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Abstract 
 

This paper examines the re-expression of returns in the time domain as doubling times. 

Several uses for doubling times are suggested including truth in lending. The expected time 

for an investment to double can be calculated from a time series of doubling times either 

using harmonic means, or simulation. A normal distribution for returns yields doubling 

times with an inverse Gaussian distribution and this holds approximately for any return 

distribution. Doubling times provide an alternative calculus for portfolio optimisation. The 

minimisation of either skewness, or the inverse of the shape parameter, for doubling times 

reproduces the Markowitz efficient frontier.  
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Returns and Doubling Times 

I. Introduction 

This paper examines the re-expression of returns in the time domain. Traditionally 

investment performance is measured as the increment in wealth per unit of time. In this 

paper we turn the measurement round and ask how many units of time are required to give 

a unit increment in wealth. Thus returns are re-expressed as doubling times.  

There are several reasons for the study of doubling times. Doubling times are an 

intuitively attractive way to express returns. This is evident from the development of rules 

of thumb for estimating doubling times, such as the rule of seventy-two. Despite this 

intuitive appeal, there has been little study of doubling times in finance. Therefore, one 

purpose of this paper is to present some of the properties of doubling times.  

Transforming returns into the time domain provides a different perspective on 

returns. Viewing returns from a different perspective may stimulate new ideas and new 

insights that might not otherwise be obtained. Doubling times may also have advantages 

over returns in certain applications. We suggest three potential uses for doubling times, in 

relation to truth in lending, performance measurement, and capital budgeting. We 

demonstrate a fourth application in portfolio optimisation. 

It is a simple matter to compute doubling times period by period. However, the 

mean of the period by period doubling times (the mathematical expectation) does not give 

the time over which the investor should expect to double their money (the expected 

doubling time). We present two approaches to computing the expected doubling time. An 

analytical approach shows that harmonic means can be used in estimating doubling times. 
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Formulas using harmonic means are given for discrete and continuously compounded rates 

of return and also for simple interest rates.  

A Monte Carlo simulation method is also used to compute the expected doubling 

time. The results of the simulation approximate an inverse Gaussian distribution. We show 

analytically that if returns are normally distributed, then doubling times will follow an 

inverse Gaussian distribution. We also note that whatever the return distribution, the 

doubling time distribution will be approximately inverse Gaussian. We present formulas 

that transform the parameters of the normal return distribution to the parameters of the 

inverse Gaussian doubling time distribution. Using the properties of the inverse Gaussian 

distribution we demonstrate that minimising either the skewness, or the inverse of the shape 

parameter, of the doubling time distribution results in the Markowitz mean variance 

efficient frontier for returns. 

The remainder of this paper is organised as follows. Section II outlines the history 

of doubling times and the possible applications to finance. Section III discusses methods 

for computing expected doubling times from a time series, or cross section, of doubling 

times. Section IV demonstrates the computation of doubling times for the Dow Jones U.S 

Total Stock Market Total Return Index and also presents an illustration of portfolio 

optimisation using doubling times. The conclusions of this study are presented in Section 

V.   

II. Doubling Times History, Definition and Uses 

For discrete returns the doubling time is approximated by the rule of 72, dividing 72 

by the rate of return gives the approximate time for an investment to double in value. 
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Internet sources often credit Albert Einstein for the rule of 72;1 but almost 500 years earlier 

it was mentioned by Luca Pacioli (1494) and quite possibly it predates Pacioli. When 

compounding is continuous, rather than discrete, the rule of 69 is used instead of the rule of 

72. 

Although the expression of returns as doubling times has been known for 500 or 

more years, there has been little academic work on equity market doubling times. Indeed, 

other than descriptions of the rules of 72 and 69, there is little on doubling times in the 

financial literature. However, the concept of doubling times has had more extensive use in 

other fields. Doubling times are applied to population growth as in Kendall (1949). 

Doubling times are also used in medicine; a common application is measuring the growth 

of a tumour, for example Hanks, D’Amico, Epstein and Schultheiss (1993). Half-lives, the 

converse of doubling times, are also used in other fields. Half lives are most commonly 

associated with radioactive decay, but can be applied to anything which decays. Medical 

applications involve nuclear medicine as in Hendee (1979). The study of population 

extinctions also makes use of half lives, Brooks, Pimm and Oyugi (1999).  

