
Equipment Capital Budgeting with Technological Progress 1_15_11 

 

Roger Adkins* 

Manchester Business School, University of Bradford 

Dean Paxson** 

Manchester Business School 

 

 

 

 

EFMA Conference June 2011 

 

 

 

 

 

EFMA Classification Codes:  220, 430 

 

 

 

 

 

 

 

 

Acknowledgements: We thank  Alcino Azevedo, Mike Bowe, Michael Brennan, Geoffrey Evatt, 

Michael Flanagan, Ser-Huang Poon, Azfal Siddique and Richard Stapleton for comments on 

earlier versions.  

 

* roger.adkins@talk21.com, +44 (0)1612756333.  

**dean.paxson@mbs.ac.uk, +44(0)1612756353.  Corresponding, attending, presenting author.  

Manchester Business School, Manchester, M15 6PB, UK. 

mailto:roger.adkins@talk21.com
mailto:dean.paxson@mbs.ac.uk,%20+44(0)1612756353


2 
 

Equipment Capital Budgeting with Technological Progress  

 

Abstract 

We provide multi-factor real option models (and quasi-analytical solutions) for equipment 

capital budgeting when there is either anticipated or unanticipated technological progress.  In the 

case of anticipated progress, with comparable input parameter values, the alert financial manager 

would wait longest before replacing equipment.  For a supplier with the sole objective of selling 

immediately more capital equipment, the easiest but second best approach is to find myopic 

financial managers not aware of modern financial tools such as real options, or not believing in 

technological progress or the variability of revenues and costs attributable to incumbent capital 

equipment. However, the best approach for the supplier seems to be to announce improvements 

in new equipment at random times, so it becomes impossible to predict when or whether the 

launch of the next generation is going to occur.  Then, financial managers have to treat 

technological progress as unanticipated, and so when technologically advanced products such as 

smart phones are launched, there are incentives for early replacement of old equipment.   
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Equipment Capital Budgeting with Technological Progress  

 

When a replaceable asset is installed, a traditional financial manager would normally assess its 

anticipated lifetime from a standard net present value (NPV) analysis for an infinite replacement 

chain. This solution, though, is only strictly applicable for like-for-like replacements, but there 

are many assets with embedded technological progress that violate this assumption, including 

vehicles and aircraft with higher fuel efficiency, robotic machine tools with greater functionality, 

mobile phones and computer-based products with faster and novel facilities. The presence of 

technological progress means that the evaluated ex-ante lifetime may not coincide with its ex-

post value. Now, the economic lifetime for an asset depends not only on its own deterioration 

rate, but also on the technological progress embedded in the succeeding asset because the 

incumbent suffers implied obsolescence. Since the ex-post lifetime is likely to be variable in the 

presence of technological progress, an evaluation using the traditional NPV method is likely to 

be problematic because of its in-built assumption of an equal cycle time. Consequently, in this 

paper, we adopt a dynamic programming formulation for determining the optimal conditions 

signaling asset replacement because it avoids a cycle time framework. This approach is applied 

to a replaceable asset that is subject to both revenue and operating cost deterioration, with 

technological progress that is anticipated or unanticipated.  

 

The effect of unforeseen technological progress on the replacement policy is originally analyzed 

by Caplan (1940). Building on the economic lifetime models of Hotelling (1925) and Preinreich 

(1939), he shows analytically that the consequence of unanticipated technological progress is to 

shorten the active life of the incumbent. If there is an unforeseen performance improvement in 
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the succeeding asset or a more technologically advanced asset becomes available sooner than 

expected, then the incumbent becomes prematurely obsolete.  If the increase in profit potential 

from replacing the incumbent more than compensates the loss in recovering the original 

investment, then the incumbent is replaced before its ex-ante lifetime has expired. In contrast, 

Stapleton, Hemmings and Scholefield (1972) apply numerical simulation to show that if 

technological progress is foreseen, the optimal time between successive replacements is 

lengthened. Although these authors adopt a dynamic programming formulation to avoid the 

equal life assumption, Elton and Gruber (1976) show that an equal life policy is optimum for 

assets with technological improvements. However, the shortcoming of these analyses is not only 

their restrictive focus on either anticipated or unanticipated technological progress, but also the 

absence of a simple operational rule for deciding the optimal conditions for replacing the 

incumbent. 

 

Several authors have studied the adoption of technological innovations in a real options context, 

sometimes in a duopoly.  Huisman and Kort (2003) assume a new technology has a greater 

“efficiency” than the existing technology, and firms determine outcomes in a strategic context. 

Huisman and Kort (2004) use a similar approach, except that the new technology becomes 

available for adoption at some unknown time in the future.  Smith (2005) assumes technologies 

have different proportional cost savings, which may be complimentary.  Azevedo and Paxson 

(2010) assume two technologies have different degrees of complimentarity, depending on the 

specific adopter, who learns by adopting early and then maintains a permanent pre-emptive 

advantage over competing firms. Pae and Hyun (2006) study technology patronage, where an 

early innovative firm builds an innovation brand image to retain and expand clientele.  We 
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simply provide a format for most of these types of technological innovation, through allowing 

either technological advances to involve different initial operating cost levels, and/or different 

initial operating cost deterioration rates, compared to like-for-like equipment replacements. 

