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Abstract

This paper investigates the impact of dark pools on price discovery (the efficiency of prices on stock

exchanges to aggregate information). Assets are traded in either an exchange or a dark pool, with the dark

pool offering better prices but lower execution rates. Informed traders receive noisy and heterogeneous signals

about an asset’s fundamental. We find that informed traders use dark pools to mitigate their information

risk and there is a sorting effect : in equilibrium, traders with strong signals trade in exchanges, traders with

moderate signals trade in dark pools, and traders with weak signals do not trade. As a result, dark pools

have an amplification effect on price discovery. That is, when information precision is high (information risk

is low), the majority of informed traders trade in the exchange hence adding a dark pool enhances price

discovery, whereas when information precision is low (information risk is high), the majority of the informed

traders trade in the dark pool hence adding a dark pool impairs price discovery. The paper reconciles the

conflicting empirical evidence and produces novel empirical predictions. The paper also provides regulatory

suggestions with dark pools on current equity markets and in emerging markets.

1 Introduction

Over the years, the world financial system has experienced a widening of equity trading

venues, among which dark pools have rapidly grown in popularity. The market share of
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dark pools in the US has grown from 7.51% in 2008 to 16.57% in 2015.1 In contrast with a

traditional stock exchange, dark pools do not publicize information about their orders and

price quotations before trade. Unlike a stock exchange in which prices are formed to clear the

buy and sell orders, a typical dark pool does not form such prices: it executes orders using

prices derived from the stock exchanges. Those dark pools do not contribute to the process of

information aggregation in the exchange, and hence they do not offer price discovery. Price

discovery (i.e., the process and efficiency of prices aggregating information about assets’

values) is essential to achieving the confidence of a broad community of market participants

and ensuring the efficiency of capital markets. Therefore, the question of whether dark

pool trading will harm price discovery has become a rising concern and matter of debate for

regulators and industry practitioners.2 Academic research, for its part, has yielded conflicting

results. Ye (2011) predicts that, in theoretical studies, the addition of a dark pool strictly

harms price discovery. By contrast, Zhu (2014) predicts that dark pools strictly improve

price discovery. Empirically, there are findings that support each of the different predictions.

This paper investigates the question whether dark pool trading will harm price discov-

ery. In the model, there are informed speculators and uninformed liquidity traders. More

specifically, informed traders have heterogeneous private signals, with the distribution of

these signals determined by an information precision level. Uninformed liquidity traders

have heterogeneous demands for liquidity. Both types of traders choose among three option-

s: a) trade in an exchange, b) trade in a dark pool, or c) do not trade (delay trade). The

exchange is modeled as market makers posting bid-ask prices and guaranteeing execution,

whereas the dark pool is modeled as a crossing-mechanism that uses the average of bid and

ask (mid-price) in the exchange to execute orders (if there are more buy orders than sell

orders, buy orders are executed probabilistically, with some buy orders not executed, and

vice versa).

We find a novel amplification effect of dark pools on price discovery: price discovery in the

exchange will be enhanced when traders’ information precision is high and will be impaired

when traders’ information precision is low. The results help to reconcile the seemingly

contradictory empirical findings about dark pool impact on the market and generate novel

empirical predictions regarding the information content of dark pool trades, dark pool market

share, and their relationships with exchange spread. We identify that information structure

(information precision) is one key variable in determining the informational efficiency (price

1Rosenblatt Securities: Let There Be Light, January 2016 Issue.
2For example, as remarked by the SEC Commissioner Kara M. Stein before the Securities Traders Associ-

ation’s 82nd Annual Market Structure Conference in Sep. 2015, “As more and more trading is routed to dark

venues that have restricted access and limited reporting, I am concerned that overall market price discovery

may be distorted rather than enhanced.” According to “An objective look at high-frequency trading and

dark pools,” a report released by PricewaterhouseCoopers (2015), “Dark pools may harm the overall price

discovery process, particularly in a security in which a significant portion of that security’s trade volume is

in the pools.”

2



discovery) when markets are fragmented by dark pools. We show that the results have

immediate policy implications for enhancing price discovery in equity markets and dark pool

usage in emerging economies. We also provide a discussion regarding the possible measures

of markets’ information precision.

The intuition of the amplification effect is as follows. First, we show that, in equilib-

rium, there is a sorting effect : for informed traders, those with strong signals trade in the

exchange, those with modest signals trade in the dark pool, and those with weak signals do

not trade. For uninformed liquidity traders, those with high liquidity demand trade in the

exchange, those with modest liquidity demand trade in the dark pool, and those with low

liquidity demand delay trade. The sorting effect is derived from the trade-off of trading dark

pools: dark pools provide better prices than exchanges, but this is offset by a higher non-

execution probability. Therefore, amongst informed traders, those with strong signals prefer

an exchange because they are very confident about making profits and desire a guaranteed

execution more than a better price; those with moderate signals prefer a dark pool because

they are less confident about making profits and desire a better price more than execution;

and finally, those with weak signals prefer not to trade because they are unconfident about

making profits. A similar argument holds for liquidity traders.

Second, we show that the amplification effect holds as a result of the sorting effect. Since

different information precision levels result in different distributions in the strengths of signals

and hence different venue choices for the majority of the informed traders, they cause different

dark pool impacts on price discovery. When information precision is high, the majority of

informed traders receive strong signals and prefer an exchange. Therefore, adding a dark

pool attracts only a small fraction of informed traders, compared with the liquidity traders,

leaving a higher informed-to-uninformed ratio (i.e., relative ratio of informed and uninformed

traders) in the exchange and hence improving price discovery in the exchange. In contrast,

when information precision is low, the majority of informed traders receive modest signals

and prefer a dark pool. Therefore a dark pool would attracts a higher fraction of informed

traders, compared with the liquidity traders, leaving a lower informed-to-uninformed ratio

in the exchange and hence impairing price discovery in the exchange.

This paper points out an important function of dark pools not yet discussed in the

existing literature: dark pools help informed traders mitigate their information risk, that is,

the loss that is attributable to wrong information. When traders’ information is relatively

weak (meaning there is a higher probability that it is wrong), they face a high risk of losing

money in trading. Dark pools provide those traders a perfect “buffer zone” – a place that

strictly lowers their information risk. This function of dark pools is only present, however,

when traders have a noisy information structure.

To the best of our knowledge, this paper is the first to introduce a noisy information

structure in a fragmented market to study dark pools and price discovery. Examining the

noisiness in information is of essential importance, not only because it is much more realistic
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than assuming perfect information, but also because it reveals the process of price discovery

by identifying the motivations of traders’ choices. As a result, our predictions are more

robust in the sense that the sorting and amplification effects hold in every equilibrium. In

contrast, the current theoretical literature assumes that all informed traders have perfectly

precise information. This obscures trading motivations and induces instability in the results.

For example, Zhu (2014) studies some equilibria in which dark pools improve price discovery,

but there may exist other equilibria in his model in which dark pools harm discovery. Yet,

Zhu (2014) does not discuss these equilibria.

Our findings have immediate policy implications for the ongoing debate over dark pool

usage. Our findings imply that, in contrast with current literature, there is no uniform im-

pact that dark pools have on price discovery and other measures of market quality. Dark pool

activity and its impacts display significant cross-sectional variation and should be evaluated

differently across various economic environments. Concrete suggestions for regulators to en-

hance pricing efficiency include: (i) identifying firm characteristics and monitoring dark pool

trades in firms that are likely to have a negative dark pool impact, such as high R&D firms,

young firms, small firms, and less analyzed firms, (ii) facilitating information transmission

and processing, enhancing accounting and reporting disclosure systems, and improving the

efficiency of the judicial systems and law enforcement against insider trading, and (iii) being

cautious in emerging markets with regards to dark pool trading, given that most emerging

markets are regulated by poor legal systems that lack implemental power against insider

trading and have a low precision in information disclosure. A more detailed discussion is

provided in Section 6.3.

Our study also produces testable predictions and helps to reconcile the seemingly contra-

dictory results in the current empirical literature. One of the predictions that could motivate

empirical and regulatory concerns is how much dark pool trades can forecast price move-

ments. We predict that the information content of dark pool trades has an inverted U-shape

relationship with the liquidity level (exchange spread), implying that assets with modest

liquidity have the highest information content in their dark pool trades, whereas the most

liquid and illiquid assets have the lowest information content in their dark pool trades. There

are also some predictions which coincide with current theoretical literature. For example,

dark pool usage also has an inverted U-shape association with exchange spread. Dark pools

create additional liquidity for the market. A more detailed discussion is in Section 6.2.

Related Work: There is a large collection of studies that examines information asym-

metry and price discovery in financial markets, in both the theoretical and empirical fields.

In theoretical studies, a large set of papers analyze non-fragmented markets, including the

two pioneering works in price discovery, Glosten and Milgrom (1985), and Kyle (1985).

Other studies examine fragmented lit markets, for example Viswanathan and Wang (2002),

Chowdhry and Nanda (1991), and Hasbrouck (1995). There are a handful of papers that

study information asymmetry in a market fragmented by lit and dark venues (see, e.g., Hen-
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dershott and Mendelson 2000, Degryse et al. 2009, Buti et al. 2011a). Yet, these models

assume either non-freedom of choice for traders or exogenous prices. Our study, on the other

hand, considers free venue selection for traders and endogenous prices. This paper is closely

related to Zhu (2014) whose trading protocols are the same as ours. But unlike Zhu (2014)

who considers an exact information structure, we examine a noisy information structure.

Under this noisy information structure, we predict different results in price discovery and

other measures from Zhu (2014). When the informational noise is absent in our model (i.e.,

information noise converges to zero), our prediction of price discovery coincides with Zhu

(2014)’s. Our paper is also related but divergent from Ye (2011). Whereas our model con-

siders free selection of traders, Ye (2011) assumes that uninformed traders are not subject to

free-choice between different venues, and hence the corresponding piece of the pricing mech-

anism is missing. In our model, if we fix the choices of uninformed traders and only allow

informed traders to choose between venues, our prediction also coincides with Ye (2011).

Empirical works report conflicting results regarding dark pool impact on price discovery.

These results are within the predictions of our study. For example, Buti et al. (2011b),

Jiang et al. (2012), and Fleming and Nguyen (2013) support an improvement for price

discovery with dark trading, while Hatheway et al. (2013), and Weaver (2014) discover a

diminishment in price informativeness. Also, Hendershott and Jones (2005) find a negative

impact for dark trading on price discovery, while Comerton-Forde and Putniņs̆ (2015) find

that, cross-sectionally, dark pool trading improves price discovery when the proportion of

non-block dark trades are low (below 10%, suggesting a low fraction of informational content)

and harms price discovery when the proportion of non-block dark trades is high.

There are also other empirical studies that focus on dark pool operation and other mea-

sures of market quality. Some papers analyze the information content of dark pool trades.

For example Peretti and Tapiero (2014) find that dark trades can predict price movement.

Some study the trade-offs of dark trading. For example, Gresse (2006), Conrad et al. (2003),

Næs and Ødegaard (2006) , and Ye (2010) study the execution probability in dark pools.

Another category studies the association between dark trading and the exchange spread.

My study predicts the same inverted U-shape as Ray (2010) and Preece (2012). My study

also suggests a cross-sectional variance and provides insights in explaining the contradictory

results reported in other papers. For example ASIC (2013), Comerton-Forde and Putniņs̆

(2015), Degryse et al. (2015), Hatheway et al. (2013), and Weaver (2014) find a positive

association while O’Hara and Ye (2011) and Ready (2014) find a negative association be-

tween dark pool market share and exchange spread. Others find cross-sectional differences

(see, e.g., Nimalendran and Ray 2014, Buti et al. 2011b). A more detailed discussion of

the relationship between our predictions and the current empirical literature is provided in

Section 6.2.
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2 Dark Pools: An Overview

Over the last decade, numerous trading platforms have emerged to compete with the in-

cumbent exchanges. Today, in the U.S. investors can trade equities in approximately 300

different venues. According to TABB (Oct. 2015),3 as of June 2015, there are 11 exchanges,

40 active dark pools, a handful of ECNs, and numerous broker-dealer platforms that are

operating as equity trading venues in the U.S. 4.

Among those venues, dark pools are a type of equity trading venue that does not publicly

disseminate the information about their orders, best price quotations, and identities of trad-

ing parties before and during the execution.567 The term “dark” is so named for this lack

of transparency. Dark pools emerged as early as the 1970s as private phone-based networks

between buy-side traders (See Degryse et al. (2013)). In the early days, the success of these

trading venues was limited, but this has changed substantially in the last decade. Dark pool-

s have experienced a rapid growth of trading activity in the U.S., Europe and Asia-Pacific

area. Figure 1 shows the annual data on the market share of dark pool trading as of the

consolidated volume in the U.S., Europe, and Canada, updated to 2015.8 According to the

data, the U.S. market share of dark pools increased from about 7.51% in 2008 to 16.57%

in 2015. The dark pool market shares in Europe and Canada are less, but they exhibit

the same growth trend. In Australia, according to the Australian Securities & Investments

Commission (ASIC 2013), as of June 2015 dark liquidity consists of 26.2% of total value that

traded in Australian equity market.9

One reason behind the rapid growth of dark pool trading is the technology development in

electronic trading algorithms. Advances in technology have made it easier to automatically

3“US Equity Market Structure: Q2-2015 TABB Equity Digest,” TABB Group, Oct. 2015.
4In Europe, according to Gomber and Pierron (2010) there are around 32 dark pools operating in equity

markets. In Australia, from ASIC (2013), there are 20 dark trading venues operating.
5Although the information about orders are hidden before trade, the after executed trades are not:

executed trades are recorded to the consolidate tape right after the trade. SEC requires reporting of OTC

trades in equity securities within 30 seconds of execution. Also, dark pools are required to report weekly

aggregate volume information on a security-by-security basis to FINRA.
6SEC Reg NMS Rule 301 (b) (3) requires all alternative trading systems (ATSs) that execute more than

5% of the volume in a stock to publish its best-priced orders to the consolidated quote system. However, it

only applies if the ATS distributes its orders to more than one participant. If it does not provide information

about its orders to any participants, it is exempt from the quote rule.
7Electronic Communication Networks (ECNs) are registered as a type of ATS. But unlike dark pools,

ECNs display orders in the consolidated quote stream.
8We estimated Canadian dark pool market share from “Report of Market Share by Marketplace–Historical

(2007-2014),” IIROC, Aug 2015, “Report of Market Share by Marketplace (historical 2015–Present),” IIROC,

May, 2016. Precisely, we estimate the market share of the following 4 dark pools operating in Canada:

Liquidnet, Matchnow, Instinet, and SigmaX Canada.
9Australian Securities & Investments Commission, “Equidity Market Data,” June 2015. The number

contains 12% block size dark liquidity and 14.1% non-block size dark liquidity. It describes all the hidden

orders in the markets including those in exchanges and dark pools.
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Figure 1: Dark Pool Market Share. The plot shows the annual data of dark pool volume as a percentage

of the total consolidated volume in the US, Europe, and Canada.

Data source: US data (2008 - 2015) is from “Rosenblatt Securities: Let There Be Light, January 2016

Issue” and Europe data (2010 - 2015) is from “Rosenblatt Securities: Let There Be Light – European Edition,

January 2016 Issue”. Figures in Canada (2007 - 2015) are derived from reports of IIROC.

optimize routing and execution according to different sets of considerations and trading

protocols. Another reason for the proliferation is the regulation changes that have been made

to encourage competition between trading venues. For example, in the U.S., Regulation NMS

(National Market System) was revised and reformed in 2005 to encourage the operation

of various platforms, and as a consequence, a wide variety of trading centers have been

established since then. Another example is the introduction of the Market in Financial

Instruments Directive (MiFID) in the European Union in 2007, which spurred the creation

of new trading venues, including dark pools.10

There are two key commonalities in dark pools’ operating protocols: the pricing mecha-

nism and execution mechanism. First, dark pools generally do not provide price discovery.

Instead, they typically use a price derived from an existing primary market as their trans-

action price. The most commonly used pricing mechanism is the mid-point mechanism: a

pricing method to cross orders at the concurrent mid-point of the National Best Bid and

10In recent years, however, as the debate about dark pool usage has escalated, many countries have started

to consider restrictions on dark trading. For example, Canada and Australia have required dark liquidity to

provide a “meaningful price improvement” of at least one trading increment (i.e., one cent in most major

markets), and US regulators have also been contemplating imposing such restrictions. In recent years, US

regulators start to strengthen law enforcement against dark pools and urged their upgrading in operation.

These cases include UBS Securities (Jan 2015), Goldman Sachs Execution & Clearing, L.P (SIGMA X, July

2015), and Barclays (Jan 2015).
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Offer (NBBO).11 Second, unlike exchanges where orders are cleared at the exchange price,

in most of the dark pools, orders don’t clear. Instead, dark pools adopt a “rationing” mech-

anism to execute orders. That is, traders anonymously place unpriced orders to the pool,

and the orders are matched and executed probabilistically – orders in the shorter side are

executed for sure, whereas orders in the longer side are rationed probabilistically.

The pricing and execution mechanisms of dark pools’ operation reflect the trade-off of

trading in a dark pool for an individual trader. On the one hand, dark pools have lower

transaction costs than exchanges (typically because orders are executed within the NBBO,

with the “trade-at rule” further enhancing such price improvement), and lessen the price

impact for big orders. On the other hand, investors suffer a lower execution rate compared

with the exchange. Gresse (2006) found that the execution probability in the two dark

pools in his dataset was only 2-4 percent, while Ye (2010) documents a dark pool execution

probability of 4.11% (NYSE listed) and 2.17% (NASDAQ listed) in his dataset, in comparison

with a probability of 31.47% and 26.48% for their exchange counterparts.12.

The dark pools’ participating constituent base has evolved over time. In the early years,

dark pools were designed as venues where large, uninformed traders transact blocks of shares

to reduce price impact. This is possible because dark pools are not subject to NMS fair access

requirements and can thus prohibit or limit access to their services (see Reg ATS Rule

301(b)(5)). In recent years, however, this has changed greatly. According to an industry

insider in Rosenblatt Securities Inc., “it can be assumed that most pools are open to most

investors connecting to the pool, provided the investors do not violate any codes of conduct.”

