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1. Introduction

Value-at-Risk ¥aR) synthesises in a single value the possiblemsvhich could occur with a
certain probability, in a given temporal horizonhrdughout the years, VaR became a
standard downside measure of risk and has beenvirgceincreasingly attention by
academics and practitioners. Also, the accuratepotation of VaR is critical for the

estimation of other quantile-based risk measurek as the expected shortfall.

Traditionally the different methods to estimate VaRn be classified into two main
categories: parametric methods (often denominatedlogal valuation methods) and
simulation methods (Monte Carlo simulation anddristl simulation). Typically, there is a
trade-off between accuracy and the time requiratsidering the application of these two
different approaches. Parametric methods are ile&s donsuming. However, when the time
series under analysis exhibit important non-stashgaoperties, simulation methods are more
accurate. In fact, the adoption of full-valuatiggpeoaches to estimate VaR can lead to more
accurate results as these methods generally dependess restrictive distributional
assumptions (see for example, Bucay and Rosen,; 1d88sser and Rosen, 1999). As
technical advances in relation to computationatiefficy are likely to continue in the near

future, the use of simulation methods is favoured.

Simplistic simulation methods based on the usenefempirical distribution to compute the
tail quantiles, often referred to as historical @iation cannot adequately account for the
volatility clustering. Therefore, these methodsf@en very poorly in practiceRecently, a

new methodology has been developed in the litezatorestimate VaR. This new method
successfully combines bootstrapping techniques withuse of parametric models and is
generally known as Filtered Historical Simulatiéis{). FHS was first proposed by Barone-
Adesi et al. (1999). Under FHS the bootstrap prodssapplied to the residuals of a time

series model used as a filter to extract autocatiogl and heteroscedasticity from the
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historical time series of returns. Despite beingnatically intensive, FHS is quite simple to
apply and as a result it is faster to implementthther simulation methods. According to
Hartz et al. (2006) FHS is also numerically extrgmeeliable. Additionally, FHS
methodology makes no assumptions about the disiibwof the returns under analysis.
Based only on the assumption of IID standardiseiduals from an appropriate volatility
model, the use of the bootstrap algorithm allowsomputationally feasible method to
approximate the unknown return empirical distribntiThis makes possible the computation
of VaR with a great level of accuracy. In fact, @arAdesi et al. (1999), Pritsker (2001) and
most recently Kuester et al. (2005) have demoresirdtte superiority of FHS method in the

context of VaR estimation.

In recent research a new model based on heteradmedaxture distributions has been used
in volatility modelling. This type of model links &@ARCH-type structure to a discrete

mixture of normal distributions, allowing for dyna@eedback between the components. The
use of a mixture of normal’'s reduces the excessokisr so many times displayed by the
residuals of traditional GARCH models. Haas et(2004) were pioneers in considering a
mixed normal distribution associated with a GARGHé structure (MN-GARCH). Later,

Alexander and Lazar (2006) provided relevant ewigethat generalized two-component MN-
GARCH(1,1) models outperform those with three oréncomponents, and also symmetric

and skewed student’s-t traditional GARCH models.

Kuester et al. (2005) compared the out-of-sampittopaance of existing alternative methods
and some new models (including FHS and MN-GARCH)gdieedicting VaR in a univariate

context. Using daily data for more than 30 yearstten NASDAQ Composite Index, they
found that most approaches perform inadequatele G@hly exceptions seem to be the

GARCH-EVT (which focuses on tail estimation of ttesiduals of GARCH-filtered returns



via methods of extreme value theory), a new modeetl on heteroscedastic mixture

distributions and the FHS.

Hartz et al. (2006) propose a new data driven ntetiesed on a classic normal GARCH
model and use resampling methods to correct for diear tendency of the model to
underestimate the VaR. In fact, the suggested rdeheery flexible in accounting for the
specific characteristics of the underlying seriéseturns as it is almost fully data driven.
Their resampling method is related to the FHS nuettadied in Barone-Adesi et al. (1999,
2002). The results of Hartz et al. (2006) are alscouraging and demonstrate that the use of
a simple normal GARCH model, combined with the agaion of a resampling method, may

not need to be abandoned after all.

The remainder of the paper is organized as foll@&estion 2 describes and discusses FHS as
a method to estimate VaR. In section 3 we preswhtascribe three different data generating
processes (DGPs) used to simulate several timesssamples. Additionally, the backtesting
is described in detail. In section 4 the simulamd empirical results for the backtesting are

reported. The final section, provides some conalgdemarks.

2. Description of the Filtered Historical Simulation

FHS combines the best elements of conditional yamodels with the best elements of the
simulation methods. By combining a non-parametaotbtrap procedure with a parametric
modelling of the time series under analysis we nhgstable to considerable improve the

overall quality of the VaR estimates.

The first step to the implementation of FHS comsist the adoption of a proper volatility

model, usually a GARCH-type model with normallytdisuted residuals.



The major attraction of FHS is that it does noy @h any assumptions about the distribution
of returns. As a non-parametric method FHS canranwadate skewness, excess kurtosis and
other non-normal features presented by the empigeaes of returns including a high
percentage of zero-returns. In the context of FH$hod the historical distribution of returns
is used to estimate the portfolio’s VaR, assumimgt it is a good proxy for the true

distribution of returns over the next holding péria our particular case, over the next day).

Let a sample of observed returi, R,, ..., R, be denoted byR,}. A bootstrap sample of
sizeB, is denoted byR;}, whereR; = R, andt, is an integer drawn from the sgg,...T
using random sampling with replacement. From thatdicap sample of returns the VaR can

be easily estimated as theuantile from the bootstrap sample.

The bootstrap used in this study are similar te¢hcarefully described in Barone-Adesi et al.
(1999). The bootstrap can be easily applied to(thgependent/uncorrelated) standardised
residuals of any specification of the GARCH-typed®ls. As an illustrative example a fully
description of the bootstrap procedure based aaditibnal normal-GARCH(1,1) model is

presented next,
R; = p+ &, with g ~ N(0,0?), (1)
of = ag + arefq + Prof4. 2)
Based on the estimation of the above model, thelatdized residuals are defined as,

&t

et e y
- @)

whereé, is the estimated residual aéid is the corresponding daily volatility estimate.

To start the simulation procedure we get the sitedlannovation for the period+ 1 (z/,;)
by drawing (with replacement) a random standardimsidual é;) from the data set of

historical residuals and scale it with the volgtibf periodt + 1,



Ziy1 = €1 X044 - (4)
The variance of periotl+ 1 can be estimated at the end of petia,
01 = Qo + @y + prof, (5)

whereeg,is the latest (for the last day in the sample)nestizd residual ang? is the latest (for

the last day in the sample) estimated varianceimeon (1) and (2) respectively.

The first simulated return for the period- 1 (Rf,,) can be computed as,

Riv1 = A+ 244, (6)
wherez;, ; is the simulated residual for the periog 1.

This procedure can be repeated as many times agawein order to generate a bootstrap
sample, generally denoted By, of any size sizé. Finally, based on this bootstrap sample
the filtered historical simulated VaR can be eashyained as it corresponds to thquantile

of the bootstrap sample generated under FHS.

3. Backtesting VaR forecasting ability of FHS for wn-normal returns

In general, financial time series exhibit certaylized patterns. These patterns are essentially
fat tails, volatility clustering, long memory andyanmetry. Along the years the development
of different models for volatility was guided byese stylized facts observed in the empirical
data. The most attractive volatility models in apgtions, are probably the GARCH-type

models.

A less standard feature that the financial datahtmexhibit is a high percentage of zero
returns. Though less common, this particular featarght not be neglectful specially when
we are dealing with daily data with respect to s@pecific markets. Paolella and Taschini

(2008) conducted a study on the £énission allowance market and the daily returieser

7



used by the author’s exhibit a larger-than-usuahiner of zeros These authors remark that a
high incidence of zeros in the empirical data préet the use of traditional GARCH models
to forecast VaR, even when they are applied und¢®.F Though Paolella and Taschini
(2008) recognize that FHS is, in general, a higbctive method to estimate VaR, the authors
claim that the forecasting performance of this radifcritically relies on the adequacy of the
innovation distributional assumption used for th&R&H filter applied to deal with
heteroscedasticity in the data. The argument i thahe residuals of the fited GARCH
model significantly departure from the assumedritstional form, FHS will fail to estimate
with precision the empirical distribution of thetums. Therefore, any VaR computation

based on FHS will be inaccurate.