Half-lives can also be defined as the number of periods required for the impulse 

response to a unit shock to a time series to dissipate by half. Such a metric is sometimes 

found when measuring the degree of mean-reversion or persistence in economic and 

financial time series. A notable example where half lives are used is in the study of the 

purchasing power parity, Rogoff (1996), Rossi (2005) and Kilian and Zha (2002). 

Future values under continuous compounding are given by: 

rtPVeFV   

                                                 
1 See for example: www.investingpage.com/einsteins-rule-of-72.html 
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where FV is the Future Value, PV is the Present Value, r is the rate of return, and t time to 

maturity. By setting FV to 2 and PV  to 1 and solving for time, t we obtain the doubling 

time, τ : 

(1) 
      

 
r

2log  

A result which is approximated by the rule of 69 as the natural logarithm of 2 equals 

0.6931. 

Future values with discrete returns are given by: 

 trPVFV  1  

and   is given by: 

(2) 
      

 
 r 1log

2log   

This equation is approximated by the rule of 72. 

For simple interest future values are given by: 

)1( rtPVFV   

and  is given by: 

(3) 
      r

1  

While the formulas above differ, for any given asset they will all give the same 

doubling time, since no matter how the returns are expressed they all reflect the same 
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underlying investment performance. We suggest three possible uses for doubling times 

below and later we show how doubling times can be applied to portfolio optimisation.2 

Truth in Lending: Interest rates may expressed as simple or compound rates, 

compounding may be discrete or continuous, and interest rates may be expressed in 

nominal or effective terms. Whatever way the interest rate is expressed, there is only one 

doubling time. Thus doubling times could supply a standard benchmark for comparing 

loans and would probably have an intuitive appeal to consumers.  

Performance Measurement: If doubling times are useful in truth in lending, this also 

suggests that they might provide a useful way to report performance to investors. For 

example, investment funds could be asked to report how long ago one dollar would need to 

have been invested with the fund in order to have doubled in value by the current date.  

Capital Budgeting: The payback period continues to be very popular in capital 

budgeting despite its well known deficiencies.3 The doubling time has the intuitive appeal 

of payback, but can also give decisions consistent with traditional DCF analysis. This 

would require computing the project IRR and converting it to a doubling time. The 

resulting doubling time would then be compared with the doubling time implied by the cost 

of capital. Clearly this is not a panacea for problems in project analysis. The computations 

                                                 
2 We doubt that this is an exhaustive of the possibilities, but it serves to illustrate the potential usefulness of 

doubling times. 

 
3 An Australian capital budgeting survey by Truong, Partington and Peat (2008) contains a convenient 

summary of surveys from around the world, which shows that payback continues to be a popular metric in 

project analysis. 
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are more complex than those required for the traditional payback measure and might 

sometimes involve dealing with multiple roots in the IRR equation. However, the doubling 

time provides a convenient and intuitive way of communicating a DCF result to managers 

with little understanding of finance.  

III. Computing Expected Doubling Times 

The computations that underlie the following results were based on continuously 

compounded returns and hence doubling times were computed using equation (1). As noted 

above, had we used discrete returns and equation (2) or simple interest rates and equation 

(3) identical doubling times would have been obtained. A plot of doubling times against 

continuous returns was generated from equation (1) and is given in Figure 1. It is 

immediately evident from Figure 1 that negative doubling times (half lives) are a mirror 

image of positive doubling times. It is also evident that there is a discontinuity at zero. As 

returns approach zero, half lives tend to minus infinity and positive doubling times tend to 

plus infinity.  

Figure 1 suggests that in forming the parameters of doubling time distributions there 

will be a problem in handling cases with zero returns due to infinite doubling times. Care is 

also needed in combining doubling times. For example, consider a case where the first 

year’s return has a half life represented by minus five years and the second year’s return has 

a doubling time represented by plus five years. The arithmetic mean gives a doubling time 

of zero years. However, an investor who experiences this combination of half-life and 

doubling time will not instantly double her money. In general the arithmetic mean of 

doubling times is not the same as the doubling time that investors experience. Investors are 
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naturally interested in the doubling times they actually experience and we describe below 

how this parameter can be computed from the time series of doubling times.  