A measure of such a change is reflected in the trading sizes of dark pools. Figure 2 shows

the average trading size in the U.S. According to the data, the US average trading size in

dark pools and exchanges (NYSE and NASDAQ) have been started to converge since 2011,

highlighting the fact that the participating constituents in these venues have become more

and more similar. It implies that the exclusivity of a dark pool to informed traders has been

weakened . As a result, more prominence has been attached to the issue of the potential

impact of dark pools on price discovery, because as more informed traders obtain access to

dark pools, their migration to dark pools may hurt the information aggregation process in

the exchange,13.

Dark pools are heterogeneous. The types of dark pools can be classified according to

different characteristics based on their ownership structure, pricing access, operation mech-

anism, constituency and other factors. All of these categories are in constant flux for the

11Nimalendran and Ray (2014) document the usage of such a pricing mechanism in their dark trading

sample and find that not all trades are at the midpoint of NBBO, but about 57% transactions are within

.01% of the price around the midpoint. In this paper, we follow the majority and adopt the mid-point pricing

mechanism.
12Nowadays, a rising concern of dark pools is their vulnerability to predatory trading by High Frequency

Traders (HFTs) (See Mittal (2008), Nimalendran and Ray (2014), ASIC (2013) for instance.)
13This paper, as well as Zhu (2014) considers full access for informed traders.
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Figure 2: Average Trade Size. The plot shows the annual average trade size of US dark pools, NYSE

and NASDAQ, from 2009 to 2015.

Data source: Rosenblatt Securities.

dark pools. Most of the pools also overlap in one or more categories as well, only the owner

types remain constant overtime. We provide a discussion on some characteristics and their

examples.

(i) Pricing. Dark pools use three primary pricing mechanisms. The execution will

take place once two sides of a suitable trade are matched. The three pricing mechanisms are

automatic pricing (usually at the midpoint of the best bid and offer), derived pricing (for

example, average price during the last five minutes), and negotiated pricing (for example,

Liquidnet Negotiatoin offers availability of one-to-one negotiation of price and size).

(ii) Order Type. There are primarily three types of order that prevails in dark pools:

limit orders (to buy or to sell a security at a desired price or better), peg orders (peg to

the NBBO, for example midpoint or alternate midpoint,14) and immediate or cancel order

(IOC). A dark pool may accept a subset of these order types. Pools that accept limit

orders may offer some price discovery (usually within the NBBO). These pools include,

for example, Credit Suisse’s CrossFinder, Goldman Sachs’ Sigma X, Citi’s Citi Cross, and

Morgan Stanley’s MS Pool. Pools that execute peg orders do not provide price discovery.

These include, for example, Instinet, Liquidnet, and ITG Posit. Pools accepting only IOC

orders are single dealer platforms (SDP), where the operator works as market makers and

14Traders are able to specify premiums or discounts vis-à-vis the mid when placing a trade. For example,

a motivated buyer may specify an order that promises to pay the mid plus a penny. This would give this

trade priority over all other buy orders.
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customers interact solely with the operator’s own desk (for example, Citadel Connect and

Knight Link by KCG15).

(iii) Execution Frequency and Order Information. There are three modes of exe-

cution: scheduled crossing, continuous blind crossing, and indicated market.16 The scheduled

crossing networks include BIDS, ITG POSIT Match, and Instinet US Crossing. In sched-

uled crossing networks, the two sides of a trade cross during a set period. These networks

typically do not display quotes but may have an order imbalance indicator. Continuous

blind crossing networks continuously cross orders for which no quotes are given. Indicated

markets cross orders using participants’ indications of interest (IOIs) and provide some level

of transparency in order to attract liquidity. Liquidnet and Merrill Lynch offer variations on

this theme.17

(iv) Customer Base and Exclusivity. There are dark pools which design their rules

and monitor trading in an attempt to limit access to buy-side (natural contra-side) insti-

tutional investors. According to Boni et al. (2013), Liquidnet “Classic” is one of those. A

measure of the exclusivity is the average trading size of a dark pool. In May 2015, among

the 40 active dark pools operating in the US, there are 5 dark pools in which over 50% of

their Average Daily Volumes are block volume (larger than 10k per trade). Those pools can

be regarded as “Institutional dark pools,” and they include Liquidinet Negotiated, Barclays

Directx, Citi Liquifi, Liquidnet H20, Instinet VWAP Cross, and BIDS Trading. Other dark

pools have percentages of block volumes less than 15%, with most of them lower than 2%.18

(v) Ownership Structure. According to Rosenblatt (2015), dark pools can be classified

into four categories according to their ownership structure. This is the only classification

that does not fluctuate over time. The four categories include the Bulge Bracket/Investment

bank, Independent agency, Market maker, and Consortium-sponsored. In May 2015, The

market shares of the four categories are, respectively, 55.28%, 24.11%, 13.79%, and 6.82%.

Examples of the Bulge Bracket/Investment bank-owned dark pools are CS Crossfinder, UBS

ATS, DB SuperX, and MS Pool. Independent agency owned pools include, for example,

ITG POSIT, Instinet CBX, ConvergEx Millennium. Market maker owned pools include

Citadel Connect and Knight Link by KCG, and Consortium-sponsored pools include Level

and BIDS. 19

Finally, “dark pools liquidity” is not equivalent to “dark liquidity.” Dark liquidity, or

dark volume, is a broader concept since it measures the total non-displayed market volume.

Exchanges, for example, can contain “dark” volumes, which are applied through iceberg

15Getco LLC once operated an SDP called GetMatched. Following the 2013 merger of Knight Capital

Group and Getco LLC, GetMatched was decommissioned.
16See DeCovny (2008).
17Pipeline, a well-known dark pool using IOIs, settled allegations that it misled customers and was shut

in May 2012.
18“Let There Be Light , Jun 2015,” Rosenblatt Securities, Inc.
19“Let There Be Light , Jun 2015,” Rosenblatt Securities, Inc.
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orders and workup processes. According to the TABB group’ classification, dark volume can

break down into retail-wholesaler, dark pool volume, and hidden exchange volume. As of

Q2-2015, the percentages of each are 40.1%, 39.7%, and 20.2% respectively. In total, the

dark volume was 43.9% of the consolidated volume.20

3 The Model

The model considers an economy that lasts for three periods. We index the periods by 0,

1, and 2. There is one risky asset that is traded during the two periods with an uncertain

fundamental value

ṽ =

{
−σv, with probability 1

2
,

σv, with probability 1
2
.

That is to say, the risky asset has an unconditional mean zero and standard deviation σv.

In period 0, ṽ is realized, but this information is not revealed to the public.

There are two types of traders who are potentially interested in the risky asset: informed

speculators and uninformed liquidity traders. We assume that they are all risk-neutral.

There is a continuum of informed speculators with measure µ, a continuum of uninformed

liquidity buyers with measure Z+, and a continuum of liquidity sellers with measure Z−. We

assume that Z+, Z− are identical and continuously distributed random variables on [0,+∞),

with mean 1
2
µz. Z

+, Z− are also realized at period 0 so that liquidity buyers and liquidity

sellers arrive at the market at the same time. The realizations of Z+, Z− are not observed

by any market participants.

In period 0, each informed speculator receives his or her own private signal regarding the

value of the asset, si = ṽ + ei, where i is the index of informed traders and ei represents the

noise of the signal.21 We assume that ei are identically independently distributed normal

random variables, with mean 0 and standard deviation σe. Therefore, in the first period,

they trade on both their private information and public information (if there is any). They

can trade (either buy or sell) up to 1 unit of the asset. If there are more than one venue

to trade, they can split their orders. Without loss of generality, we assume that informed

speculators only trade in period 1.22 The model is distinctive to Zhu (2014) in the information

20“US Equity Market Structure: Q2-2015 TABB Equity Digest,” TABB Group, Oct. 2015.
21According to Gyntelberg et al. (2010), there are various types of private information that stock market

investors may have about the fundamental determinants of a firm’s value, including knowledge of the firm’s

products and innovation prospect, management quality, and the strength and likely strategies of the firm’s

competitors. Private information may also include passively collected information about macro-variables and

other fundamentals which may be dispersed among customers. Equity market order flow to a large degree

reflects transactions by investors who are very active in collecting private information. A more detailed

discussion is in section 6.3.
22In period 2 when the informed traders’ private information becomes public, they lost their information

advantage. Since the informed agents are risk neutral and they only enter the market for profit, they will
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structure. Zhu (2014) assumes that all informed traders receive exact signals about the

asset, whereas we consider a noisy information structure.23 The introduction of a richer

information structure is crucial to our analysis, not only because it is more realistic, but

also because it reveals a sorting effect of market fragmentation on information. That is, in

equilibrium, traders with strong signals trade in the exchange, traders with modest signals

trade in the dark pool, and traders with weak signals do not trade. This sorting effect is

the major economic force in the trader’s venue-selection and the process of price discovery.

The absence of such an effect will likely cause instability of predictions in multiple equilibra,

such as discussed in Zhu (2014). A more detailed discussion is in Section 4.2.

A liquidity buyer (seller) comes to the market to buy (sell) 1 unit of the risky asset.

Similarly, one can split their orders if there exist multiple transaction venues. The unin-

formed liquidity traders, however, do not have any private information. They enter the

market to meet their liquidity demands. The level of their liquidity demand is measured

by a delay cost, a cost that reflect how urgent one needs his or her order to be fulfilled in

period 1. More precisely, if a liquidity trader, buyer or seller, cannot have his or her order

executed in period 1, a delay cost is incurred. The delay cost (per unit) is represented by

σvdj, where j is the index for the liquidity traders. djs are i.i.d random variables with a

Cumulative Distribution Function G(x) : [0, d̄] → [0, 1], where G(x) ∈ C2, 1 ≤ d̄ < ∞ and

G′(x) + xG′′(x) ≥ 0,∀x ∈ [0, 1]. 24 Again, djs are realized at period 0.

There are two venues for traders to trade: an exchange (the Lit market) and a dark pool.

We will then consider a benchmark model where there is only one trading venue for the

agents – the exchange only. By comparing our model with the benchmark model, we are

able to study the impact of a dark pool to the public exchange, and the interaction between

the two venues. We now specify the transaction rules in the two venues and the problems of

each type of traders.

Finally, the distributions of ṽ, Z+, Z−, {ei}, {dj} are all publicly known information.

3.1 Transaction rules in the exchange (Lit market)

A lit market is an exchange for the asset. The exchange is modeled in the spirit of Glosten

and Milgrom (1985). Precisely, in the lit market, there is a risk neutral market maker who

facilitate transactions. The objective of the market maker is to balance his or her budget.

The market maker has no private information. Therefore, at period 0, the market maker

announces a bid and an ask price for the risky asset, based only on public information. The

announced bid and ask price will be the prices for any order submitted to the exchange in

period 1, and will be committed by the market maker. Because of symmetry of ṽ and the

not actively place orders in the second period.
23We do not consider information acquisition cost because it is modeled as a sunk cost in this paper.
24This additional assumption is for the uniqueness of the equilibrium. It is satisfied by many commonly

used distributions. For example, a uniform distribution.
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fact that the unconditional mean of ṽ is zero, the midpoint of the market maker’s bid and

ask is zero. Therefore, the ask price in the lit market is some A > 0, and bid price in the

lit market is −A. That is, the half-spread is represented by A. We normalize A by the

standard deviation of ṽ, A
σv

, and get the normalized half-spread. For simplicity, we refer to

A as the “spread,” and A
σv

as the “normalized spread.” The spread represents a transaction

cost in the lit market, because all traders, buyers or sellers, lose A dollars (per unit) to the

market maker whenever they trade on the exchange. Thus, alternatively, we also refer to A

as the (per unit) “exchange transaction cost” and A
σv

as the (per unit) “normalized exchange

transaction cost.”

In period 1, since informed speculators hold some information advantage about the asset,

the market maker may lose money to the informed traders ex post. For example, if the

realized value of the asset is σv, then the market maker loses money if he is trading against

a “Buy” order. Precisely, let γe, γe be the respective fraction of informed speculators who

place “Buy” and who place “Sell” orders on exchange, and let αe be fraction of uninformed

liquidity traders who trade in the exchange. For now we assume that they do not split orders

among venues, then WLOG if the realized value of ṽ is σv, the ex post payoff of the market

maker is

MM payoff = σv[(γeµ− γeµ) + (αeZ
− − αeZ+)] + A[γeµ+ γeµ+ αeZ

+ + αeZ
−],

where the first term is the market maker’s profit on the asset. It is composed of the net

gain from the informed traders, γeµ − γeµ, and the net gain from the uninformed traders,

αeZ
− − αeZ+. The second term is the gains obtained from the transaction fee (spread) per

every exchange order. If the realized value of the asset is −σv, by symmetry, the market

maker’s payoff shall be the same as above. In this way, we also refer to γe as the fraction of

informed who “make money” (trade in the “right direction”), and γe the fraction of informed

who “lose money” (trade in the “wrong direction”).

A market maker’s objective is to break even on average.25 That is,

0 = E
{
σv[(γeµ− γeµ) + (αeZ

− − αeZ+)] + A[γeµ+ γeµ+ αeZ
+ + αeZ

−]
}
.

Since EZ+ = EZ− = 1
2
µz, the market maker’s objective becomes

0 = σv(−γe + γe)µ+ A[(γe + γe)µ+ αeµz].

It implies that,

A =
γe − γe

γe + γe + αe
µz
µ

σv. (1)

25One can think of this as as result of the competition among market makers. For simplicity, we assume

that there is one market maker operating.
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If γe ≥ γe(≥ 0)andαe ≥ 0, then the normalized spread 0 ≤ A
σv
≤ 1. In the next sections,

we will show that in equilibrium, γe > γe. In other words, informed traders are more

likely to “make money” (trade in the “right direction”). Intuitively this is true because of

their information advantage. Therefore, on average, the market maker loses money to the

informed.

At the end of period 1, the market maker observe the exchange volumes Vb, Vs for “Buy”

volume and “Sell” volume respectively. Based on such information, the market maker then

announces a closing price P1 = E[ṽ|Vb, Vs], which we consider as a proxy for the fundamental

value of the asset ṽ. This is because E[ṽ|P1, Vb, Vs] = E[E[ṽ|P1, Vb, Vs]|P1] = P1. We are in-

terested in how much the price P1 can aggregate information in the market (price discovery),

that is, how close P1 is to the true value of the asset.

In period 2, since the realization of ṽ has already been revealed, all trades will be made

at the price that is equal to that realization. Thus, the payoff of the market maker in period

2 is automatically zero.

The reason we model the exchange as a market maker instead of other trading protocols

such as limit order books is for the same reason as Zhu (2014). It is a simple but tractable

way to capture the basic trade-off of dark pools. These trade-offs include lower transaction

costs (lower spread) and higher execution risks, which is common to most trading protocols.

3.2 Transaction rules in the dark pool

We consider the operational costs of the dark pool as a sunk cost, and hence not considered

in the model. Also, we normalize the entry fee of a dark pool as zero. The trading protocols

in the dark pool we consider, include the pricing mechanism, which refers to on what price

the dark pool execute orders, and the execution mechanism, which refers to how to match

the buying and selling orders.26

We restrict our attention to dark pools of a particular pricing mechanism: the midpoint

pricing. That is, the orders in the dark pool are crossed at the midpoint of the bid-ask in the

exchange. Since the midpoint of the exchange price is 0, the transaction price in the dark

pool is 0. The midpoint pricing mechanism is a reflection of an advantage trading in the

dark pool: price improvement. As we point out previously, a trader has to pay a transaction

cost (the spread) A on the exchange, no matter at which direction he or she is trading. But

in the dark pool, such cost is reduced to 0.

The execution mechanism we consider in this paper is a rationing mechanism. That is,

orders in the shorter side are executed with probability one, whereas orders in the longer side

are executed probabilistically to balance the market. For example, suppose the realization

of ṽ is σv (the case when ṽ = −σv is symmetric). Let γd, γd be the fractions of informed

26As in section 2, we point out that not all dark pools are equal. There might be other features that

investors concern. But for simplicity we focus on the two major aspects of a dark pool.
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speculators who trade in the “right direction” and “wrong direction” respectively, αd be

the fraction of uninformed liquidity traders who trade in the dark pool in period 1, then the

respective expected execution rates (taken with respect to Z−, Z+) for trading in the “wrong

direction” and in the “right direction” are: ,

R̄ = E
[
min

{
1,
γdµ+ αdZ

+

γdµ+ αdZ−

}]
, (2)

R = E
[
min

{
1,
γdµ+ αdZ

−

γdµ+ αdZ+

}]
. (3)

Therefore, R, R̄ ∈ [0, 1]. The execution mechanism in the dark pool reflects a disadvantage

of trading in the dark pool: execution risk. On average, one cannot expect that his or her

orders be executed with probability 1 in a dark pool. In contrast, the market maker in the

exchange is able to provide such certainty.

Moreover, as we will show in the next section, γd > γd. This means that the information

asymmetry exists in the dark pool and informed traders are more likely to trade in the “right

direction.” Therefore, R ≤ R̄. That is to say, orders that are in the “right direction” are less

likely to be executed than orders that are in the “wrong direction.” In this way, we obtain

a measure of dark pool adverse selection cost in the dark pool by

(R̄−R)σv

We therefore refer to R̄−R as the “Normalized dark pool adverse selection cost.”

Without loss of generality, we assume that the dark pool operates only in period 1. In

period 2, since the realization of ṽ is revealed, orders in the exchange are executed at that

realized value. The dark pool loses its advantage and becomes redundant as nobody is willing

to trade there. Therefore, unless cancelled, orders that failed to execute in period 1 will be

routed to the exchange and executed there in period 2.

3.3 The informed speculators’ problem

As we point out, the informed traders only participate in period 1, when they can use

their private information to their advantage. Upon the reception of a signal, the informed

speculators update their beliefs about the asset fundamental value using Bayes’ rule. Let

B(s) be the probability that the realization is high (σv), conditional on signal s, then by

Bayes’ rule,

B(s) = Pr(ṽ = σv|s) =
φ( s−σv

σe
)

φ( s−σv
σe

) + φ( s+σv
σe

)
, (4)

where φ(x) is the pdf of a standard normal distribution function. B(s) ∈ (0, 1) and B(s) is

strictly increasing in s.
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Consider an informed trader with signal s, given the exchange spread, A, and the dark

pool execution probabilities, R̄, R, the expected (per unit) “Buy” and “Sell” profit in each

venue, or do not trade, are respectively,

Exchange(Lit): “Buy”: B(s)σv − (1−B(s))σv − A,
“Sell”: − [B(s)σv − (1−B(s))σv]− A.

