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Abstract

This paper derives the value and the risk of aggregate human capital in a dynamic
equilibrium production model with Duffie-Epstein preferences. In this setting the ex-
pected return of a risky asset is a function of the asset’s covariance with consumption
growth and a weighted average of the asset’s covariance with aggregate wage growth
and aggregate financial returns. A calibration of the model matching the historical
ratio of wages to consumption in the United States (85% between 1950 and 2007)
suggests that the weight of human capital in aggregate wealth is 87%. The results of
the calibration follow from the relative size of wages and dividends in the economy
and the dynamics of the ratio of wages to consumption, which are counter-cyclical.
As a result, human capital is less risky than equity, implying that the risk premium
of human capital is lower than that of equity.
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1 Introduction

Wages constitute more than 80% of consumption and about 60% of gross domestic prod-

uct in the United States.1 Indeed, the present value of future wages – human capital –

represents the largest share of wealth in the economy and therefore must affect portfolio

choice decisions and asset prices. Furthermore, wages are the main corporate expenditure.

As a result, firms have a large exposure to shocks that affect the aggregate level of wages,

which affects the riskiness of cash flows and investing decisions. To take into account hu-

man capital, researchers need to make assumptions about its share of aggregate wealth

and expected returns, but they often do it without a solid theoretical background. This

paper provides a benchmark model, rooted in a traditional dynamic stochastic equilibrium

model, through which one can analyze the drivers of human capital’s value and risk.

Human capital poses a challenge for researchers because even though it is the largest

single asset class in the economy, we cannot observe its value or dynamics directly; we

merely observe wages, human capital’s dividends. Thus, we need a framework to deter-

mine human capital’s value. I use a continuous-time version of the one-sector stochastic

growth model to derive the endogenous dynamics of consumption, wages, dividends, and

the stochastic discount factor. I then use these dynamics to determine the value and the

risk characteristics of human capital and equity.

The unobservability of human capital became less of an issue, at least for under-

standing its impact on asset prices, after Lucas’ (1978) and Breeden’s (1979) seminal

contributions. If human capital had any role, it would be captured entirely by its impact

on consumption’s conditional growth and volatility; shocks to consumption would therefore

be enough to determine the stochastic discount factor, and with it any asset’s price and

riskiness. However, once one departs from standard constant relative risk aversion (CRRA)

preferences, the stochastic discount factor is not driven entirely by contemporaneous con-

sumption shocks, but also on changes in the expected dynamics of consumption. Epstein

1Using data from the National Income and Product Accounts (NIPA) tables between 1947 and 2007, the
average ratio of total compensation to consumption was 85%, and the average ratio of total compensation
to production was 58%.

2



and Zin (1989) show that, in the special case of Kreps-Proteus (1978) preferences, shocks

to consumption and shocks to aggregate wealth drive the stochastic discount factor. Since

human capital is the largest component of aggregate wealth, not observing it continues

being a problem.

Previous work exploring production economies and asset prices has not asked what

the value of human capital or its riskiness is. To calculate the value of human capital the

relative size of its dividend–wages–must be properly calibrated to the observed relative

size of wages and consumption. Thus, I calibrate the model to match the long-term ratio

of wages to consumption, consumption growth and consumption volatility. With this

calibration the relative magnitude of the “dividends” paid by human capital and equity,

their growth and volatility, will resemble those observed historically in the United States.

What I present below are the results of that calibration.

This paper shows that under a plausible set of assumptions, we should expect human

capital to be less risky than stocks. While empirical evidence is consistent with this finding

(dividend growth exhibits a volatility of 10%, whereas aggregate wage growth volatility is

about 2.2%),2 the empirical literature does not provide an explanation for why wages are

less volatile than dividends nor why wages perform relatively better than dividends during

downturns.3 Existing theoretical studies justify this behavior for wages and dividends by

pointing out that labor contracts insure workers against idiosyncratic risk and by assuming

that workers have less tolerance for risk.4 The model I present here shows that one does

not need to rely on idiosyncratic labor shocks or on ad hoc assumptions about the risk

aversion of investors and workers to explain why wages are less volatile than dividends.

The intuition for the result that human capital is less risky than equity is as follows.

The value of aggregate wealth, defined here as the present value of all future consumption,

varies over time as technology and capital shocks affect the productivity of capital and

2See Campbell and Cochrane (1999) who use 11.2%. Wage data comes from “total compensation”, as
reported in the NIPA tables, between 1947 and 2007.

3See Lustig, Van Nieuwerburgh and Verdelhan (2009).
4See Harris and Hölmstrom (1982).
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labor. For example, a shock that makes capital more productive in the future increases

aggregate wealth, even though the stock of capital did not change. In the absence of

frictions that make adjustments to capital costly, the value of shares on firms equal the

capital stock, so the change in aggregate wealth must be absorbed by the only other claim

to production: human capital. At the same time, an increase in the productivity of capital

results in marginal utility being relatively higher than what it will be in the future since

consumption will grow faster than on average. Thus, human capital becomes a larger part

of aggregate wealth when marginal utility is relatively high, making it a “safer” investment

than equity.

Another way of understanding the result is to note that the ratio of wages to consump-

tion is counter-cyclical, implying that wages are relatively high when marginal utility is

also high. The result holds as long as the elasticity of intertemporal substitution is positive

but the intuition is best understood using the special case of a myopic representative agent

with an intertemporal elasticity of substitution of one. In this case, the agent does not

adjust the flow of consumption per unit of wealth. In the presence of decreasing returns to

scale for capital, times when capital is relatively abundant are also times in which expected

returns to wealth are low. Thus, by not adjusting consumption, the myopic agent induces a

time-varying ratio of expected wealth returns to consumption. Moreover, expected wealth

returns to consumption are counter-cyclical since capital is relatively abundant in “good

times”. To tie this effect to the riskiness of human capital, recall that in a competitive

equilibrium with a Cobb-Douglas production function aggregate wages are proportional to

gross returns to capital, which in turn move with expected wealth returns. In times of

relatively abundant capital, gross capital returns are relatively low, and therefore the ratio

of wages to consumption is also relatively low. The same logic applies to the case in which

capital is relatively scarce. In that case wealth’s returns and the competitive wage rate are

relatively high, but the myopic agent does not adjust the fraction of wealth he consumes.

Thus, in bad times the ratio of wages to consumption increases. Overall, wages do not fall

as fast as consumption in “bad times” and do not grow as fast as consumption in “good
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times”, acting as a hedge.

The result that human capital is less risky than equity means that we should apply a

lower discount rate to it. As a result, the weight of human capital in the aggregate wealth

portfolio should be, on average, at least as high as the fraction of wages to consumption

observed in the data. This finding suggests that a weight for human capital closer to 87%

seems more appropriate than a weight of around 70%, which is common in the literature.5

Recent empirical work reaches a similar conclusion, estimating the weight of human capital

in aggregate wealth to be more than 90%.6 The result is relevant for the portfolio choice

literature because the weight and risk of human capital affect an agent’s optimal portfolio.

The model also makes transparent how human capital has an effect on asset-pricing.

Duffie-Epstein preferences imply that, in addition to consumption growth, capital returns

and wage growth drive the diffusion of the stochastic discount factor. Thus, any asset’s risk

premium will depend on the covariance of its returns with capital returns (financial wealth

in this model) and wage growth. This result is consistent with empirical findings, such

as Jaganathan and Wang’s (1996). But information about the state of the economy, for

example the ratio of wages to consumption, also affects the sensitivity of the asset to capital

returns and wage growth, justifying the use of wages as a conditioning variable (Lettau

and Ludvigson (2001a and 2001b), Santos and Veronesi (2006), and Julliard (2007) among

others). This work has had some success explaining the cross-section of asset returns,

as well as future market returns. Even though previous work finds small evidence of co-

movement between human capital and asset returns (Fama and Schwert (1977), Heaton and

Lucas (1996), and Davis and Willen (2000)), its dual role as a factor and as a conditioning

variable appears to be important for explaining asset returns.

The use of Duffie-Epstein preferences allows me to calibrate reasonable values for the

risk-free rate an the equity premium, but does not drive the main result: if wages are a

larger fraction of consumption when marginal utility is high, then human capital is less

5For example, see Baxter and Jermann (1997) and Chen et al. (2008).
6See Lustig, Van Niewerburgh and Verdelhan (2009).
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risky than equity; if human capital pays, on average, 85% of consumption and its risk is

lower than that of equity then human capital’s weight in the aggregate wealth portfolio

should not be, on average, less than 85%.