FIGURE 1 ABOUT HERE 

One approach to dealing with zero returns and infinite doubling times is to exclude 

such data from the analysis and report the incidence of zero returns. We do not expect zero 

returns to be a common problem for actively traded stocks, but it could happen, and is more 

likely as we move from monthly to daily data. For thinly traded stocks apparent 

observations of zero return are not uncommon in daily data. However, it is important to 

distinguish when zero returns really mean that the price has not changed, and when they 

mean that a change in price has not been observed because of thin trading. In the latter case 

the return is not really zero but missing. 

A. Computing expected doubling times 

Several approaches can be used in computing the expected doubling time. The 

simplest and most obvious is to take the compound rate of return (geometric average) over 

the full set of return observations. Converting that compound return to a doubling time will 

give the expected doubling time. This approach however, provides no information about the 

relation between the expected doubling time and the individual doubling times derived 

from each element of the time series of returns. 

 

 

B. The expected doubling time in time series  
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We use two approaches to estimating the doubling time directly from the time series 

of doubling times. One approach is a numerical estimate using Monte Carlo simulation, the 

other approach is analytical. 

In the simulation approach the returns are repeatedly re-sampled at random and a 

cumulative compound return factor computed. When this cumulative return factor sums to 

two the doubling point has been reached. The number of iterations to reach this point gives 

the doubling time and many repetitions of this process give a distribution of possible 

doubling times about the expected doubling time.  

The analytical approach to computing the expected doubling time requires different 

formulae for discrete and continuous returns. The derivations are as follows,  

C. For continuous compounding: 

From equation (1) 

 
r

2log  

If the rate of return is ri for a period ti, the equivalent rate R satisfies: 

nntrtrtrRT ee  ...2211   

where 
i

itT  

Taking the natural logarithm of both sides of the above equation leads to 

nntrtrtrRT  ......2211  
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So R is the weighted arithmetic mean of the ri. Since r = log(2)/, the above equation can be 

rewritten as: 

   



n

i i
itT

1

2log2log
  

which simplifies to 

(4) 
      

1

1













 

n

i i

itT   

In this case the expected doubling time is the time weighted harmonic mean of the 

individual doubling times τi. 

D. For discrete compounding: 

From equation (2) 

 
 r 1log

2log  

Suppose the returns are (r1, r2, …., rn) for n-periods. Then the equivalent rate R satisfies 

   



n

i
i

n rR
1

11  

So (1+R) is the geometric mean of the one period terms (1+ri). Since (1+r)= 2, the above 

equation can be rewritten as: 





n

i

n
i

1

/122   
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
 

n

i
in

1

/1

22


  

which leads to 

(5) 
      

1

1

1

















 

n

i i
n   

This implies that the expected doubling-time is just the harmonic mean of the individual 

one step doubling times τi. 

E. For simple interest rates: 

From equation (3) 

r
1  

Suppose the simple interest rates are ri for a period ti. Then the equivalent rate R satisfies 

 
n

i
ii

n

i
i rttR  

Since r = 1/, the above equation can be rewritten as: 





n

i i

i
n

i
i

tt
11

1


 

which leads to: 

(6) 
      

1

1


















 

n

i i

itT   
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where 
i

itT . 

As for continuous compounding the expected doubling time is the time weighted harmonic 

mean of the individual doubling times τi. 

F. The expected doubling time in cross-section 

It is a simple matter to derive an analytical formula for computing doubling times 

from the cross section of doubling times. The return for a portfolio in cross section is: 


n

i
iirwR
 

Where R is the portfolio return, ri is an individual asset return in the cross-section and wi is 

the weight assigned to asset i in the cross-section. Since r = log(2)/τ, the above equation 

can be re-written as: 

   



n

i i
iw

1

2log2log


 

which leads to: 

1

1


















 

n

i i

iw


 

 
The expected doubling time is the weighted harmonic mean of the individual doubling 

times. 
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IV. Data and Results 

The calculation of doubling times is illustrated with equity data obtained from 

Bloomberg. The equity data consisted of daily values for the Dow Jones U.S Total Stock 

Market Total Return Index from the 16th of October 1988 to the 13th of October 2013 which 

gave a total of 6521data points.  