Dark pool: “Buy”: B(s)Rσv − (1−B(s))R̄σv,

“Sell”: − [B(s)Rσv − (1−B(s))R̄σv].

Not trade: 0.

An informed speculator’s problem is then, given his or her signal s, to choose a trading

direction in {“Buy”, “Sell”}, the quantity in each venue {Exchange(Lit), Dark pool, Do not

trade} to maximize his or her total expected payoff, such that total quantity does not exceed

1 unit.27

We argue that, in equilibrium, whenever he or she decides to trade, an informed trader

will place a “Buy” order if his or her signal is positive, and a “Sell” order if his or her signal

is negative. Moreover, almost surely it is optimal for him to send the entire order to one of

the two venues, or not trade at all. The argument is summarized in Lemma 1.

Lemma 1. (Trading direction and non-split orders, informed)28 If an informed trader

decide to trade, it is strictly optimal to “Buy” if his or her signal s > 0 and to “Sell” if s < 0.

Moreover, with probability one, an informed trader strictly prefers to send the entire order

to one of the two venues, or do not trade at all.

The trading direction is rather straightforward since a positive signal indicates that the

asset’s fundamental value is more likely to be high (i.e., σv), and hence more profitable in

a “Buy” direction, whereas a negative signals indicates a low value (i.e., −σv) and hence

more profitable in a “Sell” direction. And, since each trader’s signal is drawn from the

same continuous distribution, and there is a continuum of informed traders, by law of large

numbers, the realization of signals among them are continuously distributed. Therefore, the

beliefs are distributed continuously. Since no individual has impact on the market, and the

expected profit in each venue is linear in the agents’ beliefs, it is with probability 1 that, for

any informed trader with signal s, one venue (or not trade) is strictly better than others.

By Lemma 1, the potential trading direction is determined once an agent receives his

or her signal. Moreover, the magnitude of B(|s|) reflects the probability that this trading

27The case that the informed speculator simultaneously place “Buy” and “Sell” orders in each venue is

not considered, because the agents have no individual impact to the market. By the linearity of the per unit

profit in each venue, it is never optimal to do so.
28A non-slit order is strictly preferred in this model. This is a stronger result than Zhu (2014), in which it

is only weakly optimal to not split orders for the informed because they are all indifferent between the two

venues.
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direction is “right.” Thus |s| can be regarded as the strength of one’s signal, and B(|s|),
can be regarded as the agent’s confidence level in their information. A strong signal (i.e., a

high |s|) represents a strong belief that the trading direction is “right,” whereas weak signals

(i.e., low |s|) represents a weak belief in the trading direction. We will show in the next

section, how much credit an informed trader gives to his or her private information is crucial

in determining his or her strategies of venue selection.

Based on an informed traders’ signal strength, B(|s|), the payoffs of trading in each venue

and no trade are, respectively,

Exchange(Lit) : B(|s|)σv − (1−B(|s|))σv − A, (5)

Dark pool : B(|s|)Rσv − (1−B(|s|))R̄σv, (6)

Not trade : 0. (7)

An informed agent’s problem is then reduced to choosing one of the two venues and

sending the entire 1 unit to it, with a trading direction specified in Lemma 1, or not trade

at all, to yield the maximum payoff, based on his or her confidence level B(|s|).
Finally, we define the strategy of an informed speculator who receives a signal s by a

mapping

hI(s) : (∞,∞)→ {“Buy”, “Sell”} × {Exchange(Lit), Dark pool, Not trade}.

3.4 The uninformed liquidity traders’ problem

Liquidity buyer or seller types are specified by the level of their liquidity demand – the (per

unit) delay cost d. If the agent fails to have his or her order executed in period 1, he or she

will bear a (per unit) cost of σvd. Therefore a higher delay cost implies a higher demand for

liquidity, and a higher devaluation on execution risk for the traders.

More precisely, a type d uninformed liquidity buyer’s (seller’s) per unit payoffs of trading

in the exchange, in the dark pool, or delaying trade are, respectively,

Exchange(Lit) : −A, (8)

Dark pool : −(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd, (9)

Delay trade : −σvd. (10)

Similarly, we argue that in period 1, it is strictly optimal for any liquidity trader to send

the entire order to one of the two venues, or delay the trade, almost surly. The argument is

summarized in Lemma 2.

Lemma 2. (No split orders, uninformed)A liquidity trader (buyer or seller) strictly

prefers to send the entire order to one of the venues, or delay trade.
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The intuition of Lemma 2 is similar. Since all individuals are infinitesimal, no single

trader has an impact on the market. For any liquidity trader, he or she either strictly prefers

one venue over the other or is indifferent between two venues (or do not trade). Since the

distribution of the delay cost d is continuous, it is with probability one that one venue (or

delay) is strictly better than the other.

By Lemma 2, a type d liquidity buyer’s (or seller’s) problem is to maximize his or her

payoff (i.e., minimize the costs), by choosing one of the venues in which trade the entire

order in period 1, or to delay trade to period 2.

Moreover, we define the strategy of a type d uninformed liquidity trader by a mapping:

hU,ι(d) : [0, d̄]→ {Exchange(Lit), Dark pool, Delay trade},

where ι ∈ {Buyer, Seller}
Finally, the trading timeline of the model is summarized in Figure 3. At period 0, the

asset fundamental value ṽ, the measure of liquidity buyers Z+ and liquidity sellers Z−, the

signal for each informed trader si, the per unit delay cost for each uninformed trader dj
are realized. But none of this information is public. Also, at period 0, the market maker

announces the bid-ask prices with the spread A. After that, traders select venues in which

place orders, which are executed according to the transaction rules in each venue. At the

end of period 1, before the revelation or the value of the asset, the market maker announces

a closing price of period 1, based on the volumes he observes in the exchange during that

period. Then after the revelation of ṽ, orders that failed to execute in period 1 are routed to

the exchange (unless cancelled) and execute at the revealed value of ṽ. The market is then

closed.
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4 The Equilibrium

The model we describe in Section 3 assumes that both the exchange (Lit), and the dark pool

are available to traders. We refer to it as the “Multi-venue” Model. We now introduce a

benchmark in which there is only one venue that is operating: the exchange (Lit market).

We refer to it as the “Single-venue” Model. The comparison between the two model in

Section 5 gives us insights into the impacts of dark pools to market behaviors.

4.1 Benchmark model: without a dark pool

In the benchmark model, all else are the same except that the exchange (the lit market) is

the only trading venue available for traders. Lemma 1 and Lemma 2 also hold in this model,

i.e., traders do not split their orders. We use the superscription “S” to denote the “single

venue” model. The equilibrium is defined as follows:

Definition 1. (Benchmark: without a dark pool) An equilibrium of the “Single-venue”

model is a strategy for the informed speculators, hSI(s), a strategy for the uninformed liquidity

traders, hSU,ι(d), ι ∈ {Buyer, Seller}, an exchange spread AS, a set of participation fractions

γe
S, γe

S, αS
e , such that

(i) given AS, hSI(s) and hSU,ι(d) are optimal, respectively, for an informed speculator with

signal s and for an uninformed liquidity trader with per unit delay cost d;

(ii) given γe
S, γe

S, and αS
e , the exchange spread AS makes a market maker in the exchange

break-even on average;

(iii) γe
S, γe

S measure the respective fractions of informed traders who trade in the “right”

and “wrong” direction in the exchange, and αS
e measures the period 1 exchange fraction of

uninformed traders.

Given γe
S, γe

S, and αS
e , an exchange spread AS that makes the market maker break even

on average satisfies (1). That is,

AS =
γe

S − γeS

γe
S + γeS + αS

e
µz
µ

σv. (11)

Equation (11) implies that if γe
S ≥ γe

S ≥ 0, and αS
e > 0, then σv ≥ AS ≥ 0. Considering

an informed trader with signal “s,” by Lemma 1, the optimal trading direction is to “Buy” if

s ≥ 0 and to “Sell” if s < 0. Then given AS, The expected payoffs of trading in the exchange

and do not trade are, respectively:

Exchange(Lit) : B(|s|)σv − (1−B(|s|))σv − AS,

Not trade : 0.
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Figure 4: Payoffs For Traders, Single-venue

Suppose σv ≥ AS ≥ 0, then if the signal is extremely weak, i.e., B(|s|) = 1
2
, or, s = 0,

the expected payoff of trading in the exchange is strictly negative, and it is strictly optimal

not to trade. In contrast, if the signal is extremely strong, i.e., B(s) = 1, or, s = ±∞, the

expected payoff of trading in the exchange is strictly positive, and it is strictly optimal to

trade in the exchange. This is illustrated in Figure 4a. Therefore there must exist some

cut-off point ŝ > 0 such that the ŝ type informed traders are indifferent between trading in

the exchange and do not trade. That is,

B(ŝ)σv − (1−B(ŝ))σv − AS = 0, (12)

and the optimal choice for an informed trader with signal s is then

hSI(s) =


(“Buy”, Exchange(Lit)) if s ≥ ŝ,

(“Sell”, Exchange(Lit)) if s < −ŝ,
Do not trade others.

(13)

Without loss of generality, we assume that the realization of ṽ is σv. If all informed specu-

lators follow the same optimal strategy, then the fraction of informed traders who will trade

in the “right” and “wrong” directions across the population are, respectively,

γe
S = Pr(s ≥ ŝ|ṽ = σv) = Pr(s ≤ −ŝ|ṽ = −σv) = 1− Φ(

ŝ− σv
σe

), (14)

γe
S = Pr(s < −ŝ|ṽ = σv) = Pr(s > ŝ|ṽ = −σv) = 1− Φ(

ŝ+ σv
σe

). (15)

(14),(15) imply that γe
S ≥ γe

S > 0.

Now, we consider an uninformed liquidity trader with a (per unit) delay cost “d.” Simi-

larly, his or he payoffs of trading in the exchange and delaying trade are, respectively:

Exchange(Lit) : −AS,

Delay trade : −σvd.
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Since d ∈ [0, d̄] with d̄ ≥ 1, and σv ≥ AS ≥ 0, if the liquidity trader is extremely patient, i.e.,

d = 0, it is strictly optimal to delay trade to period 2. In contrast, if the liquidity trader is

extremely impatient, i.e., d = d̄ > 1, it is strictly optimal to trade in the exchange. This is

shown in Figure 4b. Therefore, there also exists a cut-off d̂ such that the type “d̂ ” liquidity

trader is indifferent between trading in the exchange and delaying trade to the next period.

That is,

−AS = −σvd̂. (16)

To combine (12) with (16), we derive that

d̂ = 2B(ŝ)− 1.

The optimal strategy for uninformed liquidity traders is then,

hSU,ι(d) =

{
(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(ŝ)− 1,

Delay trade others.

(17)

The period 1 exchange participation rate for the uninformed traders is then

αS
e = Pr(d ≥ d̂) = 1−G(2B(ŝ)− 1), (18)

and 0 ≤ αS
e ≤ 1.

We then find a cut-off equilibrium. Theorem 1 summarizes the existence and uniqueness.

Theorem 1. (Existence and Uniquness, benchmark) For any σe, σv ≥ 0, there exists

an equilibrium in which traders follow cut-off strategies. That is, the respective optimal

strategies for informed speculators and uninformed liquidity traders, hSI(s) and hSU,ι(d), are

defined as (13) and (17), with the cut-off ŝ determined by (12). The exchange spread AS

satisfies (11), and the participation fractions γe
S, γe

S, αS
e are determined respectively by (14),

(15), (18), (11).

Moreover, every equilibrium is a cut-off equilibrium, and the equilibrium is unique if

σe, σv > 0, G′(x) + xG′′(x) ≥ 0,∀x ∈ [0, 1].

The benchmark clearly gives us some insight regarding the sorting effect on types of

traders. In equilibrium, it is strictly optimal for informed traders with relatively strong

signals to trade in the exchange and for those with weak signals not to trade (avoid trading).

Similarly, it is strictly optimal for uninformed liquidity traders who are relatively patient

to trade in the exchange and for those who are relatively impatient to delay trade. The

exchange provides functions to separate certain types of traders from others. As we will

point out later, such a sorting effect is even strengthened in the presence of a dark pool.

21



4.2 Multi-venue model: with a dark pool

Two trading venues are available in the multi-venue model: an exchange (Lit) and a dark

pool. To differentiate from the single-venue model, we do not use the superscription S in the

multi-venue model. The equilibrium of the multi-venue is defined as follows:

Definition 2. (Multi-venue, with a dark pool) An equilibrium is a strategy for the

informed speculators, hI(s), a strategy for and for the uninformed liquidity traders, hU,ι(d),

an exchange spread, A, two expected execution rate in the dark pool R̄, R , and a set of

participation fractions γe, γe, γd, γd, αe, αd, s.t.

(i) hI(s) is optimal for informed speculators with signal s, whereas hU,ι(d) is optimal for

uninformed liquidity traders with (per unit) delay cost d, given A, R̄, and R.

(ii) the exchange spread A makes a market maker in the exchange break-even on average,

given γe, γe, γd, γd, αe, and αd;

(iii) the dark pool operates using a mid-pricing and a rationing execution mechanism. R

and R̄ are the respective expected execution probability for orders that are in the “right”

and in the “wrong” directions;

(iv) γe and γe measure the respective fractions of informed traders in the exchange who

trade in the “right” and “wrong” directions. γd and γd measure the respective fractions of

informed traders in the dark pool who trade in the “right” and “wrong” directions. αe and

αd measure the respective fraction of uninformed traders who trade in the exchange and in

the dark pool in period 1.

Consider an informed speculator with signal “s.” Based on the strength of his or her

signal B(|s|), the payoffs of trading in the exchange, the dark pool and do not trade are

summarized in (5), (6), (7). These payoffs are shown in Figure 5a.

Suppose 1 ≥ R̄ ≥ R > 0 and σv ≥ A ≥ 0. As is shown in Figure 5a, if a trader receives

extremely weak signals (s = 0 for example), it is never profitable to trade, since trading is

costly. However, whenever an informed trader decides to trade, he faces a trade-off between

execution certainty in the exchange and price improvement in the dark pool. When |s| is low,

the need for price improvement overwhelms the need for execution, in which case, trading in

a dark pool is better. But as the signals becomes stronger, the need for execution grows faster

than the need for price improvement. This can be observed from the fact that the exchange

payoff has a higher slope with respect to B(|s|) than the dark pool payoff. Therefore, when

s is extremely high, it is possible that the two intersect. Suppose an informed trader with

signal s0 > 0 is indifferent between trading in a dark pool and not trade, an informed with

signal s1 > 0 is indifferent between trading in a dark pool and in the exchange, then by (5),
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Figure 5: Payoffs For Traders, Multi-venue

(6), and (7), s0, s1 satisfies:

B(s0)(R̄ +R) = R̄ (19)

B(s1)
[
(1− R̄) + (1−R)

]
σv = A+ (1− R̄)σv. (20)

At this point, the existence and relationship of s0 and s1 is not established yet. For now,

we suppose that (s0, s1) exists and s0 < s1 < +∞ (we will prove that this is true in every

equilibrium), the optimal strategy for an informed trader with signal s is then

hSI(s) =



(“Buy”, Exchange(Lit)) if s ≥ s1,

(“Buy”, Dark pool) if s0 ≤ s < s1,

(“Sell”, Dark pool) if − s1 ≤ s < −s0,

(“Sell”, Exchange(Lit)) if s < −s1,

Do not trade others.

(21)

This is illustrated in Figure 6. That is, it is strictly optimal that informed traders with

strong signals to trade in the exchange, informed traders with modest signals to trade in the

dark pool, and informed traders with weak signals to not trade.
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Figure 6: Strategy of Informed Traders

If all informed traders follow such strategy, the exchange fraction of informed who trade
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in the “right” and “wrong” directions are, respectively,

γe = Pr(s ≥ s1|ṽ = σv) = Pr(s ≤ −s1|ṽ = −σv) = 1− Φ(
s1 − σv
σe

), (22)

γe = Pr(s < −s1|ṽ = σv) = Pr(s > s1|ṽ = −σv) = 1− Φ(
s1 + σv
σe

). (23)

And the dark pool fraction of informed who trade in the “right” and “wrong” directions

are, respectively,

γd = Pr(s0 ≤ s < s1|ṽ = σv) = Pr(−s1 ≤ s < −s0|ṽ = −σv) = Φ(
s1 − σv
σe

)− Φ(
s0 − σv
σe

),

(24)

γd = Pr(−s1 ≤ s < −s0|ṽ = σv) = Pr(s0 ≤ s < s1|ṽ = −σv) = Φ(
s1 + σv
σe

)− Φ(
s0 + σv
σe

).

(25)

Similarly, for the uninformed, the payoffs of trading in the exchange, in the dark pool,

and delaying trade are respectively given in (8), (9), and (10), as illustrated in Figure 5b.

Again, a liquidity trader with extremely low liquidity demands would find it optimal to

delay trade. However, if he decides to trade in period 1, only those with extremely high

liquidity demands (i.e., extremely impatient) are willing to trade, for the similar reason as

the informed traders. Let d0 and d1 respectively represent the type of liquidity traders who

are indifferent between delaying trade and trading in a dark pool, and the type who are

indifferent between delaying trading in a dark pool and in the exchange, then by (8), (9),

and (10) we have

−(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd0 = −σvd0,

−(R̄−R)

2
σv − (1− R̄ +R)

2
)σvd1 = −A.

Combine this with (19) and (20), we derive that

d0 = 2B(s0)− 1,

d1 = 2B(s1)− 1.

By a similar argument, the optimal strategy for an uninformed trader is also a cut-off

strategy:

hSU,ι(d) =


(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(s1)− 1,

(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Dark pool) if 2B(s0)− 1

≤ d < 2B(s1)− 1,

Delay trade otherwise.

(26)
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This is described in Figure 7. The exchange fraction, αe, and dark pool fraction, αd, of

uninformed liquidity traders, are, respectively,

αe = 1−G(2B(s1)− 1), (27)

αd = G(2B(s1)− 1)−G(2B(s0)− 1). (28)

The fact that the traders the cut-off of uninformed traders’ are functions of the cut-off
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Figure 7: Strategy of Uninformed Traders

of informed traders’ reveals that, in equilibrium, uninformed and informed traders always

move together. It cannot happen that uninformed traders move collectively from one venue

to another, forming a new equilibrium without influencing the behavior of the informed

traders. This is in contrast with Zhu (2014).