The structure of the rest of the article is as follows. Section 2 relates this paper to the

existing literature. Section 3 presents the model with an infinitely-lived agent and derives

the dynamics of the general equilibrium. Section 4 discusses the main implications from

the model, and Section 5 analyzes the numerical calibration.

2 Relation to existing literature

The literature that originally tackled the impact of human capital on asset prices started

from assumptions about the exogenous wage process (Mayers (1972)). Fama and Schwert

(1977) tested the empirical predictions of Mayers’ model and concluded that human capital,

as proxied by wages, did not play a major role in determining asset prices.

More recent work, recognizing the weakness of treating wages as a proxy for human

capital, tries to include human capital as relevant for determining other assets’ prices. The

two main characteristics of human capital that matter most for asset-pricing are its weight

in the aggregate wealth portfolio and its riskiness.

The weight of human capital in the aggregate wealth portfolio is either assumed

exogenously or derived endogenously under a restricted set of assumptions. Estimates of

this weight typically range between 60% and 80%, all lower than the estimate presented here

(Baxter and Jermann (1997), Lettau and Ludvigson (2001), Lustig and Van Nieuwerburgh

(2006), Chen et al.(2008)). Two empirical papers that support higher values for the fraction

of human capital in aggregate wealth are Jorgenson and Fraumeni (1989) and Lustig, Van

Nieuwerburgh and Verdelhan (2010). This paper finds similar results, while highlighting

the mechanism that drives them.

The riskiness of human capital is comprised of idiosyncratic and systematic compo-

nents. In my model I ignore idiosyncratic shocks, so systematic risk is the sole determinant
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of human capital’s expected returns. Empirical studies require assumptions about human

capital’s expected returns. Shiller (1995) assumes that human capital’s expected returns

are constant. Campbell (1996) assumes that its expected returns are conditioned to be

the same as those of stocks, while Jagannathan and Wang (1996) assume human capital’s

return is equal to labor income growth. Palacios-Huerta (2003a) uses the increase in labor

income attributed to an extra year of education as a proxy for human capital returns and

Lustig and Van Nieuwerburgh (2006) assume it to be the return that minimizes pricing er-

rors in their model.7 The model presented here provides theoretical foundations to evaluate

these assumptions. In particular, human capital’s expected returns appear to be smaller

than those of stocks, and innovations to expected returns of human capital and equity are

negatively correlated.

Human capital is not only important on an aggregate level for asset-prices, but also

important for portfolio choice. The portfolio choice literature assumes exogenous wage dy-

namics (for example, Merton (1971), Svensson (1988), Koo (1998), Campbell and Viceira

(1999), and Viceira (2001)), but in that work wages and asset prices can diverge unrealis-

tically. Benzoni, Collin-Dufresne and Goldstein (2007) provide a solution to this problem

by assuming cointegration between wages and financial markets. However, the process

driving the cointegration is also exogenous. In contrast, my model delivers cointegration

endogenously, providing an intuitive reason for why wages and dividends follow a trend

over time.

The model is grounded in the traditional one-sector stochastic growth literature.8

This literature goes back at least to Ramsey (1928) and the stochastic versions of Mirrlees

(1967), Brock and Birman (1972) and Merton (1975). Subsequent work tried to bridge

macroeconomic observations with asset prices in an attempt to address the shortcomings

pointed out by Mehra and Prescott (1985) on the predictions of Rubinstein (1976), Lucas

7Palacios-Huerta (2003b) uses the same method to compare the returns to investing in education of
different demographic groups.

8A general closed-form solution to the growth model is not known, though solutions do exist restricting
the parameters (Smith (2007)). The restrictions are not useful to obtain reasonable results, so I proceed
with a numerical solution.
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(1978) and Breeden’s (1979) consumption-based model.9 Importantly, none of these papers

explored the implications for the value and expected return of human capital.

The paper also links to more recent work that explores the asset pricing implica-

tions of having multiple sources of income that add up to aggregate consumption, as in

Cochrane, Longstaff and Santa Clara (2006), Başak (1999), Gomes et al.(2007), Gârleanu

and Panageas (2008), and Santos and Veronesi (2006). In contrast to this work, I allow for

capital accumulation, addressing the link between capital growth, production shocks, and

human capital returns.

The implications for asset prices derived from the model follow empirical observations

linking price-dividend ratios, forecasted economic growth, and asset returns (Fama and

French (1989), Fama (1990), Lamont (1998), Lettau and Ludvigson (2001a and 2001b)

and Santos and Veronesi (2006)). The theoretical model I present here is a step towards

understanding the dynamics observed in the data.

3 Model description

This section describes and solves the equilibrium model, characterizes the representative

agent’s optimal consumption decision, and derives joint dynamics for wages and dividends.

3.1 Economic environment

Consider a competitive, continuous-time economy with a continuum of identical agents,

whose mass is normalized to 1, and a continuum of identical firms. Each agent works

and chooses to invest her wealth Wj optimally among the existing firms. Agents can trade

claims that span all possible outcomes in the economy, and therefore markets are complete.

We are interested in three of these claims. The first claim is “human capital,” and it is

defined as a security that pays aggregate wages. The second claim is “equity,” and it

9See Brock (1982), Cochrane (1991, 1996), Belo (2007), Rouwenhorst (1995), Jermann (1998), Boldrin,
Christiano and Fisher (2001), Danthine and Donaldson (1992 and 2002).

8



consists of a claim to aggregate dividends. The last claim is an instantaneously risk-free

bond.

3.2 Production and profits

The single productive technology produces a single consumption good. At any point in

time, the agent can consume the good or invest it in any of the firms. Capital investment

is perfectly reversible, so changes in its stock are costless. Output at each point in time

depends on the amount of aggregate capital, labor, the technology level and production

shocks. Denote by (Ω,=,P) a fixed complete probability state, and the stochastic process

(Bt)t>0, a standard 2-dimensional Brownian motion with respect to the filtration (Ft). The

first element of the Brownian motion will be denoted by dBA and the second by dBK . The

correlation between the shocks is ϕK,A. The Brownian motion reflects shocks to technology

and output as described below.

I denote the technological level by At, which follows a geometric brownian motion:

dAt = Atηdt+ AtσAdBA, (1)

where η is the growth rate of the technology level. Under this specification, shocks to the

technology level are permanent.

The dynamics of firm j’s capital are given by:

dKt,j = Kt,j(Z(Kt,j, Lt,j, At)− ytLt,j − δ − dt,j)dt+ σKKt,jdBK,t (2)

where Z(·) is output per unit of capital, yt is the wage rate per unit of capital, δ is the

depreciation rate, dt,j are dividend payments per unit of capital, and σK is the volatility

associated with the stochastic component of output.10 Output per unit of capital has

10This specification results from output following the following stochastic process:

Kt,jZ(Kt,j , Lt,j , At)dt+Kt,jσKdBK,t. (3)

A firm’s accumulation of capital is simply its output minus wages paid, depreciation, and dividends
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a deterministic component Z(Kt, Lt, At), and a stochastic one σKdBK,t. The stochastic

component of output can be interpreted in several ways. Output can be lower than expected

due to a transient fall in the technology level. If we interpret the weather as part of what

we call “technology”, then unexpectedly poor weather leads to lower than expected output.

Output can also be lower than expected due to an unforseen problem with capital itself,

for example, if a machine breaks down. Alternatively, the dBK,t shocks can be interpreted

as coming from a stochastic depreciation process. If σK = 0, then the technology is

instantaneously riskless and equity’s return will equal the risk-free rate. The evolution of

technology is exogenous, and its shocks capture uncertainty in the rate at which it evolves.

This production specification is flexible, allowing for a stochastic component of production

technological improvement.

The literature concentrates on specifications for output that are continuous, differen-

tiable, and homogeneous of degree one in K and AL. Here, I will study the widely used

labor-augmenting Cobb-Douglas specification,

KtZ(Kt, Lt, At) = Kα
t (AtLt)

1−α. (4)

The choice of making the technology labor-augmenting instead of Hicks-neutral or capital-

augmenting does not affect the main results, but it affects the interpretation of the coeffi-

cients of At. The particular assumption for the production technology does impact wage

and dividend dynamics, as different specifications for Z(Kt, Lt, At) result in different shares

of output being paid to labor and capital. The specification presented here should be in-

terpreted as a benchmark case, with richer structures possible when the shares of output

that go to labor and capital change over time.

