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Abstract

This paper describes the Itô processes for the continuously compounded returns on 
European call and put stock options under the one-dimensional diffusion assumption 
and the Black Scholes pricing model. It uses the Itô processes to motivate discrete 
time approximations for the returns on calls and puts. Theses models are used in a 

simulation study to compute the probability of an option return violation as defined by 
Bakshi et al (2000). Two specific cases are described in some detail. The main 
findings of the study are that, at both daily and intraday intervals, option returns are 
not perfectly correlated with underlying returns. Call (put) returns may move in the 
opposite (same) directions as that of the underlying return and call and put returns 
may move together. Even at high frequencies, such as the 30-minute sampling interval, 
some violation occurrence rates are not low, in particular for short-term and out of the 
money options. It may therefore be argued that the effect of time decay in short 
intervals is not always negligible and that the sign of the change in the price of an 
option may not be correctly predicted by the sign of the price change in the underlying 
stock. The findings confirm that violations are likely to present difficulties when using 
options for either hedging or speculating and that there is a need for further 
development of parametric models of option returns.
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1. Introduction

The behaviour of the returns on options and the relationship to returns on the 
underlying stocks remains a relatively unexplored topic in the finance literature. As 
pointed out by Coval and Shumway (2001), relatively little work has focused on 
understanding the distribution of option returns. Sheikh and Ronn (1994), Coval and 
Shumway (2001) and Jones (2006) are among the few authors who have reported 
systematic research in understanding option returns. Other authors, Bates (1996) for 
example, have mentioned some properties of the entire return distribution of option 
positions briefly, but without further exploration. Broadie et al (2009) have computed 
the finite sample distribution of various option return statistics by using Monte Carlo 
simulation, and compared empirical option returns to those generated by the 
benchmark models. Goyal and Saretto (2009) have studied the cross-section of stock 
option returns by sorting stocks on the difference between historical realized volatility 
and implied volatility. Isakov and Morard (2001) have constructed portfolios of 
options and the underlying stocks, but have not studied the properties of option 
returns per se.

A significant exception to the relative lack of research on option returns is the 
important paper by Bakshi, Cao and Chen (2000), henceforth BCC. These authors 
note that all one-dimensional diffusion option-pricing theories imply that the 
underlying asset price is the sole source of uncertainty for the all of its options. Thus 
option prices must be perfectly correlated with each other and with the underlying 
asset; as the stock price rises or falls the price of a call (put) option moves in the same 
(opposite) direction. By contrast, when the underlying asset does not follow a 
one-dimensional diffusion, a call (put) premium can be a decreasing, concave 
(increasing, convex) function of the underlying asset price over some range. Thus call 
(put) premiums can move in the opposite (same) direction to the underlying asset 
price. BCC term such contrary movements violations. They describe a major 
empirical study into returns on the S&P500 index and call and put options written on 
the index and report a detailed analysis of violations. One of the conclusions is that 
option-pricing models based on one-dimensional diffusion are not the best way of 
modelling the returns on S&P500 index options. In a related work, Nordén (2001) 
studied daily data on Swedish (American) equity options data and, like BCC, found 
several violations of the expected properties. In their paper BCC also make the 
important point that the development of a parametric model for option returns is not 
only a logical step for researchers to take but is very desirable. They point out, for 
example, that an option violation can have the effect of making a hedged position 
more risky rather than less risky and that, by implication, the properties of option 
returns are of importance to traders and to fund managers. In other work on option 
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returns, Coval and Shumway (2001) mainly check the relationship between options 
returns and strike prices. Broadie et al (2009) show that the expected option returns 
are determined by the underlying price and the options’ elasticity which are functions 
primarily of moneyness and volatility.

This paper seeks to develop a better understanding of the return behaviour of 
European options from a theoretical perspective. The objective of this work is to 
provide evidence which will lead to the development of parametric models for option 
returns. This paper contributes to knowledge in the following ways. First, following 
Sheikh and Ronn (1994), Itô’s lemma is used to motivate a simple model which 
provides an approximation for option returns subject to the usual assumptions of the 
Black-Scholes (1973, hereafter, BS) model. Secondly, this model is used to compute 
the theoretical probabilities of the option return violations as defined in BCC. Thirdly, 
the properties of the violations are studied using this model. 