Given γe, γe, αe, the exchange spread A captured in (1) makes the market maker break

even. Also, given γd, γd, αd, and given the distribution of Z+ and Z−, the expected execution

rates in the dark pool, R̄ and R, are respectively determined by (2) and (3).

If such s0, s1 exists, we find a cut-off equilibrium. But the existence is not obvious.

The difficulty arises from two aspects. First, we cannot simply apply a fixed point theorem

because it cannot distinguish the trivial equilibrium from others: a trivial equilibrium is one

in which all trades happen in one venue, for example, the exchange. Second, the equilibrium

involves a very complicated equation system and these equations are non-linear and are

not likely to exhibit monotonicity. Nevertheless, we are able to show in Theorem 2 that

the equilibrium exists. Moreover, all equilibria are cut-off equilibra, and all equilibra are

non-trivial.

Theorem 2. (Equilibrium with DP) For any σv, σe > 0, an equilibrium exists in which

traders follow cut-off strategies. That is, the respective optimal strategies for informed and

uninformed traders, hI(s) and hUι (d), are defined as in (21) and (26), with cut-offs (s0, s1)

solving (19) and (20), 0 < s0 < s1. Moreover, every equilibrium is a cut-off equilibrium,

and every equilibrium is non trivial (meaning positive participation for both informed and

uninformed traders in both venues).

The exchange spread, A, the expected execution rates, R̄, R, are determined, respectively,

by (1), (2), and (3). The set of participation fractions, {γe, γe, γd, γd, αe, αd} are determined

by (22), (23), (24), (25), (27), and (28).

25



Corollary 1. (Liquidity begets liquidity) αd > 0 if and only if γd − γd > 0.

The equilibrium characterized in Theorem 2 is distinctive to Zhu (2014) in the following

aspects. First, in contrast with Zhu (2014), in equilibrium in our model, there is a sorting

effect of market fragmentation, and both uninformed and informed traders always move

together. It is respectively optimal for informed traders with strong signals, modest signals,

and weak signals to trade in the exchange, in the dark pool, and do not trade, whereas

it is respectively optimal for uninformed traders with high, modest, and low degrees of

impatience to trade in the exchange, in the dark pool, and delay trade. In Zhu (2014),

however, such a sorting effect is absent for informed traders. In his model, informed traders

are homogeneous and indifferently between venues. This may cause the instability of its

prediction. For example, uninformed traders can collectively move from the dark pool to

the exchange. This movement may increase the adverse selection cost in the dark pool so

much so that they will stay in the exchange, and price discovery is strictly decreased. These

equilibra are not discussed in Zhu (2014). Our prediction is more robust in the sense that

traders always move together and this sorting effect exists in every equilibrium. The same

predictions on price discovery hold in every equilibrium.

Second, unlike Zhu (2014), in which there exists some cases where informed traders do not

participate in the dark pool, we predict that all equilibrium is non-trivial. That is, informed

and uninformed participate in both venues in all equilibra, as captured in Corollary 1. This

casts light on the dynamics of liquidity creation in a dark pool: informed and uninformed

traders tend to arrive the dark pool in a clustered fashion, which in turn attract more

liquidity to the dark pool, as documented in the literature.29 One explanation why Zhu

(2014) predicts a different result is that he assumes exact signals for traders. As we have

pointed out, traders with strong signals tend to prefer an exchange. It is possible that, in

some cases, they all crowd in the exchange and are absent in the dark pool. But again,

this might be subject to an unstable status. In our model, this will not happen because

with a noisy information structure, the dark pool will always be attractive to some informed

traders. This is related to the following aspect.

The equilibrium described in Theorem 2 also disclose one important function of dark

pools: a function that cannot be captured without a noisy information structure. That

is, dark pools help to mitigate traders’ information risk, i.e., the loss atributable to bad

information. Dark pools take a role as a “buffer zone” for informed traders – a gambling

place for those who are less well-informed to trade. This adds value to the trade-off of dark

pools, and shall clearly not be neglected. When information becomes noisier, more informed

traders will find dark pools more valuable places to trade. Also, if traders become risk-averse,

the importance of this function for dark pools will increase to a great extent.

Corollary 2. Given any σe, σv > 0, s1 > ŝ, and in correspondent, d1 > d̂.

29Sarkar et al. (2009) provide a more detailed description of such process.
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Corollary 3. (Adverse selection) ∀σe, σv > 0, 0 < γe < γe, 0 < γd < γd, and R̄−R > 0.

Proof. If σ ∈ (0,+∞), by Theorem 2, 0 < s0 < s1. Therefore by definition of (4), and (1),

(2), (3), (22), (23), (24), (25), (28), it must be that A
σv
, αd, αe ∈ (0, 1) and 0 < γe < γe <

1, 0 < γd < γd < 1. Therefore 0 < R < R̄ < 1.

Corollary 2 states that dark pools strictly decrease traders’ participation in the exchange.

Corollary 3 states that there exists adverse selection in both the exchange and the dark pool.

Market makers lose money to informed traders on average.

5 Dark Pool Trading and Information Structure

In this section, we restrict our attention to the following questions. These questions will be

discussed in Section 5.1, 5.2, and 5.3, respectively.

(i) How do each venue’s market participation and information asymmetry level vary with

the information structure, i.e., “σe”?

(ii) How does adding a dark pool impact market participation and information asymmetry?

(iii) How does adding a dark pool impact price discovery, and what are the determinants?

5.1 Information Precision and Market Characteristics

To recall, dark pools are of important value for informed traders who are less well-informed

because they mitigate their informational risks. When information becomes more precise,

such need decreases, and a migration of traders from one venue to another shall be observed.

In this section, we study how the traders’ participation and information asymmetry level in

each venue vary with the informational structure. The results are shown in Proposition 1 and

Proposition 2. The numerical example is in Figure 9. We use σe to capture the information

precision for informed traders. A lower σe corresponds with lower noises, hence a higher

precision in their signals.

Proposition 1. (Exchange spread, Dark pool adverse selection costs) If σe is large,

then both the exchange spreads and the dark pool adverse selection costs increase in infor-

mation precision. That is, as σe decreases,

(Without DP): AS

σv
strictly increases;

(With DP): Similarly, A
σv

increases, ̂̄R− R̂ increases,
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Proposition 2. (Participation rates) Suppose σe is large. Then for informed traders,

as information precision increases, both the exchange and the dark pool participation in-

crease. In contrast, for uninformed traders, as information precision increases, the exchange

participation decreases while the dark pool participation increase. And total uninformed

participation decreases. That is, as σe decreases,

(Without DP): γe
S − γeS strictly increases, and αS

e strictly decreases;

(With DP): Similarly, γe − γe, γd − γd increases, αe decreases, αd increases, and αe + αd
decreases.30

Remark 1. when σe is large, as in Proposition 1 and Proposition 2 , dark pool participation

for informed traders and dark pool adverse selection cost INCREASES with information

precision. When σe is small, however, they may DECREASE with information precision.

We have not been able to obtain comparative statics when σe is small, but we show this

inverted U-shape in the numerical example in Figure 9.31 While we provide an explanation

in the context, the explicit proof is of future work.

In the exchange, when signals become more precise, both the informed exchange par-

ticipation, γe − γe, and exchange spread, A, increase, whereas the uninformed exchange

participation, αe, decreases. The intuition is as follows. In equilibrium the informed traders

are sorted by the strengths of their signals. when there is an increment in their informa-

tion precision, the overall strengths of their signals are increased. Therefore, some informed

traders migrate from “do not trade” to “trade in the dark pool” and from “trade in the dark

pool” to “trade in the exchange.” This will cause a strict increase of information asymmetry

level in the exchange, and hence an increase of the exchange spread. Consequently, some

liquidity traders migrate from “trade in the exchange” to “trade in the dark pool,” which

decreases the uninformed participation in the exchange.

In the dark pool, the dark pool informed participation, γd−γd, and the dark pool adverse

selection, ̂̄R − R̂, exhibit an inverted U-shape with information precision. The intuition

for the inverted U-shape is as follows. A change in the information precision changes the

distribution of the signals’ strengths. When the information precision level is low (i.e., σe
is high), as the precision grows, signals become more concentrated in the relative “modest”

group, and more informed traders migrate from “do not trade” to the dark pool. Overall,

this induces a greater proportion of informed participation in the dark pool, and the dark

pool adverse selection increases. In contrast, when the information precision level is high

30γe − γe and γd − γd capture the “meaningful” participation of informed trades, in the sense that they

are the fractions of informed trades that trade in the “right” direction net the fractions that trade in the

“wrong” direction.
31In all our plots, we use a set of parameters in which µz = 60, µ = 30, Z+, Z− has Gamma distributions

with mean 30 and variance 30 and G(d) = d
3 for d̄ ∈ [0, 3].
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Figure 8: Transaction Costs. The left-hand figure shows the normalized spreads on the exchange and

how they vary with log(σe); the right-hand figure shows the adverse selection cost in the dark pool and how

it vary with log(σe). In both figures, log(σv) = 0.

(i.e., σe is low), as precision grows, signals become more concentrated in the relative “strong”

group. Thus, more informed traders migrate from the dark pool to the exchange, leaving a

lower proportion of informed trades in the dark pool, and the dark pool adverse selection

decreases.

An interesting comparison with Zhu (2014) is that, although Zhu (2014) does not consider

the information structure, he discusses the comparative statics of market behaviors as a

function of σv. σv and σe are comparable in the sense that, all else equal, informed traders’

information advantage increases in both information precision (i.e., as σe decreases), and the

asset value uncertainty (i.e., as σv increases, see a more detailed discussion in Section 5.3).

We highlight two major differences between our predictions and those of Zhu (2014).

First, our model predicts that traders’ participation exhibits a smooth variation cross-

sectionally (i.e., when σv grows), whereas there is a discontinuity in that of Zhu (2014).

In Zhu (2014), in equilibrium informed traders don’t trade in dark pools for some assets

unless the asset’s value uncertainty is high (i.e., σv is high). In contrast, we predict that

both informed and liquidity traders trade in dark pools in a clustering fashion, regardless of

σv. This is a more realistic prediction. If there are some assets for which dark pools only

attract liquidity traders, one would expect a persistent gap between the average size of dark

pools and the average size of lit markets. Yet, this is not true as we observe in Figure 2.
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Figure 9: Participation Rates. The left figure plots the expected participation rates of the uninformed

and how they vary with log(σe). The right one shows the participation rates for the informed traders how

they vary with log(σe). In both plots, log(σv) = 0, µz = 60, µ = 30.

This, again, emphasizes that dark pools function as informational risk mitigators and that

they are always lucrative for traders, informed or uninformed.

Second, Zhu (2014) predicts that informed traders’ participation in dark pool always

squeezes out liquidity traders (i.e., αd decreases as informed trades grow in the dark pool),

whereas we predict that the two can grow simultaneously, especially when informed traders’

information is relatively imprecise. The explanation is that the informed trading intensity

in the dark pool is always high in Zhu (2014) because traders have exact information. But

in our model, the intensity is neutralized to some extent because some speculators trade in

the “wrong” direction.

5.2 Dark Pool Impacts on Market Characteristics

In this section, we study how the market responds when a dark pool is added alongside an

exchange. Precisely, we compare the equilibrium traders’ participation and exchange spread

between the two models: the “Single-venue” model and the “Multi-venue” model. In the

comparison, we fixed the information structure (i.e., σe). The result is shown in Proposition

3. This result coincides with Zhu (2014), except that the effect on the exchange spread A is

uncertain when information is imprecise (i.e., σe high).

30



Proposition 3. Given any σv, σe > 0, then adding a dark pool alongside an exchange a)

(Participation): decreases the participation in the exchange for both informed and unin-

formed traders, but increases the total market participation, and b) (Exchange spread):

widens the spread on the exchange, if information precision is high (σe is small).

That is, suppose µz
µ
≥ R

1−R
1

1−G(k̂)
where R = E

[
min

{
1, R

+

R−

}]
, and k̂ is uniquely deter-

mined by k̂ = 1

1+[1−G(k̂]µz
µ

then

(i) (γe
S − γeS) ≥ (γe − γe), αS

e ≥ αe, and if σe is sufficiently small or large, αS
e ≤ αe + αd.

And,

(ii) AS

σv
≤ A

σv
if σe is small.

Remark 2. When information precision is high (σe is low), as in Proposition 3, we proved

that AS

σv
≤ A

σv
(i.e., adding a dark pool WIDENS the exchange spread). When information

precision is low (σe is high), however, it is possible that AS

σv
> A

σv
(i.e., adding a dark pool

NARROWS the exchange spread ).32 This could be caused by the fact that, in these cases,

the informed traders have moved to dark pools so much that the information asymmetry

level in the exchange has deceased dramatically. While we discuss this briefly in Appendix

8.6, the explicit analysis is of future work.

Proposition 3 states that adding a dark pool will decrease informed and uninformed

traders’ exchange participation but increase the total participation. Thus, dark pools create

additional liquidity. This, again, is explained by the migration of traders. Because adding a

dark pool enlarges the opportunity sets for both informed and uninformed traders, there will

be migrations of both types of traders from both “Not trade” and “trade in the exchange” to

“trade in the dark pool.” Therefore, the dark pool attracts not only additional liquidity but

also part of the liquidity from the exchange. As a consequence, the exchange participation

decreases, but the total participation of traders increases. This is captured in figure 9 in

which αe ≤ αS
e ≤ αe + αd.

The impact of a dark pool to the exchange spread, however, is not straightforward.

The spread depends on the level of information asymmetry in the exchange, which in turn

depends on the intensity of informed and uninformed trades. As we have pointed out, the

addition of a dark pool induces an outflow of both informed and uninformed traders. The

resulting proportion of the two in the exchange depends on which overwhelms the other.

When the informed traders have high information precision (i.e., low σe), a large fraction of

them strictly prefers to stay in the exchange, and only a small fraction will migrate to the

dark pool, compared with the migration of uninformed traders. As a result, the exchange

information asymmetry strictly increases and exchange spread, “ A
σv

,” is enlarged. When the

32When σe is large, it is either AS

σv
< A

σv
when σe is large, or undetermined (in which, as σe → +∞, AS

σv

equals A
σv

, and their first order derivatives with respective to σe are equal. )
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informed traders have low precision in their information (i.e., σe is high), however, there is

a large fraction of the informed who prefer to migrate to the “buffer zone,” the dark pool,

and the relative proportion of informed traders in the exchange decreases. As a result, the

exchange spread may or may not decrease, depending on how intense the migration is.33

5.3 Dark Pool Impacts on Price Discovery

Price discovery is measured by the informativeness of P1. At the end of period 1, the mar-

ket maker observes the period 1 exchange order flows Vb, Vs, which respectively represents

the “buy” volume and the “sell” volume and announces a closing price P1 = E[ṽ|Vb, Vs].
P1 is perceived as a proxy for the fundamental value of the asset. This is so because

E[ṽ|P1, Vb, Vs] = E[E[ṽ|P1, Vb, Vs]|P1] = P1. We are interested in how informative P1 is,

that is, how close P1 is to the true value of the asset.

We consider similar measures as suggested by Zhu (2014). Without loss of generality, we

assume that the true value ṽ = +σv. Let the likelihood ratio

r = log
Pr(ṽ = +σv|Vb, Vs)
Pr(ṽ = −σv|Vb, Vs)

= log
φz(Z

+ = 1
αe

[Vb − γeµ]) · φz(Z− = 1
αe

[Vs − γeµ])

φz(Z− = 1
αe

[Vb − γeµ]) · φz(Z+ = 1
αe

[Vs − γeµ])
.

And

P1 = σv Pr(ṽ = +σv|Vb, Vs) + (−σv) Pr(ṽ = −σv|Vb, Vs)

=
Pr(ṽ = +σv|Vb, Vs)− Pr(ṽ = −σv|Vb, Vs)
Pr(ṽ = +σv|Vb, Vs) + Pr(ṽ = −σv|Vb, Vs)

σv

Therefore

P1 =
er − 1

er + 1
σv.

Clearly, if r is higher, P1 is closer to the true value σv. If r = +∞, then P1 = σv, in

which case P1 is completely informative. Therefore, r can be considered as a measure of the

informativeness.

Another measure of informativeness that we consider is the scaled root-mean-squared

error (RMSE), in which

RMSE =
[E[(ṽ − P1)2|ṽ = σv]]

.5

σv
= E

[
4

(er + 1)2
|ṽ = σv

]
.

It is scaled by σv. Since r ∈ (0, 1), the scaled pricing error (RMSE) is between 0 and 1. If

RMSE is higher, there are more pricing errors, and there is less price discovery.

33Note that A
σv

depends on both
γe−γe
γe+γe

and
γe−γe
αe

, when σe is large,
γe−γe
αe

decreases when adding a dark

pool but not necessarily
γe−γe
γe+γe

. The overall effect on A
σv

is uncertain.
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Since Vb, Vs are random variables, r is also a random variable. When µz, σ
2
z are large

enough, we can approximate the density of φz(·) by a normal distribution N (.5µz, .5σ
2
z).

34

Substituting the density functions, we get an approximate r by

rApprox =
2(γe − γe)µ

α2
eσ

2
z

(Vb − Vs).

Given that ṽ = σv, Since Vb − Vs has a distribution of N
(
(γe − γe)µ, α2

eσ
2
z

)
, so rApprox

has a distribution of

N
(
2I(γe, γe, αe)

2, 4I(γe, γe, αe)
2
)
,

where

I(γe, γe, αe) =
(γe − γe)µ
αeσz

.

Thus, the magnitude of I(γe, γe, αe) can be taken as a measure of the price discovery

in the exchange. To be consistent with definitions of Zhu (2014), we also refer to it as

“signal-to-noise” ratio. We consider two measures of price discovery: the signal-to-noise

ratio I(γe, γe, αe) and the scaled RMSE under the normal approximation.

By the same argument as Zhu (2014), under the normal approximation, a higher signal-

to-noise ratio I(γe, γe, αe) always corresponds to a lower scaled RMSE. That is, they are in

nature the same measure. Therefore, we only plot the “signal-to-noise” in our numerical

example in Figure 10.

We introduce a measure for the informed traders: that is, the measure of their “informa-

tion advantage”:

σ =
σv
σe
.

An informed speculator’s “information advantage” is defined as the asset’s fundamental

uncertainty σv times the precision of the signals 1
σe

. Clearly, a higher σv reflects a high

level of undisclosed information, therefore, a higher profitability of the informed speculators.

Also, a lower σe means a higher precision of the private information, and hence a higher

informational profit. Proposition 4 summarizes the price discovery as a function of σ and

the impact of a dark pool to price discovery.

