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1. Introduction 

Value-at-Risk (VaR) synthesises in a single value the possible losses which could occur with a 

certain probability, in a given temporal horizon. Throughout the years, VaR became a 

standard downside measure of risk and has been receiving increasingly attention by 

academics and practitioners. Also, the accurate computation of VaR is critical for the 

estimation of other quantile-based risk measures such as  the expected shortfall. 

Traditionally the different methods to estimate VaR can be classified into two main 

categories: parametric methods (often denominated as local valuation methods) and 

simulation methods (Monte Carlo simulation and historical simulation). Typically, there is a 

trade-off between accuracy and the time required considering the application of these two 

different approaches. Parametric methods are less time consuming. However, when the time 

series under analysis exhibit important non-standard properties, simulation methods are more 

accurate. In fact, the adoption of full-valuation approaches to estimate VaR can lead to more 

accurate results as these methods generally depend on less restrictive distributional 

assumptions (see for example, Bucay and Rosen, 1999; Mausser and Rosen, 1999). As 

technical advances in relation to computational efficiency are likely to continue in the near 

future, the use of simulation methods is favoured.  

Simplistic simulation methods based on the use of the empirical distribution to compute the 

tail quantiles, often referred to as historical simulation cannot adequately account for the 

volatility clustering. Therefore, these methods perform very poorly in practice. Recently, a 

new methodology has been developed in the literature to estimate VaR. This new method 

successfully combines bootstrapping techniques with the use of parametric models and is 

generally known as Filtered Historical Simulation (FSH). FHS was first proposed by Barone-

Adesi et al. (1999). Under FHS the bootstrap process is applied to the residuals of a time 

series model used as a filter to extract autocorrelation and heteroscedasticity from the 
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historical time series of returns. Despite being numerically intensive, FHS is quite simple to 

apply and as a result it is faster to implement than other simulation methods. According to 

Hartz et al. (2006) FHS is also numerically extremely reliable. Additionally, FHS 

methodology makes no assumptions about the distribution of the returns under analysis. 

Based only on the assumption of IID standardised residuals from an appropriate volatility 

model, the use of the bootstrap algorithm allows a computationally feasible method to 

approximate the unknown return empirical distribution. This makes possible the computation 

of VaR with a great level of accuracy. In fact, Baroni-Adesi et al. (1999), Pritsker (2001) and 

most recently Kuester et al. (2005) have demonstrated the superiority of FHS method in the 

context of VaR estimation.  

In recent research a new model based on heteroscedastic mixture distributions has been used 

in volatility modelling. This type of model links a GARCH-type structure to a discrete 

mixture of normal distributions, allowing for dynamic feedback between the components. The 

use of a mixture of normal’s reduces the excess kurtosis so many times displayed by the 

residuals of traditional GARCH models. Haas et al. (2004) were pioneers in considering a 

mixed normal distribution associated with a GARCH-type structure (MN-GARCH). Later, 

Alexander and Lazar (2006) provided relevant evidence that generalized two-component MN-

GARCH(1,1) models outperform those with three or more components, and also symmetric 

and skewed student’s-t traditional GARCH models. 

Kuester et al. (2005) compared the out-of-sample performance of existing alternative methods 

and some new models (including FHS and MN-GARCH) for predicting VaR in a univariate 

context. Using daily data for more than 30 years on the NASDAQ Composite Index, they 

found that most approaches perform inadequately. The only exceptions seem to be the 

GARCH-EVT (which focuses on tail estimation of the residuals of GARCH-filtered returns 
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via methods of extreme value theory), a new model based on heteroscedastic mixture 

distributions and the FHS. 

Hartz et al. (2006) propose a new data driven method based on a classic normal GARCH 

model and use resampling methods to correct for the clear tendency of the model to 

underestimate the VaR. In fact, the suggested method is very flexible in accounting for the 

specific characteristics of the underlying series of returns as it is almost fully data driven. 

Their resampling method is related to the FHS method studied in Barone-Adesi et al. (1999, 

2002). The results of Hartz et al. (2006) are also encouraging and demonstrate that the use of 

a simple normal GARCH model, combined with the application of a resampling method, may 

not need to be abandoned after all.  

The remainder of the paper is organized as follows. Section 2 describes and discusses FHS as 

a method to estimate VaR. In section 3 we present and describe three different data generating 

processes (DGPs) used to simulate several time series samples. Additionally, the backtesting 

is described in detail.  In section 4 the simulation and empirical results for the backtesting are 

reported. The final section, provides some concluding remarks. 

 

2.  Description of the Filtered Historical Simulation 

FHS combines the best elements of conditional volatility models with the best elements of the 

simulation methods. By combining a non-parametric bootstrap procedure with a parametric 

modelling of the time series under analysis we must be able to considerable improve the 

overall quality of the VaR estimates. 

The first step to the implementation of FHS consists in the adoption of a proper volatility 

model, usually a GARCH-type model with normally distributed residuals.  
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The major attraction of FHS is that it does not rely on any assumptions about the distribution 

of returns. As a non-parametric method FHS can accommodate skewness, excess kurtosis and 

other non-normal features presented by the empirical series of returns including a high 

percentage of zero-returns. In the context of FHS method the historical distribution of returns 

is used to estimate the portfolio´s VaR, assuming that it is a good proxy for the true 

distribution of returns over the next holding period (in our particular case, over the next day).  

Let a sample of observed returns, ������ � ���, be denoted by ����. A bootstrap sample of 

size �, is denoted by �����, where ��� � ��� and �� is an integer drawn from the set ������ 

using random sampling with replacement. From the bootstrap sample of returns the VaR can 

be easily estimated as the � quantile from the bootstrap sample.  

The bootstrap used in this study are similar to those carefully described in Barone-Adesi et al. 

(1999). The bootstrap can be easily applied to the (independent/uncorrelated) standardised 

residuals of any specification of the GARCH-type models. As an illustrative example a fully 

description of the bootstrap procedure based on a traditional normal-GARCH(1,1) model is 

presented next, 

�� � � � 	��
����	� 	 �
�����, (1) 

��� � �� � ��	���� � ������� . (2) 

Based on the estimation of the above model, the standardized residuals are defined as, 

�� � ���������, (3) 

where ��̂ is the estimated residual and �����is the corresponding daily volatility estimate. 

To start the simulation procedure we get the simulated innovation for the period � � ��(����� ) 

by drawing (with replacement) a random standardized residual (���) from the data set of 

historical residuals and scale it with the volatility of period � � �, 
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����� � ��� � ������  . (4) 

The variance of period � � � can be estimated at the end of period � as, 

����� � ��� � ���	�� � ������, (5) 

where 	�is the latest (for the last day in the sample) estimated residual and ��� is the latest (for 

the last day in the sample) estimated variance in equation (1) and (2) respectively.  

The first simulated return for the period � � � (����� ) can be computed as, 

����� � �̂ � ����� , (6) 

where �����  is the simulated residual for the period � � �. 

This procedure can be repeated as many times as we want in order to generate a bootstrap 

sample, generally denoted by ��, of any size size �. Finally, based on this bootstrap sample 

the filtered historical simulated VaR can be easily obtained as it corresponds to the � quantile 

of the bootstrap sample generated under FHS. 

 

3. Backtesting VaR forecasting ability of FHS for non-normal returns  

In general, financial time series exhibit certain stylized patterns. These patterns are essentially 

fat tails, volatility clustering, long memory and asymmetry. Along the years the development 

of different models for volatility was guided by these stylized facts observed in the empirical 

data. The most attractive volatility models in applications, are probably the GARCH-type 

models. 

A less standard feature that the financial data might exhibit is a high percentage of zero 

returns. Though less common, this particular feature might not be neglectful specially when 

we are dealing with daily data with respect to some specific markets. Paolella and Taschini 

(2008) conducted a study on the CO2 emission allowance market and the daily return series 
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used by the author’s exhibit a larger-than-usual number of zeros1. These authors remark that a 

high incidence of zeros in the empirical data precludes the use of traditional GARCH models 

to forecast VaR, even when they are applied under FHS.  Though Paolella and Taschini 

(2008) recognize that FHS is, in general, a high effective method to estimate VaR, the authors 

claim that the forecasting performance of this method, critically relies on the adequacy of the 

innovation distributional assumption used for the GARCH filter applied to deal with 

heteroscedasticity in the data. The argument is that, if the residuals of the fitted GARCH 

model significantly departure from the assumed distributional form, FHS will fail to estimate 

with precision the empirical distribution of the returns. Therefore, any VaR computation 

based on FHS will be inaccurate.  

The effective use of a GARCH model under a strictly analytical approach to compute VaR 

critically relies on the adequacy of the model distributional assumption. The high incidence of 

zeros in the return series, results in a data generating process that is not consistent with any 

typical distributional assumption. This means that, in the presence of a high incidence of 

zeros, the analytical solution for the VaR, based on the estimation of GARCH models, with a 

typical distributional assumption will be potentially biased. Paolella and Taschini (2008) 

claim that the very same argument applies even when a GARCH model is used only as a filter 

(to deal with heteroscedasticity in the series of returns) and a simulation solution is provided 

for the VaR instead of an analytical one.  