The effective use of a GARCH model under a strieihyalytical approach to compute VaR
critically relies on the adequacy of the modelrdlisttional assumption. The high incidence of
zeros in the return series, results in a data géingrprocess that is not consistent with any
typical distributional assumption. This means thatthe presence of a high incidence of
zeros, the analytical solution for the VaR, basedh® estimation of GARCH models, with a
typical distributional assumption will be potenlyabiased. Paolella and Taschini (2008)
claim that the very same argument applies even \a@ARCH model is used only as a filter
(to deal with heteroscedasticity in the seriesebfirns) and a simulation solution is provided

for the VaR instead of an analytical one.

Paolella and Taschini (2008) advocate the noniegdplity of the FHS methodology
because of the zeros-problem. As an alternativactwurately estimate VaR they propose a
conditional analysis, whereby a mixture model ipliggl which properly accounts for both

the GARCH-type effects and the zeros-problem.

! paolella and Taschini (2008) report an incidenc28b of zeros for their dataset.



We are not in agreement with the argument of Placdégld Taschini (2008). The main insight
of the FHS method is that it is possible to captheedynamics in the data (like for example
conditional heteroscedasticity) and still be somawhnrestrictive about the shape of the
distribution of the returns. In fact, under FHS thstributional assumption with respect to the
residuals is relaxed is favour of the much weaksumption that the distribution is such that
the parameters of the model can be consistentiynatsd. Therefore, in the contrary of
Paolella and Taschini (2008), we argue that FH&hiaccurate method to estimate VaR, even
when the residuals of the GARCH filter clearly watd the distributional assumption due to

the abundance of zeros.

3.1. Definition of alternative non-normal data gengating processes

For testing the forecasting performance of FHS uwrdatrollable circumstances several time
series of returns are simulated using three diftedata generating processes (DGP): a
normal GARCH with ar proportion of zeros, a mixed-normal GARCH (MN-GARand a
Student’st-distributed asymmetric power ARCH-A-PARCH). By choosing these three
different DGPs we aim to simulate series of nommadrreturns that exhibit the usual stylized
facts, such as conditional power tails for thedeals and asymmetric volatility responses (for
thet-A-PARCH), sophisticated correlation dynamics antetvarying skewness (for the MN-
GARCH) and also a significant incidence of zeraw the GARCH combined with a high

percentage of zeros).



3.1.1. GARCH model combined with a high percentagef zeros

We first consider a DGP under whichrgroportion of zeros and B— m proportion of non-
zero returns, is simulated. The non-zero returasaasumed to be uncorrelgtadd to follow
a traditional normal GARCH(1,1) process for theiasace. Formally, the model that generates

such a sample of simulated returns is given by,

(7)

{,u + & = u + 0.z, with z, ~ N(0,1) and o = ag + a 621 + f1o24, for a proportion (1 — )
R; =

0, for a proportion

The proportion of zeros is set equal to 29% whiolresponds to the incidence of zeros

reported by Paolella and Taschini (2008)

In order to simulate thd —m proportion of non-zero returns, typical values tbe

parameters are assumed in the model:
u=0.0004,

ap = 0.000006, oy = 0.1, B, = 0.8,

3.1.2. MN-GARCH model

As an alternative, a MN-GARCH is used to generhte dimulated returns. The functional

form of a MN-GARCH time serieR; can be described as,
Ry = E(R¢|Q1) + &, (8)

whereE(.|.) denotes the conditional expectation operafpr,;the information set at time

t—1, and ¢, the innovations or residuals of the time serigs.describes uncorrelated

% In interest of simplicity the returns are assunmebéd uncorrelated and no ARMA terms will be inclddie the
model.
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disturbances with zero mean and plays the roldh@funpredictable part of the return time

series.

Under MN-GARCH models, the usual GARCH structureeidended by modelling the
dynamics in volatility by a system of equationstteaables feedback between the mixture

components.

The time series of, is said to be generated by a component MN-GARCbtegss if the

conditional distribution of; is ann — component mixed normal with zero mean, that is,

gtlﬂt—1~MN(w) u, 0-2)) (9)
whereg,; denotes the innovations or residuals of a timesgl,_, represents the information
set available at time —1 and w = (wy, ..., wp), 4 = (Uq, o, ), 02 = (04, ...,02). The
mixed normal density is given by,

fun(Z w, 1, Utz) = Z wj(]b(z; Uj, szt)v (10)
=1

J

where ¢ is the normal pdfw = (w4, ..., w,)" is the set of component weights such that

w;j € (0,1) and ¥i_;w;j =1, u= (u, .., 4y)" is the set of component means such that, to
ensureEle,] = 0, u, = — X721 (wj/w,) pj, and of = (0, ...,0%) € R} are the positive

component variances at time

The key aspect of a MN-GARCH model is that theomponent variances® are allowed to

evolve according to the GARCH-type structure.

One major advantage of using a MN-GARCH process ilie the fact that time-varying
skewness is intrinsic in the model without requgriexplicit specification of a conditional
skewness process. MN-GARCH models are similar tokbaswitching models but easier
for use. In fact, the MN-GARCH model can be seethadMarkov switching GARCH model

in a restricted form where the transition probdlesi are independent of the past state.
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In this paper a MN(2)-GARC(1,1) is used as a DGfidal values for the parameters of the

model are used:
w = 0.050,
0(10 = 000005, 11 = 000292, Bll = 094‘34‘, w1 = 06595

00 = 00002, 0y = 00786, 621 = 09465,

3.1.3.t-A-PARCH model

Finally, a very competitive model for fitting asseturns is used to generate our series of
simulated returns: the asymmetric power ARCH mdé@ePARCH). This model was first
introduced by Ding et al. (1993). It allows asymneetvolatility responses and also
conditional power tails. Mittinik and Paolella (1) recommend the combination of a A-
PARCH model with the assumption of Student:distributed residuals to improve the

competitiveness of the model for fitting asset mesu
A t-A-PARCH model is represented as:
R =u+¢e, & =2,2e ~ t,, (11)
Ut(S =ao + ai(lee_q| — Vft—1)5 + :810-155—1' (12)

The samples of simulated returns are generated tgoncal values for the parameters in the

model:
w = 0.050,
ap = 0.035, a; = 0.200, B; = 0.700,

y = -0.200, 6 = 1.600, v =5.000.
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3.2. Backtesting FHS

To assess the forecasting performance of FHS @ndaChristofferson’s (2003) framework.
Additionally, a Dynamic Quantile (DQ) test as susfge by Engle and Manganelli (2004) is

also applied.

By observing a series of ex ante VaR forecasts engbost returns we can define a hit

sequence of VaR violations as:

{1, lf Rt < _VaRt
I, =

If FHS is a correct forecasting model the hit semeeof violations should be:

Hy: I, ~ iid Bernouli (1).

3.2.1. Christoffersen’s framework: test of uncondibnal coverage, independence and

conditional coverage

To test null hypothesis define above we must fest if the fraction of violations obtained for
our risk modell is equal to the specified fractioh (unconditional coverage). Under the

unconditional coverage null hypothesis that 1 , the likelihood of ariid Bernoulli (1) is

given by:

T
L) = 1_[(1 — )M Al = (1 = pyToa™, (14)
t=1

and the observed likelihood is given by:

T
L(1) = 1_[(1 — T A = (1 = A, (15)
t=1
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where T, and T; are the number ofs and 1s in the sample. The observed fraction of

violations in the sequence can be estimateti-ag; /T .