It is shown that violations do occur even under the standard IID normal assumption 
for stock returns (the one-dimensional diffusion) and the BS options pricing model. In 
the cases described in this paper, the incidence of violations depends on the 
characteristics of the contract. In some cases, the probability of a violation is indeed 
low, but in general the incidence of violations should not be neglected. The results 
reported in this paper extend BCC, Coval and Shumway (2001) and Broadie et al
(2009) in a number of respects. In particular, it is shown that the probability of 
violation and the effect of time decay are both strongly time varying and increase 
considerably as expiry approaches. Furthermore, the effects are more substantial for 
out of the money options. 

The structure of the paper is as follows. Section 2 presents the Itô processes for 
options prices and returns subject to the underlying assumptions of the BS model. In 
continuous time and subject to the assumptions made the Itô processes for option 
returns are exact. They motivate discrete time approximations. Section 3 summarises 
the definitions of the four types of violations which are given in BCC. The theoretical 
probabilities of violations are derived in Section 4 based on the model of Section 2. 
Section 5 describes the design parameters for a simulation experiment. Section 6 
reports results for two specific cases. These have been chosen primarily to illustrate 
the effect of moneyness on option returns, since this appears to be a major 
determinant of violations. Section 7 describes the temporal behaviour of time decay 
and violation probability for these two cases. Section 8 concludes. In the interests of 
brevity and in keeping with increasingly common practice, only examples of key 
results are presented in the text of the paper. Further detail is available on request 
from the corresponding author. Technical assumptions and notation are that in 
common use.
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2. Model For Option Returns Derived From Itô’s Lemma

The price of the underlying stock time t is denoted by tS . It is assumed that the 

stock pays no dividends over the life of the option, which matures at time tT  . The 
strike price is denoted by K . The return on the underlying asset between time t and 

tt  is defined in the usual way as

                        tΔttS SlnSlnR   .                  (1.)

The price of a European call (put) at time t is denoted by Ct (Pt). the variables d1,2

which are used below are defined in the usual way. The delta of the call (put) is 
denoted by C (P). The return on the call and put are defined as

       .tΔttPtΔttC PlnPlnR,ClnClnR  

The price process for the BS model is 

tttt dZσSdtμSdS  ,

where  is the drift,   the return standard deviation and Z a Wiener process. The BS 
model also assumes risk neutrality, that is  = r, the risk free interest rate. Note that 
unless it is explicitly required the time subscript t is generally omitted from the 
notation. From Itô’s lemma, the stock return follows the normal distribution

  dtσdt,2σrN~ dlnS 22
t  .

Applying Itô’s lemma to Ct and Pt (as in Sheikh and Ronn, 1994) and using the 
well-known relationships between the gamma and theta of calls and puts gives the 
processes

    ., tP2
t)r(T

ttC2
t)r(T

t dSΔdtd-ΦrKedPdSΔdtdΦrKedC  
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These show that the change in the call (put) price is positively (negatively) related to 
the change in the stock price and that there is negative (positive) drift. Applying Itô’s 
lemma to lnCt and lnPt and simplifying gives the diffusions for the returns on calls and 
puts. These are 

             

    

     .1

,1

tP
2
PP

2
Pt

tC
2
CC

2
Ct

dlnStd/2ξξσrdlnC

dlnSξdt/2ξξσrdlnC









              

(2.)

where 

/PSΔξ/CSΔξ tPPttCC  ; .