I assume individuals have no disutility from working, so they do not face a work-

returned to investors. It is perhaps more natural to use output shocks proportional to the output level, or
proportional to the impact that At has on output, instead of shocks proportional to capital. The choice
presented here is a simplification that keeps the instantaneous variance of capital constant. The alternative
specification leads to stochastic volatility which adds one more layer of complexity to the results and makes
the numerical results less stable, without necessarily adding interesting insights.

10



leisure tradeoff.

3.3 Firms

Firms are run by managers who maximize the present value of the firm by maximizing the

expected present value of dividends. Managers choose how much labor to hire at every

point in time and how much capital to return to investors as dividends, or how much equity

to raise for investment. Managers take as given the dynamics of wages and the stochastic

discount factor. Following the previous discussion, denoting Ms as the stochastic discount

factor, the manager’s problem is:

max
{Lj}∞t ,{dj}∞t

Et

[∫ ∞
t

MsKs,jds,jds

]
(5)

s.t. dKt,j = Kt,j(Z(Kt,j, Lt,j, At)− ytLt,j − δ − dt,j)dt+ σKKt,jdBt. (6)

3.4 The Representative Agent

I assume the agent maximizes his lifetime value of consumption with Duffie-Epstein recur-

sive utility over an infinite horizon. Because there are only two sources of uncertainty (dBA

and dBK), equity, human capital, and a risk-free bond will span all possible contingent

claims. Without loss of generality, I assume the representative agent only trades these

claims in setting up its optimization problem. The agent’s problem is:

Vt = max
{Cs,xs}∞t

∫ ∞
t

f(Cs, Vs)ds (7)

s.t. dWt = (Wt(xt
′(rt − rf,t) + 1′rf,t)− Ct)dt+Wtxt

′σrdB,

where, following Duffie and Epstein (1992a and 1992b),

f(C, V ) =
β

1− 1
ψ

(1− γ)V ((C((1− γ)V )
−1
1−γ )1−

1
ψ − 1), (8)
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Wt is an agent’s wealth, xt is the vector with the fraction of wealth invested in equity,

human capital, and the risk-free rate, rt is the vector of expected returns to equity and

human capital, 1 is a vector of ones, and σr is the covariance matrix of asset return volatility

associated with the dBA and dBK shocks.

This specification is the continuous-time equivalent of Epstein-Zin preferences (see

Epstein and Zin, 1989, and Kreps and Porteus, 1978). The advantage of using Duffie-

Epstein preferences is that the elasticity of intertemporal substitution and the coefficient

of relative risk aversion can vary independently of each other. With CRRA preferences

(which in the present setting are the special case of γ = 1/ψ) an increase in relative

risk aversion necessarily implies a decrease in the elasticity of intertemporal substitution.

Risk-aversion and intertemporal substitution are different concepts, and Duffie-Epstein

preferences give us the flexibility to treat them as such. The extra degree of freedom

provided by an independent elasticity of intertemporal substitution has been shown to

improve the calibration of equilibrium models (see Banzal and Yaron, 2004), in particular

a low risk-free rate and a high equity premium.

3.5 Equilibrium

This section defines and proceeds to characterize the equilibrium in this economy. In

equilibrium, the supply of capital by agents equals the demand of capital by firms. This

condition is equivalent to agents consuming all their income from dividends and wages

(a “no free-disposal” condition). lastly, the value of capital held far away in the future

converges to zero (the “transversality” condition).

3.5.1 Definition

Capital and labor markets must clear in equilibrium. The definition that follows is stan-

dard:

Definition 1 In this economy, an equilibrium is defined as a stochastic path for
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{Kt, Lt, At, dt,xt, σr,t, rt, Ct, yt,Mt}∞t such that, for every t,

1. Given the processes for {yt, At, Kt, Mt}, each firm chooses Lt and dt to maximize

the present value of dividends (Equation (5)).

2. Given the processes for {Kt,xt, σr,t, rt, yt}, the agent chooses Ct and xt to maximize

his expected lifelong utility.

3. Capital markets clear, which implies consumption equals wages plus dividends: Ct =

Kt(yt + dt).

4. Labor markets clear: Lt = 1.

3.5.2 Capital Dynamics

Capital dynamics will be the result of managers optimally choosing the capital and labor

required for production over time. Throughout the remaining portion of the paper it will

be convenient to introduce the state variable

Zt =

(
AtLt
Kt

)1−α

. (9)

Given the production function, Zt is output per unit of capital. As I show below, output per

unit of capital is the only state variable in the economy. Yet, for mathematical convenience,

the main results are expressed as a function of

zt ≡
1

1− α
logZt, (10)

noting that output per unit of capital is e(1−α)zt . Applying the Itô-Doeblin Lemma to zt

in equation (10), its dynamics are given by:

dzt =

(
ct − e(1−α)zt + η + δ +

σ2
K

2

)
dt+ σAdBA,t − σKdBK,t, (11)
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where

ct =
Ct
Kt

. (12)

The instantaneous variance of Zt drives many results in the paper so it is useful to define

it here. Denoting Ω2 as Zt’s variance, it equals:

Ω2 = σ2
A + σ2

K − 2σAσKϕK,A. (13)

When output per unit of capital, Zt, is very small, consumption dominates any amount

produced (0 when zt → 0), and the drift of zt is positive. On the other hand, as zt grows

consumption does not grow as much, since the agent faces a higher opportunity cost of

consuming. Thus, for large values of zt, its drift is negative. As a result, zt is mean-

reverting. Since zt is the only state variable, all the relevant quantities in the model – the

risk-free rate, the equity premium, the ratio of wages to consumption, and the dividend

price ratio – are mean reverting as well.

3.5.3 Optimization solution

The manager’s optimization problem can be solved using the standard dynamic program-

ming procedure as in Merton (1973). The manager’s value function will depend on the

firm’s capital at time t, Kj,t, aggregate capital in the economy Kt, time, and technology

efficiency At. Let J(Kj,t, Kt, t, At) be the solution of the manager’s Bellman equation. The

following proposition characterizes the solution of the manager’s and representative agent’s

optimization problem:11

Proposition 1 Assume ψ > 0, ψ 6= 1, γ > 0 and γ 6= 1, if the value function J(Kj,t, Kt, t, At)

11 Note that wages do not enter into the Jacobian as on aggregate these depend completely on changes
to technology and the capital stock (this result is derived in the appendix), and thus we only need to
include At. If technology was irreversible, or if wages were subject to frictions, then the level of these
variables would be needed here.
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exists and is twice continuously differentiable, then the manager’s value function can be ex-

pressed as:

• J(Kj,t, Kt, t, At) = J(Kj,t, zt)

• J(Kj,t, zt) = Kj,tm(zt)

• m(zt) = g(zt)− g′(zt)
1−γ

• g(zt) solves the following ODE:

0 = g(z)(1− γ)

(
βψ

1− ψ
+ e(1−α)z − c(z)

1− ψ
− δ − γσ

2
K

2

)
+ (14)

g′(z)

(
−e(1−α)z +

c(z)

1− ψ
+ δ + η + γ

σ2
K

2
− γσ

2
A

2
− (1− γ)

Ω2

2

)
+

g′′(z)
Ω2

2

with g(∞) = 0 and g′(∞) = 0 as boundary conditions.

Optimal consumption will be given by

c∗t ≡
C∗t
Kt

= βψ
g(zt)

1−γψ
1−γ

m(zt)ψ
. (15)

Proof: See Appendix.

The boundary conditions follow from the agent choosing to consume more when

output per unit of capital increases. As output per unit of capital becomes arbitrarily

large, the marginal utility approaches zero, implying that g(z) approaches zero for large

values of z.

Equation (15) is a generalization of the CRRA result that relates the stochastic

discount factor with consumption. When γ = 1/φ, the function g(zt) dissappears and

consumption becomes only a function of constants and the stochastic discount factor. In

the more general setting with Duffie-Epstein preferences g(zt) enters into the equation

and introduces an additional component linking consumption and the stochastic discount
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factor. As a result, the risk-free rate and the market price of risk will not be characterized

any more by consumption growth alone.

3.6 Dynamics of the economy

Having determined the optimal rule for choosing between consumption and saving, we

now analyze the dynamics of the economy. The optimal consumption rule will determine

the dynamics of consumption and the stochastic discount factor, which determines the

risk-free rate. The optimal consumption rule in conjunction with the marginal product of

labor determines the dynamics of wages and dividends, which in turn determine the value

of equity and human capital. Once we determine the value of equity and human capital,

we can study the equity premium and the co-movement between asset returns and human

capital. I derive all these results in this section.