 

A. Raw doubling times 

 Histograms of half lives and doubling times for the Dow Jones U.S Total Stock 

Market Total Return Index are given in Figure 2 for daily weekly and monthly 

observations. The great majority of doubling times and half lives are under ten years and it 

appears that a surprisingly large number of observations are at zero. This latter observation, 

however, is somewhat misleading. Panel B of Figure 2 gives plots that are scaled to 

magnify the observations centred on zero. Panel B illustrates that there is a discontinuity at 

zero.  

FIGURE 2 ABOUT HERE 
 

Table 1 provides descriptive statistics for the full data set and for the sub-samples of 

positive and negative observations, which represent doubling times and half lives 

respectively. The results are presented at daily, weekly and monthly frequencies. In Panel A 

the doubling times are reported in years. In Panel B doubling times are reported relative to 

the frequency of observation, thus the doubling times for daily observations are reported in 

days and so on. Infinite doubling times are omitted in computing the descriptive statistics, 

but the number of such instances is reported as the number of zero returns removed. 
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The problem of computing the expected doubling time as the arithmetic mean of 

individual doubling times is clearly demonstrated in Table 1. These daily, weekly, and 

monthly samples are all drawn from the same period (16th October 1988 to 13th October 

2013). As these samples all started and finished on the same day, the overall change in 

wealth is identical regardless of the frequency of measurement. Consequently, the expected 

doubling time is independent of the frequency of measurement. However, the mean of the 

doubling times in Table 1 vary with the observation frequency. The mean doubling time 

based on weekly observations for the full sample is 0.795 years. In contrast, the mean 

doubling time based on monthly returns for the full sample is minus 1.906 years. Similar 

variation is also observed when considering the doubling times and half-lives separately. 

Investors are naturally interested in the doubling times that they can expect, and that they 

actually experience, but doubling times that vary with the frequency of return observation 

will not provide this information.  

TABLE 1 ABOUT HERE 

B. Expected doubling times 

Table 2 provides descriptive statistics for the expected doubling time of the Dow 

Jones U.S Total Stock Market Total Return Index consistent with an investor’s experience. 

The expected doubling times are derived from the analytical approach and from the 

simulation using daily, weekly and monthly observations. The expected doubling times are 

reported both in years and in units of time corresponding to the measurement interval. In all 

cases, for the analytical calculation, the expected time to double the investment is equal to 

7.27 years.  
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The simulated distributions of doubling times are based on 5000 iterations. The 

expected doubling time is computed as the arithmetic average of the simulated distribution. 

The simulated expected doubling times are 7.37, 7.41 and 7.54 years when using the daily, 

weekly and monthly returns respectively. As the t-statistic in Table 2 shows these simulated 

values are not significantly different to the analytical value of 7.27 years. As subsequently 

discussed, the appropriate distributional assumption is not normality, but rather that the 

doubling times follow the inverse Gaussian distribution. Consequently, the t-statistic was 

computed under this assumption following the method of Chhikara and Folks (1989). 

TABLE 2 ABOUT HERE 

The Distribution of Doubling Times 

A density plot for the daily, weekly and monthly simulated doubling times is given 

in Figure 3. Also in Figure 3, the cumulative density function for the simulated distribution 

is plotted against the cumulative density function for the inverse Gaussian distribution. 

These P-P plots suggest that the doubling times follow the inverse Gaussian distribution. 

The intuition for this result is as follows. The inverse Gaussian distribution describes the 

time it takes to reach a fixed positive level (the first passage time) for a process that follows 

Brownian motion with positive drift. This is analogous to the time a stock with positive 

drift and a stochastic component in returns takes to double its initial value. 

FIGURE 3 ABOUT HERE 

Thus far no assumption has been made about the underlying distribution of returns. 

However, if returns are normally distributed then it can be shown that doubling times will 

follow an inverse Gaussian distribution. Details are given in the appendix, where it is 

shown that the mean ( DT ) and variance ( 2
DT ) of the doubling times are given by: 
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(7) 

      

 
r

DT 
 2log


  

(8) 
      

3

2
2 )2log(

r

r
DT 


    

Where r  and 2
r are the mean and variance of the underlying normally distributed returns. 