 

The aim of this paper is to create a single formulation that brings together the two models of 

anticipated and unanticipated change with their contrasting outcomes, so we can derive an 

operational rule for replacement and examine analytically the differential impact of technological 

progress on the replacement policy. This single formulation is developed from a dynamic 

programming framework by setting the volatilities to zero in the two-factor real option solution 

to the replacement timing boundary for an asset with deteriorating revenues and operating cost, 

Adkins and Paxson (2011). The dynamic programming framework avoids the equal life 

assumption, and since it frames the timing boundary in terms of thresholds, the initial levels for 

the attributes of the incumbent are irrelevant. By extending the number of factors to three, we 

can compare the differential effects of anticipated and unanticipated technological progress, 

while showing that the effect of foreseen technological progress is to prolong the economic life 

of the incumbent. Finally, the resulting solutions provide the basis for developing operational 

formulae for judging when the prevailing conditions are optimal for replacing the incumbent, 

depending on whether the technological progress is anticipated or unanticipated. 

 

The paper is organized in the following way. In Section 1, we develop quasi-analytical solutions 

to the timing boundary for replacement with anticipated and unanticipated technological 

progress. These solutions assume that an optimal replacement occurs when the incremental value 

rendered by the replacement exceeds the re-investment cost. The behavior of the solutions is 
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investigated in Section 2. Numerical analysis is used to illustrate model behavior.  We show that 

while an anticipated technological progress prolongs the active life of the incumbent, 

unanticipated change shortens its active life. The final section is a conclusion. 

 

1 Models of Replacement 

We consider a durable productive asset, subject to both input and output decay, Feldstein and 

Rothschild (1974), whose efficiency diminishes progressively and deterministically with time. At 

any time, the revenue rendered by the asset, denoted by P , changes at a continuous rate P , 

assumed to be negative, while its operating cost, denoted by C , changes at the continuous rate 

C , assumed to be positive. When the incumbent attains a to be determined threshold, it is 

replaced by its succeeding asset at a constant re-investment cost of K . 

 

The distinction between anticipated and unanticipated technological progress is critical to our 

analysis. Technological progress is interpreted as an improvement in the initial attribute levels 

for the succeeding asset relative to the incumbent. Unanticipated technological progress is 

represented as a jump in a favorable direction of one or more of the initial attribute levels for the 

succeeding asset relative to the incumbent. So, for example, an unexpected fall in the initial 

operating cost level for the succeeding asset relative to the incumbent is indicative of an 

unforeseen technological improvement in the asset performance. In contrast, a deterministic 

decline in the initial operating cost level for the succeeding asset is predictable, and because the 

improvement is foreseen, it is interpreted as anticipated technological progress. 
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In this section, we develop two new models, II and III, to illustrate the distinction between 

unanticipated and anticipated technological progress, respectively. We derive a replacement 

policy for each model as an operational rule for deciding whether the incumbent should or 

should not be replaced. It is characterized by a timing boundary, which is created from a quasi-

analytical solution to the corresponding real replacement option with the underlying volatilities 

set equal to zero. But first, we specify the equal cycle time solution for the standard NPV model, 

depicted as Model I, because it acts as a benchmark. 

 

1.1 Model I      No Technological Progress 

Model I characterizes the traditional representation for identifying the optimal cycle time 

between successive replacements, denoted by 1T̂ , which is determined from maximizing the 

value W  for an infinite chain of identical assets. The revenue and operating cost levels for the 

incumbent at installation are denoted by 0P  and 0C , respectively. Following Lutz and Lutz 

(1951), the present value for any incumbent at installation V with lifetime T is given by: 

  0 0

0

e e e dCP

T

tt rt

t

V P C t
 



  , (1) 

where r  denotes the appropriate continuous discount rate for risky projects. The optimal cycle 

time T̂  is obtained from maximizing W , where: 

   e rTW V W K    . (2) 

From (1) and (2), it is straightforward to derive the implicit solution for 1T̂ , which can be 

expressed as: 
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   

   
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ˆˆ ˆ
ˆˆ
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1 e1 e 1 ee e
CP

CP

TT rT
TT

P C

P C P C

CP P C
K

r r r r r


 

   

  
    

     

. (3) 

This states that the optimal cycle time occurs when the net incremental value rendered by the 

replacement, represented by the left hand side of (3), exactly balances the re-investment cost plus 

a positive amount. Denoting this positive amount as the incremental goodwill, it is measured as 

the weighted sum of the values for the revenue and operating cost for an incumbent at the 

optimal lifetime, adjusted by an annuity factor with an optimal lifetime horizon. For a 

replacement to be optimal, the rendered net incremental value has to exceed the re-investment 

cost.  Given  the initial revenue and operating cost levels for the incumbent,  finding the optimal 

replacement time involves equating the LHS and RHS numerically, by changing the optimal 

time. Finally, the optimal thresholds for revenue 1P̂  and operating cost 1Ĉ  are given by 

1
ˆ

1 0
ˆ e PTP P 
  and 1

ˆ

1 0
ˆ e CT

C C


 , respectively. 