3.6.1 The stochastic discount factor, and the risk-free rate

The dynamics of the stochastic discount factor derived in Duffie and Epstein (1992a) can

be expressed as:

dMt

Mt

=
dfC(C, V )

fC(C, V )
+ fV (C, V )dt. (16)

We find the dynamics of the stochastic discount factor applying Itô to the expres-

sion in equation (16). Before presenting the result, the following corollary is helpful in

simplifying the expressions that follow.

Corollary 1 m(zt) satisfies the following ODE:

0 = m(z)

(
β(1− γ)ψ

1− ψ
− 1− γψ

1− ψ
g(z)−1c(z)m(z) + αe(1−α)z − δ − γµK −

1

2
γ(1− γ)σ2

K

)
+

m′(z)

(
η − µK −

σ2
A

2
+
σ2
K

2
+ (1− γ)(σAσKϕK,A − σ2

K))

)
+

m′′(z)
1

2
Ω2 (17)
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with m(∞) = 0 and m′(∞) = 0.

Proof: See appendix.

Using the corollary and applying Itô, the dynamics of the stochastic discount factor

are given by:

dMt

Mt

= µM,tdt+ σA
m′(zt)

m(zt)
dBA − σK

(
γ +

m′(zt)

m(zt)

)
dBK , (18)

where

µM,t = −(αe(1−α)zt − δ − γσ2
K) +

m′(zt)

m(zt)
(σ2

K − σKσAϕK,A). (19)

To make the analysis that follows clearer, we can find the dynamics of consumption

and compare them to the dynamics of the stochastic discount factor. In particular, we

can compare the diffusion terms of consumption and the stochastic discount factor. Using

equations (14), (15), and (58), and substituting, the volatility of the diffusion term of the

stochastic discount factor can be expressed as:

σM,t = − 1

ψ

 σA,c

σK,c

+

(
1

ψ
− γ
) 0

σK

+
(1− γψ)

ψ(1− γ)

g′(zt)

g(zt)

 σA

−σK

 , (20)

where σA,c and σK,c denote the instantaneous volatility of consumption due to shocks to

At and Kt, respectively.

Equation (20) implies that the market price of risk, given by the volatility of the

stochastic discount factor, will not only be driven by the volatility of consumption as in the

CRRA case, but will depend on two additional components. The first one,
(

1
ψ
− γ
)

(0, σK)′,

is volatility in the stochastic discount factor due to capital’s volatility, which, as is shown

later, is also the volatility of equity. Thus, the market price of risk depends on the volatility

of financial wealth. The second one, (1−γψ)
ψ(1−γ)

g′(zt)
g(zt)

(σA,−σK)′, is volatility in the stochastic

discount factor due to volatility in capital’s productivity Zt. Below I show that this term
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can be expressed as a function of shocks to aggregate wages. In the special case of CRRA

preferences, 1
ψ

= γ, the last two components of volatility in the stochastic discount factor

become 0, leaving us with the benchmark case of the Consumption CAPM.

The additional components in the volatility of the stochastic discount factor are

closely related to results found in Duffie and Epstein (1992) and Bansal and Yaron (2004).

These authors note that Duffie-Epstein preferences (Epstein-Zin in the case of Bansal and

Yaron), imply that the stochastic discount factor’s volatility depends on consumption’s

volatility and aggregate wealth’s volatility. Equation (20) shows the same result, with the

additional structure imposed by the production model.

The risk-free rate is the negative of the stochastic discount factor’s drift. Rearranging

terms, rf will be given by:

rf,t = αe(1−α)zt − δ − γσ2
K −

m′(zt)

m(zt)
(σ2

K − σKσAϕK,A). (21)

Equation (21) states that the risk-free rate is the expected return on physical capital

adjusted by capital’s risk premium. Unlike the CRRA case, the risk-free rate will not be a

simple function of consumption growth.

3.6.2 Wages, human capital, and equity

Given the dynamics of the stochastic discount factor, we can now turn our attention to

wages and the value of equity. Wages can be found using the manager’s first order condition

with respect to labor. In this economy, competition between firms ensures that wages equal

the marginal product of labor. For the Cobb-Douglas case this implies that wages per unit

of capital will be:12

yt = (1− α)e(1−α)zt . (22)

The value of a claim to aggregate human capital is the present value of the dividend

12This result is derived in Appendix B.
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paid by this claim. Thus, the value of aggregate human capital is:

Ht = Et

[∫ ∞
t

((1− α)e(1−α)zτKτ )
Mτ

Mt

dτ

]
(23)

The value of equity equals the present value of net dividends, which can be nega-

tive. This is the case when capital needs to be raised (i.e., when the difference between

production and the sum of investment and wages is negative.

Following the previous paragraph, and using the fact that in equilibrium dividends

and wages add up to consumption, net dividends per unit of capital will be:

dt = c(zt)− e(1−α)zt(1− α), (24)

and equity’s value is:

St = Et

[∫ ∞
t

(Kτc(zt)−Kτe
(1−α)zτ (1− α))

Mτ

Mt

dτ

]
(25)

Given this information, we can derive the dynamics of human capital and equity using the

stochastic differential equations implied by their definition as the present value of wages

and dividends, and by the fact that the state of the economy is captured by the level of

capital and zt. The following proposition summarizes this result:13

Proposition 2 Let H(Kt, zt) denote the value of a claim to human capital, Σ1 = σA
m′(z)
m(z)

and Σ2 = −σK
(
γ + m′(z)

m(z)

)
. Then the value of human capital will be characterized by

• H(Kt, zt) = Kth(zt).

• h(zt) is given by the solution to the following ODE:

0 = (1− α)e(1−α)z + h(z)(µK(z)− rf (z) + σK(Σ2 + Σ1ϕK,A)) (26)

13A more frequent method is using the condition that under the risk-neutral measure, the expected
return of a claim to equity cum dividend must equal the risk-free rate. This is, of course, equivalent to
what I do above.
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+h′(z)

(
η − µK(z)− Ω2

2
+ σA(Σ1 + Σ2ϕK,A)− σK(Σ2 + Σ1ϕK,A)

)
+h′′(z)

Ω2

2
,

subject to: h(−∞) = 0 and h′(−∞) = 0.

• The value of equity will be given by St = Kt.

Proof: See Appendix.

The boundary conditions in Proposition 2 follow from wages approaching zero in

equilibrium as output per unit of capital approaches zero. Dividends do not approach

zero, since the agent still chooses to consume some of his capital. Therefore, a claim to

equity will have value when z →∞, but a claim to human capital will not.

Given h(zt) and St, it is trivial to calculate the weight of human capital in the

aggregate wealth portfolio. It will equal:

Whc =
h(zt)

1 + h(zt)
(27)

4 Human capital and the equity risk premium

Having derived the dynamics of the economy, in particular the stochastic discount factor

and the claims of human capital and equity, I explore the implications of those dynamics

for the expected returns for both claims. Several papers make assumptions about the value

and expected returns to human capital with the purpose of estimating the return to the

aggregate, human capital-inclusive, wealth portfolio. For that purpose Jagannathan and

Wang (1996) assume that the realized human capital return is equal to wage growth while

Campbell (1996) assumes that expected human capital returns are identical to expected

asset returns. We can compare these assumptions to what the model predicts.

In equilibrium, expected excess returns to any claim are equal to the negative of the
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covariance between the stochastic discount factor and the claim’s returns. We can use

this result to express any claim’s expected excess return as a function of the state of the

economy. Using Equation (58) and Equation (20), claim S’s risk premium is:

re,t − rf,t =
1

ψ
covt

(
dC

C
,
dS

S

)
+

(
γ − 1

ψ

)
covt

(
dK

K
,
dS

S

)
+

(γ − 1
ψ

)

(1− γ)

g′(zt)

g(zt)
covt

(
dZ,

dS

S

)
. (28)

Noticing that cov(dZ, dS
S

) = 1
1−α(cov(dY

Y
, dS
S

)− cov(dK
K
, dS
S

)), and that covt
(
dK
K
, dS
S

)
= σ2

K ,

the excess return of claim S can be reexpressed as:

re,t − rf,t =
1

ψ
covt

(
dC

C
,
dS

S

)
+(

γ − 1

ψ

)(
wy,tcovt

(
dY

Y
,
dS

S

)
+ (1− wy,t)covt

(
dK

K
,
dS

S

))
, (29)

where wy,t = 1
(1−γ)(1−α)

g′(zt)
g(zt)

. Equation (29) separates the risk-premium into two compo-

nents. The first one corresponds to the standard CRRA result (with γ = 1
ψ

) relating the

risk premium to the covariance of the value of a claim with consumption, scaled by the

inverse of the intertemporal elasticity of substitution. The second term is only relevant

when γ 6= 1
ψ

, that is, when the intertemporal elasticity of substitution and the coefficient of

relative risk aversion are not linked through only one parameter as with CRRA preferences.