Whatever the return distribution, as long as returns are independent with a finite 

variance, then by the central limit theorem cumulative returns will be approximately normal, 

see  de la Granville (1998).4 Thus, even if the underlying return distribution is not normal 

we expect that doubling times will approximately follow an inverse Gaussian distribution.  

 Traditionally, the inverse Gaussian distribution is not defined by the mean and 

variance but by the mean and shape parameter. The shape parameter is defined as 

(9)       
23 / DTDT    

Where DT  and 2
DT are the inverse Gaussian distribution’s mean and variance respectively 

and the DT subscript denotes doubling times.  

Using equations (7) and (8) the shape parameter for the doubling time distribution 

can be written in terms of returns as: 

(10) 
     

 
2

22log

r
DT 

   

Thus we can write the distribution of doubling times as: 

(11)     Doubling Times ~ 







2

2)2log(
,

)2log(

rr

IG


 

 

                                                 
4 We thank Paul Dunmore for drawing this point to our attention. 
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We note that our results can be applied to tripling, quadrupling or any other n-tuple  

by using a scaling rule. From the derivation in the appendix, it can be seen that any n-tuple 

time is distributed as  

           n - tuple time ~ 







2

2)log(
,

)log(

rr

nn
IG

      

Given this, a scaling rule to transform the expected doubling time to the expected n-tuple 

time is defined as follows: 

              
)2log(

)log(N
DTN  

 

Where µN  is the N-tuple time and µDT  is the expected doubling time.  

Similarly, to transform the shape parameter for doubling times to n-tuple times, the 

following scaling rule applies: 

 
2

2

)2log(

log N
DTN  

 

Where λN  is the N-tuple time shape parameter and λDT  is the doubling time shape 

parameter.  

 

C. Portfolio Optimisation 

In optimising a doubling time portfolio the objective is to minimise the expected 

doubling time on the assumption that investors wish to amass wealth as quickly as possible, 

but at the same time investors wish to avoid risk. While minimising the doubling time is 

clearly analogous to maximising returns, the choice of risk metric is less obvious. Either 
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skewness, or the shape parameter, but not variance, can be used in determining the efficient 

frontier.5  

We show below that it is possible to obtain the global minimum variance portfolio 

by minimising the inverse of the shape parameter, subject to portfolio weights summing to 

one. We also show that minimising the skewness, subject to portfolio weights summing to 

one, gives the tangency portfolio (assuming no risk free asset) of the Markowitz efficient 

frontier.6  By the two fund theorem, the full efficient frontier can be generated as weighted 

combinations of the global minimum variance and tangency portfolios, Merton (1972). 

However, we also show below that either skewness, or the shape parameter, can be used to 

directly generate the full efficient frontier.  

From equation (10) the inverse of the shape parameter is:  

(12) 

    
 

c
r

DT

2
1    where c = log(2)2  

Equation (12) shows that the inverse of the shape parameter is the variance of returns 

scaled by a constant. As such, if the inverse of the shape parameter is minimised, with the 

constraint that portfolio weights sum to one, the resulting portfolio will be the global 

minimum variance portfolio of returns. 

To reduce the risk of waiting for long periods of time to double their investment, 

investors will desire a reduction in the skewness of doubling times. The skewness, γ, of the 

inverse Gaussian distribution is defined as:  

(13) 
     

2
1

3 









DT

DT




  

                                                 
5 Variance is inappropriate as a risk metric given that the distribution is not symmetric. 
6 In the absence of a risk-free asset this tangency point is the portfolio with the highest ratio of return to risk. 
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Substituting equations (7) and (10) for DT and 
DT

 in equation (13) gives: 

(14) 
          

 
2

1
2

2log
3 










r

r




  

(15) 

       










r

rc



    

where c is a constant =  2log
3  

Accordingly, minimising skewness involves minimising a risk to return ratio or, 

equivalently, maximising a ratio of return to risk.  

Using data as given in Broadie (1993), five assets are selected with known means, 

variances and correlations as given by Tables 3 and 4 below. 