 

1.2 Model II      Unanticipated Technological Progress 

A deterministic replacement policy can be derived from a suitable model that treats the factors as 

uncertain, but  sets their volatilities equal to zero.  Following Adkins and Paxson (2011), we 

formulate a two-factor, real-option replacement model for an asset that is subject to uncertainty 

in the magnitude of the input and output decay. We seek to find the threshold signaling the 

optimal replacement of the incumbent. This threshold is represented by a function of the trigger 

levels for the revenue and operating cost, denoted by 2P̂  and 2Ĉ , respectively, which divides the 

decision space into two mutually exclusive exhaustive regions of continuance and replacement. 

When plotted on this decision space, if the prevailing levels of the revenue and operating cost lie 
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within the continuance region, then the optimum strategy is to continue with the incumbent, or if 

the prevailing levels belong to the replacement region, then replacing the incumbent is the 

optimal decision. 

 

The function discriminating between continuance and replacement is obtained from the asset 

valuation function in conjunction with the economic boundary conditions. The valuation 

function, constructed from a dynamic programming framework, is expressed as: 

   2 2

2 2,
P C

P C
F P C A P C

r r

 

 
  

 
, (4) 

with coefficient 2A  and parameters 2  and 2 . The function 2F  is composed of two elements. 

The term 2 2

2A P C   is interpreted as the replacement option value, which being positive means 

that 2 0A  . Since the incentive to replace the incumbent grows as the revenue decreases, but as 

the operating cost increases, we conjecture 2 0   and 2 0  . The second element:  

 
P C

P C

r r 


 
 

denotes the asset value in the absence of any optionality.  

 

Value conservation at replacement requires that the incumbent value has to be exactly balanced 

by the net value for the succeeding asset. The incumbent value at replacement  2 2 2
ˆˆ ,F P C  is 

determined from the valuation function (4), defined at the threshold levels. When the succeeding 

asset is installed, its initial attribute levels are specified by IP  and IC  for revenue and operating 

cost, respectively, where the constraints ˆ
IP P  and ˆ

IC C  are imposed since both revenue and 

operating cost deteriorate over time. This specification implies that the attribute levels of the 



10 
 

succeeding asset may be allowed to differ from those of the incumbent that it replaces.  So for 

Model II, there is no underlying presumption that the incumbent is replaced by a replica with 

identical attribute levels. Consequently, we can model the presence of an unanticipated 

technological progress as the unexpected jump in the initial attributes, from 0C  to IC  where 

0 IC C , or from 0P  to IP  where 0 IP P . As the value for the succeeding asset at installation is 

 2 ,I IF P C , its net value is  2 ,I IF P C K , so the value matching relationship can be expressed 

as: 

 2 2 2 22 2
2 2 2 2

ˆˆ
ˆˆ I I

I I

P C P C

P C P C
A P C A P C K

r r r r

   

   
     

   
. (5) 

 

Although value conservation is enforced by the value matching relationship, the requirement 

governing an optimal replacement is specified by the two smooth pasting conditions, one for 

each of the two factors. These can be expressed as: 

 
   

2 2 2 2
2 2 2

2 2

ˆˆ
ˆˆ 0

P C

P C
A P C

r r

 

   
   

 
, (6) 

which affirms our conjecture that 2 0   and 2 0  . Using (6) to eliminate 2A  from (5) yields: 

 
 

2 2

2 2

2 2 2

2 2 2

ˆ ˆˆ
1

ˆ ˆ
I I I I

P C C

P P C C C P C
K

r r r P C

 

    

  
    

    
. (7) 

We assume that for replacement P and C when there is a technological advance, the subsequent  

drifts are the same as for the initial equipment.  Since 2 2

2
ˆ

IP P
 
  and 2 2

2
ˆ

IC C
 
 , (7) asserts that 

for an optimal replacement to occur, the incremental net revenue generated by the replacement 

has to exceed the re-investment cost by a positive amount.  
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The third component of the model is the characteristic root equation. This condition on the 

parameters of the valuation function (4) ensures that it satisfies the underlying relationship 

describing the evolutionary behavior of the asset value. When the volatilities are set equal to 

zero, the characteristic root equation becomes: 

 2 2P C r     . (8) 

 

The three equations, (6), (7) and (8), constitute the model solution from which the optimal timing 

boundary can be found. The parameters 2  and 2  can be identified from (6) and (8) as: 

 

22

2 2

2 22 2

ˆˆ

0 and 0.
ˆ ˆˆ ˆ

CP

C CP P

P C P C

rCrP

rr

C CP P

r r r r


 

  

   




   

   
   

. (9) 

This suggests that the values for these parameters adjust according to the position along the 

timing boundary. By using (9), the two parameters can be eliminated from (6) to create a 

relationship between 2P̂  and 2Ĉ , which specifies an implicit timing boundary function that 

divides the total decision space into two regions of continuance and replacement. In this way, the 

timing boundary can be found for the deterministic replacement problem from the initial 

attributes for the succeeding asset, which avoids evaluating the optimal cycle time and knowing 

the initial attributes for the incumbent.   

 

Under certain conditions, the solutions to Model I and II are identical. If we set 0IP P  and 

0IC C , and note that 
ˆ

2 0
ˆ e PTP P 
  and 

ˆ

2 0
ˆ e CT

C C


 , so: 
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 

2 2

2 2

2 2

ˆ ˆ

2 2

e e
ˆ ˆ

P C T rTI IP C

P C

 
   

 

    , 

then, in conjunction with (6) and (8), it is straightforward to demonstrate that (7) and (3) are 

identical. The optimal cycle time determined from the infinite chain NPV model (2) is equal to 

the dynamic programming solution, but only if the initial attributes of the incumbent and the 

succeeding asset are equal. The standard optimal cycle time result can be conceived as a 

particular case of the dynamic programming solution.  

