
1 
 

Data Snooping Bias in Tests of the Relative Performance of Multiple 

Forecasting Models 

  Dan Gabriel Anghel1,2 

1 Department of Money and Banking & CEFIMO, The Bucharest University of Economic Studies  

2 Institute for Economic Forecasting, Romanian Academy 

 

This version: 01/07/2020  

Abstract. Tests of the relative performance of multiple forecasting models are sensitive to how 

the set of alternatives is defined. Evaluating one model against a particular set may show that it 

has superior predictive ability, while changing the number or type of alternatives in the set may 

show otherwise. This paper focuses on forecasting models based on technical analysis and 

shows that data snooping bias occurs in tests that restrict the size and diversity of prediction 

model universes by ignoring alternatives used by investors and other researchers. Overall, the 

findings command more caution when interpreting positive results regarding the superior 

predictive ability of forecasting models based on technical analysis. 

 

JEL c1assification: C12, C18, G11, G14, G17 

 

Keywords: Superior Predictive Ability; Data Snooping; False Discoveries; Reality Check; 

Technical Analysis; Trading Rule; Efficient Market Hypothesis. 

  



2 
 

1. Introduction 

Searching for better forecasting models is the fundamental objective in many research 

projects with key theoretical, practical applications. Technological advancements and the rapid 

growth in computing power have significantly increased the number of investigated 

alternatives. Analyzing the absolute performance of a model may be desirable in some 

circumstances, but evaluating relative performance is preferred for obvious reasons. How 

should the relative predictive ability of a new model be tested given existing alternatives? On 

the one hand, tests should account for the associated multiple hypotheses by controlling an 

appropriate compound error rate. The Reality Check (RC) test (White, 2000) or the Positive 

False Discovery Rate (pFDR) test (Storey, 2002) are two examples that do this. On the other 

hand, tests should account for the data snooping efforts of others (White, 2000). However, 

considering models that others use is not an established practice in the financial economics 

literature. This implies that previously published results may still be biased due to data 

snooping1. Surprisingly, an investigation into if and how neglecting relevant alternative models 

biases test results has yet to be performed. While many papers have discussed methodologies 

that handle multiple hypotheses, to the extent of our knowledge no paper has analyzed if the 

choice for the set of prediction models (tested hypotheses) has a role in shaping results. 

This paper fills the gap by investigating how choosing an unrepresentative set of 

alternative models, one that does not account for the data snooping efforts of others, influences 

the outcomes of tests that evaluate their relative performance. It focuses on forecasting models 

derived from technical analysis, technical trading rules (TTRs), because the number of 

investigated alternatives is considerable. Also, evaluating the performance of TTRs is often 

used as a test for the weak-form Efficient Market Hypothesis (EMH) and accounting for 

                                                           
1 Data snooping refers to the practice of searching for better performing forecasting models on the same data 

sample. This increases the chances of finding and using lucky models that just fit the noise in the data, have little 

economic significance, and perform poorly in out-of-sample applications. 
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existing, relevant alternatives is especially important in such applications (see, e.g., the 

definition of efficient markets proposed by Timmermann and Granger, 2004). For brevity, the 

occurrence of data snooping is mainly investigated in the context of the RC test defined by 

White (2000), which is more commonly used in the literature, while the pFDR test (Storey, 

2002) and the Superior Predictive Ability (SPA) test (Hansen, 2005) are discussed in 

complementary robustness analyses. 

The paper contributes to the literature in several important ways. First, it investigates if 

the sets of models that are typically used by researchers are representative. Second, it defines 

and performs a Monte Carlo simulation that shows how employing small, unrepresentative sets 

in seemingly data snooping-free statistical tests can still generate false discoveries. Third, it 

performs an extensive empirical investigation into the potential impact of this particular type 

of data snooping bias on test results and conclusions reported in the literature. Overall, we find 

that prediction model sets (“universes”) typically defined and used in the literature are 

unrepresentative for what investors and other researchers use. Also, not accounting for the data 

snooping efforts of others biases test outcomes in favor of falsely showing that some TTRs have 

statistically significant predictive ability. More generally, the results show that controlling for 

the data snooping efforts of others is very important for obtaining results that can withstand the 

test of time. Also, they hint that evaluating relative performance becomes problematic when 

relevant alternatives are not completely observable, such as in the case of tests that evaluate 

forecasting models derived from technical analysis. In this and other similar circumstances, 

new testing methodologies that are robust to the choice for the set of tested prediction models–

null hypothesis–should be developed and used. 