The second term can be interpreted in light of the growing long-run risk literature.

Long-run risk is captured in aggregate wealth returns, which in turn are a function of

financial returns and wage growth. The second term in equation (29) is the weighted

average of two components, the covariance of an asset with aggregate wage growth and the

covariance of an asset with financial returns.

Equation (29) predicts that financial returns and wage growth will explain the cross-

section of stock returns, after controlling for consumption growth. It also shows that the

relationship will be conditional, as both the weight assigned to wage growth, wy,t, and

the covariance between wage growth and asset returns, changes over time. Equation (29)
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predicts that empirical tests of the Consumption CAPM, and the CAPM, that use wage

growth, either directly in the regression (as in Jagannathan and Wang (1996)), or as a

conditioning variable (Lettau and Ludvigson, 2001b), will better explain the cross-section

of asset returns, even though neither the Consumption CAPM nor the CAPM hold in this

setting.

Moving forward to the calibration of the model, for the special case of a claim to

aggregate dividends, equation (28) can be simplified to:

re,rf = re,t − rf,t = γσ2
K

(
1 +

1

γ

m′(z)

m(z)

(
1− σA

σK
ϕK,A

))
. (30)

Equation (30) shows that the market’s equity premium is simply a function of the volatility

of capital shocks, risk aversion, and the discount factor’s (per unit of capital) sensitivity

to changes in capital’s productivity, m′(z)
m(z)

. The equity risk-premium’s expression is only

indirectly a function of the elasticity of intertemporal substitution, though it is an explicit

function of the volatility of capital shocks and risk-aversion.

The expression for human capital’s risk-premium simplifies to:

rhc,t − rf,t = re,rf

(
1− h′(zt)

h(zt)

)
− γσ2

A

(
σK
σA

+
1

γ

m′(zt)

m(zt)

(
1 +

σK
σA

ϕK,A

))
h′(zt)

h(zt)
.(31)

The return to human capital has two components. The first follows from human capital’s

correlation with the return on financial wealth, mitigated by the changes in production per

unit of capital. This component is due to human capital’s value being a linear function of

the capital’s stock; shocks to capital translate into shocks to the value of human capital.

The shocks are mitigated by the fact that the value of the claim per unit of capital,

h(zt), changes over time. The second component explaining the excess return on human

capital stem from the impact that changes in production per unit of capital has on the way

consumption is shared between dividends and wages. The numerical results shown below

suggest this component is negative, reducing human capital’s riskiness.

It is useful now to contrast the previous results with the returns to a claim to aggregate
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consumption. Recalling that the value of equity per unit of capital is one, and that the

value of a claim to consumption equals the sum of claims to human capital and equity, the

excess return for this claim will be given by:

rc,t − rf,t = re,rf

(
1− h′(zt)

1 + h(zt)

)
− (32)

γσ2
A

(
σK
σA

+
1

γ

m′(zt)

m(zt)

(
1 +

σK
σA

ϕK,A

))
h′(zt)

1 + h(zt)
.

Not surprisingly, the excess returns earned by consumption are larger than those earned

by human capital but smaller than the excess returns to equity. Larger returns to equity

can be achieved, in the presence of smooth consumption, through a process that prices

human capital with lower returns than consumption. In other words, since consumption

equals the sum of wages and dividends, if wages are less risky than consumption then

dividends, through a “leverage” effect, must command a higher return premium. Research

that includes labor income and attempts to calibrate asset-prices shares this result, though

it typically does not make it explicit.

Equations (30) and (31) illuminate the differences between previous researcher con-

clusions about the returns to human capital. Baxter and Jermann (1997) do not define the

claims to equity and human capital as I have here, and implicitly assume that h′(zt) = 0.

With this assumption, the returns to human capital and to equity are identical, and per-

fectly cointegrated. Lustig and Van Nieuwerburgh’s (2006) results, however, imply that

h′(zt) > 0, so that innovations to equity returns have a negative covariance with innovations

to human capital returns.

The relationship between wages and consumption determines the equity premium and

the human capital premium. Whenever a negative shock hits the economy, consumption

falls from its planned path and marginal utility increases. But wages do not fall us much as

consumption or dividends, so the value of the stream of wages is relatively more valuable

than the stream of dividends. The opposite is true after a positive shock, since marginal

utility falls at the same time that dividends increase more than wages. The extra increase
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in dividends is not as valuable to the agent because dividend growth happens precisely

when he values it less.

Finding the expected returns to equity and human capital allows us to answer the

question: is human capital a bond or a stock? The calibrated model provides plausible

answers. Now we can analyze these results using plausible parameters to evaluate what

the model predicts about the variables described above. The results are discussed below.

4.1 The covariance of human capital and equity returns

Previous work (Jagannathan and Wang (1996)) used labor income growth as a proxy for

human capital returns. Using this proxy they proceeded to test asset-pricing models and

conclude that, given labor income growth’s low covariance with equity returns, the impact

that human capital has on asset-prices is small. This section studies the relationship

between the covariance of labor income growth and stock returns and the covariance of

human capital and stock returns to shed light on the relationship between each other.

The covariance between labor income growth and stock returns is

cov

(
dYt
Yt
,
dEt
Et

)
= ασ2

K + (1− α)σKσAϕK,A, (33)

whereas the covariance between human capital returns and stock returns is:

cov

(
dHt

Ht

,
dEt
Et

)
=

(
1− h′(zt)

h(zt)

)
σ2
K +

h′(zt)

h(zt)
σKσAϕK,A. (34)

Thus, the implications from the model is that the covariance between human capital and

equity returns can be quite different than the covariance between labor income growth and

equity returns. Given the common assumption of α ' .33, if h′(zt)
h(zt)

' .67, then both the

covariance of equity and human capital, and the covariance of equity and wages, would

be similar. But the calibrated model suggests that this is not the case. The covariance

between human capital and equity seems to be two or three times larger than the covariance
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between wage growth and equity.

The intuition for this result follows from the dynamics of the model. A positive shock

leads to higher equity value and higher wages, implying a positive covariance between

equity and wage growth. But wage growth is dampened relative to equity’s return because

following the positive shock wages are a smaller fraction of consumption. The return

to human capital captures the fact that eventually wages will catch up dividends, so its

covariance with equity is larger. In other words, returns to human capital capitalize wage

growth, making human capital potentially more sensitive to the macro-economy.

5 Model calibration and results

We now study the behavior of the variables of interest in the model. In the analysis that

follows, I will study the risk-free rate, the equity premium, the volatility of consumption

and equity, the weight of human capital in the aggregate wealth portfolio and human

capital’s expected excess return.

5.1 Parameter choice

Table 1 shows the parameters I used to calibrate the model. I chose the parameters

so that the model’s long-term expected values match consumption growth, consumption

volatility, production volatility, Sharpe ratios, the risk-free rate, and the ratio of wages to

consumption observed in the data.

The technology’s growth rate η determines consumption’s long term growth. Thus

I set η at 1.7% to match long-term consumption growth. The subjective discount rate ρ

of 2% is consistent with other studies. The volatility in total factor productivity’s growth

rate, σA, is 2.5%. This value is consistent with the real business cycle literature, but I use

it as a free parameter to help match the observed ratio of wages to consumption in the

data. Capital’s volatility, σK , poses a dilemma. On the one hand, in this model capital’s

volatility will also be equity’s volatility. On the other hand, capital’s volatility determines
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production volatility. Given the low volatility of production and the high volatility of

equity observed in the data, the choice of σK will have to be a compromise between both. I

choose 7%, consistent with an instantaneous volatility of production of 2.8%. The resulting

volatility of stock returns of 7% is admitedly low, but it can be defended by noting that

we observe levered equity, whereas in this model the appropriate volatility is the one of

unlevered equity. Equity volatility of 7% is consistent with leverage slightly larger than

50%.14. Typical assumptions for capital intensity are between 30% and 40%, and I use

40% as the benchmark case. I choose the coefficient of relative risk aversion, γ (13), and

the elasticity of intertemporal substitution, ψ (1.1), to match the risk-free rate and the

market’s Sharpe ratio and following other work using Epstein-Zin preferences. A relatively

high value for γ ensures a high Sharpe ratio, whereas a low value for ψ produces low

risk-free rates.