 

A more critical distinction between the two is that while the initial attribute levels for the 

incumbent and its age are required to be known for implementing the NPV result, the dynamic 

programming solution only requires knowledge of the initial attribute levels for the succeeding 

asset as well as the prevailing revenue and operating cost levels. Consequently, the former relies 

on past information but the latter on current and future information. Due to its forward looking 

stance, the dynamic programming solution is more in tune with our conceptual understanding of 

finance.  

 

1.3 Model III     Anticipated Technological Progress 

Both competitive forces and the threat of new technology are likely to  motivate asset suppliers 

to continuously improve product performance. If these improvements are realized through 

continuous changes in the initial attributes, then over a period of time, we would observe falls in 

either the initial operating cost level or re-investment cost for the succeeding asset, or increases 

in its initial revenue level. We again adopt a dynamic programming framework, primarily 

because within its design, it allows the initial attribute to change with time but is unencumbered 
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by a cycle time conceptualization. Specifically, we treat anticipated technological progress as 

being expressed through a time dependent initial operating cost level. Even though the focus of 

our enquiry is interpreting anticipated technological progress as a decline in the initial operating 

cost level, it is straightforward to reproduce the solution to the timing boundary for the cases 

where either one of the two attributes changes with time. A more complete model is described in 

Appendix A, from which the particular solutions can be derived. 

 

We start by assuming that for the succeeding asset, the initial operating cost level, which is 

denoted by NC , can be adequately expressed by a growth function with a continuous constant 

rate N .  This growth parameter is expected to be negative, since performance improvements are 

presumed to be embedded in the succeeding asset with NC  declining over time. The presence of 

a variable initial operating cost level in the model means that the value function, which is 

denoted by 3F , depends on three factors, the initial operating cost level as well as the prevailing 

levels for the revenues and operating cost. In the two-factor model (4), the replacement option 

value is expressed as a product power function of the two factors, revenues and operating costs. 

For the three-factor model under consideration, we similarly adopt a product power function but 

now of three factors, revenues, operating costs and initial operating cost level, to represent the 

replacement option value. So, the valuation function becomes: 

   3 3 3

3 3, , N N

P C

P C
F P C C A P C C

r r

  

 
  

 
, (10) 

where 3 3 3

3 NA P C C
  

, with 3 0A  , represents the option value with power parameters 3 , 3  and 

3 . Again, the term    / /P CP r C r     denotes the asset value in the absence of any 

optionality. As before, we conjecture that 3  is negative, and 3  positive. We now consider the 
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sign of 3 . Since a stronger economic incentive exists for replacing the incumbent when the 

initial operating cost level is low rather than high, we would expect the replacement option to 

increase in value as NC  decreases, so we conjecture that the value of 3  should be negative.  

 

The replacement event is signaled when the three factor levels, P , C  and NC , simultaneously 

attain their respective optimal threshold levels, 3P̂ , 3Ĉ  and 3
ˆ

NC . Collectively, these three optimal 

thresholds form the timing boundary, which is formulated as the relationship linking 3P̂ , 3Ĉ  and 

3
ˆ

NC . The timing boundary is determined from the model solution, which is made up of the 

economic conditions signaling an optimal replacement, that is the value matching relationship 

and the smooth pasting conditions, plus the characteristic root equation.   

 

Because value is conserved at replacement, the incumbent value  3 3 3 3
ˆ ˆˆ , , NF P C C  has to exactly 

balance the succeeding asset value  3
ˆ ˆ, ,I N NF P C C , less the re-investment cost K . By using (10), 

the value matching relationship can be expressed as: 

 3 3 3 3 3 33 3
3 3 3 3 3

ˆ ˆˆ
ˆ ˆ ˆˆ NI

N I N

P C P C

P C CP
A P C C A P C K

r r r r

     

   


     

   
. (11) 

Replacement is optimal whenever the smooth pasting conditions are obtained. Associated with 

(11), there are three smooth pasting conditions, for P , C  and NC , respectively, which can be 

expressed as: 

 3 3 3 3
3 3 3 3 3

ˆ
ˆ ˆˆ 0N

P

P
A P C C

r

  


 


, (12) 
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 3 3 3 3
3 3 3 3 3

ˆ
ˆ ˆˆ 0N

C

C
A P C C

r

  


 


, (13) 

  3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3

ˆ
ˆ ˆ ˆˆ N

N I N

C

C
A P C C A P C

r

       



  


. (14) 

We observe from (12) and (13) that 3 0   and 3 0  . Also, since 3 3 3 3

3 3 3
ˆ ˆˆ

I NP C P C
   

  because 

3
ˆ

IP P  and 3 3
ˆ ˆ

NC C , then from (14) 3 0  . The three smooth pasting conditions justify our 

conjecture on the signs of the power parameters. 

 

From (12) and (13), then: 

 
   

3 3

3 3

ˆˆ
0

P C

P C

r r   
 

 
. (15) 

Along the optimal replacement boundary with 3
ˆ

NC  constant, the ratio of the optimal threshold 

values,  3
ˆ / PP r   and  3

ˆ / CC r  , has to be proportional to the absolute ratio of their power 

parameters, 3 3/  .  