The unconditional coverage hypothesis can be cloegkmmg a likelihood ratio (LR) test:
LR, = —2In[L(A)/L(D)] (16)
The test is asymptotically distributed a¥'a with one degree of freedom:
LR, = =2In[L()/L(D)] ~ XZ. (17)
The P-value is computed as:
Pie =1 —=Fy2(LRyc),

whereF 2 (.) represents the cumulative density function afavariable with one degree of
freedom. Whenever the P-value is below the desiguaificance level the null hypothesis is

rejected.

Christoffersen (2003) also establishes a test ¢oitdependence of the violations. For that
purpose assume that the hit sequence is dependentime and can be described as first-

order Markov sequence with transition probabilitgtrx:

1-21 A
A= [ 01 01]
1-41 g

where 4;;are the probabilities given by;; = Pr(l; =iand .4, =j), i,j =0,1. For a

sample of T observations, the likelihood functidnhe first-order Markov process is:

L(A) = (1 — o) P00 A% (1 — Agq) oAl (18)

11

where T;;,i,j = 0,1 is yhe number of observations withj&ollowing ai. The observed

probabilities are given by:

14



doo =1=Ao1, Ao=1- A1
Under the null hypothesis the likelihood functisrgiven by:
L(R) = (1-1)"in, (19)
and the observed likelihood value is giveri:by
L(R) = (1 — Aoy A%r (1 — A,p)Ta0ATa2, (20)
We can test the independence hypothesisithat 1,,by applying a LR test:
LRing = —2In[L(D)/L(D)] ~ X2 (21)
The P-value is given by:
Pina = 1 = Fy2(LRinq),

Finally, Christoffersen (2003) proposes a jointgttfor independence and correct coverage

(conditional coverage test):

LR.e = —2In[L(A)/L(A)] = Lyc + Ling ~ X2. (22)

® For samples wherg; = 0, the likelihood function is given by:

L(R) = (1 = Ag;) "0 AT,
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The corresponding P-value is given by:

Pre =1—Fyz(LReo).

3.2.2. Dynamic Quantile test

Christoffersen’s (2003) framework has some linotai because it only considers the first-
order dependence when assessing the independeribe séries of VaR violations. As a
consequence, under this approach a seriesRfWaations, that exhibits some higher-
order dependences, might not be rejected becausme# not have first-order dependence.

Engle and Manganelli (2004) propose an alterndaégebased on a linear regression.

Define:

Hit, = I(R, < —VaR,). (23)

To construct the test the following regression nigsimplemented:

M
Hit, = ag + z niHite_; + Ny VaR, + uy, (24)
i=1

wheren;,i = 1,...,M + 1, are regression parameters and

{—A, with probability 1 — A
Ytl1-21  withprobability A.

Under the null hypothesisty = A andn; = 0,i = 1,..., M + 1. Using the vector notation:

H-211= Xn+u, (25)

where n, =1, — 1 and 1 denotes the vector of ones. Under the null hymihethe

regressores in (24) should not have explanatoryepowhat isH,:n = 0. Invoking an
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appropriate central limit theorem the asymptotstribution of the OLS estimator under the

null hypothesis can be established:

flors = XX)T'X'(H-21) 2 N(O,XX)™"A1—(1-1)), (26)

Engle and Manganelli (2004) derive the followingriaynic Quantile (DQ) test statistic:

__Nos XX NoLs 2 27
DQ = 10-2) 2 Xitsa. 27)

In our study, similarly to Kuester et al. (2005)ot alternative specifications of the DQ test
are used: D@, under which a constant and four lagged hits actuided in the regression;

DQvar, Under which the contemporaneous VaR estimatsasirecluded in the regression.

4. Backtesting results

The use of simulated data offers a valuable oppaxtto evaluate the VaR forecasting ability
of FHS under controllable, yet realistic, circunm&tas. However, as the validity of any
method is best assessed using empirical dataiseiddition to the backtesting exercise based
on simulated data, the performance of FHS is alatuated using six different empirical time

series.

4.1. Simulation results

Ten samples, of 3500 simulated returns, are gestereting each of the three DGP described
in section 3.1. The first 500 generated observatiane leftover to avoid any starting-value
problems. The estimation period is definedTas 1000. With respect to each simulated
series, P = 2000 out-of-sampleh =1 step-ahead VaR forecasts are computed using
downfall probabilities 4 = 0.01,0.02,...,0.1 andB = 20 000 bootstrap replications. Three

competing models, differing in the innovations asption, are used as a filter in the context
17



of FHS method: a normal-GARCH(1,1),t#%5ARCH(1,1) and &kew-t-GARCH(1,1f. The

main purpose is to investigate whether the perfageaf FHS based on a GARCH process is
sensitive to the use of different distributionas@mptions for the innovations. Barone-Adesi
et al. (1999) describes FHS as a distributiona freethod. Therefore the VaR forecasting
performance of FHS should not be affected by tleesden on the distribution that is assumed
in the filtering stage. However the conclusion afdster et al. (2005) is disturbing in the
sense that they indicate that the choice of a S#dvessumption for the residuals of the
GARCH model, used as a filter under FHS, is ablertmluce better-quality results. This issue

deserves further investigation.

The results for the first of the 10 simulated serieased on the three different DGP are
reported in table 1 to table 3. A summary for tlienber of rejections of the null hypothesis

for all the simulated samples is reported in tabte table 6.

Based on the results reported, we can concludetlieaFHS method is a very accurate method to
forecast VaR. With respect to all DGP, for a sigaifice level of 1%, the null hypothesis that tisk ri
models are correct on average is generally nottege When the DQ test is applied the results are
slightly worst. Also, for a significance level oP4l the independence of the VaR violations is
generally preserved. For a significance level of&%d 10%, some of the samples exhibit problems in

terms of independence of the VaR violations, esjlgavhen at-GARCH or Skewt-GARCH is used.

* The model is estimated using maximum likelihood_[Mpproach according to the quasi-Newton method of
Broyden, Fletcher, Goldfarb and Shanno. The residte obtained using Ox version 4.10 (see Doo20k,7).
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Table 1Results for the simulated series based on a GAR@B4 of zeros (sample?)
Target downfall probability  0.01 002 003 004 005 006 007 008 0.9 0.1

normal
Observed downfall probability 0.0110 0.0210 0.0320 0.0380 0.0475 0.0570 0.0705 0.0780870.0 0.0980
Puc 0.6582 0.7513 0.6039 0.6454 0.6051 0.5691 0.9302 0.7407379.6 0.7649
Pind 0.4744 0.1743 0.7968 0.7746 0.4424 0.6874 0.7018 0.5952018.6 0.6132
PCC 0.7021 0.3780 0.8456 0.8634 0.6513 0.7842 0.9258 0.822180D.7 0.8416
DQHit 0.5912 0.5366 0.9977 0.9785 0.7180 0.9161 0.9011 0.8964790.8 0.6244
DQVaR 0.5820 0.5104 0.9593 0.7234 0.5515 0.9126 0.9380 0.9225384.9 0.7039
t-Student
Observed downfall probability 0.0115 0.0210 0.0295 0.0385 0.0505 0.0585 0.0700 0.0790870.0 0.0955
Puc 0.5102 0.7513 0.8954 0.7305 0.9184 0.7767 1.0000 0.8688379.6 0.4994
Ping 0.4548 0.1743 0.0561 0.7787 0.6033 0.6216 0.4698 0.6569694.6 0.3946
PCC 0.6089 0.3780 0.1599 0.9059 0.8691 0.8504 0.7701 0.8938169.8 0.5541
DQHit 0.3419 0.7485 0.8558 0.9770 0.9316 0.8468 0.9120 0.9857388.9 0.9528
DQVaR 0.4145 0.7896 0.8185 0.6472 0.7392 0.8411 0.9420 0.982473DP.9 0.9507
Skewedt
Observed downfall probability 0.0110 0.0200 0.0305 0.0365 0.0505 0.0570 0.0685 0.0795858.0 0.0955
Puc 0.6582 1.0000 0.8960 0.4177 0.9184 0.5691 0.7919 0.9342786.4 0.4994
Pind 0.4744 0.1957 0.7875 0.7314 0.7448 0.6874 0.3532 0.404854D.5 0.5148
PCC 0.7021 0.4330 0.9561 0.6789 0.9434 0.7842 0.6276 0.70445348.6 0.6439
DQHit 0.5912 0.6213 0.9999 0.9124 0.8832 0.8362 0.9358 0.942031DP.9 0.8941
DQVaR 0.5779 0.6095 0.9826 0.6025 0.7644 0.8547 0.9700 0.965268D.9 0.9452

2 Estimation period of = 1000; P = 2000 out-of-sampleh = 1 step-ahead VaR forecasts are computed using dbbwnfa
probabilitiesz = 0.01,0.02, ...,0.1 andM = 20 000 bootstrap replications. Entries in the last 1Qguls are the P-values of
the respective tests. Bold type entries are natifgignt at the 1% level. For the computation o the estimated
regression includes a constant and four laggedtols. For the computation of Q£ the contemporaneous estimate of
VaR in also included in the regression. See se@i@. for a description of the tests.