TABLE 3 ABOUT HERE 

Using the data in Table 3 solutions to the following constrained optimisations were 

obtained: 

Inverse Shape Parameter. 

(16)  Minimise: 1   

  Subject to:  1iw   

Where wi is the weight of security i in the portfolio. Using equation (12), the optimisation 

problem defined in equation (16) can be redefined using the rate of return parameters as: 

  Minimise:

 
2))2(log(

' ww 
 

  Subject to: 1' w
 

Where w is the vector of portfolio weights, ι is a vector of ones and Ω is the covariance 

matrix of the returns for the assets in the portfolio 
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Skewness. 

(17)  Minimise:            

  Subject to:  1iw   

The optimisation problem defined in equation (17) can be redefined in terms of rate of 

return parameters, by using equation (15): 

  Minimise:

 

3

))2(log('

'

rw

ww 
 

  Subject to: 1' w
 

where w is the vector of portfolio weights, ι is a vector of ones, Ω is the covariance matrix 

for returns and r is the vector of returns. 

For these minimisation problems the objective functions will have only one local 

minimum which corresponds to the global minimum. Accordingly, the weights can be 

found using the Nelder-Mead method7. The asset weightings are computed for each of the 

optimisation problems and the corresponding portfolio mean and variance are then plotted, 

along with the Markowitz efficient frontier, in mean-variance space. The results are shown 

in Figure 4. The small circles represent the results of the above optimisations and these 

circles plot at the global minimum variance portfolio and the tangency portfolio of the 

Markowitz efficient set. 

It can be observed that while it is the skewness, or the shape parameter, for the 

portfolio’s doubling time that is minimised, they have been expressed in terms of the rates 

return and the covariance matrix for the rates of return. This approach was taken because of 

the absence of a general analytical formula for combining inverse Gaussian distributions.  

                                                 
7 The Nelder-Mead is a downhill Simplex method which although not as efficient as some gradient methods, 
is more robust. 
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The next step is to show that the whole Markowitz efficient frontier can be formed 

using either of the doubling time metrics. To construct the full efficient frontier the 

objective functions of the optimisations are modified as follows: 

(18)  Minimise: 1
DTDT



 

  Subject to:  1iw     

Where   is a risk tolerance parameter. In order to trace the efficient frontier the 

optimisation is undertaken for a range of risk tolerance parameters.  

To find the efficient frontier when using skewness as a risk metric, an analogous 

approach can be taken by solving the following optimisation problem across various risk 

tolerance levels: 

(19)  Minimise: 



DT

      

  Subject to:  1iw  

The two frontiers derived from the foregoing optimisations should lie on the 

Markowitz efficient frontier in the mean-variance plane, as defined by the following 

objective function: 

(20)  Maximise: 2

rr



  

  Subject to:  1iw  

The efficient frontiers resulting from the three foregoing optimisations are plotted in 

Figure 4 and match each other exactly.8 

 

                                                 
8 While the portfolios along the efficient set are coincident across the three optimisations the values for the 
risk aversion parameters differ across the optimisations at each point. This is to be expected as the measures 
of risk differ. The risk aversion parameters using doubling time metrics are smaller than for the Markowitz 
analysis. 
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V. Conclusion 

This study examined the properties of doubling times theoretically and by analysis 

of returns on the US Equity Market. A useful property of doubling times is that no matter 

how returns are reported there is only one doubling time. It was suggested that doubling 

times could have applications in truth in lending, in performance measurement and in 

capital budgeting. Computing doubling times period by period is comparatively simple, but 

using the time series of the period by period estimates to compute the expected doubling 

time is a little more challenging. This requires the use of either harmonic means of the 

doubling times, or a Monte Carlo simulation. 

The results of the Monte Carlo simulation gave a distribution about the expected 

doubling time that closely approximated the inverse Gaussian distribution. If returns are 

assumed normal then the doubling time distribution will be inverse Gaussian, with a mean 

and variance that can be expressed in terms of the mean and variance of the return 

distribution. Even if returns are not normally distributed the doubling times will be 

approximately inverse Gaussian for independent returns with finite variance.  

The objective of an investor with respect to doubling times is to minimise the time 

taken to double their wealth, but of course consideration must be given to risk. Given an 

inverse Gaussian distribution for doubling times there is a choice of two risk metrics for 

portfolio optimisation, these are skewness or the shape parameter, but not the variance. 