Proposition 4. Price discovery (i.e. the informativeness of P1) in the exchange is an in-

creasing function of informed traders’ “information advantage” (σ). And, there exists a

threshold, σ̄ > 0, such that, a) when σ < σ̄, adding a dark pool impairs price discovery,

and b) when σ is large, adding a dark pool enhances price discovery.

That is, suppose k̂ ≤ µz
µ
< +∞, where k̂ is uniquely determined by k̂ = 1

1+[1−G(k̂]µz
µ

, then

I(γe, γe, αe), I(γe
S, γe

S, αS
e) increase in σ and RMSE, RMSES decrease in σ, when σe > 0 is

large enough, and ∃σ̄ > 0 such that

34We use the same approximation as in Zhu (2014), in which it shows that when µz and σ2
z are large

enough, Z+ is approximately normal.
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(i) if σ ∈ (0, σ̄), adding a dark pool will strictly decrease the informativeness of the price in

exchange, that is, I(γe, γe, αe) < I(γe
S, γe

S, αS
e) , and RMSE > RMSES

(ii) if σ is sufficiently large, adding a dark pool will increase the informativeness of the price

in exchange, that is, I(γe, γe, αe) ≥ I(γe
S, γe

S, αS
e), and RMSE ≤ RMSES

When a dark pool is added alongside an exchange, the impact on price discovery is

depending on the resulting ratio of informed traders and uninformed traders in the exchange.

As we have discussed in Section 5.2, when a dark pool is introduced to the market, it induces

migrations of both informed traders and liquidity traders from the exchange to the dark pool.

When σ is high, on average, informed traders have high profitability, a high proportion of

the informed would rather stay in the exchange, and only a small proportion migrate from

the exchange to the dark pool, compared with the liquidity traders. Therefore adding a

dark pool increases the “signal-to-noise” ratio and improves the informativeness of P1 in the

exchange. When σ is low, however, on average the informed have low profitability so that a

higher proportion would rather migrate from the exchange to trade in the “buffer zone,” the

dark pool, compared with the liquidity traders. This leaves a lower proportion of informed

traders in the exchange. The “signal-to-noise” ratio decreases and price discovery declines.

In Figure 10, the right plots “signal-to-noise” ratio as a function of σ = σv
σe

. It increases

with σ, indicating that informed traders’ trading intensity grows with higher “informational

advantage,” and hence price discovery increases. Introducing a dark pool alongside an ex-

change decreases price discovery when σ is low (i.e., σv is low or σe is high), and increases

when σ is high (i.e., σv is high or σe is low). The left further illustrates the dark pool impact

on price discovery in a 2-dimensional context (i.e., σv and σe). .

The results highlight an important effect dark pools have on price discovery – an amplifi-

cation Effect That is, dark pools enhances price discovery when it is high, whereas dark pools

impairs price discovery when it is low. An economy needs to be prudent in introducing dark

pools to its equity market, especially when the economy has a poor information environment

(low quality in information disclosure, poor legal systems and enforcement, etc.) We provide

a more detailed discussion in Section 6.3.

This result is in contrast with Zhu (2014), in which adding a dark pool strictly increases

the price discovery. According to our analysis, the important reason Zhu (2014) predicts a

strict increase is due to the fact that it assumes an extreme case where signals for informed

traders are perfect (i.e., σe → 0 in our model). As we have pointed out, when information is

in high precision (i.e., σe is low), the majority of the informed traders prefer the exchange,

where dark pools will attract relatively less fraction informed traders from the exchange,

compared with the liquidity traders, and leave a higher ratio of informed-to-uninformed

traders in the exchange, hence improve price discovery. Thus, Zhu (2014) is consistent

with our prediction. In reality, however, Zhu (2014)’s prediction may not hold because the

information structure is much richer and exhibits significant cross-sectional difference (we
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Figure 10: Price Discovery. The left plots the dark pool impact on price discovery with 2-dimension:

σv and σe. The right plots the “Signal-to-noise” ratio I(γe, γe, αe) as a function of σ = σv

σe
.

will discuss this in Section 6.3). Policies and measures should be tailored to this issue in a

different information environment.

Zhu (2014) also depicts a scenario when uninformed liquidity trader types are discrete. It

shows that in this case, to a large degree, price discovery will be harmed by the introduction

of dark pools because uninformed traders of discrete types are more likely to get “stuck”

in their original venues while some informed traders flow from the exchange to dark pools

and decrease price discovery. Our prediction corresponds to this scenario. In our prediction,

the discrete type and “stickiness”of uninformed traders will further increase the chance that

price discovery be harmed.

Determinants of the impact. From the perspective of a regulator, when introducing

dark pools, an important issue is what fraction of the assets will be harmed in their price

discovery. In order to answer that question, one should examine the determinants and the

overall impact dark pools have on price discovery.

We consider a proxy which we refer to as the “likelihood that dark pools harm price

discovery.”

σ̄v = sup
x>0

{
x|∀σv ∈ (0, x), I(γe

S, γe
S, αS

e) > I(γe, γe, αe)
}
.

By Proposition 4, such σ̄v must exist. A higher σ̄v reflects a higher fraction of assets whose

price discovery will be harmed by adding a dark pool.

We consider two determinants. The first is the precision of traders’ private information,

the inverse of σe. Proposition 4 indicates that the likelihood dark pools harm price decreases
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with precision level. Another determinant we consider is the relative measure of informed

traders, µ
µz

. The effects of the two on σ̄v is summarized in Proposition 5.

Proposition 5. the likelihood that price discovery will be harmed by dark pool trading

(σ̄v) decreases in information precision, σe, and increases in the relative measure of informed

traders, µ
µz

.

That is, Suppose k̂ ≤ µz
µ
< +∞, where k̂ is uniquely determined by k̂ = 1

1+[1−G(k̂]µz
µ

, then

(i) σ̄v increases in σe. As σe → 0+, σ̄v → 0, and as σe → +∞, σ̄v → +∞. And,

(ii) for any sequence of {( µ
µz

)}, there exists a subsequence {( µ
µz

)n} such that as ( µ
µz

)n increases,

σ̄v increases, also, as ( µ
µz

)n → 0+, σ̄v → 0.35

The numerical example is given in Figure 11. Proposition 5 states that dark pools are

beneficial for price discovery in an economy with a good information environment (i.e.,

high information precision and low size of informed traders), whereas they are bad for price

discovery in an economy with a poor information environment (i.e., low information precision

and high size of informed traders). Proposition 5 gives regulators insights into how to improve

the economy and informativeness of prices. Policies and measures can be taken to enhance

the market performance. Also, it points out important considerations for countries that are

going to allow dark pools and provides them a benchmark to measure market quality. More

details are in Section 6.3.

6 Discussion: Empirical and Regulatory

In this section, we provide a discussion about empirical implications and policy suggestions.

The discussion is intended to provide insight into seemingly contradictory results in the

empirical literature, as well as give exploration of channels for future research and regulatory

concern. In these analyses, the economic force we consider is the variation of the information

structure, more precisely, the informed traders’ “information advantage,” σ = σv
σe

, or the

information imprecision, σe, if σv is fixed. We refer to “good information environment” by

more precise information and less informed traders. Although we attempt to attribute the

difference of the findings to the different information structures, we preserve a conservative

interpretation in these predictions. In general, our model suggests that dark pool activity

and its impacts display significant cross-sectional variation and thus should be evaluated

differently in various economic environments.

35We cannot directly show that σ̄v increases in µ
µz

, but we are able to show a upper bound of σ̄v that is

increasing in µ
µz

.
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Figure 11: The Likelihood DPs Harm Price Discovery σ̄v. The left-hand figure plots the threshold

σ̄v as a function of the relative size of informed traders, µ
µz

. The right-hand shows the threshold σ̄v as a

function of the information precision, − log(σe). On the left, log(σe) = 0. On the right, µ
µz

= .2.

6.1 Measurement for information precision

This paper shows that the level of information precision is essential to determining the

impact of dark pools on price discovery. In this section, we provide a brief discussion about

the measurement for information precision and information environment.

In this paper, there are two factors to consider for an economy’s information environment:

the precision of (private) information and the number of informed traders. The notion of a

better information environment includes a higher precision in traders’ (private) information

and fewer informed traders.36 We discuss the respective measurement for information pre-

cision of individual stocks and for the information environment of the whole economy. The

former helps us to conduct the cross-sectional analysis for individual stocks while the latter

gives regulators guidance on regulating dark pool trades as a whole.

(1) For individual stocks, the measurement for the level of information precision include the

following aspects.

Firm characteristics. Researchers have found that firms with greater growth volatility

(such as high R&D firms, young firms), smaller size, or fewer analyst followers have lower

36Private information is not necessarily insider information. A big fraction of it is information that is

publicly available but hard to collect, transmit, and process by the majority of the public.
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informational precision in traders’ informational predictions (Li et al. 2012, Maffett 2012,

Lang and Lundholm 1993, Baginski and Hassell 1997). Therefore, a firm’s age, size, number

of analyst followers, R&D ratios, and other measures regarding its growth volatility can

be used as proxies for the firm’s (equity’s) level of information precision. In addition to

that, researchers use analysts’ forecast variation and errors to proxy the level of information

precision among traders (Botosan et al. 2004, Gleason and Lee 2003).

Information acquisition and processing. The activity of information acquisition and

processing greatly affect the level of information precision. For example, Frankel et al. (2006)

has found that the informativeness of analysts’ reports greatly depends on how lucrative the

trades’ are and how costly is the information acquisition. Generally, a more lucrative and

matured financial market, with more competition, more innovation in trading technologies,

and years of trade has a higher level of trader ability for information acquisition and process-

ing (Louis et al. 2014, Clement 1999, Chen et al. 2005). Therefore, measures about the firms’

profitability, maturity, industry competition, level of innovation, and number (and years) of

traders can be used as proxies for individual stocks’ information precision.

(2) For the measurement of information environment in the macro-setting, measurements

include measures on the strength of legal institutions and law enforcement against insider

trading, the functionality of the public disclosure system, and the availability and efficiency

of media transmission. Generally, public disclosure and media channels can enhance the

precision of informed traders’ forecasts37 and stronger legal systems can significantly reduce

the number of insiders.

6.2 A Summary of Testable Empirical Predictions

1. Dark pool execution probability. We predict that dark pool non-execution proba-

bility increases with information precision (i.e. 1 − R̄+R
2

increases as σe decreases). Also,

an asset’s exchange spread increases with its dark pool non-execution probability (i.e. A
σv

increases in 1− R̄+R
2

).

This prediction suggest that the trade-off of dark pools is higher in an economy with

a good information environment. The trade-off is documented in many empirical papers.

For example, Gresse (2006), Conrad et al. (2003), Næs and Ødegaard (2006) , and Ye

(2010) study crossing networks in the US and conclude that dark pools, in comparison

with exchanges, have lower trading costs (within spread price) but higher non-execution

probability. He and Lepone (2014) studied Australia’s Centre Point dark pool and found

that the dark pool execution probability increases with dark pool activity. In contrast, Kwan

37Although there is a debate regarding the association between public and private information, researchers

generally find that public disclosures may be processed into private information by informed investors, and

there is a positive correlation between the precisions of public and private information. See Botosan et al.

(2004) and Kim and Verrecchia (1994).

38



et al. (2015) find that the dark pool execution probability increases in the trading friction

in exchanges: the minimal price improvement.

The change of execution probability can be explained as follows: the execution depends

on two factors: traders’ total participation and dark pool information asymmetry level. The

former irons the difference between the two sides in the pool and increases the execution rate,

whereas the latter does the opposite. In the numerical example in Figure 12, we show that,

without pricing frictions in the exchange, the expected dark pool execution rate decreases

as the information becomes more precise (σe decreases).
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Figure 12: Execution Probability and Trade-off of A Dark Pool. The left figure plots the non-

execution probability as a function of log(σe). The right-hand figure plots the non-execution probability as

a function of the exchange spread A/σv. In both plots, log(σv) = 0.

2. Dark pool usage and market characteristics. All else equal, in an econo-

my/industry/asset that has a high information precision, dark pool market share decreases

with information precision and with exchange spread, whereas in an economy/industry/asset

that has low information precision, dark pool market share increases with information pre-

cision and with exchange spread. More precisely,

(1) dark pool market share has an inverted U-shape relationship with the information pre-

cision,

(2) dark pool market share has an inverted U-shape relationship with the exchange spread.

The prediction follows from Proposition 1, Proposition 2, and Remark 1. To measure

dark pool usage, we analyze the volumes in each venue. Since informed traders have no profit

to trade in period 2 due to the disclosure of information, they cancel their unexecuted orders

and leave the market in period 2. The remaining orders continue to execute in the exchange.
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The expected trading volume in the dark pool, in the exchange, and total consolidated

volume are, respectively:

Vd = (R̄γd +Rγd)µ+
R̄ +R

2
αdµz, (29)

Ve = (γe + γe)µ+ αeµz + (1− αe − αd)µz +

(
1− R̄ +R

2

)
αdµz, (30)

V = Vd + Ve. (31)

We distinguish the components of dark volumes by “Dark uninformed volumes” and “Dark

informed volumes” respectively as:

V U
d =

(
1− R̄ +R

2

)
αdµz, (32)

V I
d = Vd − V U

d . (33)

Figure 13 illustrates equilibrium behavior of dark pool market share and dark pool “informed

volume” share. Though this prediction coincides with Zhu (2014), our model emphasizes the
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Figure 13: Dark Volumes and Market Share. The left figure plots the dark pool volume, total volume

and dark pool market share as a function of log(σe). The right-hand figure shows the dark pool market share

as a function of the exchange spread A/σv. In both plots log(σv) = 0.

role of the trader’s information structure.

This prediction is consistent with Ray (2010) and Preece (2012), which report a similar

inverted U-shape between dark pool usage and exchange spread. Other empirical studies

have reported contradictory results using different datasets. For studies using different US

datasets, Hatheway et al. (2013) and Weaver (2014) find a positive association while O’Hara

and Ye (2011) and Ready (2014) find a negative association between dark trading and ex-

change spread. ASIC (2013) and Comerton-Forde and Putniņs̆ (2015) study Australian dark
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trading and find a positive relationship. Degryse et al. (2015) find a positive relationship

for European dark fragmentation. Our model suggests that such a relationship varies cross-

sectionally, depending on the specific information structure. The cross-sectional difference

is reflected in Nimalendran and Ray (2014), Buti et al. (2011b), and O’Hara and Ye (2011).

More cross-sectional studies that specify the characteristics of firms and countries are needed.

3. Information content of dark pool trades. In an economy with high information

precision, the information content of dark pool trades decreases with information precision

and with exchange spread. By contrast, in an economy low information precision, the infor-

mation content of dark pool trades increases with information precision and with exchange

spread. More precisely,

(1) the information content of dark pool trades has an inverted U-shape relationship with

the information precision,

(2) the information content of dark pools trades has an inverted U-shape relationship with

the exchange spread.

The prediction follows from Proposition 1 and Proposition 2. We use two measures for the

dark pool information content. The first measure is the DP Predictive Fraction – the fraction

of dark pool volumes that are traded in the “right direction” (i.e., fraction of volumes that

predict the movement of prices). The higher the fraction is, the higher is the information

content of a dark pool. In this model, the Predictive Fraction is defined as

DP Predictive Fraction =
R(γdµ+ .5αdµz)

Vd
.

Another measure we consider is the normalized adverse selection costs, R̄−R. The inverted

U-shape of the two measures with the exchange spread is depicted in Figure 14. There are

relatively few studies that look at this issue. Peretti and Tapiero (2014) conclude that dark

pool trades can significantly forecast price movements. Nimalendran and Ray (2014) study

trades in a large crossing network and find that the information content in a dark pool is

positively associated with the exchange spread.

But as we point out, under different information environments, the dark pool informa-

tional content may differ cross-sectionally. Further study in this area is needed.

4. Impacts of adding a dark pool alongside an exchange. We predict that

(i) Liquidity externality. Adding a dark pool alongside an exchange decreases the ex-

change volume but increases the overall volume.

(ii) Price discovery and exchange spread. Dark pools have an amplification effect on

price discovery. That is, the introduction of dark pools enhances price discovery when price

discovery is high, and impairs price discovery when price discovery is low. Moreover, the

improvement of price discovery is associated with a wider exchange spread, whereas the

deterioration of price discovery can be associated with a wider or narrower spread.
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Figure 14: Predicability of Dark Pool Trades. The left figure plots the dark pool “Predictive Fraction”

as a function of spread A/σv. The right-hand plots the dark pool adverse selection costs as a function of

spread A/σv.

Prediction 4 follows directly from Proposition 3, Proposition 4 and Remark 2.38 Few studies

focus on the direct impact of introducing dark pool trading. For example, Hendershott and

Mendelson (2000) and Hendershott and Jones (2005) found that there was a reduction in

price efficiency after Island ECN stopped displaying its limit order book. Chlistalla and

Lutat (2011) finds that the entrance of Chi-X, a dark pool in the US, decreased spread.

Other research studies the relationship between price discovery and dark pool trading

intensity within the fragmented framework. O’Hara and Ye (2011) and Jiang et al (2012)

find a positive association between price discovery and dark pool trading, whereas Hatheway

et al. (2013) and Weaver (2014) find the opposite. Comerton-Forde and Putniņs̆ (2015)

conduct a more comprehensive cross-sectional study and show that, when the fraction of

non-block trades in dark pools is high (above 10%, suggesting that dark pools contain a high

fraction of informational orders), then dark trading harms price discovery, whereas if dark

pools contain less informational orders, dark trading improves price discovery. Comerton-

Forde and Putniņs̆ (2015)’s prediction is consistent with ours in the sense that we predict

an inverted U-shape for the relation of dark pool information content and the information

precision. More research is still needed on the important question of the effect of dark pool

activity on price efficiency for different types of stocks in the cross-section.

38Remark 2 points out, when private information is imprecise, it is possible that price discovery is decreased

while spread increases. If this is the case a dark pool can be strictly detrimental to the exchange.
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6.3 Regulatory Considerations

Price discovery is the essential economic function of an exchange. As Alan and Schwartz

(2013) point out, price discovery, as a public good, gives investors confidence and promotes

the interests of listed entities and the broader community through an efficient secondary

market for capital. More precisely, an exchange-produced price benefits a broad spectrum

of market participants who use it for marking to market, derivatives valuation, mutual-fund

cash flow estimation, estates, and dark pool pricing. Thus, the efficiency of how prices are

discovered becomes a serious matter in measuring market quality. In the periods of time

when markets are deeply fragmented by dark pool trading, it is of extreme importance for

regulators to be wary of the impacts dark pools have on price discovery.

