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Motivating Learning

1 Investors in Treasury bonds have experienced:

several major financial crises;

unforeseen changes in policies and transparency of the FRB;

lack of clarity on the future pathes of fiscal policies.

2 We explore how learning about the risk profile of Treasury
bonds affects:

the prices of bonds,

required compensations for bearing relevant factor risks,

(forecasts of) the future shapes of the term structure of yields.
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Modeling Learning

Endow agents with an yield-based DTSM that they use for
updating their beliefs every month by ML.

Based on this learning rule they price bond and forecast future
yields (and compute market risk premiums).

As naive as this rule is, it performs strikingly well against:
1 the consensus forecasts of the BCFF survey professionals.

2 the simple random walk model of bond yields.

3 When macroeconomic information is incorporated, our
DTSM-based learning rule outperforms other models,
especially during the 2000’s leading up to the current crisis.

A computationally simple, naive and yet plausible, and
remarkably effective learning rule. Why?
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What Is Our Agent Learning About?

Our agent is not the professional forecaster. No survey
information is used in fitting our learning rules.

Our agent updates her views about the (unknown?) risk
structure of yields using an arbitrage-free DTSM.

Agents are not learning about the state of the economy. Over
98% of the variation in Treasury yields is accounted for by the
low-order PCs (P) of yields, which are measured accurately.

Agents are learning about how bond yields are related to P
and about the dynamics of P over the business cycle.

View updating the parameters of a DTSM as updating an
approximation to the conditional distribution of bond yields.
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Joslin, Priebsch, and Singleton (2013) Model of
the Historical Distribution of Risk

Macroeconomic information, over and above P, is important
for understanding risk compensation in bond markets.

No macro factors in P, because the resulting DTSMs do not
accurately price bonds (Joslin, Le, and Singleton (2013)).

Following JPS, Zt ≡ (Pt,Mt) follows the Gaussian process

Zt = KP
0 +KP

ZZt−1 + Σ
−1/2
Z εPZt.

The market prices of risks P: ΛPt = Λ0 + ΛZZt.

Agents are learning about ΘP = (KP
0 ,K

P
Z), along with the

parameters ΘQ of the pricing distribution.
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Sophisticated “Partially Bayesian” Learner

Bayesian learning is a sophisticated calculation since agents
are learning about a high dimensional (P,Q) parameter set.

Consider the simpler Partially Bayesian (PB) learner who
updates on ΘP taking ΘQ as given:

f(Zt
1, O

t
1) =

t∏
s=1

f(Os|Zs
1 , O

s−1
1 ; ΘQ,Σe)×∫

f(Zs|Zs−1
1 ,Os−1

1 ,ΘP
s−1; ΣZ)f(ΘP

s−1|Zs−1
1 ,Os−1

1 )d(ΘP
s−1).

Formaly learning about the historical distribution of Z.

This PB case is interesting because:

1 its structure can be reinterpreted as a constrained version of
the fully Bayesian rule;

2 the presumption that ΘQ is fixed and known turns out to be
consistent with our empirical learning rules.
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An Illustrative Learning Environment

PB agent learning about ΘP taking (ΘQ,Σe) as known.

Suppose that ΘP
t can be partitioned as (ψr, ψP

t ), and that

ψP
t = ψP

t−1 + ηt, ηt
iid∼ N(0, Qt),

Qt denotes the (possibly) time-varying covariance matrix of ηt.

Adopting a Gaussian prior on ψP
0 , the posterior distribution for

ψP
t is Gaussian, ψP

t |Zt
1 ∼ N(µt, Pt), with the posterior mean

µt = µt−1 +R−1t x′t−1Σ
−1
Z (yt − xt−1µt−1),

where R−1t ≡ Pt −Qt and Rt satisfies the recursion

Rt =
(
I − P−1t−1Qt−1

)
Rt−1 + x′t−1Σ

−1
Z xt−1.
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The PB Learner as a (Near Fully) Bayesian Learner

Two special cases of Bayesian updating on ψP
t :

B↓CGLS: If P−1t−1Qt−1 = (1− γ) · I, µt is a constant gain
least-squares (CG) estimator of ψP with gain
coefficient γ ∈ (0, 1].