Equation (2.) indicates that option returns are combined functions of asset returns and 
time decay. In the case of calls, the time decay is less than or equal to zero. 
Numerically it is usually the case that the time decay for puts is less than zero. 
Mathematically, however, it is possible for the time decay in the puts component of 
(2.) to be positive. For instance, the time decay of an in-the-money European put 
option on a non-dividend-paying underlying asset may be positive or zero (Hull, 2006, 
p354). The processes defined at (2.) are exact and motivate models for the returns on 
call and put options in discrete time. Replacing dt by t and dlnSt by RS as defined at 
(1.) gives the models

    

     ,1

,1

SP
2
PP

2
PP

sC
2
CC

2
CC

Rt/2ξξσrR

Rξt/2ξξσrR









where RC and RP are respectively the return on the call and the put. For brevity, these 
are written as

SPSC δRγR,βRαR  .                     (3.)

where RS~N(, 2) with  = (r-2)t and 2 = 2t. Note that under the assumption of 
risk neutrality  = r. The coefficients in (3.) are given by
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    

     .,

,

Pξt/2ξξσξ1r

ξt,/2ξξσξ1r

2
PP

22
P

C
2
CC

2
C









            (4.)

with 1β  and 0δ .

3. Violations In Option Returns

In Equation (4.)  and  are proportional to t. When the underlying asset price St

follows the one-dimensional diffusion which leads to BS model, the following 
properties of European option returns are presented in BCC. 

Property 1: Over a short time intervals in which  and  are negligible, the return on 
an option is mostly in response to the contemporaneous return to the underlying asset. 
The return to the underlying asset and return on a European call written on it should 
share the same sign, RSRC   0. For puts the signs should be opposite, RSRP  0.

Property 2: Over any time intervals, the contemporaneous return on the underlying 
and time decay should be the only sources of uncertainty for option returns. That is, if 
RS = 0, then RC  0 and RP  0 due to the time decay1 effects.

Property 3: Over any short time intervals, contemporaneous returns on call and put 
options with the same strike price and the same maturity should be of opposite sign: 
RCRP  0.

The above properties may be summarised as follows. After removing time decay, the 
returns on the underlying asset determine the returns on options written on it. The 
failure of price changes to comply with the above predictions of the model is termed a 
violation by BCC. As they report, the severity of violations is an important issue both 
for studies of option pricing and for the use of option return model in trading and 
portfolio construction. BCC further argue that, in the one-dimensional case, with 
sampling intervals ranging from 30 minutes to 1 day the time decay is negligible. 
They define four types of violations against this argument. These are as follows.

Type 1 Violation: For calls, RSRC < 0. There are the two cases of this type of violation, 
A: RS > 0 but RC < 0, B: RS < 0 but RC > 0. For puts, RSRP > 0 with cases A: RS > 0 
and RP > 0, B: RS < 0 and RP < 0.

                                                       
1 Note that, as reported in Section 2, it is possible that the time decay for a put may be non-negative.
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Type 2 Violation: For calls, RSRC = 0, RS  0. There are the two subcategories of this 
type of violation, A: RS > 0, B: RS < 0 For puts, RSRP = 0, RS  0 with the same 
sub-categories.

Type 3 Violation: For calls, RSRC = 0, RC  0. There are the two subcategories of this 
type of violation, A: RC > 0, B: RC < 0. For puts, RSRP = 0, RP  0 with the same 
sub-categories.

Type 4 Violation: RCRP > 0. There are the four subcategories of this type of violation, 
A: RS  > 0, RC  > 0 and RP > 0, B: RS  > 0, RC  < 0 and RP < 0, C: RS  < 0, RC  > 
0 and RP > 0, D: RS  < 0, RC  < 0 and RP < 0.

The occurrence of Type 1 violations mean that option returns do not change 
monotonically with underlying return. Type 2 violations indicate that option returns 
do not change even after underlying return has changed. Type 3 violations directly 
show that contemporaneous underlying return and time decay are not the only sources 
of uncertainty for option returns. Type 4 violations mean that call returns and put 
returns move up or down together. 

4. Probability Of Violations Using The Itô Based Model

The theoretical probabilities associated with each of the four types of violations in the 
BS model may be calculated using the models described at (3.) and (4.) in conjunction 
with the normal distribution function. The computations for the type 1 violations for 
calls are described in some detail. Other results are presented more briefly, but may be 
derived using similar methods. The notation C1A refers to a type 1 case A violation 
for a call. Related notation is defined in the same way.