Paolella and Taschini (2008)  advocate the non-applicability of the FHS methodology  

because of the zeros-problem. As an alternative to accurately estimate VaR they propose a 

conditional analysis, whereby a mixture model is applied which properly accounts for both 

the GARCH-type effects and the zeros-problem.   

                                                 

1 Paolella and Taschini (2008) report an incidence of 29% of zeros for their dataset. 
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We are not in agreement with the argument of Paolella and Taschini (2008). The main insight 

of the FHS method is that it is possible to capture the dynamics in the data (like for example 

conditional heteroscedasticity) and still be somewhat unrestrictive about the shape of the 

distribution of the returns. In fact, under FHS the distributional assumption with respect to the 

residuals is relaxed is favour of the much weaker assumption that the distribution is such that 

the parameters of the model can be consistently estimated. Therefore, in the contrary of 

Paolella and Taschini (2008), we argue that FHS is an accurate method to estimate VaR, even 

when the residuals of the GARCH filter clearly violate the distributional assumption due to 

the abundance of zeros.  

 

3.1. Definition of alternative non-normal data generating processes 

For testing the forecasting performance of FHS under controllable circumstances several time 

series of returns are simulated using three different data generating processes (DGP): a 

normal GARCH with a � proportion of zeros, a mixed-normal GARCH (MN-GARCH) and a 

Student’s t-distributed asymmetric power ARCH (t-A-PARCH).  By choosing these three 

different DGPs we aim to simulate series of non-normal returns that exhibit the usual stylized 

facts, such as conditional power tails for the residuals and asymmetric volatility responses (for 

the t-A-PARCH), sophisticated correlation dynamics and time-varying skewness (for the MN-

GARCH) and also a significant incidence of zeros (for the GARCH combined with a high 

percentage of zeros).  
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3.1.1. GARCH model combined with a high percentage of zeros 

We first consider a DGP under which a � proportion of zeros and a � � � proportion of non-

zero returns, is simulated. The non-zero returns are assumed to be uncorrelated2 and to follow 

a traditional normal GARCH(1,1) process for the variance. Formally, the model that generates 

such a sample of simulated returns is given by,  �� � �� � �� � � � �������	���� � 
������������ � �� � ������� � ������� ������������	������ 	 ���������������	����� �  (7) 

The proportion of zeros is set equal to 29% which corresponds to the incidence of zeros 

reported by Paolella and Taschini (2008). 

In order to simulate the � � �  proportion of non-zero returns, typical values for the 

parameters are assumed in the model:   

 � 
�


�� 

�� � 
�




������� � 
�������� � 
��� 

 

3.1.2. MN-GARCH model 

As an alternative, a MN-GARCH is used to generate the simulated returns. The functional 

form of a MN-GARCH time series �� can be described as, �� � ����|������ �� � (8) 

where �� |� � denotes the conditional expectation operator, ����the information set at time 

� � �, and 	� the innovations or residuals of the time series. 	� describes uncorrelated 

                                                 

2 In interest of simplicity the returns are assumed to be uncorrelated and no ARMA terms will be included in the  
model. 
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disturbances with zero mean and plays the role of the unpredictable part of the return time 

series. 

Under MN-GARCH models, the usual GARCH structure is extended by modelling the 

dynamics in volatility by a system of equations that enables feedback between the mixture 

components.  

The time series of tε  is said to be generated by a component MN-GARCH process if the 

conditional distribution of 	�  is an�� � component mixed normal with zero mean, that is, ��|��������	�
������ (9) 

where 	� denotes the innovations or residuals of a time series, ���� represents the information 

set available at time � � � and � � ��� � ��	��� � ��� � ��	����� � ���� � � ��	�� �.  The 

mixed normal density is given by, �����	�
����� � �		����
	 ��	���
	�� � (10) 

where � is the normal pdf, � � ��� � ��	��  is the set of component weights such that 

�
 � 
���  and  ∑ �
 � �	
�� � � � ��� � � �	�� is the set of component means such that, to 

ensure � 	�! � 
��	 � �∑ "�
��	#	��
�� �
, and ��� � ���� � � ��	�� �� � ��	 are the positive 

component variances at time �.  

The key aspect of a MN-GARCH model is that the n  component variances ��� are allowed to 

evolve according to the GARCH-type structure.  

One major advantage of using a MN-GARCH process lies in the fact that time-varying 

skewness is intrinsic in the model without requiring explicit specification of a conditional 

skewness process. MN-GARCH models are similar to Markov switching models but easier 

for use. In fact, the MN-GARCH model can be seen as the Markov switching GARCH model 

in a restricted form where the transition probabilities are independent of the past state.  
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In this paper a MN(2)-GARC(1,1) is used as a DGP. Typical values for the parameters of the 

model are used: � � �	�
����� ��� � �	����
������� � �	���������� � �	����������� � �	�
�
 ��� � �	���������� � �	����������� � �	���
� 
 

3.1.3. t-A-PARCH model 

Finally, a very competitive model for fitting asset returns is used to generate our series of 

simulated returns: the asymmetric power ARCH  model (A-PARCH). This model was first 

introduced by Ding et al. (1993). It allows asymmetric volatility responses and also 

conditional power tails. Mittinik  and Paolella (2000) recommend the combination of a A-

PARCH model with the assumption of Student’s t-distributed residuals to improve the 

competitiveness of the model for fitting asset returns. 

A t-A-PARCH model is represented as: 

�� � � � 	�� 	� � ��� �� 	 ��, (11) 

�� � �� � ���|	���|� $	���� � ������ . (12) 

The samples of simulated returns are generated using typical values for the parameters in the 

model: � � �	�
�� �� � �	��
������ � �	�������� � �	���� � � ��	������� � �	�������� � 
	���	 
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3.2. Backtesting FHS 

To assess the forecasting performance of FHS we follow Christofferson’s (2003) framework. 

Additionally, a Dynamic Quantile (DQ) test as suggested by Engle and Manganelli (2004)  is 

also applied. 

By observing a series of ex ante VaR forecasts and ex post returns we can define a hit 

sequence of VaR violations as: 

%� � &�� �'��� ���()��

� �'��� ���()��� * (13) 

If FHS is a correct forecasting model the hit sequence of violations should be: 

+���%� 	 ��,���� !"#$����  

 

3.2.1. Christoffersen´s framework: test of unconditional coverage, independence and 

conditional coverage 

To test null hypothesis define above we must first test if the fraction of violations obtained for 

our risk model �� is equal to the specified fraction � (unconditional coverage). Under the 

unconditional coverage null hypothesis that �� � � , the likelihood of an ��,���� !"##$���� is 

given by: 

��-�� � .�� � ������� ����� � �� � ������� �����  (14) 

and the observed likelihood is given by: 

��-"��# � .�� � �/������
������ � �� � �/����/������ � (15) 
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where �� and �� are the number of 
0 and �0 in the sample. The observed fraction of 

violations in the sequence can be estimated as �� � ���� .  

The unconditional coverage hypothesis can be checked using a likelihood ratio (LR) test: 

��-��� � ��1�2-����-����3 (16) 

The test is asymptotically distributed as a 4� with one degree of freedom:  

��-��� � ��1�2-����-����3 	 4��� (17) 

The P-value is computed as: 

��5�� � � � 6���-�����  

where 6����� � represents the cumulative density function of a 4� variable with one degree of 

freedom. Whenever the P-value is below the desired significance level the null hypothesis is 

rejected. 

Christoffersen (2003) also establishes a test to the independence of the violations. For that 

purpose assume that the hit sequence is dependent over time and can be described as first-

order Markov sequence with transition probability matrix: 

��% � � 7� � �����������
� � �����������8  

where ��
are the probabilities given by ��
 � &�%� � ��)�,�%��� � 9� � �� 9 � 
��. For a 

sample of T observations, the likelihood function of the first-order Markov process is: 

��-%� � � � ��������������� � ������������� � (18) 

where ��
 � �� 9 � 
�� is yhe number of observations with a 9 following a �. The observed 

probabilities are given by: 
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���� � ���
��� � ��� ���������� � ���

��� � ���� 
and 

���� � � � �������������� � � � �����  

Under the null hypothesis the likelihood function is given by: 

��-"%:# � "� � ��#������� (19) 

and the observed likelihood value is given by3: 

��-"%:# � "� � ����#������������ � ��������������� � (20) 

We can test the independence hypothesis that ��� � ���by applying a LR test: 

��-��	� � ��1�2-�����-�%:�3 	 4��� (21) 

The P-value is given by: 

��5�	� � � � 6���-��	���  

Finally, Christoffersen (2003) proposes a jointly test for independence and correct coverage 

(conditional coverage test): 

��-��� � ��1�2-����-�%:�3 � -�� � -�	� 	 4��� (22) 

 

 

                                                 

3 For samples where ��� � �, the likelihood function is given by: ���	�
� � 	� � ��������������  

 



16 

 

The corresponding P-value is given by: 

��5�� � � � 6���-�����  

 

3.2.2. Dynamic Quantile test 

Christoffersen´s (2003) framework has some limitations because it only considers the first-

order dependence when assessing the independence of the series of VaR violations. As a 

consequence, under  this  approach  a  series of VaR violations, that  exhibits some higher-

order dependences, might not be rejected because it does not have first-order dependence. 