Table 2Results for the simulated series based bA#®ARCH (sample 1}
Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

normal
Observed downfall probability 0.0110 0.0210 0.0315 0.0425 0.0495 0.0570 0.0680 0.07859386.0 0.1025
Puc 0.6582 0.7513 0.6964 0.5721 0.9182 0.5691 0.7248 0.8042866.5 0.7104
Pind 0.2373 0.2852 0.0585 0.0907 0.1623 0.0791 0.1898 0.3690318.4 0.6020
PCC 0.4510 0.5373 0.1548 0.2038 0.3747 0.1820 0.3979 0.6477338.6 0.8147
DQHit 0.2671 0.7515 0.0086 0.2043 0.1480 0.1311 0.1273 0.2979 0.3920 0.7460
DQVaR 0.0527 0.0495 0.0003 0.0008 0.0021 0.0036 0.0017 0.0042042.0 0.0107
t-Student
Observed downfall probability 0.0105 0.0215 0.0300 0.0410 0.0490 0.0585 0.0690 0.0795920.0 0.1010
Puc 0.8236 0.6359 1.0000 0.8202 0.8369 0.7767 0.8606 0.9342554.7 0.8817
Pind 0.2139 0.0137 0.00190.0644 0.0652 0.2092 0.6803 0.5646 0.4845 0.4362
PCC 0.4506 0.0429 0.0081 0.1762 0.1788 0.4366 0.9046 0.8443 0.7461 0.7304
DQH“ 0.2364 0.0123 0.0014 0.0281 0.1076 0.5751 0.3178 0.2983 0.4589 0.7429
DQVaR 0.0676 0.0008 0.0001 0.0031 0.0288 0.1971 0.1197 0.1454 0.2125 0.3690
Skewedt
Observed downfall probability 0.0115 0.0210 0.0300 0.0405 0.0495 0.0580 0.0690 0.0780918.0 0.0995
Puc 0.5102 0.7513 1.0000 0.9093 0.9182 0.7050 0.8606 0.740715D.8 0.9405
Pind 0.2617 0.0115 0.0019 0.0571 0.0731 0.1920 0.6803 0.4920 0.4604 0.4795
PCC 0.4289 0.0390 0.0081 0.1626 0.1997 0.3975 0.9046 0.7477 0.7410 0.7767
DQH“ 0.2864 0.0099 0.0014 0.0597 0.1237 0.6380 0.4507 0.3713 0.4234 0.5550
DQVaR 0.0705 0.0017 0.0002 0.0123 0.0555 0.2471 0.1258 0.1079 0.1228 0.2268

aSee the note in table 1.
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Table 3Results for the simulated series based on a MN-GARsample 1}:

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
normal
Observed downfall probability 0.0125 0.0215 0.0300 0.0355 0.0500 0.0575 0.0655 0.0735858.0 0.0955
Puc 0.2794 0.6359 1.0000 0.2954 1.0000 0.6356 0.4256 0.2778786.4 0.4994
Ping 0.3138 0.0137 0.0095 0.0488 0.3433 0.5138 0.1192 0.4227 0.5258 0.2213
Pec 0.3355 0.0429 0.0345 0.0830 0.6383 0.7222 0.2163 0.402436DP.6 0.3768
DQuit 0.1876 0.0220 0.0255 0.2298 0.8432 0.8918 0.4154 0.5424634.8 0.6491
DQVaR 0.0011 0.0029 0.00480.0516 0.4231 0.6522 0.1823 0.2814 0.7870 0.7105
t-Student
Observed downfall probability 0.0110 0.0200 0.0285 0.0375 0.0450 0.0550 0.0655 0.0720840.0 0.0955
Puc 0.6582 1.0000 0.6917 0.5643 0.2970 0.3400 0.4256 0.1803438.3 0.4994
Ping 0.0220 0.0506 0.0258 0.0792 0.3179 0.7360 0.1192 0.3502948.5 0.2213
PCC 0.0658 0.1479 0.0770 0.1814 0.3525 0.5992 0.2163 0.2635540.5 0.3768
DQuxit 0.0026 0.1492 0.0950 0.4856 0.5387 0.7415 05278 0.5192 0.7433130.4
DQVaR 0.0002 0.0260 0.0237 0.2049 0.2447 0.5193 0.4651 0.4740 0.5796148.5
Skewedt

Observed downfall probability 0.0105 0.0210 0.0300 0.0370 0.0470 0.0555 0.0660 0.0725870.0 0.0950
Puc 0.8236 0.7513 1.0000 0.4882 0.5342 0.3911 0.4793 0.2096379.6 0.4527
Ping 0.0180 0.0662 0.0395 0.0705 0.4162 0.7300 0.1315 0.3738538.4 0.2385
Pec 0.0594 0.1760 0.1202 0.1532 0.5923 0.6522 0.2497 0.306575D.6 0.3765
DQHit 0.0016 0.2062 0.2307 0.4288 0.7193 0.7822 0.5657 0.5005 0.8338096.4
DQVaR 0.0003 0.0286 0.0560 0.1533 0.2451 0.3456 0.3436 0.2904 0.5502708.4

aSee the note in table 1.

Table 4 Results for the simulated series based on a GARQBE4 of zeros:
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Table 5Results for the simulated series based tA-#®ARCH:

Number of rejections of the null hypothe@ismber of P-values below the desired level)
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Table 6 Results for the simulated series based on a MN-GARC
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Overall, for a significance level of 1%, the FH8efied by the traditional normal-GARCH gives the
best results for the simulated time series gengtataising a GARCH+29% of zeros as the DGP. For
the data that was simulated using a DGP basedtgnRARCH, for a significance level of 1%, the
traditional normal-GARCH still produces the bestulés in the context of the Christoffersen’s (2003)
framework. Neverthless, when DQ tests are applied FHS method coupled with a Ske\3ARCH
performs slightly better. Finally, for the serigfssimulated return based on a MN-GARCH, for a 1%
level of significance, the use of t&GARCH(1,1) or a Skew~GARCH, to filter the returns under
FHS, slightly improves the results in terms of ipeledence of the VaR violations. However, the

results are not conclusive as the st indicates that the traditional normal-GARGHbieferred.

FHS using a traditional normal-GARCH model predistth great accuracy the downfall risk for the
time series generated by a normal-GARCH with a 28%eros. These results are robust to the
different statistic tests that were applied. lotfdor all the tests and across all the signifazalevels,
the results are in favour the accuracy of FHS m&tnod to forecast VaR when the time series exhibit

a high incidence of zeros. Remember that PaolatiaTaschini (2008) argued the opposite.

Even when more sophisticated DGPs are used to aientihe data, the forecasting ability of FHS
based on the traditional normal-GARCH model i# géry satisfactory, especially for a significance
level of 1%. The less satisfactory results respettie independence of the VaR violations (esplgcial
for a significance level of 5% and 10%) for theisemgenerated by 8A-PARCH and MN-GARCH
DGP. The use of BGARCH or Skewt-GARCH instead of the traditional normal-GARCH doex

generally (considering the three DGP’s) improvesr#isults of FHS method.