Type 1 violations of call option returns

For a call option a type 1 violation occurs if

  0RRRR SSSC   .

For type 1 – case A the probability of a violation is

      .C βαR0Pr0R0,βRαPr1APr SSS 

Since  2
S τω,N~R this is
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      τωΦτωβαΦ1APr C .

The probability of a type 1 – case B violation is 

    0R0,βRαPr1BPr SS C .

Since α is non-positive the condition  + RS > 0 implies that RS > - / > 0 which 
contradicts the condition RS < 0. Hence 

  0C 1BPr .

Type 1 violations of put option returns

For a put option a type 1 violation occurs if  RPRS > 0. For cases A and B respectively the 

conditions are

    0R,0R;0R,0R SSSS   .

The probability of type 1 – case A and case B violations are respectively

         0R0,RPr1BPr0R0,RPr1APr SSSS   P;P .

There are three cases to consider; (1)  < 0, (2)  = 0 and (3)  > 0. Case (3) could only 
occur for an in the money European put option for a non-dividend-paying underlying 
asset (Hull, 2006, p.354). For these cases, noting that  < 0 and proceeding as above 
gives the following results

Case (1)  < 0

            0/P0;AP SRPr1BPr1Pr ,

Case (2)  = 0

    0BP0;AP  1Pr1Pr ,
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Case (3)  > 0

         0P;P  1BrPτωΦτωΦ1APr  .

Type 2 and Type 3 violations of call and put option returns

A type 2 violation for calls (puts) occurs if RC = 0 (RP = 0) and a type 3 violation 
occurs if RS = 0. Under the model of Section 2, RS , RC and RP are continuous random 
variables and so these events occur with probability zero. 

Type 4 violations of call/put option returns

Noting that 0 , 1 , 0 , there are also three cases for Type 4 violations. 

Case (1)  < 0

      0/,/,0,0Pr   SSSSS RRPr0RRRPrA4 , 

          ,C0,0,0Pr 1APrτωΦτωβαΦRRRPrB4 SSS  

0Pr(4C) ,

          .P/Φ0,0,Pr 1BPrτωΦ0RRRPrD4 SSS  

Case (2)  = 0

           0.D0,,C,0A  4PrPr(4C)1APrτωΦτωβαΦPr(4B)4Pr

Case (3)  > 0

If  // 

         

   ,11Pr

//0,0,Pr

ACPAP

/Φ-/Φ0RRRPrA4 SSS



 

  0Pr B4 .
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If  //  , then 

  04APr  ,

         

Pr(P1A).Pr(C1A)

/τωγ/δΦ-/τωα/βΦ0δRγ0,βRα0,RPr4BPr SSS





and in both cases 

  0D  4PrPr(4C) .

5. Simulation Experiment To Calculate Violation Probabilities

A simulation approach is used to calculate the violation probabilities specified in 
Section 4. The aim of the experiment is to create and use a simulated data set which is 
similar in structure to the data analysed by BCC. Table 1 lists the parameters 
employed in simulating the normal distribution and thus the BS model. Five different 
underlying expected return rates, risk free interest rates, values of annual volatility, 
and strike prices are employed. 

Table 1 about here

As in BCC, five sampling frequencies are used: 30-minute, 1-hour, 2-hour, 3-hour, 
and 1 day. The simulated time period is 1 year, which contains 252 trading days. The 
number of trading hours per day is set to 8.5. For each simulation, the number of 
observations is inversely proportional to the sampling frequency; thus 252 for daily 
data rising to 4284 for the 30-minute sampling interval. The simulation and 
calculation procedures are as follows: (1) simulate the underlying return process; (2) 
convert the return series into asset price series; (3) calculate European call premiums 
with changing time to maturity using the BS formula; (4) use put-call parity to 
calculate European put premiums; (5) Compute the parameters , ,  and  defined 
in equation (4.); (6) Compute the violation probabilities defined in Section 4. 