The depreciation rate δ and capital’s intensity α have a large impact on the ratio of

wages to consumption. Lower capital intensities are associated with higher ratios of wages

to consumption and higher weights of human capital in the aggregate wealth portfolio.

Higher depreciation rates have the same effect, increasing wages over consumption and

the weight of human capital in the aggregate wealth portfolio. These variables do not

significantly affect the other moments of the model. I choose α and δ to match the ratio

of wages to consumption. The resulting parameter for δ is .06, which implies that capital

investments have a half-life of roughly 11.5 years, and is common in the macroeconomics

literature.

5.2 Results

The calibration provides several key insights. First, the ratio of wages to consumption is

counter-cyclical, explaining why human capital is less risky than equity. Second, the size

and risk of human capital are a function of the ratio of wages to consumption. Third,

asset-prices change depending on the state of the economy. These results are discussed in

14Danthine and Donaldson (2002) use a similar argument to justify equity volatility of 12%
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more detail below.

Using the parameters discussed in the previous section, Table 2 summarizes the values

around which each of the variables mean-reverts. The risk-free rate of 1.7% is lower than

the historical average. Equity excess returns are about 3.3% and instantaneous equity

volatility is 7%. The resulting Sharpe ratio is .44. Equity’s volatility is about two times

higher than the volatility of consumption growth, which is 3.9%.

5.2.1 Consumption and output

First, we look at the ratio of consumption to capital. In the simple constant expected-

returns model (for example, see Merton (1971)) consumption is a constant fraction of

capital. In the economy analyzed here, consumption is adjusting as shocks change expected

returns, resulting in a time-varying consumption to capital ratio. Figure 1 shows that the

ratio of consumption to capital increases as a function of output per unit of capital. Since

output per unit of capital increases after negative shocks, or at times in which future

consumption growth is high, this result implies that consumption as a fraction of capital

increases in “bad times.”15

Next, we study the ratio of consumption to output. Figure 2 shows that this ratio

decreases as output per unit of capital increases. In other words, the agent invests relatively

more when the output for a given level of capital increases. This result is not surprising,

since the agent’s opportunity cost of consuming today increases when output per unit of

capital is relatively high. Figure 2 also shows the ratio of wages to output. A property of the

Cobb-Douglas production function is that this ratio is constant. As a result, consumption

falls relative to wages when output per unit of capital increases. Output per unit of capital

increases after shocks leave consumption below its long term value. These are times of

relatively high marginal utility, implying that consumption falls more than wages after

when the representative ageng is relatively “hungry”. This is the key result explaining

why human capital is less risky than equity in this model.

15Note that even though the ratio of consumption to capital increases in “bad” times, the absolute level
of consumption falls, relative to its long run trend, in “bad times”.
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To vizualize the previous result, figure 3 presents the ratio of wages to consumption

as a function of output per unit of capital. The figure shows that the ratio of wages

to consumption increases with output per unit of capital. Because output per unit of

capital is high when the representative agent is relatively “hungry”, this figure stresses the

counter-cyclical movement of wages relative to consumption.

5.2.2 Human capital and equity returns

Figures 4 and 5 show how large and how risky human capital is. Unconditionally, human

capital is 87% of aggregate wealth, and, at 2.3%, its expected excess return is about two

thirds of equity’s expected excess return. The weight of human capital in aggregate wealth

is close to the fraction of wages to consumption, which has an unconditional value of 85%.

Furthermore, the weight of human capital in aggregate wealth follows closely, and remains

above, the ratio of wages to consumption.

Figure 5 shows the relationship between the ratio of wages to consumption and excess

returns. Higher-than-average ratios of wages to consumption will be associated with higher-

than-average contemporaneous excess returns. Equity’s expected excess return is 3.3%

and its volatility is 7%, as shown in figure 6. These values are driven by the “smoothing”

induced by time-varying expected returns in the agent’s consumption.

Besides human capital’s size and expected return, Figure 7 shows the relationship

between the covariance of aggregate wages growth and equity, and the covariance between

human capital and equity. Throughout a wide range of values for production per unit

of capital, including the steady-state, the covariance between human capital returns and

equity returns is more than twice the covariance between wage growth and equity returns.

This result is relevant for asset-pricing tests and portfolio selection problems. After

Mayer’s (1972) result linking optimal portfolios and asset prices to aggregate wages growth,

several papers (Fama and Schwert (1977), Heaton and Lucas (1996)), documented that

since the observed covariance between wages growth and equity returns was small, the

effect of human capital on asset-prices was small. But the model presented here shows
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that the covariance of human capital and equity returns is not equal to the covariance

between wages growth and equity returns, with the covariance between human capital

returns and equity returns appearing larger.

6 Conclusion

This paper explores the implications of a general equilibrium production model for the

value and dynamics of human capital. Decreasing returns to scale and the sharing of

consumption between labor and capital drive the results. The calibrated model predicts

mean-reverting risk premia, dividend yields, and interest rates, with labor income growth

and capital returns cointegrated over time.

The model suggests that human capital is less exposed to production shocks than

equity. This result does not rely on frictions of labor markets such as labor contracts

that protect workers from idiosyncratic productivity shocks. Instead, it follows from wages

being a larger fraction of consumption in “bad times”, so that owners of a human capital

claim hold a natural hedge against unfavorable outcomes in the economy.

An empirical construction of the returns to human capital based on this model is

better at explaining the cross-section of asset returns than labor income growth. This

result opens the possibility for other tests that can be performed with this measure of the

returns to human capital.

The model can be extended in multiple directions. An obvious one is allowing the

fraction of output received by workers to change over time. Acemoglu (2002) presents

a model grounded on new growth models from which the fraction of output received by

capital is mean-reverting. Alternatively, even though capital intensity remains constant,

the realized fraction could change due to “sticky” wages, for example due to the existence

of adjustment costs. A richer model in which the fraction of output that goes to workers

changes over time can magnify the “leverage” effect that wages have on dividends, as

long as the fraction increases when consumption decreases. While in the present model
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uncertainty aligns the interests of investors and workers, translating into larger payoffs for

both as technology changes, they are confronted by variations in the share of output they

each receive. A larger pie benefits both stake holders, but the way the pie is divided clearly

benefits one stakeholder at the expense of the other. Finding a way to separate these two

effects is an extension that could help enhance our understanding of variations in labor

income and asset returns.

Another extension is to consider heterogeneity in worker’s skills and the inclusion of

the dynamics of human capital accumulation. Distinguishing labor by its skill, and letting

agents choose their level of skill could provide insights into our understanding of investments

in human capital. Likewise, the model can be generalized to include demographic changes

that would provide a link from intergenerational change to asset prices.

Finally, the role played by a competitive wage across different industries potentially

affects the cross-section of asset returns. A positive technology shock in one industry

will increase the demand for labor in that industry, which in turn increases economy-wide

wages, affecting the returns in all other industries. Thus, labor markets play a significant

role in the riskiness of firms’ cash flows, and understanding that role better can improve

our specification of the cross-section of asset returns.
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7 Appendix A: Symbols and variables

Variable Description

α Capital intensity.

A Efficiency parameter in technology function

C Consumption

c Consumption per unit of capital
(
C
K

)
d Dividends per unit of capital

δ Depreciation rate

ϕK,A Correlation between technology and capital shocks

γ Coefficient of risk aversion

J Manager’s value function

K Aggregate capital

L Aggregate Labor

S Value of equity

e Value of equity per unit of capital

H Value of human capital

h Value of human capital per unit of capital

ψ Elasticity of Intertemporal Subsitution

β Subjective discount rate

re Expected return of equity

rh Expected return of human capital

rf Risk free rate

σA Volatility of technology shocks

σK Volatility of output shocks

σC Volatility of consumption

σe Volatility of of equity

Y Labor income

y Labor income per unit of capital

Z Output per unit of capital

z 1
1−α logZ
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8 Appendix B: Proofs

8.1 Proof of proposition 1

I start with the central planner’s problem. Then, I solve for the manager’s problem and

show that it yields the same result as the central planner’s problem.