Engle and Manganelli (2004) propose an alternative test based on a linear regression. 

Define: 

��+��� ' %�� � �()���� (23) 

To construct the test the following regression must be implemented: 

��+��� � �� �;<�+����� � <���()�� � =����� � 

 

(24) 

where <� � � � ��� �> � �� are regression parameters and  

=� &��� 
����?@AB)B�1��C�� � �
� � �� 
����?@AB)B�1��C��� * 

Under the null hypothesis , �� � � and <� � 
� � � ��� �> � �� Using the vector notation: 

( � �� � �)< � =� (25) 

where <� � �� � � and � denotes the vector of ones. Under the null hypothesis, the 

regressores in (24) should not have explanatory power, that is +�� < � 
. Invoking an 
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appropriate central limit theorem the asymptotic distribution of the OLS estimator under the 

null hypothesis can be established: 

<̂��� � �)�)���)�( � ��� ���"
� )�)���� � � � ��#����� � (26) 

Engle and Manganelli (2004) derive the following Dynamic Quantile (DQ) test statistic: 

DQ �
��������������������	���
 � �����������  (27) 

In our study, similarly to Kuester et al. (2005), two alternative specifications of the DQ test 

are used: DQHit, under which a constant and four lagged hits are included in the regression; 

DQVaR, under which the contemporaneous VaR estimate is also included in the regression. 

 

4. Backtesting results 

The use of simulated data offers a valuable opportunity to evaluate the VaR forecasting ability 

of FHS under controllable, yet realistic, circumstances.   However, as the validity of any 

method is best assessed using empirical data sets, in addition to the backtesting exercise based 

on simulated data, the performance of FHS is also evaluated using six different empirical time 

series. 

 

4.1. Simulation results 

Ten samples, of 3500 simulated returns, are generated using each of the three DGP described 

in section 3.1. The first 500 generated observations are leftover to avoid any starting-value 

problems. The estimation period is defined as � � �


. With respect to each simulated 

series, 5 � �


� out-of-sample � � � step-ahead VaR forecasts are computed using 

downfall probabilities  � � 
�
��
�
�� � � � �
�� and � � �
�


 bootstrap replications. Three 

competing models, differing in the innovations assumption, are used as a filter in the context 
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of FHS method: a normal-GARCH(1,1), a t-GARCH(1,1) and a Skew-t-GARCH(1,1)4. The 

main purpose is to investigate whether the performance of FHS based on a GARCH process is 

sensitive to the use of different distributional assumptions for the innovations. Barone-Adesi 

et al. (1999) describes FHS as a distributional free method. Therefore the VaR forecasting 

performance of FHS should not be affected by the decision on the distribution that is assumed 

in the filtering stage. However the conclusion of Kuester et al. (2005) is disturbing in the 

sense that they indicate that the choice of a Skewed-t assumption for the residuals of the 

GARCH model, used as a filter under FHS, is able to produce better-quality results. This issue 

deserves further investigation. 

The results for the first of the 10 simulated series, based on the three different DGP are 

reported in table 1 to table 3. A summary for the number of rejections of the null hypothesis 

for all the simulated samples is reported in table 4 to table 6. 

Based on the results reported, we can conclude that the FHS method  is a very accurate method to 

forecast VaR. With respect to all DGP, for a significance level of 1%, the null hypothesis that the risk 

models are correct on average is generally not rejected. When the  DQ test is applied the results are 

slightly worst. Also, for a significance level of 1%, the independence of the VaR violations is 

generally preserved. For a significance level of 5% and 10%, some of the samples exhibit problems in 

terms of independence of the VaR violations, especially when a t-GARCH or Skew-t-GARCH is used.   

 

 

 

 

 

                                                 

4 The  model is estimated using maximum likelihood (ML) approach according to the quasi-Newton method of 
Broyden, Fletcher, Goldfarb and Shanno. The results were obtained using Ox version 4.10 (see Doornik, 2007). 
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Table 1 Results for the simulated series based on a GARCH + 29% of zeros (sample 1)a: 

 
a
 Estimation period of � � ����; � � 
���� out-of-sample � � � step-ahead VaR forecasts are computed using downfall 

probabilities � � ��������
�� ���� and � � 
����� bootstrap replications. Entries in the last 10 columns are the P-values of 
the respective tests. Bold type entries are not significant at the 1% level.  For the computation of DQHit the estimated 
regression includes a constant and four lagged violations. For the computation of DQVaR the contemporaneous estimate of 
VaR in also included in  the regression. See section 3.2. for a description of the tests. 

 
Table 2 Results for the simulated series based on a t-A-PARCH (sample 1) a: 

 
a
 See the note in table 1. 

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Observed downfall probability 0.0110 0.0210 0.0320 0.0380 0.0475 0.0570 0.0705 0.0780 0.0870 0.0980

Puc 0.6582 0.7513 0.6039 0.6454 0.6051 0.5691 0.9302 0.7407 0.6375 0.7649

Pind 0.4744 0.1743 0.7968 0.7746 0.4424 0.6874 0.7018 0.5952 0.6013 0.6132

Pcc 0.7021 0.3780 0.8456 0.8634 0.6513 0.7842 0.9258 0.8221 0.7807 0.8416

DQHit 0.5912 0.5366 0.9977 0.9785 0.7180 0.9161 0.9011 0.8964 0.8790 0.6244

DQVaR 0.5820 0.5104 0.9593 0.7234 0.5515 0.9126 0.9380 0.9225 0.9384 0.7039

Observed downfall probability 0.0115 0.0210 0.0295 0.0385 0.0505 0.0585 0.0700 0.0790 0.0870 0.0955

Puc 0.5102 0.7513 0.8954 0.7305 0.9184 0.7767 1.0000 0.8688 0.6375 0.4994

Pind 0.4548 0.1743 0.0561 0.7787 0.6033 0.6216 0.4698 0.6569 0.6694 0.3946

Pcc 0.6089 0.3780 0.1599 0.9059 0.8691 0.8504 0.7701 0.8938 0.8169 0.5541

DQHit 0.3419 0.7485 0.8558 0.9770 0.9316 0.8468 0.9120 0.9857 0.9385 0.9528

DQVaR 0.4145 0.7896 0.8185 0.6472 0.7392 0.8411 0.9420 0.9824 0.9732 0.9507

Observed downfall probability 0.0110 0.0200 0.0305 0.0365 0.0505 0.0570 0.0685 0.0795 0.0855 0.0955

Puc 0.6582 1.0000 0.8960 0.4177 0.9184 0.5691 0.7919 0.9342 0.4786 0.4994

Pind 0.4744 0.1957 0.7875 0.7314 0.7448 0.6874 0.3532 0.4048 0.5547 0.5148

Pcc 0.7021 0.4330 0.9561 0.6789 0.9434 0.7842 0.6276 0.7044 0.6534 0.6439

DQHit 0.5912 0.6213 0.9999 0.9124 0.8832 0.8362 0.9358 0.9420 0.9312 0.8941

DQVaR 0.5779 0.6095 0.9826 0.6025 0.7644 0.8547 0.9700 0.9652 0.9687 0.9452

t -Student

Skewed-t

normal

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Observed downfall probability 0.0110 0.0210 0.0315 0.0425 0.0495 0.0570 0.0680 0.0785 0.0935 0.1025

Puc 0.6582 0.7513 0.6964 0.5721 0.9182 0.5691 0.7248 0.8042 0.5866 0.7104

Pind 0.2373 0.2852 0.0585 0.0907 0.1623 0.0791 0.1898 0.3690 0.4318 0.6020

Pcc 0.4510 0.5373 0.1548 0.2038 0.3747 0.1820 0.3979 0.6477 0.6333 0.8147

DQHit 0.2671 0.7515 0.0086 0.2043 0.1480 0.1311 0.1273 0.2979 0.3920 0.7460

DQVaR 0.0527 0.0495 0.0003 0.0008 0.0021 0.0036 0.0017 0.0042 0.0042 0.0107

Observed downfall probability 0.0105 0.0215 0.0300 0.0410 0.0490 0.0585 0.0690 0.0795 0.0920 0.1010
Puc 0.8236 0.6359 1.0000 0.8202 0.8369 0.7767 0.8606 0.9342 0.7554 0.8817

Pind 0.2139 0.0137 0.0019 0.0644 0.0652 0.2092 0.6803 0.5646 0.4845 0.4362

Pcc 0.4506 0.0429 0.0081 0.1762 0.1788 0.4366 0.9046 0.8443 0.7461 0.7304

DQHit 0.2364 0.0123 0.0014 0.0281 0.1076 0.5751 0.3178 0.2983 0.4589 0.7429

DQVaR 0.0676 0.0008 0.0001 0.0031 0.0288 0.1971 0.1197 0.1454 0.2125 0.3690

Observed downfall probability 0.0115 0.0210 0.0300 0.0405 0.0495 0.0580 0.0690 0.0780 0.0915 0.0995

Puc 0.5102 0.7513 1.0000 0.9093 0.9182 0.7050 0.8606 0.7407 0.8151 0.9405

Pind 0.2617 0.0115 0.0019 0.0571 0.0731 0.1920 0.6803 0.4920 0.4604 0.4795

Pcc 0.4289 0.0390 0.0081 0.1626 0.1997 0.3975 0.9046 0.7477 0.7410 0.7767

DQHit 0.2864 0.0099 0.0014 0.0597 0.1237 0.6380 0.4507 0.3713 0.4234 0.5550

DQVaR 0.0705 0.0017 0.0002 0.0123 0.0555 0.2471 0.1258 0.1079 0.1228 0.2268

normal

t -Student

Skewed-t
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Table 3 Results for the simulated series based on a MN-GARCH (sample 1) a: 

 
a
 See the note in table 1. 