4.2 Empirical results

The performance of FHS is also evaluated using @capitime series. For that purpose, the
backtesting was repeated using six well known acsitock indices from developed markets: DAX,

DJI, FTSE, NASDAQ Composite, Nikkei 225 and S&P 5UT6e data setconsists of daily closing

® The data was obtained from DataStream.
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levels of the indices from February tHe,8971 to September the™02010, yielding a total of
10 343 observations of daily log returns. Tablehmarizes the descriptive statistics for the sixclst
indices investigated. All the time series exhiliyliged characteristics that indicate a potential

departure from normality: negatively skewness ammss kurtosis.

Table 7 Summary of descriptive statistics for the stoakées

DAX DJI FTSE NASDAQ Nikkei S&P500
Sample Size 10 343 10 343 10 343 10 343 10 343 10 343
Minimum -0.137099 -0.256320 -0.121173 -0.120478 -0363 -0.228330
Maximum 0.107975 0.105083 0.089434 0.132546 0.132346 .109672
Mean 0.000242 0.000242 0.000296 0.000305 0.000143 02330
Standard Deviation 0.012513 0.010726 0.010753 0.012385 .012685 0.010755
Skewness -0.306679 -1.356437 -0.278622 -0.281302 5008t -1.077088
Kurtosis 8.031591 38.387919 9.141047 10.549319 18736 27.641346

Considering the empirical properties of the dateadécordance to what is generally recommended by
the literature, an autoregressive process of dirder (AR(1)) is used to model the stock indices

returns:
Ry =p+ @Ry q+e;. (28)

To capture volatility dynamics, the innovationstioé above model are modelled in the context of a
GARCH-type process. Four alternative GARCH-typaicttires are considered. In addition to the
traditional GARCH, a GARCH-in-mean (GARCH-M), thdoSten, Jajannathan and Runkle (GJR)

and a GJR-in-mean (GJR-M) specifications for theavee are also tested.

The GARCH-M model (Engle et al., 1987) extends tilaglitional GARCH framework by allowing

the conditional mean stock return to depend oavits conditional variance:
Ry = p+ @R(_; + @02 +sy, (29)

An important reason in financial theory for usingGARCH-M structure is because it deals to a
certain degree, with the presence of conditiontildkewness commonly observed in stock returns

time series. This is related to the volatility feadk effect, which amplifies the impact of bad néws
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dampens the impact of good néweolatility feedback therefore implies that stqmiice movements

are correlated with volatility and the GARCH-M mod&orporates that its specification.

The traditional GARCH model is unable to capturdatiity asymmetry, which also usually
characterises stock markets. In this regard the Bd&el, as introduced by Glosten et al. (1993), is
also considered. The GJR model allows for possiblanmetric behaviour in volatility. An indicator
function is incorporated in the volatility specditon of the model, enabling the volatility to reac

differently depending on the sign of past innovatio
0f = ag + aygf1 + P10 + g4, (30)

life, 4 <0

wherel_, = {0 ife,_, > 0.

In order to estimate the models, it is necessamadke assumptions about the distribution of thererr
term. For each model, and similarly to what wasedbafore in the context of the simulation, three
error distributional assumptions are investigatedefach of the four models: norm&iStudent and
Skewedt. Therefore, twelve different GARCH-type models,ttwian AR(1) term in the mean

equation, are tested:

normal-AR(1)-GARCH(1,1), henceforth normal-GARCH ;

- t-AR(1)-GARCH(1,1), henceforthtGARCH,;

- Skewt-AR(1)-GARCH(1,), henceforth Skew-GARCH,;

- normal-AR(1)-GARCH(1,1)-M, henceforth normal-GARQW-

- t-AR(1)-GARCH(1,1)-M, henceforth GARCH-M;

- Skewt-AR(1)-GARCH(1,)-M, henceforth Skew-GARCH-M;
- normal-AR(1)-GJR(1,1), henceforth normal-GJR;

- t-AR(1)-GJR(1,1), henceforthGJR;

- Skewt-AR(1)-GJR(1,1), henceforth SketGJIR,;

® For a detailed explanation of the volatility feadk effect see Campbell and Hentschel (1992).
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- normal-AR(1)-GJR(1,1)-M, henceforth normal-GJR-M,;

- 1-AR(1)-GJR(1,1)-M, henceforthGJR-M;

- Skewt-AR(1)-GJR(1,1)-M, henceforth SketnGJIR-M;
A moving window of 1000 observation is used andrtieelel parameters are updated for each
moving window based on one day incremefis. each empirical time serie9343 out-of-
sampleh = 1 step-ahead VaR forecasts are computed using tdogetfall probabilities of
A =10.01,0.02,...,0.1 and B = 20 000 bootstrap replications. The results are reported i

Tables 8, 9, 10 and 11.

According to the three-zone approach defined byBagle Committee (1996), a VaR model
is considered accurate (green zone) if it prodacesmber of 1% VaR violations that remains
below the binomial (0.01) 95% quantile. A modelaiguable (yellow zone) up to 99.99%
quantile. When more violations occur the model udged as inappropriate (red zone).
Adapting this framework to our sample size, ifnabst 109 (1.17%) violations occur the
model is considered acceptable. Between 110 and(1.39%) the model is classified as
being disputable. Table 8 reports the observedepéaige of VaR violations for all the models
and across all target downfall probabilities. Fritra total of 72 estimated models (12 models
for 6 different stock indices) 52 (approximately.Z%) are classified as accurate (green), 19
(approximately 26.4%) as arguable (yellow) and dhlapproximately 1.4%) is reported as
inappropriate.

To expedite the comparison of VaR forecasting nath&uester et al. (2005) advocate the use of a
graphical depiction of the quality of VaR predictsoover the relevant probability levelBherefore
the relative deviation from the correct coverage ba compared across the different VaR

levels and alternative modelshe graphical depiction of the quality of the Va&ecasts was
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implemented for all the stock indices investigitels an example, Figure 1 depicts the coverage

results for VaR leveld = 0.01,0.02, ...,0.1, with respect to the NASDAQ sample.

Based on the analysis of the deviation plots cansgtd for the all the empirical samples we can
conclude that FHS has good coverage propertiespecally at the lower quantile. These result is
valid across all the competing GARCH-type modelsvéitheless, in general, the traditional normal-
GARCH model demonstrates a higher performance wihdicates that this model is suitable to filter
the empirical data for heteroscedasticity under FH& adoption of a more sophisticated GARCH-
type model or distributional innovation assumptia@ges not generally improves the coverage

properties of the FHS method to estimate VaR.

Table 9 gives summary information about to the cage properties for each GARCH-type model
investigated, across all the empirical samples. mkean absolute error (MAE) and the mean squared
error (MSE) of the actual violation frequenciesnfrahe corresponding theoretical VaR level are

reported.