The results reported in Section 6 below are based on 1,000 simulations for each 
parameter set and sampling frequency. The tables show results based on computing 
the average probability of a violation for each simulation; that is, the average over the 
time to maturity. According to the results in Section 4, type 2 and 3 violations occur 
with probability zero, as do some of the sub-categories of type 4 violations. In the 
following sections, therefore, only type 1 and the non-zero cases of the type 4 
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violations are reported.

6. Results Of The Simulation Experiments

This section contains tables which report selected results from the simulation 
experiments. The tables are constructed for the parameter sets in question by 
computing averages over the times to maturity for each simulation and then over the 
1000 simulations. This means that the results in the tables may be compared with the 
corresponding tables in BCC. In addition to the average probabilities, the tables in this 
section also report basic statistics derived from the simulations. Two cases are 
presented below as exemplars of the substantial number of results. For both cases, the 
common parameter values are r = 0.1,   = 0.3 and S0 = 100. For case 1,  = 0.15 
and K = 110. For Case 2  = -0.15 and K0 = 150. The values for r,  and  are annual 
values. The rationale for the values of the strike price K is discussed below after Table 
2. As noted in the introduction, results for other parameter sets are available on 
request.

6.1 Violation occurrences across sampling frequencies

Table 2 reports the results of the simulations for Case 1 at the five sampling 
frequencies for the violation cases for which the probabilities computed using the 
formulae in Section 4 are non-zero.

Table 2 about here please

As Table 2 shows, sampling frequency is generally inversely related to violation rate. 
For a type 1A call violation and daily sampling frequency the average probability is 
0.03 or 3%. At the 30-minute sampling frequency the average is about 0.9%. It may 
be noted that the standard deviation of the probability is also generally inversely 
related to sampling frequency. Thus, at 30 minutes the variability in violation 
probability is lower than that for daily sampling. In panel (i) of the table, the columns 
in Table 2 entitled min and max imply that the maximum type 1 case A violation 
probability for calls is about 10 times greater than the minimum. By contrast, in panel 
(ii) the maximum type 1 case B violation probability for puts is typically about 50 
times greater than the minimum. It may also be noted that the results for calls in panel 
(i) and puts in panel (ii) are not the same at comparable sampling frequencies. 
Although it could be argued that the results in the mean column are similar, the 
standard deviations and maxima are clearly numerically different. In case 1, for which 
K = 110 and S0 = 100, call options are initially out of the money. Since the mean rate 
of return  = 0.15, it is to be expected that many of the simulations will yield call 
prices which are in the money as expiry approaches. The opposite is likely to be the 
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case for puts. The columns of Table 2 entitled skew and kurt indicate that the 
simulated distribution of violation probabilities for a put which is likely to be out of 
the money exhibit a greater degree of non-normality than that for the calls, which will 
tend to be in the money as expiry approaches.

Case 2 considers a more extreme situation. With K = 150 and  = -0.15 call options 
are more likely than not to remain out of the money and puts in the money. The 
asymmetry in the results in the four panels of Table 3 therefore illustrates some of the 
effects of moneyness of calls and puts at the five sampling frequencies. 

Table 3 about here please

In panels (ii) and (iii) of the table the mean violation probabilities for puts are small. 
Furthermore, the maximum values are small too. In short, for these in the money puts 
violations are rare. By contrast, the values in panels (i) and (iv) display higher 
violation probabilities which increase considerably as the sampling frequency 
decreases. As the max column of Table 3 shows, the maximum violation probabilities 
in panels (i) and (iv) are close to 50%. For out of the money calls, violations appear to 
be a more serious problem.

6.2 Violation occurrences across strike prices

To examine further the effect of strike price, Case 1 is repeated at the 30-minute 
sampling interval for strike prices 70, 90, 110,130 and 150. The other Case 1 
parameters remain the same. The results are reported in Table 4. 

