (P2)
Vp (P1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Vf (P4)
Vp (P3)
Vp (P2)
Vi (P1)

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣
P4 − P

γ
4 −X4

P
γ
3 − P3 +X3
P
γ
2 −X2

−Pγ
1 +X1

⎤⎥⎥⎥⎦ : ∂Ω∂P =

⎡⎢⎢⎢⎢⎢⎣
1− γP

γ−1
4

γP
γ−1
3 − 1
γP

γ−1
2

−γPγ−1
1

⎤⎥⎥⎥⎥⎥⎦
now Ω tracks net 0, P γ, P (dis)investments
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D341 = E
Q
P3

h
e−rT

¯̄̄
PT = P4 <> P1

i
: D314 = E

Q
P3

h
e−rT

¯̄̄
PT = P1 <> P4

i

D−1 = G =

⎡⎢⎢⎢⎢⎢⎢⎣
0 − D214

−D214D341+D241D314
D314

−D214D341+D241D314 0
1

D43
0 0 0

0 0 0 1
D12

0 D241
−D214D341+D241D314 − D341

−D214D341+D241D314 0

⎤⎥⎥⎥⎥⎥⎥⎦
• This uses two way discount factors with two payoffs (e.g. $1, $0 at P4, P1)
• The inverse diffusion G is somewhat harder to interpret (negative elements)

• But the logic can still be applied by differentiating D,G line by line wrt P,

then Vb =
h
∂G
∂P −

∂D
∂PG

i−1 ∂Ω
∂P
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5 Section 3,4 examples under GBM (see xls)

Discount functions and their derivatives are well known under GBM

dP

P
= (r − δ) dt+ σdZ : q (ε) =

1

2
ε2 (ε− 1) + ε (r − δ)− r

q (a, b) = 0 : a > 1, b < 0 =
1

2
− r − δ

σ2
±
sµ

r − δ

σ2
− 1
2

¶2
+
2r

σ2

DP1,P2>P1 =

Ã
P1
P2

!a
: DP1,P2<P1 =

Ã
P1
P2

!b

DP1,P2>P1,P3<P1 =

³
P1
P2

´a − ³
P1
P3

´b ³P3
P2

´a
1−

³
P3
P2

´a−b
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6 Reversible switching at common threshold

thr. PV costs end flex beg flex pay off elast chg

P X Ve Vb Ω ∂Ω
∂P"

P+
P−

# "
X+
X−

# "
Vi (P+)
Va (P−)

# "
Va (P+)
Vi (P−)

# "
P+ −X+
X− − P−

# "
1
−1

#
• Consider hysteresis converging to perfect reversibility. As P+ → P− = P

discounting between thresholds disappears

D,G →
"
0 1
1 0

#
det

"
∂G

∂P
− ∂D

∂P
G

#
→ 0 but

lim Vb
P+,−→P

=

⎡⎣ P a−1
b2−ab

P 1−b
a2−ab

⎤⎦ : ¡X+,−¢ = X =
δ

r
P =

µ
δ

r
P+,−

¶
• Using L’Hôpital’s rule the GBM system returns finite values Vi (P ) , Va (P )
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action, thr. act. Va p.off idle Vi

open, P+ Va (P+)
P+−X+← Vi (P+)

close, P− Va (P−)
X−−P−→ Vi (P−)

Table 3: Standard hysteresis/perfect reversibility values Vi,a red before and blue

after transitions (horiz arrows) converging at P+,− net of costs X+,−.

• A flow condition δP ≷ rX now relates the exercise threshold to “strike flow

rate” p ≷ x (see Shackleton Wojakowski 07 [20])

• In practice, can tackle non—analytically (without further differentiation) us-
ing a fixed level of numerical precision
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7 Mixing other processes

Dixit, Pindyck, Sødal (99) [11] detail other discount factors, e.g. for mean

reverting processes (where H is the hypergeometric function)

dP

P
= η

³
P − P

´
dt+ σdZ : q (θ) =

1

2
θ2 (θ − 1) + ηPθ − r = 0

DH (P1, P2) =

Ã
P1
P2

!θ H µ
2η
σ2
P1, θ, 2

µ
θ + ηP

σ2

¶¶
H
µ
2η
σ2
P2, θ, 2

µ
θ + ηP

σ2

¶¶
"
Vi (P2)
Va (P1)

#
=

"
0 D (P2, P1)

DH (P1, P2) 0

# "
Va (P2)
Vi (P1)

#
Modular diffusions can be examined at the same stage as the flexibility graph

and combined at will, e.g. GBM while idle but MR whilst operational, allowing

the investment decision to change the process.
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8 Summary

• Sødal et al. (99, 06) [11], [12] developed useful discount factor approach
• A graph of (dis)investment uses a matrix to separate flexibility states yielding
explicit solutions to modular problems

• Ensures smooth pasting condition for optimality can be implemented using
discount, growth matrices, their partial derivatives and inverses

• Breaks down two difficult and complex steps deferring the diffusion/pde
choice within the modelling framework

• Optimal investment costs can be recovered, if not equal to target costs (i.e.
if thresholds are required as output) then iterate on thresholds

• Could also be used in the forward sense to infer hidden costs empirically,
given an observed level of action
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