1. What should regulators do? Regulators should be cautious in controlling dark

pool trading in order to not harm price discovery. To do that, regulators should examine the

following aspects. First, dark pool trading should be regulated to a level that distinguishes

firm characteristics. As we have pointed out, traders generally possess low precision for high

R&D firms, young firms, small firms, and less-analyzed firms. Introducing dark pools to these

firms might cause a decrease in price discovery. Second, a monitoring system measuring the

public’s ability to process information should be built, and dark pool trading should be

under dynamic revision. Third, countries should continue to improve their judicial system

to prevent insider trading, and, at the same time, take measures to improve the efficiency

of public disclosure, including accounting information enhancement and financial reporting

regulations. Countries should also ensure there are more effective financial media channels.

In general, regulators should improve countries’ information environment.

2, Dark pools in emerging markets? Based on current evaluations of the informa-

tion environment in several emerging markets, a great proportion of emerging markets are

governed by poor legal systems and have limited implemental power against insider trading

and poor quality of information disclosure. These countries should be extremely cautious in

dark pool trading. For example, Bhattacharya and Daouk (2002) found that the enforcement

of insider trading laws in 81 emerging markets is significantly low compared with developed

countries. Wang and Wu (2011) and Yu and Lu (2009) document poor quality of financial

information in mainland China, and they show that up to a quarter of listed firms in main-

land China explicitly admitted to the poor quality of their financial information by restating

their previous financial reports. Tang et al. (2013) finds that a poor corporate governance

system interacts with abnormal insider trading to aggravate the information environment

in Taiwan. Budsaratragoon et al. (2012) tests insider trading regulations in Thailand and

find that severe informational asymmetry, lax enforcement and poor pricing efficiency are

endemic. As we point out, dark pools have an amplification effect on price discovery, so

introducing dark pool trading in those countries may aggravate the situation.
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7 Conclusion

This paper studies the impact of dark pools on price discovery in a noisy information frame-

work. We find that the addition of a dark pool to the traditional exchange has an amplifica-

tion effect on price discovery, i.e., it enhances price discovery when the information has high

precision and impairs price discovery when the information has low precision. The results

reconcile the conflicting empirical findings in current literature and suggest new channels of

research to disentangle the relationship between dark pool trading and market quality.

We highlight the dark pool’s function as an informational risk mitigator. In equilibrium,

information is sorted by market fragmentation. That is, traders with strong signals trade

in the exchange, traders with modest signals trade in the dark pool, and traders with weak

signals do not trade. When information precision is low, a large proportion of informed

traders with modest signals crowd in the dark pool to reduce their information risk. Adding

a dark pool, thus, shifts a higher fraction of informed traders from the exchange, compared

with liquidity traders, leaving a lower informed-to-uninformed ratio in the exchange and thus

decreasing price discovery. In contrast, when information precision is high, a large proportion

of informed traders with strong signals crowd in the exchange. Adding a dark pool shifts

only a small fraction of informed traders from the exchange, compared with liquidity traders,

increasing the informed-to-uninformed ratio in the exchange and increasing price discovery.

There are several observations that complement the overall effects on market quality.

First, when information precision is low, the market can experience a deterioration of price

discovery along with a widened exchange spread. In this case, dark pools are strictly detri-

mental to the exchange. Second, dark pools always attract informed traders and liquidity

traders in a clustered fashion. We should observe both informed and uninformed traders

in all trading venues. Third, the ability of dark trades to predict price movement has an

inverted U-shape with exchange spread. Therefore, assets with modest exchange liquidity

have a high information content in their dark pool trades.

There are aspects regulators should be aware of. First, dark pools and their impacts have

significant variance cross-sectionally. The information structure of different assets, industries,

and countries differs in nature. The use of dark pools is thus case sensitive. Second, in

a deeply fragmented market, policies that help improve the information environment are

needed to enhance price discovery. These measures include, among others, enhancing public

disclosure by improving accounting and reporting regulations, strengthening legal systems,

and implementing laws against insider trading.
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8 Appendix

8.1 Proof of Lemma 1

Since each trader is infinitesimal and orders are limited by the amount, his or her action

has no impact on the market parameters (i.e., the exchange spread A and the dark pool

execution probabilities (R̄, R)). Therefore, splitting the order cannot affect the (per unit)

profit in each venue. Without loss of generality, we focus on the case of a positive signal

(the case for a negative signal is similar). Suppose that the informed traders have signal

s > 0. Then he has a belief B(s) > 1
2
. Because the profit of a “Buy” order in each venue

is strictly higher than the profit of a “Sell” order, thus it is optimal to choose the “Buy”

direction. From his or her perspective, given the exchange spread A and the dark pool

execution probabilities (R̄, R), the expected (per unit) profit for trading in the lit market,

dark pool, and not trade depends on his or her confidence level B(|s|) and is determined by

(5), (6), and (7), respectively.

Because these payoffs are linear in B(|s|), given any belief B(|s|), there is always one

venue that is no worse than any of other venues. This relationship is shown in Figure 5a.

When s 6= ±s0 or ± s1, the payoff of trading in one venue is strictly better than others, and

it is optimal to send the entire order to that venue. When s = ±s0 or ± s1, there are two

venues that yield the same payoff, and the trader can choose to split the order or not between

these two venues. However, since the realization of the signal among the informed traders

are continuously distributed, the measure of informed traders who receive a particular signal

is zero. That is, such traders who are indifferent to these two venues has a mass of zero in

the market. Therefore, in probability one, all informed traders send entire order to either

the exchange or the dark pool, or not trader at all.

8.2 Proof of Lemma 2

From a type d liquidity trader’s perspective, the expected per unit payoff from trading in

the lit market, dark pool, and completely deference are determined by (8), (9), and (10),

respectively. Since each individual has no impact to the market, given A, R̄, R, the per

unit payoff in each venue is fixed. There is always one venue that is no worse than others.

In addition, the payoff is linear in the number of units transacted. Hence there is no need

to split among different venues or among different periods.

8.3 Proof of Theorem 1

Hereafter we normalize some variables via dividing by σe, i.e., let s = s
σe

, s0 = s0
σe

, s1 = s1
σe

,

ŝ = ŝ
σe

, σ = σv
σe

. Then it is equivalent to prove that, given σ ≥ 0, there is a unique cut-off ŝ
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such that hSI(s), hSU,ι(d), AS, γe
S, γe

S, αS
e consist a equilibrium, in which

hSI(s) =


(“Buy”, Exchange(Lit)) if s ≥ ŝ,

(“Sell”, Exchange(Lit)) if s < −ŝ,

Not trade otherwise,

(34)

hSU,ι(d) =

{
(“Buy” if ι=Buyer, or “Sell” if ι=Seller, Exchange(Lit)) if d ≥ 2B(ŝ)− 1,

Delay trade otherwise,

(35)

γe
S = 1− Φ(ŝ− σ), (36)

γe
S = 1− Φ(ŝ + σ), (37)

αS
e = 1−G(2B(ŝ)− 1), (38)

AS

σv
=

γe
S − γeS

γe
S + γeS + αS

e
µz
µ

, (39)

where ŝ is determined by

2B(ŝ)− 1 =
AS

σv
. (40)

We prove the theorem in two steps. First, we show that if ŝ is given, the other variables

hSI(s), hSU,ι(d), AS, γe
S, γe

S, αS
e solved from (34)-(39) form an equilibrium. Then we show

that such ŝ exists and is unique.

Suppose that ŝ exists. By (40), an informed trader with signal ŝ is indifferent between

trading in the exchange and not trade. Since B(s) is increasing in s, hSI(s) is an optimal

strategy for informed traders. Similarly, since a type d̂ = 2B(ŝ) − 1 uninformed liquidity

trader is indifferent between trading on the exchange and deferring trade, hSU,ι(d) is an optimal

strategy for uninformed traders. By the law of large numbers, given hSI(s) and hSU,ι(d), the

fraction of uninformed traders who trade in the exchange would be αS
e = Pr(d ≥ d̂) =

1−G(2B(ŝ)− 1). Thus, the fraction of informed traders who trade in the “right direction”

would be γe
S = Pr(s ≥ ŝ) = 1 − Φ(ŝ − σ), and the fraction of informed traders who trade

in the “wrong direction” would be γe
S = Pr(s < ŝ) = 1 − Φ(ŝ + σ). In addition, for given

γe
S, γe

S, αS
e , we can find AS from (39) and it would make the market maker on the exchange

breaks even on average. Thus, hSI(ŝ), hSU,ι(d), AS, γe
S, γe

S, αS
e indeed form an equilibrium.

Then we will prove that such ŝ exists and is unique. After substituting the expressions

of AS, γe
S, γe

S, αS
e into (40), we obtain the following equation for ŝ:

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

= 2B(ŝ)− 1. (41)
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Define

f(s) =(2B(s)− 1)

[
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

]
− [Φ(s+ σ)− Φ(s− σ)] ,

and the derivative of f(s) is

f ′(s) =2B′(s)

[
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

]
− 2(2B(s)− 1)G′(2B(s)− 1)B′(s).

We can easily find that f(1
2
) < 0, f(+∞) > 0, f ′(0) > 0, f ′(+∞) = 0. Because G′(x) +

xG′′(x) ≥ 0, ∀x ∈ [0, 1], we have f ′′(s) < 0. Thus there exists a unique ŝ such that

f(ŝ) = 0.

8.4 Proof of Theorem 2

Hereafter we normalize some variables via dividing by σe, i.e., s = s
σe

, s0 = s0
σe

,s1 = s1
σe

,

ŝ = ŝ
σe

, σ = σv
σe

. Then finding the equilibrium is equivalent to solving the following system

of equations:

B(s0)(R̄ +R) = R̄, (42)

B(s1)
[
(1− R̄) + (1−R)

]
=
A

σv
+ (1− R̄), (43)

R̄ = E
[
min

{
1,
γdµ+ αdZ

+

γdµ+ αdZ−

}]
, (44)

R = E
[
min

{
1,
γdµ+ αdZ

−

γdµ+ αdZ+

}]
, (45)

A

σv
=

γe − γe
(γe + γe) + αe

µz
µ

, (46)

γe = 1− Φ(s1 − σ), (47)

γe = 1− Φ(s1 + σ), (48)

γd = Φ(s1 − σ)− Φ(s0 − σ), (49)

γd = Φ(s1 + σ)− Φ(s0 + σ), (50)

αe = 1−G(2B(s1)− 1), (51)

αd = G(2B(s1)− 1)−G(2B(s0)− 1), (52)

where

B(s) =
φ(s− σ)

φ(s− σ) + φ(s + σ)
. (53)
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Before proving the existence of solutions to the system of equations, we introduce the

following lemma.

Lemma 3. Let s0 ≥ 0 and s1 = s0 + ε, we have

lim
ε→0+

R = E

[
min

{
1,
φ(s0 + σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z−

φ(s0 − σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z+

}]
,

lim
ε→0+

R̄ = E

[
min

{
1,
φ(s0 − σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z+

φ(s0 + σ)µ+ 2G′(2B(s0)− 1)B′(s0)Z−

}]
,

lim
ε→0+

A

σv
=

Φ(s0 + σ)− Φ(s0 − σ)

2− Φ(s0 + σ)− Φ(s0 − σ) + [1−G(2B(s0)− 1)] µz
µ

.

Moreover, if s0 = 0 or σ = 0, then lim
ε→0+

R = lim
ε→0+

R̄ = 1. Therefore, we define R, R̄, and A
σv

use these limits when s0 = s1.

Proof. We can prove this by the Taylor expansion. Suppose that ε is sufficiently small.

Because s0 ≥ 0 and s1 = s0+ε, we have, by the Taylor expansion, that γd = φ(s0+σ)ε+o(ε),

γd = φ(s0 − σ)ε+ o(ε), and αd = 2G′(2B(s0)− 1)B′(s0)ε+ o(ε). Therefore we have

R = E

[
min

{
1,
φ(s0 + σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z−ε

φ(s0 − σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z+ε
+ o(ε)

}]
,

R̄ = E

[
min

{
1,
φ(s0 − σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z+ε

φ(s0 + σ)µε+ 2G′(2B(s0)− 1)B′(s0)Z−ε
+ o(ε)

}]
.

Similarly, by the Taylor expansion, we have γe = 1 − Φ(s0 − σ) − φ(s0 − σ)ε + o(ε), γe =

1 − Φ(s0 + σ) − φ(s0 + σ)ε + o(ε), and αe = [1−G(2B(s0)− 1)] − 2G′(·)B′(s0)ε + o(ε).

Therefore

A

σv
=

Φ(s0 + σ)− Φ(s0 − σ)− [φ(s0 + σ)− φ(s0 − σ)] ε

2− Φ(s0 + σ)− Φ(s0 − σ) + [1−G(2B(s0)− 1)] µz
µ
− [φ(s0 + σ) + φ(s0 − σ) + 2G′(·)B′(s0)] ε

+ o(ε).

Let ε→ 0+, and we prove the lemma.

We prove the theorem in a similar way as in the proof of Theorem 1. First, we show that

if s0 and s1 are given, the other variables hI(·), hU,ι(·), A, R̄, R, γe, γe, γd, γd, αd, αe
solved from (44)-(52) form an equilibrium. Then we show that (s0, s1) exists and is unique.

Given A, R̄, R, γe, γe, γd, γd, αd, αe and that s0, s1 determined by (42), (43), 0 <

s0 < s1, we show that it is optimal for informed speculators and uninformed liquidity

buyers (and sellers) to following the strategy described respectively by hI(·) and hU,ι(·), ι ∈
{Buyer, Seller}.
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Consider an informed speculator who receives a signal s ≥ 0 (the case when s ≤ 0 is

symmetric with respect to the vertical axis, and hence the analysis is similar and skipped

here). Suppose that 0 < s0 < s1. From his or her perspective, the expected payoffs in

the lit market, the dark pool, and no-trade are, respectively, [B(s)σv − (1−B(s))σv] − A,

B(s)Rσv−(1−B(s))R̄σv, and 0. Figure 5a captures the payoff as a function of B(s). As one

can see in the graph, since the payoffs are linear with respect to B(s), and B(s) is strictly

increasing with respect to s, the optimal strategy for an informed speculator with signal s

should use the exchange (the lit market) to trade when his or her signal s ≥ s1, and the

dark pool when s0 ≤ s < s1, and stay outside when s < s0. This is marked as the red line

in Figure 5a.

The fractions of each type of traders in each venue γe, γe, γd, γd, αe, αd are determined

by (47), (48), (49), (50), (51), (52), respectively, and A, R̄, R are given by (46), (44), (45).

Thus properties (ii), (iii) and (iv) in Definition 2 are satisfied.

Then we need to show that such pair of cut-off (s0, s1) exists and satisfies 0 < s0 < s1. In

order to show this, we consider equations (42) and (43) and show that there is a intersection

for the two lines represented by these two equations.
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s1 

Figure 15: Equilibrium Existence

For equation (42), we show that (s0, s1) = (0, 0) satisfies equation (42) and behaves as

the black line in Figure 15.

(i) Suppose s0 = 0, s1 = 0, then B(s0) = 1
2
, and by Lemma 3, R̄ = R = 1. Therefore

equation (42) is satisfied.

(ii) Now suppose that s0 > 0, then 1
2
< B(s0) < 1. To satisfy (42), we need that R < R̄ ≤ 1,

thus |γd| < |γd|. To obtain this, it must be true that s1 > s0 if such s1 exists. By continuity
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such s1 must exist for a small enough s0. (Note that if s0 is too large, such s1 may not

exist.)

(iii) We also show that there exist some s such that s1 → +∞ when s0 → s. We

rewrite equation (42) as B(s0) = R̄
R̄+R

. As s1 → +∞, γd → 1 − Φ(s0 − σ), γd →

1 − Φ(s0 + σ), αd → 1 − B(s0). Hence R̄ → E
[
min

{
1, 1−Φ(s0−σ)+[1−B(s0)]Z+

1−Φ(s0+σ)+[1−B(s0)]Z−

}]
, and

R → E
[
min

{
1, 1−Φ(s0+σ)+[1−B(s0)]Z−

1−Φ(s0−σ)+[1−B(s0)]Z+

}]
. Therefore, for any s0 ∈ [0,∞), there must exist

γd > γd, thus R̄ > R. Then let s1 → +∞, the left hand side of the equation, B(s0), is

equal to 1
2

if s0 = 0, and is equal to 1 if s0 → +∞. However, the right hand side of the

equation, R̄
R̄+R

, is greater than 1
2

if s0 = 0, and equal to 1
2

if s0 → +∞. This is because

lim
s→+∞

1−Φ(s0−σ)
1−B(s0)

= lim
s→+∞

1−Φ(s0+σ)
1−B(s0)

= 0, so lim
s→+∞

R̄ = lim
s→+∞

R = E
[
min

{
1, Z

+

Z−

}]
. By continu-

ity, there must exist an s ∈ (0,+∞) such that, as s0 → s, s1 → +∞, LHS = RHS. That is,

equation (42) is satisfied.

For equation (43). We rewrite it as

B(s1) =
A
σv

(1− R̄) + (1−R)
+

(1− R̄)

(1− R̄) + (1−R)
. (54)

(i) Suppose that s0 = 0, we prove that there must exist a s1 > 0 satisfy (43). Note

that for any given σ ∈ (0,+∞), A > 0 is satisfied. If s1 = 0, we have B(s1) = 1
2

and

R̄ = R = 1. Plugging into (43) gives us A = 0, which contradicts the fact that A > 0. If

s1 < 0, then B(s1) < 1
2
, γd < γd, and 0 < R̄ < R < 1 (we don’t consider any R̄, R < 0).

Hence (1−R̄)

(1−R̄)+(1−R)
> 1

2
> B(s1). In order for (43) to be satisfied, we have A < 0, which

contradicts with that fact that A > 0. Then we show the existence of s1 using the continuity

of equation (54). Its left hand side B(s1) is increasing in s1 and B(0) = 1
2
, lim

s1→∞
B(s1) = 1.