" To save space the graphical depiction of theityuafl VaR predictions, for all the stock indicesnsples, was

not included in the paper. These results are édailapon request.
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Table 8 Percentage of VaR violations

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 *
DAX
normal-GARCH 0.0110 0.0223 0.0334 0.0417 0.0519 0.063673D.0 0.0821 0.0907 0.1017 Green
t-GARCH 0.0115 0.0223 0.0334 0.0421 0.0535 0.0626 0.0734 0.08249148.00.1011 Green
Skewt-GARCH 0.0116 0.0225 0.0333 0.0422 0.0530 0.0634 0.0727 0.08202P.00.1014 Green
normal-GARCH-M 0.0100 0.0207 0.0303 0.0381 0.0478 0.058P66&¥ 0.0751 0.0835 0.0916Green
t-GARCH-M 0.0104 0.0206 0.0307 0.0390 0.0488 0.0580 0.0682 0.0758B5P.00.0933 Green
Skewt-GARCH-M 0.0106 0.0208 0.0320 0.0389 0.0486 0.0584 0.0683 0.076@59.00.0942 Green
normal-GJR 0.0118 0.0223 0.0335 0.0423 0.0548 0.0637 0.0020807 0.0909 0.1022Yellow
t-GJIR 0.0124 0.0224 0.0336 0.0438 0.0548 0.0635 0.0728 0.08210930D.00.1037 Yellow
Skewt-GJIR 0.0119 0.0223 0.0338 0.0433 0.0546 0.0638 0.0724 0.08223P.00.1034 Yellow
normal-GJR-M 0.0119 0.0225 0.0317 0.0408 0.0514 0.0610684.00.0770 0.0871 0.0971Yellow
t-GIJR-M 0.0109 0.0208 0.0311 0.0404 0.0492 0.0585 0.0669 0.0758B6DP.00.0963 Green
Skewt-GJIR-M 0.0111 0.0210 0.0316 0.0407 0.0503 0.0590 0.0676 0.0778B6D.00.0971 Green
DJl
normal-GARCH 0.0118 0.0226 0.0332 0.0426 0.0535 0.06277130 0.0812 0.0896 0.0991Yellow
t-GARCH 0.0111 0.0224 0.0324 0.0423 0.0515 0.0609 0.0710 0.0818€00.00.1009 Green
Skewt-GARCH 0.0119 0.0226 0.0328 0.0424 0.0515 0.0610 0.0716 0.081%00.00.1002 Yellow
normal-GARCH-M 0.0112 0.0210 0.0292 0.0374 0.0475 0.054P6XL 0.0710 0.0804 0.0881Green
t-GARCH-M 0.0108 0.0216 0.0300 0.0382 0.0478 0.0566 0.0661 0.0759836.00.0927 Green
Skewt-GARCH-M 0.0109 0.0217 0.0301 0.0394 0.0478 0.0560 0.0658 0.076@48.00.0927 Green
normal-GJR 0.0122 0.0233 0.0341 0.0442 0.0521 0.0639 ©.0030824 0.0919 0.1001 Yellow
t-GJIR 0.0112 0.0235 0.0330 0.0429 0.0520 0.0613 0.0724 0.0828011D.00.0991 Green
Skewt-GJR 0.0113 0.0239 0.0329 0.0430 0.0524 0.0614 0.0721 0.082%1P.00.0996 Green
normal-GJR-M 0.0122 0.0222 0.0310 0.0408 0.0483 0.0572654.00.0736 0.0835 0.0920Yellow
t-GIJR-M 0.0113 0.0224 0.0313 0.0408 0.0490 0.0564 0.0658 0.0763B48.00.0934 Green
Skewt-GIR-M 0.0110 0.0220 0.0322 0.0408 0.0490 0.0573 0.0665 0.0771B50.00.0931 Green
FTSE
normal-GARCH 0.0108 0.0198 0.0296 0.0407 0.0507 0.0598700.0 0.0802 0.0908 0.1004 Green
t-GARCH 0.0112 0.0203 0.0292 0.0402 0.0504 0.0606 0.0703 0.0804899.00.0999 Green
Skewt-GARCH 0.0112 0.0204 0.0295 0.0398 0.0505 0.0595 0.0701 0.080B9D.00.0995 Green
normal-GARCH-M 0.0110 0.0196 0.0274 0.0383 0.0485 0.057867W6 0.0765 0.0849 0.0957Green
t-GARCH-M 0.0105 0.0199 0.0286 0.0385 0.0485 0.0577 0.0683 0.0778B58.00.0957 Green
Skewt-GARCH-M 0.0104 0.0201 0.0284 0.0377 0.0487 0.0572 0.0686 0.077635D.00.0952 Green
normal-GJR 0.0113 0.0209 0.0304 0.0411 0.0519 0.0618 0.0V010796 0.0912 0.1005 Green
t-GJIR 0.0112 0.0213 0.0307 0.0418 0.0517 0.0626 0.0715 0.081101D.00.1008 Green
Skewt-GJR 0.0112 0.0216 0.0307 0.0405 0.0516 0.0627 0.0713 0.080P18.00.1006 Green
normal-GJR-M 0.0111 0.0204 0.0294 0.0387 0.0507 0.0602696.00.0783 0.0880 0.0974 Green
t-GIJR-M 0.0108 0.0203 0.0295 0.0390 0.0486 0.0603 0.0700 0.077871D.00.0968 Green
Skewt-GIR-M 0.0110 0.0204 0.0301 0.0392 0.0494 0.0594 0.0701 0.077988DP.00.0972 Green
NASDAQ
normal-GARCH 0.0112 0.0230 0.0354 0.0453 0.0553 0.06397420 0.0840 0.0928 0.1055 Green
t-GARCH 0.0116 0.0234 0.0338 0.0448 0.0543 0.0643 0.0744 0.084239.00.1047 Green
Skewt-GARCH 0.0116 0.0225 0.0332 0.0440 0.0536 0.0637 0.0727 0.0824€28.00.1041 Green
normal-GARCH-M 0.0107 0.0193 0.0310 0.0411 0.0496 0.05706%6 0.0743 0.0836 0.0935Green
t-GARCH-M 0.0103 0.0203 0.0315 0.0408 0.0501 0.0577 0.0668 0.075%858.00.0963 Green
Skewt-GARCH-M 0.0101 0.0202 0.0314 0.0408 0.0503 0.0584 0.0671 0.076348.00.0962 Green
normal-GJR 0.0121 0.0260 0.0364 0.0460 0.0570 0.0661 H5.000874 0.0968 0.1069 Yellow
t-GJR 0.0116 0.0250 0.0361 0.0460 0.0567 0.0656 0.0774 0.087369.00.1075 Green
Skewt-GJR 0.0115 0.0242 0.0353 0.0441 0.0562 0.0645 0.0760 0.0853®50.00.1054 Green
normal-GJR-M 0.0113 0.0230 0.0340 0.0431 0.0531 0.0611706.0 0.0806 0.0883 0.0993 Green
t-GIJR-M 0.0110 0.0228 0.0346 0.0428 0.0518 0.0599 0.0701 0.080208.00.0995 Green
Skewt-GIR-M 0.0116 0.0228 0.0336 0.0421 0.0527 0.0610 0.0705 0.080@98.00.0983 Green
NIKKEI
normal-GARCH 0.0106 0.0210 0.0311 0.0411 0.0524 0.0618721.0 0.0825 0.0929 0.1029 Green
t-GARCH 0.0105 0.0208 0.0321 0.0423 0.0515 0.0620 0.0731 0.083%19.00.1028 Green
Skewt-GARCH 0.0110 0.0203 0.0318 0.0423 0.0519 0.0611 0.0735 0.0838038.00.1025 Green
normal-GARCH-M 0.0098 0.0195 0.0273 0.0371 0.0461 0.0560648 0.0746 0.0827 0.0919Green
t-GARCH-M 0.0104 0.0186 0.0283 0.0370 0.0461 0.0565 0.0659 0.07684DP.00.0925 Green
Skewt-GARCH-M 0.0101 0.0184 0.0283 0.0380 0.0470 0.0572 0.0666 0.077@39.00.0924 Green
normal-GJR 0.0113 0.0219 0.0326 0.0421 0.0528 0.0626 6.0030822 0.0926 0.1041 Green
t-GJIR 0.0116 0.0211 0.0330 0.0422 0.0529 0.0627 0.0744 0.0824€3DP.00.1047 Green
Skewt-GJR 0.0118 0.0210 0.0324 0.0430 0.0528 0.0628 0.0742 0.082329.00.1046 Yellow
normal-GJR-M 0.0118 0.0224 0.0306 0.0406 0.0493 0.059969@.00.0767 0.0867 0.0972Yellow
t-GIJR-M 0.0119 0.0206 0.0302 0.0408 0.0492 0.0598 0.0699 0.0788B76.00.0983 Yellow
Skewt-GIR-M 0.0123 0.0210 0.0306 0.0414 0.0494 0.0608 0.0695 0.079@871D.00.0991 Yellow
S&P500
normal-GARCH 0.0124 0.0223 0.0334 0.0435 0.0524 0.061771®0 0.0800 0.0908 0.0996Yellow
t-GARCH 0.0123 0.0227 0.0339 0.0429 0.0527 0.0618 0.0720 0.080®€1P.00.1005 Yellow
Skewt-GARCH 0.0127 0.0222 0.0333 0.0433 0.0529 0.0620 0.0709 0.081810.00.1013 Yellow
normal-GARCH-M 0.0110 0.0199 0.0288 0.0383 0.0465 0.053P61L 0.0698 0.0791 0.0868Green
t-GARCH-M 0.0111 0.0207 0.0306 0.0392 0.0476 0.0546 0.0644 0.0733B29.00.0905 Green
Skewt-GARCH-M 0.0110 0.0209 0.0307 0.0397 0.0472 0.0544 0.0642 0.073830.00.0908 Green
normal-GJR 0.0141 0.0234 0.0334 0.0444 0.0538 0.0623 P.0P2D821 0.0914 0.1006 Red
t-GJIR 0.0127 0.0232 0.0326 0.0440 0.0526 0.0625 0.0718 0.0811018.00.1008 Yellow
Skewt-GJR 0.0125 0.0237 0.0330 0.0435 0.0528 0.0628 0.0713 0.081219.00.1022 Yellow
normal-GJR-M 0.0116 0.0209 0.0292 0.0371 0.0462 0.0542600.00.0696 0.0785 0.0855 Green
t-GJR-M 0.0116 0.0214 0.0303 0.0395 0.0490 0.0561 0.0641 0.07281P.00.0910 Green
Skewt -GJR-M 0.0119 0.0212 0.0305 0.0391 0.0488 0.0557 0.0635 0.0728B24.00.0916 Yellow