 

By combining (13) and (14), 3A  can be eliminated from (11) to yield: 

 3 3 3 3 3

3 3

ˆ ˆ ˆ

1

N I

C P

C C P P
K

r r

 

   

   
  

    
. (16) 

In (16), the mark-up factor >1, so 3 1   since 3  is treated as negative,  

 3 3

3 3

1
1

 

 




 
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provided 3 3 1   . It follows that an optimal replacement is justified when the operating cost 

value improvement    3 3
ˆ ˆ /N CC C r    equals the re-investment cost less the revenue value 

improvement    3
ˆ /I PP P r   , adjusted by the mark-up factor.  

 

Also, 3A  can be eliminated from (11) by using (13) to yield: 

 
 

33

3 3

3 3 3 3 3

3 3 3

ˆ ˆ ˆ ˆˆ
1

ˆ ˆ
I N NI

P C C

P P C C C CP
K

r r r P C



    

  
    

    
. (17) 

Since 3 3 3 3

3 3 3
ˆ ˆˆ

I NP C P C
   

 , replacement is optimal whenever the sum of the value improvements 

rendered by the replacement exceeds the re-investment cost. Both (16) and (17) can be 

interpreted as optimality conditions that relate a measure of the value improvement rendered by 

the replacement to the re-investment cost. 

 

The final component of the model is the characteristic root equation: 

 3 3 3 0P C N r         . (18) 

 

There are four constituent equations comprising Model III. These are (i) the reduced form 

smooth pasting condition, (15), (ii) and (iii) two reduced form value matching relationships, (16) 

and (17), and (iv) the characteristic root equation, (18). Explicit solutions for the three 

parameters 3 , 3  and 3  are obtainable from (15), (16) and (18). By substituting these solutions 

in (17), we can eliminate 3 , 3  and 3  to produce the timing boundary as the implicit 

relationship linking the thresholds 3P̂ , 3Ĉ  and 3
ˆ

NC .  
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2 Numerical Illustration 

The respective implicit solutions to the timing boundary for Models II and III can be expressed 

analytically as long single equations, but because of the equation complexity, it is more 

convenient to discuss their behavior through a numerical illustration. Table 1 exhibits the base 

case data we use to illustrate the solution. In Table 1, we observe that the re-investment cost and 

the revenue level at installation are identical for Models I and II, but the initial operating cost 

levels are different. Since this difference is interpreted as an unanticipated technological 

improvement in the succeeding asset, by comparing these two models, we can investigate 

whether the optimal replacement policy is altered by an unanticipated technological progress 

embedded in the succeeding asset. Also, we observe for Model III that the initial operating cost 

level is set to decline over time, which is interpreted as a consequence of anticipated 

technological progress. Accordingly, a comparison of Models II and III enables the differential 

impact of anticipated and unanticipated technological progress on the replacement policy to be 

examined.   

 

2.1 Model I 

Using the values of Table 1, the optimal cycle time is evaluated from (3), and this together with 

revenue and operating cost thresholds are presented in Table 2. 

 

2.2 Model II 
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The optimal timing boundary, which relates the two thresholds 
2P̂  and 

2Ĉ , is determined for 

Model II from (6), (7) and (8). The boundary is evaluated from the values in Table 1 and 

illustrated in Figure 1 for 1
ˆ

IP P  and 1
ˆ

IC C . It is depicted by the locus AB, which divides the 

decision space between the continuance region above AB and the replacement region below AB. 

When the pair of prevailing levels for the revenue and operating cost is plotted on this figure, if it 

lies above AB then the optimal decision is to continue with the incumbent, if otherwise, then 

replacement is the optimal decision. 

   

An incumbent with an operating cost level 0C  at installation has an ex-ante lifetime given by 1T̂  

with threshold levels 1P̂  and 1Ĉ . If, during its lifetime, a succeeding asset is launched with 

unanticipated technological advances such that its operating cost level at installation is 0IC C , 

then the incumbent becomes prematurely obsolescent. When the pair of thresholds  1
ˆ 64.22P   

and 1
ˆ 31.03C   representing the ex-ante solution for Model I is plotted in Figure 1, the pair is 

observed to belong to the replacement region. This means that following the launch of a 

technologically more advanced asset, the incumbent should be replaced at a time earlier than 1T̂ , 

because of its premature obsolescence. However, if the owner persists with a replacement policy 

according to the ex-ante lifetime, then he is bearing the increasing inefficiencies of the 

incumbent while failing to fully capture the benefits of the succeeding asset.  

 

The effect of technological obsolescence arises for an improvement in any of the initial attribute 

levels.  Figures 2(a–c) reveal respectively that either a fall in the initial operating cost level or re-

investment cost, or a rise in the initial revenue level, produces a more liberal replacement policy, 
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leading in each case to a shortening of the economic life for the incumbent. An improvement 

jump in one of the initial attribute levels for the succeeding asset, which reflects an unanticipated 

outcome of technological progress, shifts the timing boundary upwards. This means that the net 

revenue lost by continuing with rather than replacing the incumbent is more than offset by the 

potential gain rendered by the improvement achieved by technological progress. Further, an 

upward shift in the timing boundary reduces the incumbent’s economic life as the timing 

boundary draws closer to any pair of revenue and operating cost levels positioned in the 

continuance region. Adkins and Paxson (2011) establish this effect analytically for a stochastic 

replacement model, so it must also hold for the deterministic version. 