 
Table 4 Results for the simulated series based on a GARCH + 29% of zeros: 
Number of rejections of the null hypothesis (number of P-values below the desired level) 

 
 

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Observed downfall probability 0.0125 0.0215 0.0300 0.0355 0.0500 0.0575 0.0655 0.0735 0.0855 0.0955
Puc 0.2794 0.6359 1.0000 0.2954 1.0000 0.6356 0.4256 0.2778 0.4786 0.4994

Pind 0.3138 0.0137 0.0095 0.0488 0.3433 0.5138 0.1192 0.4227 0.5258 0.2213

Pcc 0.3355 0.0429 0.0345 0.0830 0.6383 0.7222 0.2163 0.4024 0.6362 0.3768

DQHit 0.1876 0.0220 0.0255 0.2298 0.8432 0.8918 0.4154 0.5424 0.8634 0.6491

DQVaR 0.0011 0.0029 0.0048 0.0516 0.4231 0.6522 0.1823 0.2814 0.7870 0.7105

Observed downfall probability 0.0110 0.0200 0.0285 0.0375 0.0450 0.0550 0.0655 0.0720 0.0840 0.0955

Puc 0.6582 1.0000 0.6917 0.5643 0.2970 0.3400 0.4256 0.1803 0.3435 0.4994

Pind 0.0220 0.0506 0.0258 0.0792 0.3179 0.7360 0.1192 0.3502 0.5943 0.2213

Pcc 0.0658 0.1479 0.0770 0.1814 0.3525 0.5992 0.2163 0.2635 0.5541 0.3768

DQHit 0.0026 0.1492 0.0950 0.4856 0.5387 0.7415 0.5278 0.5192 0.7433 0.4131

DQVaR 0.0002 0.0260 0.0237 0.2049 0.2447 0.5193 0.4651 0.4740 0.5796 0.5143

Observed downfall probability 0.0105 0.0210 0.0300 0.0370 0.0470 0.0555 0.0660 0.0725 0.0870 0.0950

Puc 0.8236 0.7513 1.0000 0.4882 0.5342 0.3911 0.4793 0.2096 0.6375 0.4527

Pind 0.0180 0.0662 0.0395 0.0705 0.4162 0.7300 0.1315 0.3738 0.4535 0.2385

Pcc 0.0594 0.1760 0.1202 0.1532 0.5923 0.6522 0.2497 0.3065 0.6757 0.3765

DQHit 0.0016 0.2062 0.2307 0.4288 0.7193 0.7822 0.5657 0.5005 0.8338 0.4096

DQVaR 0.0003 0.0286 0.0560 0.1533 0.2451 0.3456 0.3436 0.2904 0.5502 0.4703

Skewed-t

t -Student

normal

Sample Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 2 2 1 1 0 2 0 0 1 0 0 0 0 0
4 0 2 1 2 2 0 1 0 1 1 0 0 0 1 1
5 0 2 1 0 1 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 2 0 2 2 0 0 0 2 1 0 0 0 1 0
8 0 0 0 3 2 0 0 0 2 1 0 0 0 1 1
9 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 2 2 1 1 0 2 0 0 1 0 0 0 0 0
4 0 2 1 2 2 0 1 0 2 2 0 0 0 2 2
5 0 2 1 0 2 0 1 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 3 3 5 5 0 3 3 5 4 0 0 0 2 0
8 0 0 0 3 3 0 0 0 3 3 0 0 0 3 3
9 0 0 0 3 3 0 0 0 2 2 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 2 2 1 1 0 2 0 0 0 0 0 0 0 0
4 0 2 1 2 2 0 1 0 2 2 0 0 0 2 2
5 0 2 1 0 1 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 2 2 4 4 0 2 2 4 4 0 0 0 1 0
8 0 0 0 3 3 0 0 0 3 3 0 0 0 3 3
9 0 0 0 3 2 0 0 0 1 1 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Skewed-t

t -Student

normal

Significance level: 0.1 Significance level: 0.05 Significance level: 0.01
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Table 5 Results for the simulated series based on a t-A-PARCH: 
Number of rejections of the null hypothesis (number of P-values below the desired level) 

 

 
Table 6 Results for the simulated series based on a MN-GARCH: 
Number of rejections of the null hypothesis (number of P-values below the desired level) 

 

Sample Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR

1 0 3 0 1 10 0 0 0 1 9 0 0 0 1 7
2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
3 0 5 4 5 5 0 4 1 5 5 0 0 0 0 5
4 0 5 5 0 0 0 5 3 0 0 0 2 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 9 5 4 8 0 5 2 4 6 0 2 0 3 3
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 2 4 0 0 0 2 2 0 0 0 0 0
9 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0
10 0 0 0 2 2 0 0 0 2 2 0 0 0 0 0

1 0 4 2 3 5 0 2 2 3 4 0 1 1 1 3
2 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1
3 0 2 1 2 6 0 2 0 2 4 0 0 0 0 2
4 0 6 5 1 1 0 5 3 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 8 7 5 6 0 6 5 4 5 0 2 1 1 4
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 6 1 1 1 0 2 0 0 0 0 0 0 0 0
9 0 2 1 1 1 0 1 0 0 0 0 0 0 0 0
10 0 1 0 3 2 0 0 0 1 1 0 0 0 0 0

1 0 4 2 3 5 0 2 2 2 3 0 1 1 2 2
2 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1
3 0 3 1 3 6 0 2 0 2 6 0 0 0 1 2
4 0 5 5 0 0 0 5 1 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 7 6 5 6 0 7 5 5 5 0 4 2 2 4
7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
8 0 5 3 2 2 0 3 2 2 2 0 1 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 2 2 0 0 0 2 2 0 0 0 0 0

normal

t -Student

Skewed-t

Significance level: 0.1 Significance level: 0.05 Significance level: 0.01

Sample Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR Puc Pind Pcc DQHit DQVaR

1 0 3 3 2 4 0 3 2 2 3 0 1 0 0 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 9 9 0 1 0 9 8 0 0 0 7 1 0 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 3 1 3 1 0 2 1 1 1 0 0 0 0 0
6 0 6 6 1 7 0 6 6 0 5 0 5 2 0 2
7 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 2 2 4 4 0 2 2 4 4 0 1 0 0 1

1 0 4 2 2 3 0 2 0 1 3 0 0 0 1 1
2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
3 0 9 9 0 0 0 9 8 0 0 0 6 1 0 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 3 1 2 1 0 1 1 1 1 0 0 0 1 1
6 0 6 6 1 5 0 6 6 0 4 0 5 2 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 5 0 0 0 0 2 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 2 2 3 4 0 2 0 1 1 0 0 0 0 0

1 0 4 1 1 3 0 2 0 1 2 0 0 0 1 1
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 9 9 0 0 0 9 8 0 0 0 6 1 0 0
4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 3 1 2 2 0 1 1 1 1 0 0 0 1 1
6 0 8 7 0 5 0 7 7 0 5 0 6 2 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 7 0 0 0 0 4 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 2 2 4 4 0 2 0 1 2 0 0 0 0 0

Skewed-t

normal

t -Student

Significance level: 0.01Significance level: 0.05Significance level: 0.1
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Overall, for a significance level of 1%, the FHS filtered by the traditional normal-GARCH gives the 

best results for the simulated time series generated by using a GARCH+29% of zeros as the DGP.  For 

the data that was simulated using a DGP based on a t-A-PARCH, for a significance level of 1%, the 

traditional normal-GARCH still produces the best results in the context of the Christoffersen´s (2003) 

framework. Neverthless, when DQ tests are applied the  FHS method coupled with a Skew-t-GARCH 

performs slightly better.  Finally, for the series of simulated return based on a MN-GARCH, for a 1% 

level of significance,  the use of  a t-GARCH(1,1) or a Skew-t-GARCH, to filter the returns under 

FHS, slightly improves the results in terms of independence of the VaR violations. However, the 

results are not conclusive as the DQHit test indicates that the traditional normal-GARCH is preferred.  