If s1 = 0, the right hand side equals
A
σv

(1−R̄)+(1−R)
+ 1

2
> 1

2
. However, when s1 → ∞, we

have A → 0 and 1 > R̄ > R, hence the right hand side equals 0 + 1−R̄
(1−R̄)+(1−R)

< 1
2
. By

the continuity of equation (54), there must exist a s1 ∈ (0,+∞) such that the equation is

satisfied.

(ii) Next we prove that there exist an s > 0 and small enough ε > 0 such that for s0 =

s, s1 = s + ε, equation (43) is satisfied as ε → 0+. Consider any s0 = s, s1 = s + ε, when

ε > 0 is sufficiently small. By Lemma 3, equation (43) is equivalent to

B(s) =
A
σv

(1− R̄) + (1−R)
+

(1− R̄)

(1− R̄) + (1−R)
, (55)

where A
σv

= Φ(s+σ)−Φ(s−σ)
2−Φ(s+σ)−Φ(s−σ)+[1−G(2B(s)−1)]µz

µ
, R = E

[
min

{
1, φ(s−σ)µ+2G′(2B(s)−1)B′(s)Z+

φ(s+σ)µ+2G′(2B(s)−1)B′(s)Z−

}]
, and

R̄ = E
[
min

{
1, φ(s+σ)µ+2G′(2B(s)−1)B′(s)Z−

φ(s−σ)µ+2G′(2B(s)−1)B′(s)Z+

}]
. Consider s on [0,∞). The left hand side of
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equation (55) increases with respect to s. We have B(0) = 1
2
, and lim

s→∞
B(s) = 1. Now

consider the right hand side of equation (55). By Lemma 3, we know that if s → 0+, the

limit of the right hand side is
A
σv

(1−R̄)+(1−R)
+ 1

2
> 1

2
. If s→∞, we have A→ 0 and 1 > R̄ > R,

hence the limit of the right hand side is 0 + 1−R̄
(1−R̄)+(1−R)

< 1
2
. By continuity there must exist

a s ∈ (0,∞) such that equation (55) is satisfied at (s, s) (i.e., s0 = s1 = s).

The above argument can be summarized by Figure 15. Given σ > 0 fixed, the black curve

represents the (s0, s1) pairs that satisfy equation (42). It goes through the point (0, 0), is

always above the line s1 = s0, and s1 → +∞ when s0 → s. The red curve represents the

(s0, s1) pairs that satisfy equation (43). When s0 = 0, s1 ∈ (0,∞). And there exists some

s ∈ (0,+∞) such that s0 = s1 = s, satisfies equation (43). Then because all functions are

continuous, there must exist a pair (s0, s1), 0 < s0 < s1 < +∞, such that both equations

(42) and (43) are satisfied. It is the intersection of the black curve and the red curve in

Figure 15. The existence is then established.

8.5 Proof of Proposition 1 and Proposition 2

To prove Propositions 1 and 2, we need the following two lemmas.

Lemma 4. Suppose s(σ) is continuously differentiable over (0,+∞), and lim
σ→0+

s(σ)σ = 0,

then

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = 0

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = 0

In addition,

(i) If lim
σ→0+

s(σ) = ±∞, |σs′(σ)| ≤ s(σ) for sufficiently small σ.

(ii) If −∞ < lim
σ→0+

s(σ) < +∞, lim
σ→0+

σs′(σ) = 0.

Proof. (i) Suppose that lim
σ→0+

s(σ) = +∞. There exists ε > 0 such that ∀σ ∈ (0, ε), s(σ)σ >

0 and d(s(σ)σ)
dσ

> 0. Thus d(s(σ)σ)
dσ

= σs′(σ) + s(σ) ≥ 0, and

|σs′(σ)| ≤ |s(σ)|,

for σ ∈ (0, ε). Similarly, if lim
σ→0+

s(σ) = −∞, we have that

|σs′(σ)| ≤ |s(σ)|,

for sufficiently small σ.
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Therefore, by mean value theorem, we have

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

− 2σs(σ)e−
s(σ)2

2 s′(σ).

Because |σs′(σ)| ≤ |s(σ)| and lim
σ→0+

∣∣∣−2s(σ)2e−
s(σ)2

2

∣∣∣ = 0, we obtain

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = 0.

Similarly, we have

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
e−

x2

2 dxs′(σ)

= lim
σ→0+

2σe−
s(σ)2

2 s′(σ).

Additionally, lim
σ→0+

∣∣∣−2s(σ)e−
s(σ)2

2

∣∣∣ = 0 gives us that

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = 0.

(ii) Suppose that lim
σ→0+

s < +∞. On one hand, we have that lim
σ→0+

d(s(σ)σ)
dσ

= lim
σ→0+

σs′(σ)+

lim
σ→0+

s(σ) = lim
σ→0+

σs′(σ) + s(0). On the other hand, we have

d(s(σ)σ)

dσ

∣∣
σ=0

= lim
σ→0+

s(σ)σ − 0

σ − 0
= s(0). (56)

Thus we have

lim
σ→0+

σs′(σ) = 0,

and

lim
σ→0+

(φ(s(σ) + σ)− φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

(−2σs′(σ)) · lim
σ→0+

s(σ)e−
s(σ)2

2

= 0,

lim
σ→0+

(Φ(s(σ) + σ)− Φ(s(σ)− σ)) s′(σ) = lim
σ→0+

∫ s(σ)+σ

s(σ)−σ
−xe−

x2

2 dxs′(σ)

= lim
σ→0+

(σs′(σ)) · lim
σ→0+

e−
s(σ)2

2

= 0.
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Lemma 5. lim
σ→0+

ŝ = s∗, where s∗ ∈ (0,+∞) is determined by the following equation

s =
2φ(s)

2− 2Φ(s) + µz
µ

.

Proof. Because G(·), Φ(·) ∈ C2. The implicit function theorem and the uniqueness of ŝ

show that ŝ(σ) is a continuously differentiable function over (0,+∞).

When σ = 0, we have γe
S − γeS = 0 and AS

σv
= 0. Equation (40) gives us that B(ŝ) = 1

2

and ŝ(σ)σ = 0.

Recall that

AS

σv
=

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

, (57)

G(·), Φ(·) ∈ C2, and AS

σv
is differentiable of σ over (0,+∞).

Taking the derivative, we get

d
(
AS

σv

)
dσ

=
(φ(ŝ + σ)− φ(ŝ− σ)) dŝ

dσ
+ (φ(ŝ + σ) + φ(ŝ− σ))

γe + γe + αe
µz
µ

+
[Φ(ŝ + σ)− Φ(ŝ− σ)]

[
(φ(ŝ + σ) + φ(ŝ− σ)) dŝ

dσ
+ (φ(ŝ + σ)− φ(ŝ− σ))

][
γe + γe + αe

µz
µ

]2

+
2G′(2B(ŝ)− 1)µz

µ
[Φ(ŝ + σ)− Φ(ŝ− σ)]

(
∂B(ŝ)
∂ŝ

dŝ
dσ

+ ∂B(ŝ)
∂σ

)
[
γe + γe + αe

µz
µ

]2 .

Lemma 4 gives us

lim
σ→0+

d
(
AS

σv

)
dσ

= lim
σ→0+

2φ(ŝ)

2− 2Φ(ŝ) + µz
µ

. (58)

On the other hand, from equation (40), we have

AS

σv
= 2B(ŝ)− 1.

Taking derivative with respect to σ, we get

d
(
AS

σv

)
dσ

= 2B(ŝ) [1−B(ŝ)]

(
2σ

dŝ

dσ
+ 2ŝ

)
.
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Using Lemma 4 and lim
σ→0+

ŝ(σ)σ = 0, we obtain

lim
σ→0+

d
(
AS

σv

)
dσ

= lim
σ→0+

(
σ
dŝ

dσ
+ ŝ

)
. (59)

Combing equations (59) and (58), we have that

lim
σ→0+

(
σ
dŝ

dσ
+ ŝ

)
= lim

σ→0+

2φ(ŝ)

2− 2Φ(ŝ) + µz
µ

.

Suppose that lim
σ→0+

ŝ = +∞, then we have, as we do in the proof of Lemma 4, lim
σ→0+

σ dŝ
dσ

+

ŝ > 0, which contradicts with lim
σ→0+

2φ(ŝ)
2−2Φ(ŝ)+µz

µ
= 0.

Then we have to show that the limit can not be zero. Because the limit can not be

infinity, we have lim
σ→0+

σs′(σ) = 0 from Lemma 4. Let f(s) = 2φ(s)
2−2Φ(s)+µz

µ
− s. We can check

that there is a unique s∗ ∈ (0,+∞) such that f(s∗) = 0. Therefore,

lim
σ→0+

ŝ = s∗ ∈ (0,+∞).

We then proceed to prove the propositions.

Case I: Without a dark pool

By Lemma 4 and Lemma 5, AS

σv
, α̂e, γe

S, γe
S are differentiable functions of σ, and

lim
σ→0+

d
(
AS

σv

)
dσ

= s∗ ∈ (0,+∞).

Also, taking derivative of B(ŝ) with respect to σ, we get

dB(ŝ)

dσ
=
∂B(ŝ)

∂ŝ

dŝ

dσ
+
∂B(ŝ)

∂σ
= B(ŝ) (1−B(ŝ))

(
2σ

dŝ

dσ
+ 2ŝ

)
. (60)

and the derivative of α̂e is

dα̂e
dσ

= −G′(2B(ŝ)− 1)B(ŝ) (1−B(ŝ))

(
2σ

dŝ

dσ
+ 2ŝ

)
.

When σ is sufficiently small, we get

lim
σ→0+

dα̂e
dσ

= −G
′(0)s∗

2
∈ (−∞, 0).

Similarly, we take derivative of γe
S − γeS with respect to σ and get

d
(
γe

S − γeS
)

dσ
= [φ(ŝ + σ)− φ(ŝ− σ)]

dŝ

dσ
+ [φ(ŝ + σ) + φ(ŝ− σ)] ,
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and leting σ → 0+, we have

lim
σ→0+

d
(
γe

S − γeS
)

dσ
= 2φ(ŝ) ∈ (0,+∞).

Note that σ = σv
σe

, we conclude the following:

Given σ sufficiently small, as σv increases (or σe decreases),

(i) AS

σv
strictly increases.

(ii) γe
S − γeS strictly increases, and αS

e strictly decreases.

Case II, With a dark pool

Note that when σ = 0, we have γe = γe and γd = γd. Therefore A
σv

= 0 and R̄ = R.

Equations (42) and (43) show that B(s0) = 1
2

and B(s1) = 1
2
. If 0 < σ < +∞, we have, by

Theorem 2, that 0 < s0 < s1 < ∞. Therefore, we have γe > γe, γd > γd,
A
σv
> 0, R̄ > R,

and 1
2
< B(s0) < B(s1) < 1. Then we are ready to conclude the following:

Given σ sufficiently small, as σv increases (or as σe decreases),

(i) A
σv

increases, and R̄−R increases.

(ii) γe − γe, γd − γd increases, αe decreases, and αd increases.

Let (s0, s1) be any equilibrium. Since G(·), and Φ(·) are twice differentiable, by the

implicit function theorem, there exist continuously differentiable functions s0(σ), s1(σ)

defined on (0,+∞).

When σ ∈ (0,+∞). By equation (42), we have B(s0) = R̄
R+R̄

∈ (0, 1). Thus rewrite it as

R̄

R
=

1
1

B(s0
)− 1

,

and the derivative can be found as following:

d
(
R̄
R

)
dσ

=
1

R2

[
dR̄

dσ
R− dR

dσ
R̄

]
=

1

[1−B(s0)]2

(
∂B(s0)

∂s0

ds0
dσ

+
∂B(s0)

∂σ

)
=

B(s0)

1−B(s0)

(
2σ

ds0
dσ

+ 2s0

)
.

Also, we know lim
σ→0+

B(s0) = 1
2

and lim
σ→0+

R̄ = lim
σ→0+

R = 1, thus

lim
σn→0+

dR̄

dσ
− lim

σn→0+

dR

dσ
= lim

σn→0+

(
2σ

ds0
dσ

+ 2s0

)
.
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Equation (43) shows that

2B(s1)− 1−
[
B(s1)R− (1−B(s1))R̄

]
=
A

σv
.

Taking derivative on both sides, we get

d
(
A
σv

)
dσ

= (2−R− R̄)B(s0) [1−B(s0)]

(
σ
ds1
dσ

+ s1

)
+ [1−B(s0)]

dR̄

dσ
−B(s0)

dR

dσ
,

and because A
σv

= Φ(s1+σ)−Φ(s1−σ)
2−Φ(s1+σ)−Φ(s1−σ)+(1−G(2B(s1)−1))µz

µ
, we have

d
(
A
σv

)
dσ

=
(φ(s1 + σ)− φ(s1 − σ)) ds1

dσ
+ (φ(s1 + σ) + φ(s1 − σ))

γe + γe + αe
µz
µ

+
[Φ(s1 + σ)− Φ(s1 − σ)]

[
(φ(s1 + σ) + φ(s1 − σ)) ds1

dσ
+ (φ(s1 + σ)− φ(s1 − σ))

][
γe + γe + αe

µz
µ

]2

+
2G′(2B(s1)− 1)µz

µ
[Φ(s1 + σ)− Φ(s1 − σ)]

(
∂B(s1)
∂s1

ds1
dσ

+ ∂B(s1)
∂σ

)
[
γe + γe + αe

µz
µ

]2 .

Similarly to what we shown in the proof of Lemma 5, we obtain

lim
σ→0+

d
(
A
σv

)
dσ

=
1

2

(
lim

σ→0+

dR̄

dσ
− lim

σ→0+

dR

dσ

)
= lim

σn→0+

(
σ
ds0
dσ

+ s0

)
, (61)

and

lim
σ→0+

d
(
A
σv

)
dσ

= lim
σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

. (62)

Combing equations (61) and (62) gives us

lim
σ→0+

(
σ
ds0
dσ

+ s0

)
= lim

σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

Suppose lim
σ→0+

s0 = +∞. Using the similar argument as in the proof of Lemma 5, we obtain

lim
σ→0+

(
σ ds0
dσ

+ s0
)
> 0. However, as s0 → +∞, we have s1 → +∞ and 2φ(s1)

2−2Φ(s1)+µz
µ
→ 0. This

is a contradiction. Therefore, it must be that lim
σ→0+

s0 < +∞.

By Lemma 4, lim
σ→0+

σ ds0
dσ

= 0. So we have

lim
σ→0+

s0 = lim
σ→0+

2φ(s1)

2− 2Φ(s1) + µz
µ

.
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Define lim
σ→0+

s0
4
= s0(0+), lim

σ→0+
s1
4
= s1(0+), and we have

lim
σ→0+

d
(
A
σv

)
dσ

= lim
σ→0+

s0 = s0(0+) ≥ 0,

lim
σ→0+

d
(
γe − γe

)
dσ

= 2φ(s1(0+)) ≥ 0,

lim
σ→0+

dαe
dσ

= −G
′(0)s1(0+)

2
≤ 0,

lim
σ→0+

dαd
dσ

=
G′(0)(s1(0+)− s0(0+))

2
≥ 0,

lim
σ→0+

d (αe + αd)

dσ
= −G

′(0)s0(0+)

2
≤ 0,

which conclude the proof.

8.6 Proof of Proposition 3

To prove Proposition 3, we need the following lemmas.

Lemma 6. For any given σ ∈ (0,+∞), ŝ(σ) < s1(σ).

Proof. Substitute the expressions of A
σv

into equation (40) and (43), then ŝ, s1 are respec-

tively determined by the following two equations

Φ(ŝ + σ)− Φ(ŝ− σ)

2− Φ(ŝ + σ)− Φ(ŝ− σ) + (1−G(2B(ŝ)− 1))µz
µ

= 2B(ŝ)− 1,

Φ(s1 + σ)− Φ(s1 − σ)

2− Φ(s1 + σ)− Φ(s1 − σ) + (1−G(2B(s1)− 1))µz
µ

= 2B(s1)− 1

−
[
B(s1)R− (1−B(s1))R̄

]
.

Let f(s) = Φ(s+σ)−Φ(s−σ)
2−Φ(s+σ)−Φ(s−σ)+(1−G(2B(s)−1))µz

µ
, and its derivative is

f ′(s) =
D1(s) +D2(s)[

2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))µz
µ

]2 ,

where

D1(s) = (φ(s+ σ)− φ(s− σ))

(
2− Φ(s+ σ)− Φ(s− σ) + (1−G(2B(s)− 1))

µz
µ

)
< 0,

D2(s) = − (Φ(s+ σ)− Φ(s− σ))

(
−φ(s+ σ)− φ(s− σ)− 2G′(2B(s)− 1)B′(s)

µz
µ

)
> 0.

Since G′(s) + sG′′(s) ≥ 0, one can represent f(s) as the blue curve in Figure 16.
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Let ĥ(s) = 2B(s)− 1 and h(s) = 2B(s)− 1−
[
B(s)R− (1−B(s))R̄

]
. By equation (42),

for any s > s0, we have B(s) > B(s0) = R̄
R+R̄

. That is,
[
B(s)R− (1−B(s))R̄

]
> 0.

Therefore ĥ(s) > h(s). In Figure 16, ĥ(s) is represented by the red curve, while h(s) is

represented by the green curve which is below ĥ(s). Obviously, the intersection point s1 is

larger than ŝ. The Lemma is proved.

 

 

 

 

 

1 

s1  s 
0 

𝑠  

R 

Φ(s+σ𝑣) -Φ(s-σ𝑣)   

2 − Φ(s+σ𝑣)-Φ(s-σ𝑣) +[1-G(2B(s)-1]
𝜇𝑧

𝜇
 
 

2B(s) − 1 

2B(s) − 1 − [B(s)R − (1 − B(s))(1 −  𝑅̅)] 

 

Figure 16: h(s) and ĥ(s)

Lemma 7. If σ → +∞, there exists a unique k̂ ∈ (1
2
, 1) such that lim

σ→+∞
γe

S = 1, lim
σ→+∞

γe
S =

0, lim
σ→+∞

αS
e = 1−G(k̂), and lim

σ→+∞
AS

σv
= k̂, where k̂ is determined by

k̂ =
1

1 +
[
1−G(k̂)

]
µz
µ

. (63)

In addition, such k̂ is smaller if µz
µ

is larger.

Proof. Suppose lim
σ→+∞

ŝσ = +∞. Then, when σ → +∞, we have 2B(ŝ) − 1 → 1. Thus

equation (40) gives us that AS

σv
= 1. However α̂e = 1 − G(1) > 0, which implies AS

σv
< 1.