 

2.3 Model III 

The optimal timing boundary for Model III is determined from (15), (16), (17) and (18) as an 

implicit function linking the three factors 3P̂ , 3Ĉ  and 3
ˆ

NC . This three dimensional boundary is 

illustrated in Figure 3 as a set of boundaries, each for a constant 3
ˆ

NC value as indicated, and 

evaluated using the values of Table 1. In Figure 3, the lowest operating cost threshold for each 

timing boundary is observed to be different but equal to the indicated initial operating cost 

threshold 3
ˆ

NC . This is a consequence of the solution, since we infer from (16) that the minimum 

value of 3Ĉ  is 3
ˆ

NC  and when  3 3
ˆ ˆ

NC C , 3 3    otherwise (17) would be violated. 

 

The optimal decision is found from the timing boundary in the following way. At any point in 

time, we observe the prevailing initial operating cost level and set 3
ˆ

NC  to equal this value. For 
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this given 
3

ˆ
NC , we evaluate the timing boundary linking the thresholds, 

3P̂  and 
3Ĉ . If the pair of 

prevailing levels for revenue and operating cost when plotted on Figure 3 lies above the 

evaluated timing boundary and belongs to the continuance region, then the optimal decision is to 

continue with the incumbent. But, if the plotted pair lies below the evaluated timing boundary 

and belongs to the replacement region, then replacing the incumbent becomes the optimal 

decision.  

 

The three timing boundaries displayed in Figure 3 are approximately parallel, and those with an 

indicated lower 3
ˆ

NC  threshold are shifted vertically upwards. At replacement, value conservation 

requires a compensatory balance between the sacrificial value from not continuing with the 

incumbent and the net gain rendered by the succeeding asset, which is characterized by (17) that 

relates the incremental value due to replacement and the re-investment cost. If the net value gain 

for the succeeding asset does not adequately compensate for the loss incurred from not capturing 

the full value of the incumbent, then replacement is not economically justified. But, as the initial 

operating cost for the succeeding asset falls, its net value gain increases, so inevitably, a balance 

between the sacrificial loss and the net value gain is achieved, and replacement becomes 

economically justified. Moreover, the justification for replacement intensifies as the initial 

operating cost decreases more and more. A lower initial operating cost level implies that the 

incumbent can be retired at a higher net revenue, so replacement occurs at an earlier time, and 

this effect is reflected in the vertical shifts of the observed boundaries. Finally, the set of loci 

forming the boundary can be interpreted in terms of an unanticipated change. If the discrete fall 

in the prevailing level of the initial operating cost can be conceived as unforeseen, then Figure 3 



21 
 

reveals that an unanticipated fall in the initial operating cost level produces a shortening in the 

economic life for the incumbent.  

 

A fall in the initial operating cost is anticipated when its level is predictable. Since the change in 

level is determined by the geometric rate N , the initial operating cost level experiences a faster 

rate of decline as N  increases, while for 0N  , there is no anticipated decline. Figure 4 

illustrates four timing boundaries, each for a different N  value, but all for the same prevailing 

initial operating cost level ˆ 15NC  . When the anticipated decline rate is zero, Model III 

collapses to Model II, so the timing boundaries for these two models are identical. Figure 4 

reveals that the timing boundaries are approximately parallel, with a vertical downward shift as 

N  becomes progressively more negative, but at a decreasing rate.  

 

We observe from Figure 4 that an absolute increase in the decline rate for the initial operating 

cost level for the succeeding asset produces a downward shift in the timing boundary, so the time 

until retirement is prolonged for greater anticipated falls in the initial operating cost level. This 

suggests that when a decline in the initial operating cost level is anticipated, waiting has value. 

We know that at replacement, there has to exist a balance between the sacrificial loss from 

retiring the incumbent and the net value gain created by installing the succeeding asset. 

However, waiting produces two contrasting economic consequences. On one hand, it leads to an 

increase in the net value for the succeeding asset because of the anticipated decrease in its initial 

operating cost level.  But waiting also means that the value sacrificed by retiring the incumbent 

can be more fully captured. Because these two contrasting consequences at replacement have to 

be balanced, the effect of an anticipated decline in the initial operating cost level is to increase 
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the operating cost threshold for some given revenue threshold, or alternatively, to reduce the 

revenue threshold for some given operating cost threshold. Because the value sacrificed by the 

incumbent is more fully captured for anticipated technological progress, replacement is deferred 

and waiting has a value. We also observe from Figure 4 that the impact of anticipated 

technological progress on the replacement deferment wanes as the rate N  becomes increasingly 

more negative, so a doubling of the rate produces a less than proportionate downward shift. As 

the absolute value of N  increases, the time until the next optimal replacement also increases but 

at a decreasing rate. 

 

The analysis of Model II and III identifies the critical distinction regarding the replacement 

policy under unanticipated and anticipated technological progress. If the technological progress 

is unanticipated, then hastening the replacement act is the optimal outcome, sometimes to the 

extent that replacement occurs as soon as the launch of the succeeding asset with its 

improvements is announced. In contrast, since an expected improvement in the attribute level for 

the succeeding asset entails a gain in value when the replacement is deferred, waiting has value 

under anticipated technological progress, so the time until the next replacement is prolonged. 