The central planner’s problem is:

Jt = max
{ct}∞t

E

[∫ ∞
t

f(Cs, Vs)ds

]
(35)

s.t. dKt = Kt(Zt − δ − ct)dt+KtσKdBK , (36)

where

f(C, V ) =
β

1− 1
ψ

(1− γ)V ((C((1− γ)V )
−1
1−γ )1−

1
ψ − 1). (37)

Given the infinite-horizon setting, the solution will be time-independent. Duffie and SKi-

adas (1994) show that the solution to this problem can be solved using the traditional HJB

equations, such that:

0 = fC(C, J) +DJ, (38)

where

DJ =
∂J

∂t
+
∂J

∂K
dK +

1

2

∂2J

∂K2
dK2 +

∂J

∂A
dA+

1

2

∂2J

∂A2
dA2 + (39)

∂2J

∂K∂A
dKdA

The structure of the problem suggests that J is homogeneous and, given the infinite-

horizon, independent of t. Thus, guess the solution for J is given by:

J(K, z) =
K1−γ

1− γ
g(z) (40)
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Calculating the FOC w.r.t. c and substituting the guess for J(K, z), we obtain

consumption per unit of capital as a function of g(z):

c(z) = βψ
g(z)

1−ψγ
1−γ(

g(z)− g′(z)
1−γ

)ψ . (41)

Next, replacing our guess for J(K, z) in equation (39), and noticing that K drops out of

the equation, we obtain the following ODE for the function g(z):

0 = g(z)(1− γ)

(
βψ

1− ψ
+ e(1−α)z − c(z)

1− ψ
− δ − γσ

2
K

2

)
+ (42)

g′(z)

(
−e(1−α)z +

c(z)

1− ψ
+ δ + η + γ

σ2
K

2
− γσ

2
A

2
− (1− γ)

Ω2

2

)
+

g′′(z)
Ω2

2

If a solution for g(z) exists that satisfies equations (41) and (42), then our guess will be

a solution to the central planner’s problem. To verify that our candidate value function

is indeed an optimal solution, we need to verify that the transversality condition holds.

Numerical solutions imply the condition is satisfied, but I omit a formal proof here.

Now, find the solution to the competitive equilibrium. Following Cox and Huang

(1989) and Duffie and Skiadas (1994), agent i’s problem can be formulated as:

max
{ct}∞t

E

[∫ ∞
t

f(Cs, Vs)ds

]
(43)

s.t. Wi,t ≥
∫ ∞
t

Ms(Ys − Cs)ds, (44)

where Mt is the stochastic discount factor. Taking the FOC w.r.t C, we find:

Mt = fC(Ct, Vt)λi (45)

Where λi is the lagrangian multiplier associated with agent i’s optimization problem.
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Firms have managers that take the stochastic discount factor Mt, wages Yt, aggregate

capital’s level (Kt) and dynamics (µK,t, σK) as given, and maximize the present value for

shareholders. Specifically, firm j’s manager solves the following problem:

max
{Lj}∞t ,{dj}∞t

Et

[∫ ∞
t

Msds,jds

]
(46)

s.t. dKj,t = Kj(Z(Kj,t, Lj,t, At)− Lj,tyt − dt)dt+KjσKdBt

The firm’s problem can be solved with dynamic programming. Defining the value

function J(Kj,t, At, Kt, t), the HJB of the firm’s manager is:

0 = sup
Lj,t,dj,t

Mtdj,t +DJ (47)

Where:

DJ =
∂J

∂t
+
∂J

∂K
dK +

1

2

∂2J

∂K2
dK2 +

∂J

∂A
dA+

1

2

∂2J

∂A2
dA2 +

∂J

∂Kj

dKj + (48)

1

2

∂2J

∂K2
j

dK2
j +

∂2J

∂K∂A
dKdA+

∂2J

∂K∂Kj

dKdKj +
∂2J

∂A∂Kj

dAdKj

Using Equation (47), and noting that the demand for labor Lj,t only appears in the

dKj term of DJ , the firm’s FOC w.r.t Lj,t produces:

Lj,t =

(
1− α
Yt

)1/α

Kj,tA
(1−α)/α
t (49)

In equilibrium wages are such so that labor demand equals labor supply, i.e.,

Lt =

∫
j

Ljdj (50)

=

(
1− α
Yt

)1/α

A
(1−α)/α
t

∫
j

Kj,tdj (51)
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=

(
1− α
Yt

)1/α

A
(1−α)/α
t Kt (52)

Solving for Yt:

Yt = (1− α)

(
Kt

LtAt

)α
At (53)

Plugging into the firm’s optimal demand for labor and back in the production function and

taking into account depreciation, the dynamics of profits for firm j are:

Kj,tZ(Kj, Lj, At)− Lj,tYt − δKj,t = Kj

(
α

(
LtAt
Kt

)1−α

− δ

)
(54)

Using Equation (47), now consider the firm’s FOC w.r.t to dividends:

Mt =
∂J

∂Kj

(55)

Now we guess that the stochastic discount factor is only a function of aggregate

capital Kt and the technology level At and time. Thus, from the firm’s FOC we find that

the value function for the manager is:

J(Kj,t, At, Kt, t) = Kj,tM(At, Kt, t) (56)

Substituting into the HJB, noticing that the term with the dividend cancels out, and

noticing that Kj,t drops out of the equation we find:

0 = dtMt +
∂Mt

∂t
+Mt(αe

(1−α)zt − δ − dt) + (57)

∂Mt

∂At
Atη +

1

2

∂2Mt

∂A2
t

A2
tσ

2
A +

∂Mt

∂Kt

KtµK +

1

2

∂2Mt

∂K2
K2σ2

K +
∂Mt

∂At
AtσKσA +

∂Mt

∂Kt

Ktσ
2
K +

∂2Mt

∂At∂Kt

AtKtσAσK
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Since all firms are subject to the same production shock, σKj = σK . Also, note

that Kj drops out of Equation (57), and we are left with an PDE that depends only on

aggregate capital Kt, the technology level A and time. The solution to this PDE is the

function for M , the stochastic discount factor, and the system will be solved. To continue

with the solution, we guess that Mt = λK−γt m(zt)b(t), where λ =
∫
n
λndn. Substituting in

the previous equation, using equation 16), rearranging terms, and noticing that Kt drops

from the equation, we find the ODE for the function m(zt),

0 = m(z)

(
β(1− γ)ψ

1− ψ
− 1− γψ

1− ψ
g(z)−1c(z)m(z) + αe(1−α)z − δ − γµK −

1

2
γ(1− γ)σ2

K

)
+

m′(z)

(
η − µK −

σ2
A

2
+
σ2
K

2
+ (1− γ)(σAσKϕK,A − σ2

K))

)
+

m′′(z)
1

2
Ω2 (58)

The “no free-disposal” condition implies that consumption equals wages plus divi-

dends. This implies that the drift of aggregate capital is:

µKt = Kte
(1−α)zt − Ct −Ktδ (59)

Thus, Equation (58) becomes:

0 = m(z)

(
β(1− γ)ψ

1− ψ
− 1− γψ

1− ψ
g(z)−1c(z)m(z)

)
+

m(z)

(
αe(1−α)z − δ − γ(e(1−α)z − c(z))− 1

2
γ(1− γ)σ2

K

)
+

m′(z)

(
η − (e(1−α)z − c(z))− σ2

A

2
+
σ2
K

2
+ (1− γ)(σAσKϕK,A − σ2

K))

)
+

m′′(z)
1

2
Ω2 (60)

If the function m(z) exists, then it simultaneously solves the manager’s and agent’s

optimization problems. To verify that our candidate value function is indeed an optimal
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solution, we need to verify that the transversality condition holds. Numerical solutions

suggest the condition is satisfied, but I omit a formal proof here.