Therefore, we have

lim
σ→+∞

ŝσ < +∞.

Let lim
σ→+∞

ŝσ = Ĉ ∈ [0,+∞), where Ĉ will be determined later. Then we have lim
σ→+∞

ŝ =

0, thus lim
σ→+∞

(ŝ−σ) = −∞. Therefore, lim
σ→+∞

γe
S = 1, lim

σ→+∞
γe

S = 0. Let k̂ = lim
σ→+∞

2B(ŝ)−

1 = 1−e−2Ĉ

1+e−2Ĉ
, and we have lim

σ→+∞
αS
e = 1 − G(k̂) and lim

σ→+∞
AS

σv
= 1

1+[1−G(k̂)]µzµ
. However, k̂ has

to satisfy equation (63) such that equation (40) is satisfied.
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Let f(k) = k − 1
1+[1−G(k)]µz

µ
, and we can easily verify that f(0) < 0, and f(1) > 0.

Therefore, there exists a k̂ ∈ (0, 1) such that f(k̂) = 0, and Ĉ = 1
2

ln 1+k̂

1−k̂
.

Lemma 8. Let R = E
[
min

{
1, Z

+

Z−

}]
. Consider any equilibrium s0(σ), s1(σ) for σ → +∞.

We have lim
σ→+∞

s0σ < +∞. In addition, the limits of variables can be determined in the

following two statements.

(i) If lim
σ→+∞

s1σ < +∞, we have lim
σ→+∞

γe = 1, lim
σ→+∞

γe = 0, lim
σ→+∞

γd = 0, lim
σ→+∞

γd =

0, lim
σ→+∞

αe = 1 − G(k1), lim
σ→+∞

αd = G(k1), lim
σ→+∞

A
σv

= 1
1+[1−G(k1)]µz

µ
, lim

σ→+∞
R̄ = R, and

lim
σ→+∞

R = R, where k1 ∈ (1
2
, 1) is determined by

(1−R)k1 =
1

1 + [1−G(k1)] µz
µ

. (64)

(ii) If lim
σ→+∞

s0σ = +∞, we have lim
σ→+∞

γe = 1− k3, lim
σ→+∞

γe = 0, lim
σ→+∞

γd = k3, lim
σ→+∞

γd = 0,

lim
σ→+∞

αe = 1 − G(1), lim
σ→+∞

αd = G(1) − G(2k2 − 1), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

, lim
σ→+∞

R̄ =

k2

1−k2

[1−G(1)]µz
µ

1−k3+[1−G(1)]µz
µ

, and lim
σ→+∞

R =
[1−G(1)]µz

µ

1−k3+[1−G(1)]µz
µ

, where k2 ∈ [1
2
, 1) and k3 ∈ [0, 1) are

determined by

[1−G(1)] µz
µ

1− k3 + [1−G(1)] µz
µ

= E

[
min

{
1,

Z−

k3

G(1)−G(2k2−1)
+ Z+

}]
, (65)

k2 =

E
[
min

{
1,

k3
G(1)−G(2k2−1)

+Z+

Z−

}]
E
[
min

{
1,

k3
G(1)−G(2k2−1)

+Z+

Z−

}]
+ E

[
min

{
1, Z−

k3
G(1)−G(2k2−1)

+Z+

}] . (66)

Proof. Consider any continuously differentiable functions s0(σ), s1(σ).

First we show lim
σ→+∞

s0σ < +∞ by contradiction. Suppose that lim
σ→+∞

s0σ = +∞, we

have B(s0) = 1
1+e−2s0σ → 1. Since s1 > s0, we have lim

σ→+∞
s1σ = +∞, B(s1) = 1

1+e−2s1σ → 1.

In addition, Equation (42) gives us that R̄
R

= 1, i.e., R̄ = R.

If lim
σ→+∞

(s0 − σ) < +∞, then γd > 0 = γd, which is a contradiction to R̄ = R. If

lim
σ→+∞

(s0 − σ) = +∞, then lim
σ→+∞

s1−σ = +∞. Therefore we have lim
σ→+∞

γe = lim
σ→+∞

γe = 0,

lim
σ→+∞

A
σv

= 0, and by equation (43), we have lim
σ→+∞

B(s1) = lim
σ→+∞

1−R̄
1−R̄+1−R = 1

2
, whche is a

contradiction to lim
σ→+∞

B(s1) = 1. Therefore, we have

lim
σ→+∞

s0σ = C ∈ [0,+∞).

Then we show the two statements.
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(i) Suppose that lim
σ→+∞

s0σ = C0 ∈ [0,+∞) and lim
σ→+∞

s1σ = C1 ∈ [0,+∞), then we have

lim
σ→+∞

(s0 − σ) → −∞ and lim
σ→+∞

(s1 − σ) → −∞. Therefore, lim
σ→+∞

γe = 1, lim
σ→+∞

γe =

lim
σ→+∞

γd = lim
σ→+∞

γd = 0.

We show that lim
σ→+∞

R̄ = lim
σ→+∞

R = R. If C0 = C1, Lemma 3 and lim
σ→+∞

φ(s0−σ)
B′(s0)

=

lim
σ→+∞

φ(s0+σ)
B′(s0)

= 0 give us that lim
σ→+∞

R̄ = lim
σ→+∞

R = E
[
min

{
1, Z

+

Z−

}]
= R. If C0 <

C1, because lim
σ→+∞

γd = lim
σ→+∞

γd = 0 and lim
σ→+∞

αd > 0, we have lim
σ→+∞

R̄ = lim
σ→+∞

R =

E
[
min

{
1, Z

+

Z−

}]
= R.

Then equation (42) gives us that lim
σ→+∞

B(s0) = 1/2 and lim
σ→+∞

s0σ = 0. Let k1 =

lim
σ→+∞

2B(s1) − 1, and we have lim
σ→+∞

αe = 1 − G(k1), lim
σ→+∞

αd = G(k1) and lim
σ→+∞

A
σv

=

1
1+[1−G(k1)]µz

µ
. Rewrite equation (43) in the following form

(2B(s1)− 1) (1−R) =
1

1 + [1−G(2B(s1)− 1)] µz
µ

,

and k1 has to satisfy equation (64).

Let f(k) = (1 − R)k − 1
1+[1−G(k)]µz

µ
. We can verify that f(0) < 0 and f(1) > 0 if

1 + [1−G(1)] µz
µ
> 1

1−R . There is a k1 ∈ (0, 1) such that f(k1) = 0, and C1 = 1
2

ln 1+k1

1−k1
.

(ii) Suppose that lim
σ→+∞

s0σ = C2 ∈ [0,+∞) and lim
σ→+∞

s1σ = +∞. We have lim
σ→+∞

γe = 0,

lim
σ→+∞

γd = 0, and lim
σ→+∞

αe = 1−G(1).

Suppose taht lim
σ→+∞

(s1 − σ) = C3 ∈ [−∞,+∞]. Let k2 = lim
σ→+∞

B(s0) = 1
1+e−2C2

∈
[1
2
, 1) and k3 = lim

σ→+∞
γd = Φ(C3) ∈ [0, 1]. Then we have lim

σ→+∞
γe = 1 − k3, lim

σ→+∞
γd =

k3, lim
σ→+∞

αd = G(1) − G(2k2 − 1), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

. Combining equations (42)

and (43), we have lim
σ→+∞

R̄ = k2

1−k2

[1−G(1)]µz
µ

1−k3+[1−G(1)]µz
µ

, lim
σ→+∞

R =
[1−G(1)]µz

µ

1−k3+[1−G(1)]µz
µ

. In addition, by

equations (44) and (45), k2 and k3 have to satisfy equations (65) and (66).

Suppose that 1+[1−G(1)] µz
µ
≤ 1

1−R . For equation (65), the left hand side is increasing

with respect to k3, while the right hand side is decreasing with respect to k3. In addition,

when k3 = 0, LHS − RHS =
[1−G(1)]µz

µ

1+[1−G(1)]µz
µ
− E

[
min

{
1, Z

−

Z+

}]
= 1 − R − 1

1+[1−G(1)]µz
µ
≤ 0,

and when k3 = 1, LHS − RHS = 1 − E
[
min

{
1, Z−

1
G(1)−G(2k2−1)

+Z+

}]
> 0. Thus, given any

k2 ∈ [1
2
, 1), there exists a unique k3(k2) ∈ (0, 1) that solves equation (65). Furthermore, as

k2 increases, the right hand side of equation (65) decreases, thus k3(k2) is decreasing with

respect to k2. When k2 → 1, we have k3(k2)→ 0. Thus R→ [1−G(1)]µz
µ

1+[1−G(1)]µz
µ
≥ 0.

For equation (66), we substitute k3 with the expression solved from (65), and it becomes

a function of k2 only. When k2 = 1/2, we have k3 ∈ [0, 1). Then LHS − RHS ≤ 0. While
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when k2 → 1, we have LHS −RHS ≥ 0. Therefore, there exist k2 ∈ [1/2, 1) and k3 ∈ [0, 1)

such that equations (65) and (66) are satisfied. Additionally, we have C2 = 1
2

ln k2

1−k2
, C3 =

Φ−1(k3).

We now proceed to prove the proposition. From Lemma 6, we have ŝ < s1 for all

σ ∈ (0,+∞). Thus, γe
S − γeS = Φ(ŝ + σ)−Φ(ŝ− σ) > Φ(s1 + σ)−Φ(s1 − σ) = γe − γe and

αS
e = 1−G(2B(ŝ)− 1) > 1−G(2B(s1)− 1) = αe.

Let k̂, k1, k2, k3 as in (63), (64), (65), (66). Suppose 1 − R > 1

1+[1−G(k̂)]µz
µ

, then as

σ → +∞, by Lemma 7, we have

lim
σ→+∞

AS

σv
=

1

1 +
[
1−G(k̂)

]
µz
µ

,

lim
σ→+∞

αS
e = 1−G(k̂).

By Lemma 8(i), lim
σ→+∞

A
σv

= 1
1+[1−G(k1)]µz

µ
and lim

σ→+∞
αe = 1 − G(k1). We can verify that

k̂ < k1 from equations (63) and (64). Therefore 1

1+[1−G(k̂)]µzµ
< 1

1+[1−G(k1)]µz
µ

and 1−G(k̂) >

1−G(k1). That is, lim
σ→+∞

AS

σv
< lim

σ→+∞
A
σv

. We can easily verify that lim
σ→+∞

αS
e < lim

σ→+∞
αe + αd.

By Lemma 8(ii), lim
σ→+∞

A
σv

= 1−k3

1−k3+[1−G(1)]µz
µ

and lim
σ→+∞

αe = 1 − G(1). Then by equa-

tion (65), 1−k3

1−k3+[1−G(1)]µz
µ

= 1−E
[
min

{
1, Z−

k3
G(1)−G(2k2−1)

+Z+

}]
> 1−E

[
min

{
1, Z

−

Z+

}]
= 1−R.

Since we suppose that 1−R > 1

1+[1−G(k̂)]µz
µ

, we have that 1

1+[1−G(k̂)]µz
µ

< 1−k3

1−k3+[1−G(1)]µz
µ

, that

is, lim
σ→+∞

AS

σv
< lim

σ→+∞
A
σv

.

Since k̂ < 1, k3 > 0, we proved that lim
σ→+∞

γe
S − γeS ≤ lim

σ→+∞
γe − γe, lim

σ→+∞
αS
e ≥ lim

σ→+∞
αe.

Next we consider the case when σ → 0+. Recall that when σ = 0, we have AS

σv
= A

σv
= 0.

So we have to compare their derivatives at 0. From the proof of Lemma 5, we have that

lim
σ→0+

ŝ = lim
σ→0+

2φ(ŝ)
2−2Φ(ŝ)+µz

µ
, and lim

σ→0+
s0 = lim

σ→0+

2φ(s1)
2−2Φ(s1)+µz

µ
. Since 2φ(s)

2−2Φ(s)+µz
µ

decreases in s, we

show that either lim
σ→0+

s0 < lim
σ→0+

ŝ < lim
σ→0+

s1, or lim
σ→0+

s0 = lim
σ→0+

ŝ = lim
σ→0+

s1. Therefore we

have two cases to consider. (i) lim
σ→0+

s0 < lim
σ→0+

ŝ < lim
σ→0+

s1. Since
d A
σv

dσ
increases in s when

σ → 0+, we have that AS

σv
< A

σv
, as σ → 0+. (ii) lim

σ→0+
s0 = lim

σ→0+
ŝ = lim

σ→0+
s1. In this case

dA
S

σv

dσ
=

d A
σv

dσ
, it is undetermined whether AS

σv
< A

σv
or AS

σv
> A

σv
, as σ → 0+. However, we cannot

distinguish between case (i) and case (ii).
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8.7 Proof of Proposition 4

As σ → +∞, we have lim
σ→+∞

γe
S−γeS = 1, and lim

σ→+∞
αS
e = 1−G(k̂). We consider the two case

in Lemma 8: (i) We have lim
σ→+∞

γe − γe = 1 and lim
σ→+∞

αe = 1−G(k1). Thus lim
σ→+∞

γeS−γeS

αS
e
≤

lim
σ→+∞

γe−γe
αe

because k̂ < k1. (ii) We have lim
σ→+∞

γe−γe = 1−k3 and lim
σ→+∞

αe = 1−G(1). From

1

1+[1−G(k̂)]µz
µ

< 1−k3

1−k3+[1−G(1)]µz
µ

, we have 1

1−G(k̂)
< 1−k3

1−G(1)
, i.e., Thus lim

σ→+∞

γeS−γeS

αS
e
≤ lim

σ→+∞

γe−γe
αe

.

As σ → 0+, by Lemma 6, we have ŝ < s1, ∀σ > 0. Since
γeS−γeS

αS
e

= Φ(ŝ+σ)−Φ(ŝ−σ)
1−G(2B(ŝ)−1)

and

γe−γe
αe

= Φ(s1+σ)−Φ(s1−σ)
1−G(2B(s1)−1)

, to show that
γeS−γeS

αS
e

>
γe−γe
αe

for small σ, it is sufficient to show that

there exists σ̄ > 0, s.t. ∀σ ∈ (0, σ̄), Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

decreases in s. If µz
µ
< +∞, Lemma 5

gives us lim
σ→0+

s1 ≥ lim
σ→0+

ŝ > 0. Also, recall that lim
σ→0+

s1σ = lim
σ→0+

ŝσ = 0.

We now consider the derivative of Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

with respect to s.

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

=
(Φ(s+ σ)− Φ(s− σ))G′(2B(s)− 1) e−2sσ

(1+e−2sσ)2 4σ

(1−G(2B(s)− 1))2

+
(φ(s+ σ)− φ(s− σ)) (1−G(2B(s)− 1))

(1−G(2B(s)− 1))2 . (67)

Let M = max
s∈[0,+∞]

[
4G′(2B(s)−1)
1−G(2B(s)−1)

+ 1
]
< +∞. If lim

σ→0+
s > 0 and lim

σ→0+
sσ = 0, there exists

σ̄ > 0, such that ∀σ ∈ (0, σ̄), s > Me2σ and sσ < 1. Therefore by the mean value theorem,

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

<
2σ [φ(s− σ)4G′(2B(s)− 1)σ + φ(s+ σ) (1−G(2B(s)− 1)) (−(s− σ))]

(1−G(2B(s)− 1))2

<
2σ
{
φ(s− σ)

[
4G′(2B(s)−1)
1−G(2B(s)−1)

+ 1
]
σ + φ(s+ σ)(−s)

}
1−G(2B(s)− 1)

=
2σ {φ(s+ σ)Me2sσσ − φ(s+ σ)s}

1−G(2B(s)− 1)

<0.

Thus ∃σ̄ > 0, such that ∀σ ∈ (0, σ̄), s ∈ [̂s, s1], we have
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

< 0. Since ŝ < s1,

we have Φ(ŝ+σ)−Φ(ŝ−σ)
1−G(2B(ŝ)−1)

> Φ(s1+σ)−Φ(s1−σ)
1−G(2B(s1)−1)

. We proved the proposition.

8.8 Proof of Proposition 5

We need the follow Lemma to proceed the proof.

Lemma 9. ∀σ > 0, ∃C(σ) > 0, such that ∀0 ≤ s ≤ C(σ),
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

> 0.
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Proof. Consider (67), ∀σ > 0,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=0

> 0. Therefore, ∃C(σ) > 0 such that

∀0 ≤ s ≤ C(σ), we have

d
(

Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1)

)
ds

> 0.

First we show that σ̄v = sup
x>0

{
x|∀σv ∈ (0, x),

γeS−γeS

αS
e

>
γe−γe
αe

}
is increasing in σe. Because

µz
µ
< +∞ and µz

µ
sufficiently large, according to Proposition 4, there must exist a σ̂ such

that σ̄ = sup
x>0

{
x|∀σ ∈ (0, x),

γeS−γeS

αS
e

>
γe−γe
αe

}
. By definition σ̄ = σ̄v

σe
, i.e., σ̄v = σ̄σe, where

σ̄ is a constant. σ̄v is increasing in σe. As σe → 0+, σ̄v → 0 and as σe → +∞, σ̄v → +∞.

Next we prove that if µz
µ

is large enough, there exists a subsequence {(µz
µ

)i} such that σ̄v
decreases as (µz

µ
)i increases.

Let C(σ) defined as sup
x

{
x
∣∣∀s ∈ (0, x),

d(Φ(s+σ)−Φ(s−σ)
1−G(2B(s)−1) )

ds
> 0

}
. By Lemma 9, such C(σ)

exists for all σ > 0. Note that if µz
µ
→ +∞, we have ŝ, s1 → 0. Therefore, as µz

µ
becomes

sufficiently large, there exists σ(µz
µ

), such that

ŝ, s1 < C(σ(
µz
µ

)).

Thus,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=ŝ

> 0,
d(Φ(s+σ)−Φ(s−σ)

1−G(2B(s)−1) )
ds

∣∣∣∣
s=s1

> 0. And since ŝ < s1,
γeS−γeS

αS
e

<
γe−γe
αe

This is to say, when µz
µ

is sufficiently large, we find a upper bound of σ̄, i.e., σ̄ < σ(µz
µ

).

Therefore, there exists a subsequence {(µz
µ

)i} such that, as (µz
µ

)i increases, σ(µz
µ

) decreas-

es, and σ̄ decreases, and as (µz
µ

)i → +∞, σ(µz
µ

)→ 0, σ̄ → 0.

67