Table 4 about here please

First note that the rows in both panels of Table 4 with strike price equal to 110 are the 
same as the 30-minute rows of the corresponding panels of Table 2. Panel (i) of Table 
4 shows that the probability of Type 1A violations for calls (and Type 4B) is related to 
strike price. For in the money calls, the probability is low. As the strike price increases, 
so does the violation probability. Furthermore it becomes more volatile. As panel (i) 
shows for a deeply out of the money call with K = 150 the maximum violation 
probability is over 45%. Qualitatively, the opposite is true for puts although the 
numerical values do not exhibit any obvious symmetry. The columns of Table 4 
entitled skew and kurt indicate that the distribution of simulated violation  
probabilities for out of the money calls and puts both exhibit substantial 
non-normality. 

7. Violations Occurrences Across Time To Maturity 
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The averages reported in Section 6 conceal the effect of the passage of time on the 
probability of violations. Investigation of the theta of a European option shows the 
effect of diminishing time to expiry on the price and hence on return. In the models at 
(3.) and (4.) it is straightforward to show that, as the time to expiry tends to zero, the 
magnitudes of  and  are unbounded if the option is out of the money. This section 
contains six figures which illustrate the effects of time decay. Each figure shows a 
time series for one simulation at the 30-minute sampling frequency. There are four 
figures for Case 1 and two figures for Case 2.  As discussed above, in Case 1 the call 
is generally in the money or near the money and the put is generally out of the money 
or near the money.  

Insert Figures 1 and 2 about here please

Figure 1 shows a time series of computed values of  (from equation 4). As the graph 
shows, time decay as measured by  is negative but very small in magnitude until a 
short time before expiry. After this it falls rapidly from a value close to -½% to –3%. 
Figure 2 shows a graph of the probability of a type 1 violation for calls for the same 
simulation. This probability increases from about ½% when the time to expiry is one 
year to a value of 4% or higher as expiry approaches. Visually, the probability in this 
simulation grows quadratically and its volatility increases as expiry approaches. 

Insert Figures 3 and 4 about here please

Figure 3 shows a graph of  (also from equation 4.) for the same simulation. The value 
remains very close to zero until expiry is close, after which its falls to a value of less 
than 10% is precipitate. Figure 4 shows the corresponding type 1B violation 
probability for the put in the same simulation. Similar to , the probability remains 
low, around ½% until expiry is close, after which it rises rapidly to a value of 9%. 
Figures 3 and 4 imply that the averages shown in the tables in Section 6 may contain 
valuable information about the general characteristics of violations, but that for
trading activities the more detailed temporal data shown in the figures is of greater 
importance.

Insert Figures 5 and 6 about here please

Figures 5 and 6 are for Case 2.They show time series which are equivalent to those in 
Figures 1 and 2. For Case 2, in which the call is likely to be out of the money,  is 
close to zero until expiry is close. That is, in this simulation at least, the behaviour of 
 as shown in Figure 5 is qualitatively similar to that of  in Figure 3. However, as 
Figure 5 shows, the decline of  is more severe. Figure 6 shows the probability of a 
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type 1 violation for a call for Case 2. At one year to expiry, the probability is close to 
zero. However, it rises in an exponential manner until it is 50% or more as expiry 
approaches. Recalling that for Case 2 call options are likely to expire out of the 
money or even deeply out of them money illustrates the possible impact of this 
violation on trading strategies. In case 2, the put option is likely to expire in the 
money or deeply in the money. In this case, the values of  and the violation 
probability which are equivalent to those shown for Case 1 in Figures 3 and 4 are very 
close to zero and so are omitted.

8. Conclusions

This paper describes the Itô processes for the continuously compounded returns on 
European call and put stock options under the one-dimensional diffusion assumption 
and the Black Scholes pricing model. It uses the Itô processes to motivate discrete 
time approximations for the returns on calls and puts. Theses models are used to 
compute the probability of an option return violation. As defined by Bakshi et al 
(2000) a violation describes a combination of option and stock returns which is 
contrary to that implied by the one-dimensional diffusion assumption. This paper then
reports exemplars of the results of an extensive simulation study in which the 
incidence of violations, under the one-dimensional diffusion and Black Scholes 
pricing model assumptions, are investigated. Two specific cases are described in some 
detail. Other cases using different simulation parameters are omitted from the paper 
but provide results which are consistent with these two cases.