This feature is observable from the numerical illustration. For the incumbent with initial 

operating cost level 0 20C  , replacement is hastened if it is announced that the succeeding asset 

has an initial operating cost level 15IC  , but the replacement is deferred if it is also known that 

the anticipated improvement rate for this succeeding asset is described by  
 

. 
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3  Conclusion   

 

When technological progress is interpreted as an improvement in one or more of the initial 

attribute levels for the succeeding asset, particularly in the initial operating cost level, we show 

that unanticipated and anticipated change can be integrated in a dynamic programming 

formulation. The benefits of this approach are not only its avoidance of the shortcomings of a 

cycle time conceptualization, but its provision of the optimal replacement policy as a simple 

operational formula expressed in terms of thresholds. We show that the replacement policy is 

differentiated according to whether the technological progress is considered to be unanticipated 

or anticipated. An unanticipated improvement in the initial operating level has the potential to 

hasten the act of replacement, while the act of replacement is deferred whenever the 

technological progress can be fully anticipated. When the change is unanticipated, the full value 

from continuing with the incumbent is sacrificed for the improved benefits offered by the 

recently launched succeeding asset. In contrast, when the technological progress is anticipated, 

waiting has an advantage because of the incremental value rendered by the expected successive 

improvements in the succeeding asset. 

 

The contrasting impact on the replacement policy of unanticipated and anticipated technological 

progress has distinct implications for owners and suppliers of replaceable assets. Owners are 

predisposed to capturing as much of the full value embedded in the incumbent as is economically 

viable, so they are motivated to search the historical records for patterns of anticipated change 

because of its effect on deferring replacement. However, any indications that prolongs the act of 

replacement is unlikely to be in the suppliers’ interest. Selfishly, suppliers should announce 
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improvements in their offerings at random times, so it becomes impossible to predict when the 

launch of the next generation is going to occur.  Then, financial managers have to treat 

technological progress as unanticipated, and when a technologically advanced asset is launched, 

it hastens the act of replacement. In this arena of conflicting interests, the suppliers command the 

upper hand because of information asymmetry, since they can control the flow of technological 

progress and thereby influence the owners’ replacement decisions. 

 

Extensions of this paper include more general models, such as outlined in Appendix A, which 

allow for variable levels of revenues, operating costs and reinvestment costs for each succeeding 

asset, and, naturally, viewing these replacement models in a stochastic environment. 
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Appendix A:    A General Model  

In Model IV, the attribute levels at installation for the succeeding asset are allowed to vary. In 

addition to the model variables revenue 4P  and operating cost 4C , we also have the initial levels 

for the revenue and operating cost, 4NP  and 4NC , respectively, and the re-investment cost NK . If 

each of these five variables follows a geometric Brownian process, with drift rate P , C , 
NP , 

NC  and 
NK , respectively, the solution to the valuation relationship for the asset including the 

replacement option, formed as a partial differential equation using Ito’s Lemma, is: 

   4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4, , , ,N N N N N N

P C

P C
F P C P C K A P C P C K

r r

    

 
  

 
. (19) 

 In (19), the asset value 4F  is composed of two elements, 4 4 4 4 4

4 4 4 4 4 4N N NA P C P C K     , with 4 0A  , 

which denotes the replacement option value, and 

 4 4

P C

P C

r r 


 
 

which denotes the asset value in the absence of any optionality. Because it is economically more 

justifiable to replace the incumbent when the revenue level is low or the operating cost level is 

high, or when the initial revenue level is high or the initial operating cost level is low, or when 

the re-investment cost is low, the option value increases with the operating cost level and the 

initial revenue level, but decreases with the revenue level, initial operating cost level and the re-

investment cost. Consequently, we expect 4 0  , 4 0  , 4 0  , 4 0   and 4 0  . 
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The power parameters of 4F  have to satisfy the characteristic root equation. After converting the 

model to be deterministic by setting the various volatilities to equal zero, the characteristic 

equation becomes: 

 4 4 4 4 4 0
N N NP C P C K r               , (20) 

where r  is the appropriate risky discount rate. 

 

The optimal threshold levels for 4P , 4C , 4NP , 4NC  and NK that signal replacement are denoted 

by 4P̂ , 4Ĉ , 4
ˆ

NP , 4
ˆ

NC  and ˆ
NK , respectively. Value conservation demands that the incumbent 

asset value immediately before replacement,  4 4 4 4 4 4
ˆ ˆˆ ˆ ˆ, , , ,N N NF P C P C K , has to be balanced by the 

value of the succeeding asset at installation,  4 4 4 4 4 4
ˆ ˆˆ ˆ ˆ, , , ,N N N N NF P C P C K , less the re-investment 

cost 4
ˆ

NK . The value matching relationship becomes: 

 4 4 4 4 4 4 4 4 4 4 4 44 4
4 4 4 4 4 4 4 4 4 4 4 4 4

ˆˆ ˆˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆN N

N N N N N N N N N

P C P C

P CP C
A P C P C K A P C P C K K

r r r r

         

   
     

   
. (21) 