FHS using a traditional normal-GARCH model predicts with great accuracy the downfall risk for  the 

time series generated by a normal-GARCH with a 29% of zeros. These results are robust to the 

different statistic tests that were applied.  In fact, for all the tests and across all the significance levels, 

the results are in favour the accuracy of FHS as a method to forecast VaR when the time series exhibit 

a high incidence of zeros. Remember that Paolella and Taschini (2008) argued the opposite.  

Even when more sophisticated DGPs are used to simulate the data, the forecasting ability of FHS 

based on the traditional normal-GARCH model  is still very satisfactory, especially for a significance 

level of 1%. The less satisfactory results respect to the independence of the VaR violations (especially 

for a significance level of 5% and 10%) for the series generated by a t-A-PARCH and MN-GARCH 

DGP. The use of a t-GARCH or Skew-t-GARCH instead of the traditional normal-GARCH does not 

generally (considering the three DGP´s) improves the results of FHS method. 

 

4.2 Empirical results 

The performance of FHS is also evaluated using empirical time series. For that purpose, the 

backtesting was repeated using six well known active stock indices from developed markets: DAX, 

DJI, FTSE, NASDAQ Composite, Nikkei 225 and S&P 500. The data set5 consists of  daily closing 

                                                 

5 The data was obtained from DataStream.  
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levels  of  the  indices  from  February the 8th , 1971 to September the 30th , 2010, yielding a total  of 

10 343 observations of daily log returns. Table 7 summarizes the descriptive statistics for the six stock 

indices investigated. All the time series exhibit stylized characteristics that indicate a potential 

departure from normality: negatively skewness and excess kurtosis.  

Table 7 Summary of descriptive statistics for the stock indices 

 

Considering the empirical properties of the data, in accordance to what is generally recommended by 

the literature, an autoregressive process of first-order (AR(1)) is used to model the stock indices 

returns: 

�� � � � D�����	�. (28) 

To capture volatility dynamics, the innovations of the above model are modelled in the context of a 

GARCH-type process. Four alternative GARCH-type structures are considered. In addition to the 

traditional GARCH, a GARCH-in-mean (GARCH-M), the Glosten, Jajannathan and Runkle (GJR) 

and a GJR-in-mean (GJR-M) specifications for the variance are also tested.  

The GARCH-M model (Engle et al., 1987) extends the traditional GARCH framework by allowing  

the conditional mean stock return to depend on its own conditional variance: �� � � � ����� �������, (29) 

An important reason in financial theory for using a GARCH-M structure is because it deals  to a 

certain degree, with the presence of conditional left skewness commonly observed in stock returns 

time series. This is related to the volatility feedback effect, which amplifies the impact of bad news but 

  DAX DJI  FTSE  NASDAQ  Nikkei  S&P500
Sample Size 10 343 10 343 10 343 10 343 10 343 10 343
  Minimum -0.137099 -0.256320 -0.121173 -0.120478 -0.161354 -0.228330
  Maximum 0.107975 0.105083 0.089434 0.132546 0.132346 0.109572
  Mean 0.000242 0.000242 0.000296 0.000305 0.000143 0.000238
Standard Deviation 0.012513 0.010726 0.010753 0.012385 0.012585 0.010755
  Skewness -0.306679 -1.356437 -0.278622 -0.281302 -0.350004 -1.077088
  Kurtosis 8.031591 38.387919 9.141047 10.549319 10.796472 27.641346
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dampens the impact of good news6. Volatility feedback therefore implies that stock price movements 

are correlated with volatility and the GARCH-M model incorporates that its specification. 

The traditional GARCH model is unable to capture volatility asymmetry, which also usually 

characterises stock markets. In this regard the GJR model, as introduced by Glosten et al.  (1993), is 

also considered. The GJR model allows for possible asymmetric behaviour in volatility. An indicator 

function is incorporated in the volatility specification of the model, enabling the volatility to react 

differently depending on the sign of past innovations: ��� � 	� � 	������ � 
������ � ������ ����, (30) 

 

where ���� � ��������� � ���������� � ��� 
In order to estimate the models, it is necessary to make assumptions about the distribution of the error 

term. For each model, and similarly to what was done before in the context of the simulation, three 

error distributional assumptions are investigated for each of the four models: normal, t-Student and 

Skewed-t. Therefore, twelve different GARCH-type models, with an AR(1) term in the mean 

equation, are tested: 

- normal-AR(1)-GARCH(1,1), henceforth normal-GARCH ; 

- t-AR(1)-GARCH(1,1), henceforth t-GARCH; 

- Skew-t-AR(1)-GARCH(1,1), henceforth Skew-t-GARCH; 

- normal-AR(1)-GARCH(1,1)-M, henceforth normal-GARCH-M; 

- t-AR(1)-GARCH(1,1)-M, henceforth t-GARCH-M; 

- Skew-t-AR(1)-GARCH(1,1)-M, henceforth Skew-t-GARCH-M; 

- normal-AR(1)-GJR(1,1), henceforth normal-GJR; 

- t-AR(1)-GJR(1,1), henceforth t-GJR; 

- Skew-t-AR(1)-GJR(1,1), henceforth Skew-t-GJR; 

                                                 

6 For a detailed explanation of the volatility feedback effect see Campbell and Hentschel (1992). 
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- normal-AR(1)-GJR(1,1)-M, henceforth normal-GJR-M; 

- t-AR(1)-GJR(1,1)-M, henceforth t-GJR-M; 

- Skew-t-AR(1)-GJR(1,1)-M, henceforth Skew-t-GJR-M; 

A moving window of 1000 observation is used and the model parameters are updated for each 

moving window based on one day increments. For each empirical time series, 9343 out-of-

sample � � � step-ahead VaR forecasts are computed using target downfall probabilities of  

� � 
�
��
�
�� � � � �
�� and � � �
�


 bootstrap replications. The results are reported in 

Tables 8, 9, 10 and 11.  

According to the three-zone approach defined by the Basle Committee (1996), a VaR model 

is considered accurate (green zone) if it produces a number of 1% VaR violations that remains 

below the binomial (0.01) 95% quantile. A model is arguable (yellow zone) up to 99.99% 

quantile. When more violations occur the model is judged as inappropriate (red zone). 

Adapting this framework to our sample size,  if at most 109 (1.17%) violations occur the 

model is considered acceptable. Between 110 and 130 (1.39%) the model is classified as 

being disputable. Table 8 reports the observed percentage of VaR violations for all the models 

and across all target downfall probabilities. From the total of 72 estimated models (12 models 

for 6 different stock indices) 52 (approximately 72.2%) are classified as accurate (green), 19 

(approximately 26.4%) as arguable (yellow) and only 1 (approximately 1.4%) is reported as 

inappropriate.  

To expedite the comparison of VaR forecasting methods, Kuester et al. (2005) advocate the use of a 

graphical depiction of the quality of VaR predictions over the relevant probability levels. Therefore 

the relative deviation from the correct coverage can be compared across the different VaR 

levels and alternative models. The graphical depiction of the quality of the VaR forecasts was 
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implemented for all the stock indices investigated7. As an example, Figure 1 depicts the coverage 

results for VaR levels � � 
�
��
�
��� �
��, with respect to the NASDAQ sample.  

Based on the analysis of the deviation plots constructed for the all the empirical samples we can 

conclude that FHS has good coverage properties, , especially at the lower quantile. These result is 

valid across all the competing GARCH-type models. Nevertheless, in general, the traditional normal-

GARCH model demonstrates a higher performance which indicates that this model is suitable to filter 

the empirical data for heteroscedasticity under FHS. The adoption of a more sophisticated GARCH-

type model or distributional innovation assumption, does not generally improves the coverage 

properties of the FHS method to estimate VaR.  

Table 9 gives summary information about to the coverage properties for each GARCH-type model 

investigated, across all the empirical samples. The mean absolute error (MAE) and the mean squared 

error (MSE) of the actual violation frequencies from the corresponding theoretical VaR level are 

reported.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 

7 To save space the graphical depiction  of the quality of VaR predictions, for all the stock indices samples, was 

not included in the paper. These results are available upon request. 
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Table 8 Percentage of VaR violations 

 
*  Classification according to the three-zone appraoch suggested by the Basle Committee (1996): a VaR model is accurate 
(green zone) if the number of violations of 1% VaR remains below the binomial (0.01) 95% quantile. A model is arguable 
(yellow zone) up to 99.99% quantile. When more violations occur the model is judged as inappropriate (red zone). For our 
sample size, if at most 109 (1.17%) violations occur the model is acceptable. Between 110 and 130 (1.39%) is disputable.  

