The Flight from Maturity

Gary Gorton, Yale and NBER
Andrew Metrick, Yale and NBER
Lei Xie, AQR Investment Management

Explaining the Crisis

How can a small shock cause a large crisis?

24 bps of realized losses on \$1.9 trillion of AAA subprime issued in 2004, 2005, 2006, 2007 (as of Aug 2013).

?

Ben Bernanke: "13 of the most important financial institutions in the United States, 12 were at risk of failure within a period of a week or two."

Standard Narrative

• Standard view: Two shocks— "if not for Lehman . . . "

Incoherent: Lehman must have been vulnerable.
 Why?

This paper

- Why did the failure of Lehman Brothers make the financial crisis dramatically worse?
- We argue that risk built up endogenously <u>during</u> the crisis as market participants tried to preserve the moneyness of money market instruments.
- A crisis is a process in which risk builds up.
- We test model predictions by providing a formal chronology of the crisis.

Private Money Market Instruments

- Secured: repo
 - GC repo
 - Repo backed by privately-created bonds
- Unsecured: CP, ABCP, Fed Funds, LIBOR
 - Issuers screened, either by bank regulatory authorities or by market participants
- When "moneyness" questioned, it can be re-created by: tighter screening of issuers, higher haircuts, better collateral, shorter maturities.

Model

Crisis Phases

Summary of Model Results

- Anxious banks want to borrow long, but Anxious lenders want to lend short.
 - Lenders want option to exit; borrowers want to lock in loans to avoid rollover risk.
- A Maturities shorten; term structure of spreads becomes upward sloping.
- Forest getting drier and drier. Lehman was the match.
- There can be a run if Anxious lenders exit to avoid expected future losses.
- Test chronology.

Spreads

• r_{ti}^{τ} is the annualized rate of return at time t for money market instrument i with maturity τ .

• Define: $\theta_{t,i}^{\ \tau} \equiv r_{t,i}^{\ \tau} - r_{t,FF}^{\ \tau}$ as the <u>spread</u> between the rate on money market instrument i and the Federal Funds target rate at date t for maturity τ .

Overnight Money Market Spreads Before the Crisis

Overnight Money Market Spreads Before and During Crisis

Money Market Spreads

Breakpoints in Panels

Bai (2010): Consider a panel of N series, as follows:

$$Y_{it} = \mu_{i1} + \sigma_{i1}\eta_{it}, \quad t = 1, 2, ..., k_0$$

 $Y_{it} = \mu_{i2} + \sigma_{i1}\eta_{it}, \quad t = k_0 + 1, ..., T$
 $i = 1, 2, ..., N$

where $E(\eta_{it})=0$ and $var(\eta_{it})=1$, and for each i, η_{it} is a linear process; there are other assumptions as well.

• The breakpoint, k_0 in means and variances is unknown. Consistent estimation requires that there are breakpoints in either the means or the variances (or both).

Breakpoints (cont.)

- Monte Carlo experiments show that panel can be very small, e.g., one series.
- Once the breakpoint date is found, Chow tests confirm.
- No power against gradual change. Nothing here about gradual vs. sudden change.

Panels

- We group the data series into five different panels with recognizable economic content:
 - (1) the real sector of the economy;
 - (2) the subprime housing sector;
 - (3) financial firms;
 - (4) the unsecured money markets; and
 - (5) the secured money markets.
- We further divide the financial firms to consider including and excluding Lehman. We also consider subsets of the real sector and subprime, as well.

Real Sector

VIX

S&P 500

JPM HY Index

DJ CDX.IG

Subprime

ABX

HEL

Financial Firms

Financial CDS

Interbank Money Markets

Fed Fund

LIBOR

OIS

Commercial Paper

A2/P2 Nonfinancial

AA Asset-backed

AA Financial

AA Nonfinancial

Repo Categories

GC

<AA ABS-RMBS / CMBS

A-AAA ABS-Auto / CC / SL

AA-AAA ABS-RMBS / CMBS

AA-AAA CLO

AA-AAA Corporates

BBB+ / A Corporates

Crisis Chronology: First Breakpoints

	Num. of		Lower	Upper
Description	Securities	Break Point	bound	bound
Subprime: ABX & HEL	5	2007/1/4	2007/1/4	2007/1/11
Repo	6	2007/7/23	2007/7/20	2007/7/25
Financial CDS: Include				
Lehman	10	2007/7/23	2007/7/23	2007/7/24
CP, Fed Funds, LIBOR	7	2007/8/8	2007/8/8	2007/8/9
Real Sector: VIX, S&P 500,				
JPM HY Index, DJ CDX.IG	6	2008/1/3	2008/1/3	2008/1/10

Breakpoints (cont.)

 Multiple breakpoints: After the first breakpoint is located, the two subsamples can be investigated further for other breakpoints, and so on.

Money Markets: Crisis Chronology for Spreads

Yale school of management

The Flight from Maturity

- Only CP has issuance data by maturity.
 - But issuer mix is changing as low quality issuers are forced to exit.
- $\theta_{t,i}^{\ \tau} \equiv r_{t,i}^{\ \tau} r_{t,FF}^{\ \tau}$ is the <u>spread</u> between the rate on money market instrument i and the Federal Funds target rate at date t for maturity τ .
- $\Phi_{t,i}^{\tau 2,1} \equiv \theta_{t,i}^{\tau 2} \theta_{t,i}^{\tau 1}$, where $\tau 2 > \tau 1$, is the <u>slope</u> of the term structure of spreads (various maturities).
- Slope flat in normal times, but increases in crisis.

Short/Long Issuance Ratio, AA Asset-Backed CP

Counterparty Risk (bps) and CP Maturities

— Short-long Ratio, 30 Day Rolling

Yale school of management

Term Structure of Spreads

 Maturities endogenous, to be consistent with "moneyness" – so the term structure should be flat during normal times.

 If dealers want to borrow long (pay a higher spread) and lenders will only lend short (a lower spread), then term structure steepens.

LIBOR Spread Term Structures (bps)

<AA ABS-RMBS / CMBS Repo Spread Term Structures (bps)

Yale school of management

Breaks in Repo Haircuts

	Break point	Lower bound	Upper bound
First Break	2007/10/23	2007/10/23	2007/10/24
Second Break	2008/2/6	2008/2/6	2008/2/7
Third Break	2008/9/15	2008/9/15	2008/9/16

Summary

- A financial crisis is not a "shock."
 - Fragility builds up during the preceding credit boom (Gorton and Ordonez).
 - But, fragility also builds up during the crisis.
- A "crisis" is the result of an endogenous buildup of fragility.
- A key element is the shortening of maturity during the crisis.
- "Tail risk" is endogenous.