Portfolio optimisation can be accomplished in terms of doubling times. Minimising the 

inverse of the shape parameter gives the global minimum variance portfolio which would 

be obtained using the classical Markowitz framework. Minimising the skewness of 

doubling times gives the Markowitz tangency portfolio with the highest reward-to-risk ratio. 
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The skewness result has particular intuitive appeal. This appeal arises as investors would 

want to minimise positive skew in their investment doubling times. Long waiting periods 

until their investments double would naturally be undesirable. Furthermore, this doubling 

time optimisation problem only requires one parameter (skewness) to obtain the tangency 

portfolio, yet the Markowitz framework requires two parameters (mean and variance), 

thereby the use of doubling times results in a single parameter yet equivalent optimisation 

problem. These results provide a new perspective from which to view portfolio theory and 

an alternative calculus for generating the efficient frontier. 
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APPENDIX  

This appendix demonstrates the relation between the doubling times distribution 

and the return distribution assuming that the return distribution is normal.  

 

It is well known that compounding returns following  


t

dssr
eXtX 0

)(
)0()(  

give the stochastic differential equation: 

)()(
)(

tXtr
dt

tdX


 

Now, a relationship from Lax (1966) shows that if: 

    )()(
)(

twtXg
dt

tdX
  

Then the transformation  

'

1

' )()( dXXgXY
X 

  

Yields the process satisfying  

)(
)(

tw
dt

tdY


 

Using this relationship, the following transformation is obtained  


X

X

dX
XY

'

'

)(  

)(log)( tXtY         (A1) 

Which yields the random process satisfying 

)(
)(

tr
dt

tdY
         (A2) 
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If dtdttrE ])([  and dtdttrVar 2])([  , then (A2) can be written as a stochastic 

differential equation for a Weiner process with drift μ.  

 

dttZdttdY )()(                    (A3)  

       

where Z(t) is a Gaussian process with E[Z(t)] = 0 and Var[Z(t)] = 1 

       

The first passage time of this process is well documented; see Domine (1995), 

where the expected time to absorption and its variance are defined as: 

 

,)( 0


YY

TE B      
3

2
0 )(

)(


YY
TV B   

Where YB is the absorbing barrier and Y0 is the starting point for the process. This is also 

known to be an inverse Gaussian distribution 

Recalling equation (A1), it is known that )(log)( tXtY  . So if the starting point X0 

= 1, and the absorbing point XB = 2. Then the mean ( DT ) and standard deviation ( 2
DT ) of 

the distribution of doubling times are given by: 

 
r

DT 
 2log


      (10) 

3

2
2 )2log(

r

r
DT 


       (11) 

Where r  and 2
r are the mean and variance of the underlying normally distributed returns. 
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Table 1: Descriptive Statistics for Doubling Times and Half Lives 

 

These tables present the descriptive statistics for the raw doubling times and half lives (  
r

2log ) of the 

Dow Jones U.S Total Stock Market Total Return Index over the period 16 October 1988 to 13 October 2013. 
These statistics do not capture the doubling times that investors expect and it can be seen that the mean 
doubling times vary depending on whether the returns are measured at daily, weekly, or monthly frequency. 

  

Panel A: All values have been reported where periods are measured in years 

Daily Data Weekly Data Monthly Data

combined doubling times half lives combined doubling times half lives combined doubling times half lives

mean 0.389665 1.965965 -1.51795 0.795025 4.241576 -3.85813 -1.90646 3.443991 -11.3311

variance 206.7839 322.156 60.57924 1110.223 1772.548 179.8466 969.4176 24.66128 2508.673

standard deviation 14.37998 17.9487 7.783266 33.32 42.10164 13.41069 31.13547 4.966013 50.08666

min -330.382 0.024829 -330.382 -188.051 0.1091178 -188.051 -460.095 0.5296499 -460.095

max 680.028 680.028 -0.02778 1134.44 1134.44 -0.06684 42.3469 42.3469 -0.299

median 0.160355 0.51397 -0.50461 0.441371 1.003475 -1.02311 1.169778 1.929448 -2.18151

zero returns removed 358 8 0

Data sample size 6162 1317 301

Panel B: All values have been reported corresponding to the interval length of the data used