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 *

normal-GARCH 0.0110 0.0223 0.0334 0.0417 0.0519 0.0636 0.0730 0.0821 0.0907 0.1017 Green
t -GARCH 0.0115 0.0223 0.0334 0.0421 0.0535 0.0626 0.0734 0.0824 0.0914 0.1011 Green
Skew-t -GARCH 0.0116 0.0225 0.0333 0.0422 0.0530 0.0634 0.0727 0.0827 0.0922 0.1014 Green
normal-GARCH-M 0.0100 0.0207 0.0303 0.0381 0.0478 0.0582 0.0667 0.0751 0.0835 0.0916Green
t -GARCH-M 0.0104 0.0206 0.0307 0.0390 0.0488 0.0580 0.0682 0.0759 0.0852 0.0933 Green
Skew-t -GARCH-M 0.0106 0.0208 0.0320 0.0389 0.0486 0.0584 0.0683 0.0760 0.0855 0.0942 Green
normal-GJR 0.0118 0.0223 0.0335 0.0423 0.0548 0.0637 0.0720 0.0807 0.0909 0.1022 Yellow
t -GJR 0.0124 0.0224 0.0336 0.0438 0.0548 0.0635 0.0728 0.0821 0.0931 0.1037 Yellow
Skew-t -GJR 0.0119 0.0223 0.0338 0.0433 0.0546 0.0638 0.0724 0.0822 0.0932 0.1034 Yellow
normal-GJR-M 0.0119 0.0225 0.0317 0.0408 0.0514 0.0610 0.0684 0.0770 0.0871 0.0971Yellow
t -GJR-M 0.0109 0.0208 0.0311 0.0404 0.0492 0.0585 0.0669 0.0759 0.0862 0.0963 Green
Skew-t -GJR-M 0.0111 0.0210 0.0316 0.0407 0.0503 0.0590 0.0676 0.0771 0.0867 0.0971 Green

normal-GARCH 0.0118 0.0226 0.0332 0.0426 0.0535 0.0627 0.0715 0.0812 0.0896 0.0991Yellow
t -GARCH 0.0111 0.0224 0.0324 0.0423 0.0515 0.0609 0.0710 0.0818 0.0900 0.1009 Green
Skew-t -GARCH 0.0119 0.0226 0.0328 0.0424 0.0515 0.0610 0.0716 0.0815 0.0900 0.1002 Yellow
normal-GARCH-M 0.0112 0.0210 0.0292 0.0374 0.0475 0.0547 0.0621 0.0710 0.0804 0.0881Green
t -GARCH-M 0.0108 0.0216 0.0300 0.0382 0.0478 0.0566 0.0661 0.0755 0.0836 0.0927 Green
Skew-t -GARCH-M 0.0109 0.0217 0.0301 0.0394 0.0478 0.0560 0.0658 0.0760 0.0843 0.0927 Green
normal-GJR 0.0122 0.0233 0.0341 0.0442 0.0521 0.0639 0.0737 0.0824 0.0919 0.1001 Yellow
t -GJR 0.0112 0.0235 0.0330 0.0429 0.0520 0.0613 0.0724 0.0826 0.0917 0.0991 Green
Skew-t -GJR 0.0113 0.0239 0.0329 0.0430 0.0524 0.0614 0.0721 0.0825 0.0912 0.0996 Green
normal-GJR-M 0.0122 0.0222 0.0310 0.0408 0.0483 0.0572 0.0654 0.0736 0.0835 0.0920Yellow
t -GJR-M 0.0113 0.0224 0.0313 0.0408 0.0490 0.0564 0.0658 0.0763 0.0843 0.0934 Green
Skew-t -GJR-M 0.0110 0.0220 0.0322 0.0408 0.0490 0.0573 0.0665 0.0771 0.0850 0.0931 Green

normal-GARCH 0.0108 0.0198 0.0296 0.0407 0.0507 0.0598 0.0701 0.0802 0.0908 0.1004 Green
t -GARCH 0.0112 0.0203 0.0292 0.0402 0.0504 0.0606 0.0703 0.0804 0.0899 0.0999 Green
Skew-t -GARCH 0.0112 0.0204 0.0295 0.0398 0.0505 0.0595 0.0701 0.0802 0.0897 0.0995 Green
normal-GARCH-M 0.0110 0.0196 0.0274 0.0383 0.0485 0.0573 0.0676 0.0765 0.0849 0.0957Green
t -GARCH-M 0.0105 0.0199 0.0286 0.0385 0.0485 0.0577 0.0683 0.0771 0.0853 0.0957 Green
Skew-t -GARCH-M 0.0104 0.0201 0.0284 0.0377 0.0487 0.0572 0.0686 0.0776 0.0852 0.0952 Green
normal-GJR 0.0113 0.0209 0.0304 0.0411 0.0519 0.0618 0.0710 0.0796 0.0912 0.1005 Green
t -GJR 0.0112 0.0213 0.0307 0.0418 0.0517 0.0626 0.0715 0.0811 0.0911 0.1008 Green
Skew-t -GJR 0.0112 0.0216 0.0307 0.0405 0.0516 0.0627 0.0713 0.0803 0.0913 0.1006 Green
normal-GJR-M 0.0111 0.0204 0.0294 0.0387 0.0507 0.0602 0.0696 0.0783 0.0880 0.0974 Green
t -GJR-M 0.0108 0.0203 0.0295 0.0390 0.0486 0.0603 0.0700 0.0775 0.0877 0.0968 Green
Skew-t -GJR-M 0.0110 0.0204 0.0301 0.0392 0.0494 0.0594 0.0701 0.0775 0.0882 0.0972 Green

normal-GARCH 0.0112 0.0230 0.0354 0.0453 0.0553 0.0639 0.0742 0.0840 0.0928 0.1055 Green
t -GARCH 0.0116 0.0234 0.0338 0.0448 0.0543 0.0643 0.0744 0.0842 0.0935 0.1047 Green
Skew-t -GARCH 0.0116 0.0225 0.0332 0.0440 0.0536 0.0637 0.0727 0.0824 0.0923 0.1041 Green
normal-GARCH-M 0.0107 0.0193 0.0310 0.0411 0.0496 0.0570 0.0656 0.0743 0.0836 0.0935Green
t -GARCH-M 0.0103 0.0203 0.0315 0.0408 0.0501 0.0577 0.0668 0.0759 0.0858 0.0963 Green
Skew-t -GARCH-M 0.0101 0.0202 0.0314 0.0408 0.0503 0.0584 0.0671 0.0763 0.0848 0.0962 Green
normal-GJR 0.0121 0.0260 0.0364 0.0460 0.0570 0.0661 0.0775 0.0874 0.0968 0.1069 Yellow
t -GJR 0.0116 0.0250 0.0361 0.0460 0.0567 0.0656 0.0774 0.0873 0.0969 0.1075 Green
Skew-t -GJR 0.0115 0.0242 0.0353 0.0441 0.0562 0.0645 0.0760 0.0853 0.0950 0.1054 Green
normal-GJR-M 0.0113 0.0230 0.0340 0.0431 0.0531 0.0611 0.0706 0.0806 0.0883 0.0993 Green
t -GJR-M 0.0110 0.0228 0.0346 0.0428 0.0518 0.0599 0.0701 0.0808 0.0908 0.0995 Green
Skew-t -GJR-M 0.0116 0.0228 0.0336 0.0421 0.0527 0.0610 0.0705 0.0800 0.0893 0.0983 Green

normal-GARCH 0.0106 0.0210 0.0311 0.0411 0.0524 0.0618 0.0721 0.0825 0.0929 0.1029 Green
t -GARCH 0.0105 0.0208 0.0321 0.0423 0.0515 0.0620 0.0731 0.0835 0.0919 0.1028 Green
Skew-t -GARCH 0.0110 0.0203 0.0318 0.0423 0.0519 0.0611 0.0735 0.0836 0.0933 0.1025 Green
normal-GARCH-M 0.0098 0.0195 0.0273 0.0371 0.0461 0.0560 0.0648 0.0746 0.0827 0.0919Green
t -GARCH-M 0.0104 0.0186 0.0283 0.0370 0.0461 0.0565 0.0659 0.0764 0.0842 0.0925 Green
Skew-t -GARCH-M 0.0101 0.0184 0.0283 0.0380 0.0470 0.0572 0.0666 0.0770 0.0839 0.0924 Green
normal-GJR 0.0113 0.0219 0.0326 0.0421 0.0528 0.0626 0.0736 0.0822 0.0926 0.1041 Green
t -GJR 0.0116 0.0211 0.0330 0.0422 0.0529 0.0627 0.0744 0.0824 0.0932 0.1047 Green
Skew-t -GJR 0.0118 0.0210 0.0324 0.0430 0.0528 0.0628 0.0742 0.0823 0.0929 0.1046 Yellow
normal-GJR-M 0.0118 0.0224 0.0306 0.0406 0.0493 0.0599 0.0694 0.0767 0.0867 0.0972Yellow
t -GJR-M 0.0119 0.0206 0.0302 0.0408 0.0492 0.0598 0.0699 0.0788 0.0876 0.0983 Yellow
Skew-t -GJR-M 0.0123 0.0210 0.0306 0.0414 0.0494 0.0608 0.0695 0.0790 0.0877 0.0991 Yellow