* Classification according to the three-zone appraagigested by the Basle Committee (1996): a VaRelriscaccurate
(green zone) if the number of violations of 1% Vi@Rains below the binomial (0.01) 95% quantile. Adel is arguable
(yellow zone) up to 99.99% quantile. When more atioins occur the model is judged as inappropriate zone). For our
sample size, if at most 109 (1.17%) violations e¢he model is acceptable. Between 110 and 13@%4).3s disputable.

27



Deviation

Deviation

1.0

05

0.0

-0.5

1.0

0.5

0.0

-0.5

GARCH GARCH-M
S
-o- Normal -©- Normal
4 Student A Student
-x- Skewed t -x- Skewed t
O---_g----Q /O [to)
) A S a -
Ao Sl B
& ‘X“‘xf—»?‘/»e 8 s
o - N c
g _-X% T S S
02 < o =
D e x g
s 8
5 A
[} PR A
= O .4
o ’ ™ .
‘o O\ .
e
AL
o, Ao
< -
0 . N .
P <, >
T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
GJR GJR-M
e
-o- Normal -©- Normal
A Student PO N & Student
%~ Skewed t R & v guille %~ Skewed t
o BT ) el o
/! X 2N A Pl T -X 0
San T K = =3 a A
. X L.
// g & . ;X\ g
’ S 2.2 ----q
ot £ g R i~
o H e T
£ a §
Rk
g B A
o S
o .
X ’3
N
0
o
1
T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Figure 1 Deviation probability plot for the FHS filtered IyARCH-type models. The horizontal axis is the VaR leirethe
vertical axis, for each VaR level, the excess o@etage violations over the VaR level is represgnt
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Table 9 Overall measures of deviation

normal t -Student Skewed-
MAE (26) MSE(20) MAE (2%0) MSE(%06) MAE (2%6) MSE(%0)
GARCH 0.2061 0.0006 0.2043 0.0006 0.1953 0.0005
GARCH-M 0.3911 0.0026 0.2853 0.0013 0.2788 0.0013
GJIR 0.2979 0.0013 0.2986 0.0012 0.2734 0.0010
GJIR-M 0.2724 0.0016 0.2126 0.0009 0.2066 0.0008

According to the reported results for the MAE an88) the traditional normal-GARCH model is the
most appropriate model to filter stock returnshia tontext of FHS. Also, we can conclude that the
use of alternative innovation assumptionsStudent and Skewet)l-has no impact on the VaR

forecasting performance of FHS coupled with a GAR@Gbtlel.

We should now attempt on the information in theusege of violations, provided by the P-values of

the LR and DQ test statistics described in sec3i@As an example, the detailed results of the
VaR forecast performance for the NASDAQ sample, gnesented in table f0Table 11
summarizes the number of rejections of the nulldtlypsis by applying the three LR tests and

the DQ test to all the tested models across themapirical samples.

According to the results, when a traditional notGARCH model is used to filter the returns in order
to estimate VaR by FHS, a poor performance in tesfrisdependence is reported. When instead a
GJR process is used, there is a substantial irepremt with respect to the independence of the VaR
violations. In fact, the results of the DQ testsacly indicate that the use of a GJR, improvesviie
forecasting performance of FHS in terms of indeped. It should be noticed that the use of
alternative distributional assumptions for the weions, by itself, does not have an importantaotp

in the results.

8 In the interest of brevity, the detailed resutis the VaR forecast performance with respect toather five

empirical samples are not included in the papees€&hesults are available upon request.
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Table 10VaR forecast performance: NASDAQ