B↓RLS: If γ = 1, then ψP
t = ψP

t−1 and µt is the recursive
least-squares (RLS) estimator of ψP.

RLS learning has a Bayesian interpretation when the agent
believes that ψP is unknown, but is not changing over time.

We search over γ in the CG case to minimize the RMSE of
forecasts of PC1 one year ahead.
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Model-Based Learning Rules

Rule DTSM Information Restrictions γ

`(RW ) Random Walk Own Yield N/A N/A

`(JSZ) JSZ P No-Arbitrage 1
PC3 unpriced

`(JSZCG) JSZ P No-Arbitrage + 0.99
PC3 unpriced

`(JPS) JPS (P,M) No-Arbitrage + 1
PC3 unpriced
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(No) Learning About Eigenvalues λQ of KQ
PP
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RMSE’s for one-quarter ahead forecasts,
January, 1985 to March, 2012

RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(BCFF ) 51.4 51.6 52.4 54.3 49.5 47.9 44.8

`(JSZLS) 39.7
(−4.03)

41.8
(−3.07)

45.2
(−3.92)

44.6
(−5.28)

43.0
(−4.39)

41.2
(−3.92)

37.7
(−3.33)

`(JSZCG) 38.5
(−4.36)

41.6
(−3.17)

45.2
(−3.80)

45.0
(−4.45)

43.4
(−4.10)

42.1
(−3.66)

38.8
(−2.96)

`(JPSLS) 36.2
(−3.96)

41.2
(−2.74)

44.2
(−2.99)

43.9
(−3.86)

41.4
(−4.71)

40.7
(−3.94)

39.3
(−2.64)
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RMSE’s One-Year Ahead Forecasts
January, 2000 – December, 2007

RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 173 165 143 125 98 79 60

`(BCFF ) 178 165 156 144 116 98 79

`(JSZ) 181 176 163 145 118 97 75

`(JSZCG) 166 159 145 128 104 86 69

`(JPS) 141 138 125 109 86 71 64
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RMSE’s One-Year Ahead Forecasts
January, 2008 – March, 2012

RMSE’s by Bond Maturity
Rule 6m 1Y 2Y 3Y 5Y 7Y 10Y

`(RW ) 75 75 67 67 76 78 69

`(BCFF ) 116 118 129 148 122 119 94

`(JSZ) 100 97 102 103 98 85 67

`(JSZCG) 78 76 76 79 82 79 71

`(JPS) 92 87 79 75 77 76 78
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Imprecision with Learning
January, 1975 – March, 2011
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Expected Excess Returns on Two-Year Treasury Bonds
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Expected Excess Returns on Ten-Year Treasury Bonds
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Why is `(JSZ) Different From `(BCFF )?

Post recessions BCFF forecasters incorrectly predict rising
10-year yields. Partly a consequence of BCFF forecasters
predicting that slope will be more persistent than it is.

Notably, less than 25% of the variation of BCFF-implied
expected excess returns are explained by variations in P.

At the same time, 25% of the variation of expected excess
returns in JSZCG are orthogonal to P.
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Which Forecasters Were More Accurate?

Full sample: RMSE’s in forecasting the realized excess returns
for bearing (2y, 10y) bond risks were:

(1.55%, 9.68%) for `(BCFF ) and

(1.50%, 8.43%) for `(JSZ).

For the specific episode over January, 2001 through January,
2006, the corresponding RMSE’s were:

(1.34%, 7.62%) for `(BCFF ) and

(1.40%, 4.60%) for `(JSZ).



Introduction References

Learning About Volatility
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Figure: Estimates from `(JPS) of ΣP , the innovation covariance matrix
for Pt, over the period June, 1975 to March, 2011.
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Learning About the Drift: KP
PP(1, 1).
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Learning About the Drift: KP
PP(2, 2).
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Learning In the Presence of Stochastic Volatility
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Learning About Volatility
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Parameter Updating with Stochastic Volatility
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