normal-GARCH 0.0124 0.0223 0.0334 0.0435 0.0524 0.0617 0.0716 0.0800 0.0908 0.0996Yellow
t -GARCH 0.0123 0.0227 0.0339 0.0429 0.0527 0.0618 0.0720 0.0806 0.0912 0.1005 Yellow
Skew-t -GARCH 0.0127 0.0222 0.0333 0.0433 0.0529 0.0620 0.0709 0.0818 0.0910 0.1013 Yellow
normal-GARCH-M 0.0110 0.0199 0.0288 0.0383 0.0465 0.0532 0.0611 0.0698 0.0791 0.0868Green
t -GARCH-M 0.0111 0.0207 0.0306 0.0392 0.0476 0.0546 0.0644 0.0732 0.0829 0.0905 Green
Skew-t -GARCH-M 0.0110 0.0209 0.0307 0.0397 0.0472 0.0544 0.0642 0.0735 0.0831 0.0908 Green
normal-GJR 0.0141 0.0234 0.0334 0.0444 0.0538 0.0623 0.0722 0.0821 0.0914 0.1006 Red
t -GJR 0.0127 0.0232 0.0326 0.0440 0.0526 0.0625 0.0718 0.0811 0.0918 0.1008 Yellow
Skew-t -GJR 0.0125 0.0237 0.0330 0.0435 0.0528 0.0628 0.0713 0.0812 0.0919 0.1022 Yellow
normal-GJR-M 0.0116 0.0209 0.0292 0.0371 0.0462 0.0542 0.0609 0.0696 0.0785 0.0855 Green
t -GJR-M 0.0116 0.0214 0.0303 0.0395 0.0490 0.0561 0.0641 0.0728 0.0812 0.0910 Green
Skew-t -GJR-M 0.0119 0.0212 0.0305 0.0391 0.0488 0.0557 0.0635 0.0729 0.0824 0.0916 Yellow

S&P500

DAX

DJI

FTSE

NASDAQ

NIKKEI
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Figure 1 Deviation probability plot for the FHS filtered by GARCH-type models. The horizontal axis is the VaR level. In the 
vertical axis, for each VaR level, the excess of percentage violations over the VaR level is represented. 
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Table 9  Overall measures of deviation 

 

 

According to the reported results for the MAE and MSE, the traditional normal-GARCH model is the 

most appropriate model to filter stock returns in the context of FHS. Also, we can conclude that the 

use of alternative innovation assumptions (t-Student and Skewed-t) has no impact on the VaR 

forecasting performance of FHS coupled with a GARCH model.   

We should now attempt on the information in the sequence of violations, provided by the P-values of 

the LR and DQ test statistics described in section 3.2. As an example, the detailed results of the 

VaR forecast performance for the NASDAQ sample, are presented in table 108. Table 11 

summarizes the number of rejections of the null hypothesis by applying the three LR tests and 

the DQ test to all the tested models across the six empirical samples.  

 
According to the results, when a traditional normal-GARCH model is used to filter the returns in order 

to estimate VaR by FHS, a poor performance in terms of independence is reported. When instead a 

GJR process is used, there is a substantial  improvement with respect to the independence of the VaR 

violations. In fact, the results of the DQ tests clearly indicate that the use of a GJR, improves the VaR 

forecasting performance of FHS in terms of independence. It should be noticed that the use of 

alternative distributional assumptions for the innovations, by itself,  does not have an important impact 

in the results. 

 
 
 
 
 
 
                                                 

8 In the interest of brevity, the detailed results for the VaR forecast performance with respect to the other five 

empirical samples are not included in the paper. These results are available upon request. 

MAE (%) MSE(%) MAE (%) MSE(%) MAE (%) MSE(%)
GARCH 0.2061 0.0006 0.2043 0.0006 0.1953 0.0005
GARCH-M 0.3911 0.0026 0.2853 0.0013 0.2788 0.0013
GJR 0.2979 0.0013 0.2986 0.0012 0.2734 0.0010
GJR-M 0.2724 0.0016 0.2126 0.0009 0.2066 0.0008

normal t -Student Skewed-t
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Table 10 VaR forecast performance: NASDAQa 

 
a
 Entries in the last 10 columns are the P-values of the respective tests. Bold type entries are not significant at the 1% level. 

Target downfall probability 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

normal-GARCH 0.2381 0.0422 0.0028 0.0108 0.0199 0.1162 0.1172 0.1551 0.3471 0.0770
t -GARCH 0.1393 0.0207 0.0337 0.0190 0.0619 0.0816 0.0997 0.1345 0.2338 0.1345
Skew-t -GARCH 0.1393 0.0935 0.0763 0.0526 0.1121 0.1374 0.3137 0.3918 0.4467 0.1847
normal-GARCH-M 0.4994 0.6100 0.5581 0.5889 0.8436 0.2259 0.0931 0.0393 0.0287 0.0357
t -GARCH-M 0.7902 0.8170 0.4094 0.7016 0.9678 0.3442 0.2203 0.1395 0.1570 0.2343
Skew-t -GARCH-M 0.9528 0.8746 0.4441 0.7016 0.8925 0.5236 0.2703 0.1859 0.0747 0.2209
normal-GJR 0.0488 0.0001 0.0005 0.0037 0.00220.0138 0.0052 0.0089 0.0240 0.0272
t -GJR 0.1393 0.0008 0.0009 0.0037 0.00350.0244 0.0059 0.0099 0.0219 0.0174
Skew-t -GJR 0.1679 0.0051 0.0033 0.0467 0.0070 0.0677 0.0250 0.0613 0.0911 0.0828
normal-GJR-M 0.2007 0.0422 0.0251 0.1267 0.1750 0.6508 0.8084 0.8323 0.5651 0.8278
t -GJR-M 0.3276 0.0588 0.0114 0.1700 0.4264 0.9798 0.9680 0.7735 0.7969 0.8820
Skew-t -GJR-M 0.1393 0.0588 0.0448 0.3127 0.2420 0.6823 0.8398 0.9866 0.8036 0.5730

normal-GARCH 0.4769 0.0902 0.0050 0.1688 0.4589 0.3678 0.5810 0.3657 0.3097 0.5235
t -GARCH 0.5191 0.1095 0.0035 0.0581 0.1905 0.5893 0.1999 0.2713 0.2775 0.2118
Skew-t -GARCH 0.5191 0.1539 0.0109 0.0626 0.1496 0.2095 0.1019 0.1105 0.1787 0.1444
normal-GARCH-M 0.4095 0.2022 0.0131 0.0418 0.4647 0.4469 0.3057 0.3025 0.2684 0.3279
t -GARCH-M 0.3587 0.0216 0.0692 0.0609 0.2255 0.2513 0.2745 0.1287 0.3069 0.0847
Skew-t -GARCH-M 0.3345 0.0202 0.0160 0.1007 0.1724 0.3183 0.0746 0.1175 0.1750 0.0215
normal-GJR 0.2172 0.7214 0.1130 0.5506 0.4532 0.6787 0.2061 0.1145 0.0700 0.1361
t -GJR 0.1752 0.3737 0.1641 0.5506 0.5966 0.6725 0.2705 0.6465 0.3063 0.3252
Skew-t -GJR 0.1674 0.2871 0.1215 0.3368 0.6550 0.7147 0.5533 0.6581 0.5432 0.3220
normal-GJR-M 0.1599 0.1897 0.4746 0.6187 0.7358 0.7221 0.4047 0.1126 0.1056 0.3390
t -GJR-M 0.1388 0.0817 0.2448 0.5814 0.4915 0.6614 0.3023 0.6183 0.5061 0.4825
Skew-t -GJR-M 0.1752 0.1748 0.1009 0.1697 0.2810 0.5941 0.6964 0.6818 0.5334 0.4727

normal-GARCH 0.3872 0.0303 0.0002 0.0150 0.0506 0.1941 0.2517 0.2418 0.3837 0.1708
t -GARCH 0.2724 0.0192 0.0015 0.0106 0.0743 0.1897 0.1134 0.1781 0.2729 0.1496
Skew-t -GARCH 0.2724 0.0887 0.0082 0.0270 0.1002 0.1509 0.1580 0.1939 0.3031 0.1430
normal-GARCH-M 0.5665 0.3893 0.0389 0.1088 0.7507 0.3597 0.1445 0.0703 0.0495 0.0683
t -GARCH-M 0.6334 0.0696 0.1366 0.1604 0.4794 0.3311 0.2597 0.1058 0.2180 0.1116
Skew-t -GARCH-M 0.6266 0.0667 0.0411 0.2415 0.3906 0.4959 0.1111 0.1224 0.0814 0.0336
normal-GJR 0.0671 0.0004 0.0006 0.0123 0.0070 0.0442 0.0091 0.0094 0.0152 0.0287
t -GJR 0.1337 0.0024 0.0015 0.0123 0.0121 0.0725 0.0123 0.0323 0.0428 0.0365
Skew-t -GJR 0.1490 0.0112 0.0041 0.0872 0.0240 0.1763 0.0681 0.1574 0.1994 0.1360
normal-GJR-M 0.1643 0.0538 0.0630 0.2753 0.3765 0.8473 0.6862 0.2777 0.2288 0.6183
t -GJR-M 0.2071 0.0368 0.0207 0.3350 0.5753 0.9083 0.5870 0.8474 0.7755 0.7729
Skew-t -GJR-M 0.1337 0.0667 0.0348 0.2340 0.2821 0.7979 0.9080 0.9193 0.7986 0.6593