The main findings of the simulation study are that at both daily and intraday intervals, 
option returns are not perfectly correlated with underlying returns. Call (put) returns 
may move in the opposite (same) directions as that of the underlying return and call 
and put returns may move together. Even at high frequencies, such as the 30-minute 
sampling interval, some violation occurrence rates are not low, in particular for 
short-term and out of the money options. It may therefore be argued that the effect of 
time decay in short intervals is not always negligible and that the sign of the change in 
the price of an option may not be correctly predicted by the sign of the price change in 
the underlying stock. These findings extend the work of Bakshi et al (2000) in a 
number of ways. In particular, they confirm that violations are likely to present 
difficulties when using options for either hedging or speculating and that there is a 
need for further development of parametric models of option returns.
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Table 1 Parameters for Underlying Process and Option Prices in the BS Model

Parameter Value

Annual expected asset returns  -0.15, 0, 0.15, 0.3, 0.45
Annual Risk-free interest rate r 0, 0.05,0.1,0.15,0.2
Annual volatility of asset returns  0.1, 0.2, 0.3, 0.4, 0.5

Initial stock price 0S 100

Changing time to maturity (year) tT  252/1,,252/253 

Strike price K 70, 90, 110, 130, 150
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Table 2 Case 1 summary statistics for calculated violation occurrences at 
different sampling intervals

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 110, 1000 simulations

Sampling interval

1 2 3 4 5 6

mean std skew kurt min max

(i)   Type 1 – A of call returns and Type 4 – B

30-minutes 0.0094 0.0062 1.6798 5.0266 0.0040 0.0408
1-hour 0.0144 0.0110 1.6515 5.3888 0.0055 0.0625
2-hours 0.0132 0.0105 4.5052 28.5120 0.0071 0.0979
3-hours 0.0146 0.0078 3.8992 23.1992 0.0095 0.0909

1-day 0.0344 0.0130 1.9245 11.7020 0.0190 0.1231

(ii)   Type 1 – B of put returns and Type 4 – D

30-minutes 0.0047 0.0068 7.2068 64.1492 0.0016 0.0880
1-hour 0.0060 0.0079 8.5117 87.5160 0.0017 0.1040
2-hours 0.0153 0.0128 3.0786 15.8440 0.0031 0.1185
3-hours 0.0212 0.0230 4.0787 26.7622 0.0036 0.2116

1-day 0.0224 0.0331 3.7385 18.6873 0.0027 0.2297
The violation probabilities are computed using the formulae in Section 4. For each simulation at each 

sampling frequency an average probability (AP) is computed by averaging over the number of 

observations. For the 1-day sampling interval this is 252. For the 30-minute interval it is 252*17 = 4284. 

Column 1, mean, reports the average over the 1000 simulations of the AP values. Columns 2 through 6 

report the standard basic statistics which are computed in the usual way. . 
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Table 3 Case 2 summary statistics for calculated violation occurrences at 
different sampling intervals

Case 2:  = -0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 150, 1000 simulations