8.2 Proof of proposition 2

I drop the subscript t where possible when it is not needed for clarity. The discounted

process for the value of human capital is:

MtHt = Et

[∫ ∞
0

Mτ+tYτ+tdτ

]
(61)

= Et

[∫ ∞
0

Mτ+t(1− α)Kτ+te
(1−α)zτ+tdτ

]
. (62)

The state variable zt and the stock of productive capital Kt describe the economy, and so

the value of human capital will only be a function of these two variables. Taking advantage

of the homogeneity of the model, we guess that H(Kt, zt) = Kth(zt). Using this definition,

and recalling that Mt = λK−γt m(zt)b(t), we can express 8.2 as:

K1−γ
t m(zt)b(t)h(zt) = Et

[∫ ∞
0

K1−γ
t+τ m(zt+τ )b(t+ τ)(1− α)e(1−α)zτ+tdτ

]
. (63)

Using equation (16), the drift of the discounted process is:

E[dK1−γ
t m(z)h(z)]

K1−γm(z)h(z)
=

(
β(1− γ)ψ

1− ψ
− 1− γψ

1− ψ
c(z)

m(z)

g(z)
− (1− α)e(1−α)z

h(z)

)
dt. (64)

Applying Itô-Doeblin’s Lemma and taking expectations to the expression on the left hand

side we obtain the following expression for the discounted process’ drift:

E[dK1−γm(z)h(z)]

K1−γm(z)h(z)
= µK(z)− rf (z) + σK(Σ2 + Σ1ϕK,A) + (65)

+
h′(z)

h(z)

(
η − µK(z)− Ω2

2
+ σA(Σ1 + Σ2ϕK,A)− σK(Σ2 + σ1ϕK,A)

)
+
h′′(z)

h(z)

Ω2
K

2
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Equating both sides, the differential equation can be simplified to:

0 = (1− α)e(1−α)z + (66)

h(z)

(
−β(1− γ)ψ

1− ψ
+

1− γψ
1− ψ

c(z)
m(z)

g(z)
+ µK(z)− rf (z) + σK(Σ2 + Σ1ϕK,A)

)
+h′(z)

(
η − µK(z)− Ω2

2
+ σA(Σ1 + Σ2ϕK,A)− σK(Σ2 + Σ1ϕK,A)

)
+h′′(z)

Ω2

2
.

If the function h(zt) exists, then it will satisfy Equations (64) and (66), and H(Kt, zt) =

Kth(zt) is the arbitrage-free price of a claim to human capital.

Repeating the same process for a claim that pays aggregate dividends, the differential

equation yields St = Kt as a solution. Thus Kt is the value of a claim to equity in this

economy.

9 Appendix C: Numerical solution method

The three ordinary differential equations (the first one solves for the function g(z), the

second one for m(z), and the third one for h(z)) are found using the same method. I use

the finite-difference Crank-Nicholson method as described in Marimon and Scott (1999)

(chapter 8).

I first solve the ODE for the value function, using a grid of 1001 points for z ranging

from -40 to 5, a wide range that captures the area of interest. The initial value is found

from the closed-form solution when z → 0. The initial guess is very important for the

algorithm’s convergence. I iterate until the maximum percent change for any given point

is less than 1E-6.

Solving the ODE for the value of equity requires the value of g(z) and m(z) as inputs.

The initial guess is with h(z) = 0, corresponding to the limit of h(z) as z → −∞. I iterate

until the maximum percent change between iterations is less than 1E-6.
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Table I

Parameters used in calibration

This table shows the parameters used to calibrate the model. Section 5 describes the choice

of each parameter in more detail.

Variable Symbol Value

Coefficient of relative risk aversion γ 13

Intertemporal elasticity of substitution ψ 1.1

Subjective discount rate ρ .02

Production shocks volatility σK 7%

Productivity shocks volatility σA 2.5%

Correlation between production and productivity shocks ϕK,A 0%

Productivity growth η 1.7%

Capital intensity α .40

Depreciation rate δ .06
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Table II

Long-term trend values

This table records the values around which variables mean-revert in the calibration. Data

on the risk-free rate, the risk-free premium, consumption growth volatility, equity volatility,

and the Sharpe ratio is as reported in Campbell and Cochrane’s (1999) long sample. The

ratio of wages to consumption is the average for the period 1947 - 2007. Wages are equal

to total compensation as reported in the National Income and Product Accounts (NIPA)

tables. Consumption is the scaled sum of nondurables and services, also reported in the

NIPA tables.

Variable Model Data

Risk-free rate 1.7% 2.9%

Equity risk premium 3.1% 3.9%

Consumption growth volatility 3.9% 3.8%

Equity volatility 7% 18%

Sharpe ratio 44% 28%

Wages over consumption 85% 85%

Human capital risk premium 2.3% –

Human capital weight in aggregate wealth 87% –
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Table III

Sensitivity analysis

This table shows the sensitivity of the long-term values to changes in the parameters. The

first three columns are parameters: α is capital’s intensity, γ is the coefficient of relative

risk aversion and σK is the volatility of production shocks. The middle columns show the

results for the volatility of consumption growth and the ratio of wages to consumption w/c.

The last columns show the results for the risk-free rate rf , the equity risk premium ree, the

volatility of equity σe, equity’s Sharpe ratio, and the excess return to human capital rehc.

Other parameters in the calibration are σk = 0.07, η = 0.017 and ρ = 0.02.

Parameters Macro variables Asset-prices

γ α σA w/c σc rf Sharpe rp,e rp,hc whc

11 0.38 2.5% 0.948 3.9% -0.18% 0.411 2.88% 2.08% 98.3%
11 0.38 3.5% 0.957 4.1% -0.40% 0.415 2.91% 2.02% 99.0%
11 0.38 4.5% 0.969 4.3% -0.67% 0.421 2.95% 1.93% 99.7%

11 0.4 2.5% 0.908 4.0% 0.57% 0.395 2.77% 2.03% 93.7%
11 0.4 3.5% 0.916 4.2% 0.34% 0.400 2.80% 1.97% 94.3%
11 0.4 4.5% 0.928 4.4% 0.04% 0.406 2.84% 1.88% 95.1%

11 0.42 2.5% 0.871 4.1% 1.27% 0.382 2.67% 1.99% 89.6%
11 0.42 3.5% 0.880 4.3% 1.01% 0.386 2.70% 1.93% 90.2%
11 0.42 4.5% 0.891 4.5% 0.69% 0.392 2.75% 1.84% 91.0%

13 0.38 2.5% 0.888 3.8% 0.78% 0.454 3.18% 2.37% 91.5%
13 0.38 3.5% 0.899 4.0% 0.43% 0.462 3.23% 2.30% 92.4%
13 0.38 4.5% 0.913 4.3% -0.01% 0.471 3.30% 2.21% 93.5%

13 0.4 2.5% 0.852 3.9% 1.65% 0.436 3.05% 2.31% 87.4%
13 0.4 3.5% 0.862 4.1% 1.26% 0.444 3.10% 2.24% 88.3%
13 0.4 4.5% 0.876 4.3% 0.78% 0.453 3.17% 2.15% 89.3%

13 0.42 2.5% 0.819 4.0% 2.44% 0.420 2.94% 2.25% 83.8%
13 0.42 3.5% 0.829 4.2% 2.03% 0.428 2.99% 2.19% 84.6%
13 0.42 4.5% 0.843 4.4% 1.51% 0.437 3.06% 2.10% 85.6%

15 0.38 2.5% 0.835 3.7% 2.31% 0.485 3.39% 2.60% 85.3%
15 0.38 3.5% 0.847 3.9% 1.72% 0.496 3.47% 2.54% 86.4%
15 0.38 4.5% 0.863 4.2% 1.02% 0.510 3.57% 2.45% 87.8%

15 0.4 2.5% 0.802 3.8% 3.34% 0.464 3.25% 2.53% 81.7%
15 0.4 3.5% 0.813 4.0% 2.70% 0.475 3.33% 2.47% 82.7%
15 0.4 4.5% 0.829 4.3% 1.94% 0.490 3.43% 2.38% 84.1%

15 0.42 2.5% 0.772 3.9% 4.26% 0.446 3.12% 2.47% 78.4%
15 0.42 3.5% 0.783 4.1% 3.58% 0.458 3.20% 2.41% 79.4%
15 0.42 4.5% 0.798 4.3% 2.75% 0.472 3.30% 2.33% 80.7%
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Figure 1
Consumption per unit of capital as a function of output per unit of capital

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.

Figure 2
Consumption over output as a function of output per unit of capital

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.
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Figure 3
Wages over consumption as a function of output per unit of capital

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.

Figure 4
Human capital as a fraction of the wealth portfolio

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.
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Figure 5
Expected risk premium and as a function of wages over consumption

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.

Figure 6
Consumption and equity volatility as a function of wages over consumption

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.
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Figure 7
Covariance between wages, human capital, and equity returns

Results with the following parameters: α = 0.40, ρ = 0.02, η = 0.017, γ = 13, ψ = 1.1,
σK = 0.07, δ = .06. The vertical black line denotes the long-term value around which the
economy oscillates.
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