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
PUC
normal-GARCH 0.2381 0.0422 0.0028 0.0108 0.0199 0.1162 0.1172 0.1551 0.3471 0.0770
t-GARCH 0.1393 0.0207 0.0337 0.0190 0.0619 0.0816 0.0997 0.1345338.20.1345
Skewt-GARCH 0.1393 0.0935 0.0763 0.0526 0.1121 0.1374 0.3137 0.391846D.40.1847
normal-GARCH-M 0.4994 0.6100 0.5581 0.5889 0.8436 0.2259 0.0931 0.039328D.00.0357
t-GARCH-M 0.7902 0.8170 0.4094 0.7016 0.9678 0.3442 0.2203 0.1395570.10.2343
Skewt-GARCH-M 0.9528 0.8746 0.4441 0.7016 0.8925 0.5236 0.2703 0.185974D.00.2209
normal-GJR 0.0488 0.0001 0.0005 0.0037 0.002».0138 0.0052 0.0089 0.0240 0.0272
t-GJR 0.1393 0.0008 0.0009 0.0037 0.003%®.0244 0.0059 0.0099 0.0219 0.0174
Skewt-GJR 0.1679 0.0051 0.0033 0.0467 0.0070 0.0677 0.0250 0.0613 0.0911 0.0828
normal-GJR-M 0.2007 0.0422 0.0251 0.1267 0.1750 0.6508 0.8084 0.832365D.50.8278
t-GJR-M 0.3276 0.0588 0.0114 0.1700 0.4264 0.9798 0.9680 0.7735969.70.8820
Skewt -GJR-M 0.1393 0.0588 0.0448 0.3127 0.2420 0.6823 0.8398 0.9866036.80.5730
I:)ind
normal-GARCH 0.4769 0.0902 0.0050 0.1688 0.4589 0.3678 0.5810 0.3657 0.3097 0.5235
t-GARCH 0.5191 0.1095 0.0035 0.0581 0.1905 0.5893 0.1999 0.2713 0.2775 0.2118
Skewt-GARCH 0.5191 0.1539 0.0109 0.0626 0.1496 0.2095 0.1019 0.110578D.10.1444
normal-GARCH-M 0.4095 0.2022 0.0131 0.0418 0.4647 0.4469 0.3057 0.3025684.20.3279
t-GARCH-M 0.3587 0.0216 0.0692 0.0609 0.2255 0.2513 0.2745 0.1287069.30.0847
Skewt-GARCH-M 0.3345 0.0202 0.0160 0.1007 0.1724 0.3183 0.0746 0.1175750.10.0215
normal-GJR 0.2172 0.7214 0.1130 0.5506 0.4532 0.6787 0.2061 0.1145700.00.1361
t-GJR 0.1752 0.3737 0.1641 0.5506 0.5966 0.6725 0.2705 0.6465068.30.3252
Skewt-GJR 0.1674 0.2871 0.1215 0.3368 0.6550 0.7147 0.5533 0.658143P.50.3220
normal-GJR-M 0.1599 0.1897 0.4746 0.6187 0.7358 0.7221 0.4047 0.1126056.10.3390
t-GJR-M 0.1388 0.0817 0.2448 0.5814 0.4915 0.6614 0.3023 0.6183060D.50.4825
Skewt -GJR-M 0.1752 0.1748 0.1009 0.1697 0.2810 0.5941 0.6964 0.6818334.50.4727
PCC
normal-GARCH 0.3872 0.0303 0.0002 0.0150 0.0506 0.1941 0.2517 0.2418 0.3837 0.1708
t-GARCH 0.2724 0.0192 0.0015 0.0106 0.0743 0.1897 0.1134 0.1781 0.2729 0.1496
Skewt-GARCH 0.2724 0.0887 0.0082 0.0270 0.1002 0.1509 0.1580 0.1939 0.3031 0.1430
normal-GARCH-M 0.5665 0.3893 0.0389 0.1088 0.7507 0.3597 0.1445 0.07034998.00.0683
t-GARCH-M 0.6334 0.0696 0.1366 0.1604 0.4794 0.3311 0.2597 0.1058180.20.1116
Skewt-GARCH-M 0.6266 0.0667 0.0411 0.2415 0.3906 0.4959 0.1111 0.1224814.00.0336
normal-GJR 0.0671 0.0004 0.0006 0.0123 0.0070 0.0442 0.0091 0.0094 0.0152 0.0287
t-GJR 0.1337 0.0024 0.0015 0.0123 0.0121 0.0725 0.0123 0.0323 0.0428 0.0365
Skewt-GJR 0.1490 0.0112 0.0041 0.0872 0.0240 0.1763 0.0681 0.1574 0.1994 0.1360
normal-GJR-M 0.1643 0.0538 0.0630 0.2753 0.3765 0.8473 0.6862 0.2777288.20.6183
t-GJR-M 0.2071 0.0368 0.0207 0.3350 0.5753 0.9083 0.5870 0.8474758.70.7729
Skewt -GIJR-M 0.1337 0.0667 0.0348 0.2340 0.2821 0.7979 0.9080 0.9193986.70.6593
DQuit
normal-GARCH 0.0073 0.0116 0.0000 0.0012 0.00780.0507 0.2812 0.0428 0.0065 0.0146
t-GARCH 0.0461 0.0001 0.0000 0.00130.0102 0.0648 0.0194 0.04600.0008 0.0004
Skewit-GARCH 0.0461 0.0054 0.0002 0.0032 0.0050 0.0078.0115 0.0208 0.0018 0.0001
normal-GARCH-M 0.0045 0.0859 0.0030 0.0232 0.0201 0.0151 0.02590.0050 0.0108 0.0016
t-GARCH-M 0.2665 0.0029 0.0019 0.0335 0.0109 0.0241 0.0252 0.0203 0.0607/0001
Skewt-GARCH-M 0.0720 0.0139 0.0019 0.0480 0.0233 0.01400.0038 0.0108 0.0009 0.0000
normal-GJR 0.1909 0.0027 0.0046 0.0811 0.0136 0.1598 0.0755 0.0671 0.0894 0.0833
t-GJR 0.1231 0.0041 0.0072 0.0617 0.0138 0.1643 0.0868 0.1795 0.1904 0.0786
Skewi-GJR 0.2882 0.0211 0.0055 0.2327 0.0080 0.2585 0.2804 0.4629 0.3369 0.1220
normal-GJR-M 0.1117 0.1510 0.2835 0.7060 0.1668 0.6045 0.9697 0.7612729.50.6806
t-GJR-M 0.1276 0.0031 0.0514 0.4763 0.5578 0.4554 0.7375 0.9669 0.8467 0.2981
Skewt -GIJR-M 0.2756 0.0276 0.0105 0.1362 0.1616 0.5066 0.7221 0.915405%.30.1050
DQVaR
normal-GARCH 0.0004 0.0027 0.0000 0.0008 0.0090.0579 0.1801 0.02630.0039 0.0119
t-GARCH 0.0026 0.0000 0.0000 0.0004 0.0088.0538 0.0092 0.0261 0.0004 0.0004
Skewit-GARCH 0.0058 0.0012 0.0000 0.0013 0.0056.0103 0.0101 0.01320.0016 0.0001
normal-GARCH-M 0.0002 0.0202 0.0005 0.00630.0268 0.0220 0.03460.0063 0.0183 0.0027
t-GARCH-M 0.0435 0.0007 0.0001 0.0135 0.0110 0.0389 0.0257 0.0187 0.07860002
Skewt-GARCH-M 0.0101 0.0035 0.0008 0.0211 0.0305 0.02320.0048 0.0109 0.0014 0.0000
normal-GJR 0.0102 0.0012 0.0016 0.0222 0.0141 0.1538 0.1052 0.0842 0.1169 0.0783
t-GJR 0.0072 0.0013 0.00090.0147 0.0098 0.1667 0.0777 0.1340 0.1467 0.0478
Skewi-GJR 0.0453 0.0065 0.0014 0.0978 0.0075 0.2631 0.2917 0.4763 0.4030 0.1605
normal-GJR-M 0.0088 0.0316 0.0721 0.2818 0.1580 0.5155 0.9595 0.8220 0.690984.6
t-GJR-M 0.0111 0.0002 0.0052 0.1324 0.3037 0.3606 0.6996 0.9417 0.6898 0.2184
Skewt -GIJR-M 0.0354 0.0092 0.0023 0.0238 0.0599 0.3226 0.6863 0.9003 0.3302 0.1210

Entries in the last 10 columns are the P-valughefespective tests. Bold type entries are naiifiignt at the 1% level.
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Table 11 Number of rejections of the null hypothesis (nundjeP-valuesbelow the desired level)
sig. Level 0.01
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5. Concluding remarks

The predictive performance of FHS combined withraditional normal-GARCH model has been
backtested using simulated data. Three realistierdnt DGP were considered to generate several
series of simulated returns. Based on the simulatetks, a backtesting was implemented. Our
backtesting results are very promising as theycatdi the validity of FHS to forecast VaR, with
respect to the three alternative DGPs. For thatgmajority of the samples, the null hypothesig tha
the risk model is correct on average is not refecelditionally,two competing models, differing

in the innovations assumption, were testetkGARCH and a Skew-GARCH. The results
indicate that the use of alternative innovationsuagptions does not generally impacts the
FHS results in terms of VaR forecasting performande summary, the simulation results
strongly indicates that FHS is an accurate methote{ms of coverage and independence) to forecast
VaR in the presence of non-normal returns. Moreower results demonstrate that FHS can be
applied to forecast VaR for data which exhibitsighhincidence of zeros, time-varying skewness,

asymmetric effects to return shocks on volatilgyeell as other stylized facts.

Though the use of simulated data enable us toatsed¥aR forecasting ability of FHS under
controllable circumstances, the validity of any noet is best measured using empirical time
series. Six well known active stock indices dailpd series were used to produce the
empirical results. The VaR forecasting ability oH% method, using four competitive
GARCH-type models to filter the stock returns, cameld with three alternative innovation
assumptions, was tested. Though all the models detmade a good performance, according
to our empirical coverage results the traditionarnmal-GARCH model is the most
appropriate model to filter stock returns in thatext of FHS. Also, we have concluded that
the results are not sensitive to the use of altermannovation assumptions$-$tudent and
Skewedt). Nevertheless, when the VaR forecast performafd¢eHS is assessed in terms of
independence, some problems are reportedtHertraditional normal-GARCH model. With
respect to the empirical data series, the choia IR process results in a substantial improvemen
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with respect to the independence of the VaR viomst In fact, the results of the DQ tests clearly
indicate that the use of a GJR, improves the VaBchsting performance of FHS. It should be noticed
that, again, the use of alternative distributioagasumptions for the innovations does not have an
important impact in the results. This is a very artgnt result as it gives support for the arguntieat

distributionally nonparametric models, like FHS, ot depend on the distribution assumed in the

filtering stage.
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