Sampling interval

1 2 3 4 5 6

mean std skew kurt min max

(i)   Type 1 – A of call returns

30-minutes 0.0330 0.0592 4.6917 29.1654 0.0064 0.4959

1-hour 0.0457 0.0730 3.7963 19.3621 0.0091 0.4944

2-hours 0.0502 0.0798 3.6728 17.6748 0.0131 0.4921

3-hours 0.0569 0.0850 3.4507 15.1840 0.0166 0.4903

1-day 0.0998 0.0997 2.3281 8.1775 0.0282 0.4837

(ii)   Type 1 – A of put returns

30-minutes 0.0010 0.0008 0.2829 1.7543 0.0000 0.0025

1-hour 0.0015 0.0014 0.3440 1.5854 0.0000 0.0040

2-hours 0.0007 0.0011 1.4620 3.5922 0.0000 0.0037

3-hours 0.0006 0.0010 2.0948 6.6012 0.0000 0.0042

1-day 0.0045 0.0027 -0.3572 1.8870 0.0000 0.0095

(iii)  Type 1 – B of put returns and Type 4 - D

30-minutes 0.0001 0.0002 2.3727 7.4427 0.0000 0.0009

1-hour 0.0002 0.0004 1.4627 3.6953 0.0000 0.0017

2-hours 0.0010 0.0010 0.5474 1.9459 0.0000 0.0041

3-hours 0.0008 0.0009 0.7464 2.3887 0.0000 0.0032

1-day 0.0000 0.0001 5.6279 34.9535 0.0000 0.0011

(iv)   Type 4 – B 

30-minutes 0.0320 0.0589 4.7441 29.6375 0.0064 0.4943

1-hour 0.0442 0.0724 3.8640 19.8450 0.0091 0.4921

2-hours 0.0496 0.0790 3.7073 17.9188 0.0131 0.4887

3-hours 0.0564 0.0842 3.4647 15.3011 0.0166 0.4869

1-day 0.0953 0.0988 2.3774 8.3558 0.0282 0.4777

The values in this table are computed in the same way as those in Table 2.
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Table 4 Case 1 Summary statistics of calculated violation occurrences at different 
strike prices

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, 30, 30-minute sampling interval, 1000 simulations

1 2 3 4 5 6

Strike price mean std skew kurt min max

(i)   Type 1 – A of call returns and Type 4 – B

70 0.0029 0.0005 0.4400 2.3921 0.0020 0.0042

90 0.0051 0.0017 1.1279 3.6257 0.0029 0.0115

110 0.0094 0.0062 1.6798 5.0266 0.0040 0.0408

130 0.0163 0.0230 6.0167 54.8768 0.0051 0.3285

150 0.0227 0.0382 5.9612 49.3984 0.0061 0.4657

(ii)   Type 1 – B of put returns and Type 4 - D

70 0.0153 0.0173 3.8222 21.4893 0.0000 0.2035

90 0.0112 0.0212 6.6926 56.3425 0.0000 0.2776

110 0.0047 0.0068 7.2068 64.1492 0.0016 0.0880

130 0.0015 0.0007 1.4593 7.4646 0.0002 0.0058

150 0.0003 0.0003 0.6016 2.0132 0.0000 0.0013

The values in this table are computed in a similar was to those in Table 2.
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Figure 1 - Alpha Time Decay Effect in Call Returns at 30-minute sampling 
interval for Case 1

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 110, 1 simulation
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The graph is the value of  as defined in equation (4.) for 1 simulation.
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Figure 2 – Probability of a Type 1 Violation at 30-minute sampling interval for 
Call Returns for Case 1

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 110, 1 simulations
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The probability displayed is for one simulation and is computed using the methods of Section 4.
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Figure 3 – Gamma Time Decay Effect in Put Returns at 30-minute sampling 
interval for Case 1

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 110, 1 simulations
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The graph is the value of  as defined in equation (4.) for 1 simulation.
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Figure 4 – Probability of a Type 1B Violation at 30-minute sampling interval for 
Put Returns for Case 1

Case 1:  = 0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 110, 1 simulations
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The probability displayed is for one simulation and is computed using the methods of Section 4.
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Figure 5 - Alpha Time Decay Effect in Call Returns at 30-minute sampling 
interval for Case 2

Case 2:  = -0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 150, 1 simulation
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The graph is the value of  as defined in equation (4.) for 1 simulation.
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Figure 6 – Probability of a Type 1 Violation at 30-minute sampling interval for 
Call Returns for Case 2

Case 2:  = -0.15 , r = 0.1,   = 0.3 and S0 = 100, K0 = 150, 1 simulation
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The probability displayed is for one simulation and is computed using the methods of Section 4.