Daily Data Weekly Data Monthly Data

combined doubling times half lives combined doubling times half lives combined doubling times half lives

mean 100.9673 509.4 -393.32 41.6361 222.135 -202.054 -22.8775 41.32789 -135.973

variance 13883337 21629347 4067251 3045015 4861579 493266.5 139596.1 3551.225 361248.9

standard deviation 3726.035 4650.73 2016.743 1744.997 2204.899 702.3293 373.6257 59.59215 601.0399

min -85606.2 6.43354 -85606.2 -9848.4 5.71459 -9848.4 -5521.14 6.355799 -5521.14

max 176203.8 176203.8 -7.19819 59411.58 59411.58 -3.50025 508.1627 508.1627 -3.58762

median 41.55008 133.1771 -130.75 23.11502 52.55285 -53.5811 14.03733 23.15338 -26.1781

zero returns removed 358 8 0
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Table 2: Descriptive Statistics: Doubling Time for the Dow Jones U.S Total Stock Market 
Total Return Index (Oct 1998 to Oct 2013) 

 Daily 
Data 

Weekly 
Data 

Monthly    
Data 

Analytical expected doubling time (Periods) 1885.46 380.85 87.04 

Analytical expected doubling time (Years) 7.276 7.275 7.276 

Simulated expected doubling time (Periods) 1911.72 388.38 90.48 

Simulated standard deviation (Periods) 1295.58 256.11 52.68 

Simulated expected doubling time (Years) 7.377 7.410 7.540 

Simulated standard deviation (Years) 5.00 18.72 4.39 

t–statistic  1.14 1.24 1.78 

The table gives the analytical expected doubling times and the simulated expected doubling times together 
with the standard deviations of the simulated doubling times. The t-statistics are for the comparison of the 
analytical doubling times with the simulated doubling times.  
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Table 3: Asset mean returns and standard deviations and their equivalent doubling times  

 

Table 4: Correlation matrix for asset returns 

 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5
Mean (Months) 0.006 0.01 0.014 0.018 0.022
Standard Deviation (Months) 0.085 0.08 0.095 0.09 0.1
Expected Doubling Time (Months) 115.525 69.3147 49.5105 38.5082 31.5067
Doubling Time Standard Deviation (Months) 152.267 66.6044 47.7468 31.0275 25.514

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5
Asset 1 1 0.3 0.3 0.3 0.3
Asset 2 0.3 1 0.3 0.3 0.3
Asset 3 0.3 0.3 1 0.3 0.3
Asset 4 0.3 0.3 0.3 1 0.3
Asset 5 0.3 0.3 0.3 0.3 1
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Figure 1: Variation of Doubling Times with Returns 

 

Figure 1 represents a plot of  
r

2log for continuously compounded returns varying from -10% to +10% 
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Figure 2: Histograms of Half Lives and Doubling Times for the Dow Jones U.S Total 
Stock Market Total Return Index. 

   Panel A        Panel B 

  

  
Histogram of combined doubling times and half lives for the Dow Jones U.S Total Stock Market Total Return 
Index for the period 16 October 1988 to 13 October 2013. The analysis uses monthly, weekly and daily return 
observations. Panel A shows the full histogram, while Panel B shows a truncated and magnified version of the 
histogram in order to highlight the discontinuity at zero. 
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Figure 3: Doubling time density plot with corresponding P-P plot against an inverse 
Gaussian distribution. 
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Figure 4: Efficient frontiers  

 

This figure depicts the efficient frontier using the mean, variance and correlation parameters found in Tables 4 
and 5. The efficient frontier was computed using the traditional Markowitz mean-variance framework 
(equation 20) and is shown as the black line. The optimisations based on the shape parameter and skewness of 
doubling times (equations 18 and 19 respectively) generate results that exactly match the Markowitz efficient 
frontier. The red circle represents the portfolio that minimises the inverse shape parameter and which lies at 
the global minimum variance portfolio. The green circle is the minimum skewness portfolio which is shown 
to lie on the tangency point between the origin and the frontier (as shown by the grey line). 
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