The five smooth pasting conditions are the first order conditions for optimality. For 4P , 4C , 4NP , 

4NC  and NK , the respective smooth pasting conditions can be expressed as: 

 4 4 4 4 4 4
4 4 4 4 4 4 4

ˆ
ˆ ˆˆ ˆ ˆ 0N N N

P

P
A P C P C K

r

    


 


, (22) 

 4 4 4 4 4 4
4 4 4 4 4 4 4

ˆ
ˆ ˆˆ ˆ ˆ 0N N N

C

C
A P C P C K

r

    


 


, (23) 

  4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ N

N N N N N N N N

P

P
A P C P C K A P C P C K

r

           


  


, (24) 
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  4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ N

N N N N N N N N

C

C
A P C P C K A P C P C K

r

           


  


, (25) 

 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ

N N N N N N N N NA P C P C K A P C P C K K
            . (26) 

 

The coefficient 4A  can be eliminated from (21) - (26) in the following way. From (22) and (23): 

 
   

4 4

4 4

ˆˆ
0

P C

P C

r r   
 

 
. (27) 

From (24) and (25): 

 
   

4 4

4 4

ˆˆ
0N N

P C

P C

r r   
 

 
. (28) 

From (21) and (26): 

 4 4 4 4 4
4 4

4

ˆ ˆˆ ˆ 1 ˆ ˆ .N N
N N

P C

P P C C
K K

r r



  

    
          

 (29) 

From (21) and (22): 

 
 

4 4

4 4

4 4 4 4 4 44
4 4

4 4 4

ˆ ˆ ˆˆ ˆ ˆˆ
ˆ ˆ1 .

ˆˆ
N N N N

N N

P C P

P P C C P CP
K K

r r r P C

 

    

     
                

 (30) 

From (21), (23) and (25): 

 4 4 4 4 4 4
4 4

4 4

ˆ ˆ ˆ ˆˆ ˆ 1ˆ ˆ .N N N
N N

P C C

P P C C C C
K K

r r r    

      
                   

 (31) 

 

The five reduced form equations, (27) - (31), and the characteristic root equation (20) are 

sufficient to eliminate the five power parameters, and to yield the replacement boundary as an 

implicit function of 4P̂ , 4Ĉ , 4
ˆ

NP , 4
ˆ

NC  and ˆ
NK . 
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      Table 1 

Base Case Data 

 

Description Parameter Value 

Re-investment Cost K  100 

Initial Revenue Level for Incumbent 0P  80 

Initial Operating Cost Level for Incumbent 0C  20 

Initial Revenue Level for Succeeding Asset IP  80 

Initial Operating Cost Level for Succeeding Asset IC  15 

Revenue Growth Rate  P  4% 

Operating Cost Growth Rate C  -2% 

Initial Operating Cost Growth Rate N  -5% 

Relevant Discount Rate r 12% 
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Table 2 

Optimal Solution for Model I 

 

Optimal Cycle Time 
1T̂  10.99 

Optimal Revenue Threshold 
1P̂  64.22 

Optimal Operating Cost Threshold 
1Ĉ  31.03 

 

The optimal cycle time 1T̂  is evaluated from (3) using the values of Table 1. The thresholds 1P̂  

and 
1Ĉ  are determined from 1

ˆ

1 0
ˆ e PTP P 
  and 1

ˆ

1 0
ˆ e CT

C C


 .  
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Figure 1 

The Timing Boundary for Model II 

 

 

 

The timing boundary AB is found as the solution to (6), (7) and (8) for 2
ˆ

IP P  and 2
ˆ

IC C , 

using the values in Table 1. When the constraint 2
ˆ

IC C  is lifted, the minimum value of 2Ĉ  is 

zero, with 2
ˆ 34.10P  , 2 6    and 2 0  . Representative values along AB are presented in the 

following table:  

 

2Ĉ  2P̂  2  2  

15.0 53.57 -3.0301 1.4849 

20.0 59.10 -2.7467 1.6267 

25.0 64.19 -2.5390 1.7305 

30.0 69.07 -2.3808 1.8096 

35.0 73.87 -2.2571 1.8715 

40.0 78.65 -2.1582 1.9209 
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Figure 2(a) 

The Effect of Variations in the Initial Operating Cost Level on the Timing Boundary 

 

 

 

 

The timing boundary for each indicated IC  level is evaluated according to Figure 1, using the 

values of Table 1 except for IC . The range for each boundary is 2
ˆ

IC C . 
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Figure 2(b) 

The Effect of Variations in the Re-investment Cost Level on the Timing Boundary 

 

 

 
 

 

 

The timing boundary for each indicated K  level is evaluated according to Figure 1, using the 

values of Table 1 except for K .   
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Figure 2(c) 

The Effect of Variations in the Initial Revenue Level on the Timing Boundary 

 

 

 

 
 

 

 

 

The timing boundary for each indicated IP  level is evaluated according to Figure 1, using the 

values of Table 1 except for IP .  
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Figure 3  

The Effect of Variations in the Initial Operating Cost Level on the Timing Boundary 

 

 

 

 

The timing boundary is found as the solution to (15), (16), (17) and (18). 
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Figure 4   

     The Effect of Variations in Initial Operating Cost Growth Rate on the Timing Boundary 

 

 

 

The timing boundary is found as the solution to (15), (16), (17) and (18). 
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