normal-GARCH 0.0073 0.0116 0.0000 0.0012 0.00780.0507 0.2812 0.0428 0.0065 0.0146
t -GARCH 0.0461 0.0001 0.0000 0.00130.0102 0.0648 0.0194 0.04600.0008 0.0004
Skew-t -GARCH 0.0461 0.0054 0.0002 0.0032 0.0050 0.00740.0115 0.0208 0.0018 0.0001
normal-GARCH-M 0.0045 0.0859 0.0030 0.0232 0.0201 0.0151 0.02590.0050 0.0108 0.0016
t -GARCH-M 0.2665 0.0029 0.0019 0.0335 0.0109 0.0241 0.0252 0.0203 0.06070.0001
Skew-t -GARCH-M 0.0720 0.0139 0.0019 0.0480 0.0233 0.01400.0038 0.0108 0.0009 0.0000
normal-GJR 0.1909 0.0027 0.0046 0.0811 0.0136 0.1598 0.0755 0.0671 0.0894 0.0833
t -GJR 0.1231 0.0041 0.0072 0.0617 0.0138 0.1643 0.0868 0.1795 0.1904 0.0786
Skew-t -GJR 0.2882 0.0211 0.0055 0.2327 0.0080 0.2585 0.2804 0.4629 0.3369 0.1220
normal-GJR-M 0.1117 0.1510 0.2835 0.7060 0.1668 0.6045 0.9697 0.7612 0.5729 0.6806
t -GJR-M 0.1276 0.0031 0.0514 0.4763 0.5578 0.4554 0.7375 0.9669 0.8467 0.2981
Skew-t -GJR-M 0.2756 0.0276 0.0105 0.1362 0.1616 0.5066 0.7221 0.9154 0.3055 0.1050

normal-GARCH 0.0004 0.0027 0.0000 0.0008 0.00970.0579 0.1801 0.0263 0.0039 0.0119
t -GARCH 0.0026 0.0000 0.0000 0.0004 0.00880.0538 0.0092 0.0261 0.0004 0.0004
Skew-t -GARCH 0.0058 0.0012 0.0000 0.0013 0.00560.0103 0.0101 0.0132 0.0016 0.0001
normal-GARCH-M 0.0002 0.0202 0.0005 0.00630.0268 0.0220 0.0346 0.0063 0.0183 0.0027
t -GARCH-M 0.0435 0.0007 0.0001 0.0135 0.0110 0.0389 0.0257 0.0187 0.07360.0002
Skew-t -GARCH-M 0.0101 0.0035 0.0008 0.0211 0.0305 0.02320.0048 0.0109 0.0014 0.0000
normal-GJR 0.0102 0.0012 0.0016 0.0222 0.0141 0.1538 0.1052 0.0842 0.1169 0.0783
t -GJR 0.0072 0.0013 0.00090.0147 0.0098 0.1667 0.0777 0.1340 0.1467 0.0478
Skew-t -GJR 0.0453 0.0065 0.0014 0.0978 0.0075 0.2631 0.2917 0.4763 0.4030 0.1605
normal-GJR-M 0.0088 0.0316 0.0721 0.2818 0.1580 0.5155 0.9595 0.8220 0.6909 0.6984
t -GJR-M 0.0111 0.0002 0.0052 0.1324 0.3037 0.3606 0.6996 0.9417 0.6898 0.2184
Skew-t -GJR-M 0.0354 0.0092 0.0023 0.0238 0.0599 0.3226 0.6863 0.9003 0.3302 0.1210

Puc

Pind

Pcc

DQHit

DQVaR
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Table 11 Number of rejections of the null hypothesis (number of  P-values below the desired level) 

 

 

 

 

Puc Pind Pcc ����� ����� Puc Pind Pcc ����� �����
DAX 0 0 0 5 5 0 0 0 0 0
DJI 0 1 2 2 4 0 1 2 2 3
FTSE 0 2 0 0 0 0 0 0 0 0
NASDAQ 1 1 1 5 6 6 0 5 2 2
Nikkei 0 0 0 3 4 0 0 0 0 0
S&P 500 0 2 1 4 8 1 1 2 3 4

DAX 0 0 0 9 9 0 0 0 0 1
DJI 0 2 2 3 4 0 2 2 2 3
FTSE 0 4 0 0 2 0 0 0 0 0
NASDAQ 0 1 1 5 8 6 0 2 2 4
Nikkei 0 0 0 10 10 0 0 0 0 0
S&P 500 0 5 3 8 9 0 1 2 3 4

DAX 0 0 0 9 9 0 0 0 0 0
DJI 0 3 2 3 5 1 2 2 2 3
FTSE 0 4 0 0 3 0 0 0 0 0
NASDAQ 0 0 1 7 7 3 0 1 2 3
Nikkei 0 1 0 9 10 0 0 0 0 1
S&P 500 0 5 4 8 9 0 0 1 1 4

DAX 1 0 0 5 5 0 0 0 0 1
DJI 4 2 6 7 7 1 3 0 2 10
FTSE 0 3 1 0 1 0 0 0 0 0
NASDAQ 0 0 0 4 5 0 0 0 0 1
Nikkei 1 0 1 3 5 0 0 0 0 2
S&P 500 5 3 6 8 9 4 0 4 4 6

DAX 0 0 0 7 7 0 0 0 0 0
DJI 0 5 5 5 9 0 2 0 0 6
FTSE 0 4 1 1 2 0 0 0 0 0
NASDAQ 0 0 0 3 3 0 0 0 1 2
Nikkei 0 0 1 9 9 0 0 0 0 1
S&P 500 1 4 5 8 9 3 2 2 2 6

DAX 0 0 0 7 7 0 0 0 0 0
DJI 0 4 3 5 7 0 2 1 1 3
FTSE 0 5 2 3 4 0 0 0 1 2
NASDAQ 0 0 0 4 5 0 0 0 0 2
Nikkei 0 1 1 9 8 0 0 0 0 2
S&P 500 1 2 5 9 9 2 2 1 1 3

t -GJR

normal-GARCH normal-GJR

sig. Level 0.01

Skew-t -GARCH-M Skew-t -GJR-M

t -GARCH

Skew-t -GARCH Skew-t -GJR

normal-GARCH-M normal-GJR-M

t -GARCH-M t -GJR-M
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5. Concluding remarks 

The predictive performance of FHS combined with a traditional normal-GARCH model has been 

backtested using simulated data. Three realistic different DGP were considered to generate several 

series of simulated returns. Based on the simulated series, a backtesting was implemented. Our 

backtesting results are very promising as they indicate the validity of FHS to forecast VaR, with 

respect to the three alternative DGPs.  For the great majority of the samples, the null hypothesis that 

the risk model is correct on average is not rejected. Additionally, two competing models, differing 

in the innovations assumption, were tested: a t-GARCH and a Skew-t-GARCH. The results 

indicate that the use of alternative innovations assumptions does not generally impacts the 

FHS results in terms of VaR forecasting performance.  In summary, the simulation results 

strongly indicates that FHS is an accurate method (in terms of coverage and independence)  to forecast 

VaR in the presence of non-normal returns. Moreover, our results demonstrate that FHS can be 

applied to forecast VaR for data which exhibits a high incidence of zeros,  time-varying skewness, 

asymmetric effects to return shocks on volatility as well as other stylized facts.   

Though the use of simulated data enable us to assess the VaR forecasting ability of FHS under 

controllable circumstances, the validity of any method is best measured using empirical time 

series. Six well known active stock indices daily time series were used to produce the 

empirical results. The VaR forecasting ability of FHS method, using four competitive 

GARCH-type models to filter the stock returns, combined with three alternative innovation 

assumptions, was tested. Though all the models demonstrate a good performance, according 

to our empirical coverage results the traditional normal-GARCH model is the most 

appropriate model to filter stock returns in the context of FHS. Also, we have concluded that 

the results are not sensitive to the use of alternative innovation assumptions (t-Student and 

Skewed-t). Nevertheless, when the VaR forecast performance of FHS is assessed in terms of 

independence, some problems are reported for the traditional normal-GARCH model. With 

respect to the empirical data series, the choice of a GJR process results in a substantial  improvement 



33 

 

with respect to the independence of the VaR violations. In fact, the results of the DQ tests clearly 

indicate that the use of a GJR, improves the VaR forecasting performance of FHS. It should be noticed 

that, again, the use of alternative distributional assumptions for the innovations does not have an 

important impact in the results. This is a very important result as it gives support for the argument that 

distributionally nonparametric models, like FHS, do not depend on the distribution assumed in the 

filtering stage. 
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