This paper is inspired by and contributes to the recent discussion centered on the impact 

of test misspecification and cherry-picking results on the robustness of reported findings and 

associated inferences. The devastating effects of data snooping are discussed in studies such as 
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Hou et al. (2017), who find that 85% of the 447 investigated “anomalous” variables in asset 

pricing models are unable to explain stock returns and 93% of the remaining ones do not survive 

a more stringent t ≥ 3 threshold. More generally, Kim and Ji (2015) find that the results reported 

in many surveyed papers become questionable after revised standards for evidence are used 

instead. They also observe strong evidence of publication bias in favor of statistically significant 

results. Also, Chang and Li (2017) are unable to replicate the results in more than half of 

published papers in top economics journals. Harvey (2017) and Harvey and Liu (2014) discuss 

the importance of increasing the statistical significance threshold and controlling for data 

snooping in tests that use widely examined data. Harvey (2017) explicitly warns that “with the 

combination of unreported tests, lack of adjustment for multiple tests, and direct as well as 

indirect p-hacking, many of the results being published will fail to hold up in the future.” 

Because of its specific focus, this paper also contributes to the literature examining the 

excess performance (returns) obtained by TTRs in financial markets, which is one of the most 

exposed to the risk of data snooping. Thus, the results have important implications for the 

literature concerned with the theoretical concept of efficient financial markets (Fama, 1970). 

There is a widely accepted view that financial prices/returns are not completely random2. 

However, given existing market frictions and other limitations, this does not directly imply that 

stock markets are not weak-form efficient and that investors are able to earn economic profits 

(Jensen, 1978; Timmermann and Granger, 2004). Park and Irwin (2007) provide a 

comprehensive review of the early literature examining TTR excess performance and find that 

some positive evidence exists. For example, 58 out of 92 “modern” studies conclude in favor 

of technical trading rules having superior predictive ability. Most results show that TTRs can 

predict price movements to a certain extent and can earn excess returns over the buy-and-hold 

                                                           
2 See Grossman and Stiglitz (1980) for theoretical arguments and Lim and Brooks (2011) for empirical evidence. 
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benchmark. However, in some cases, excess returns fade after adjusting for trading costs and 

risk or turn out to be statistically insignificant when accounting for data snooping. 

More recent papers, including many that employ modern RC or FDR tests, report that 

the excess performance of TTRs in developed stock markets has greatly diminished or even 

disappeared. Examples include Neuhierl and Schlusche (2010), Bajgrowicz and Scaillet (2012), 

Shynkevich (2012), or Taylor (2014) for the US market, Ratner and Leal (1999), Fifield et al. 

(2005), or Marshall and Cahan (2005) for others. These results imply that markets have become 

more efficient over time. However, conflicting findings continue to appear, such as in Urquhart 

et al. (2015), who observe that moving average trading strategies based on signal anticipation 

yield superior profits to investors in the US, UK, and Japanese markets. Also, some authors 

find that TTRs remain profitable in emerging stock markets, examples including Metghalchi et 

al. (2009) for Asian markets, Sobreiro et al. (2016) for BRICS and other 6 markets in Central 

and Latin America, Metghalchi et al. (2012) for emerging European markets, or Al-Nassar 

(2014) for stock markets in the Middle-East. Moreover, TTRs have recently been found to earn 

some kind of economic profits in tests that reexamine the foreign exchange market (Coakley et 

al., 2016; Hsu et al., 2016; Zarrabi et al., 2017), the US bond market (Shynkevich, 2016), or the 

commodity futures market (Han et al., 2016). Are TTRs truly capable of earning significant 

excess returns after being extensively used by investors and researchers for so many years? 

Although it is possible that some markets are not efficient or even adaptive (Lo, 2004), test 

misspecification, methodological limitations, and publication bias may also play a role in 

shaping the conclusions in the literature. Based on the results reported in this paper, we argue 

that using unrepresentative rule universes contributes to creating a biased, more favorable 

image regarding the excess performance of TTRs in financial markets. 

The remainder of the paper is organized as follows. Section 2 analyzes if trading rule 

universes typically used in the literature are representative and presents an alternative universe 
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that should better account for what investors and other researchers use. Section 3 discusses 

testing methodologies for the relative performance of multiple forecasting models. Section 4 

develops and presents the results of a Monte Carlo exercise that investigates if and how using 

unrepresentative universes biases results. Section 5 presents an extensive empirical 

investigation that evaluates the potential impact of this particular type of data snooping on the 

results reported in the TTR literature. Section 6 concludes. 

2. Technical Trading Rule Universes 

The performance of TTRs has been (and still is) evaluated in many research articles 

(e.g., Park and Irwin, 2007). Also, many practitioners use technical analysis to make investment 

decisions in financial markets (e.g., Taylor and Allen, 1992; Menkhoff, 2010; Scott et al., 2016). 

Even though there is no indication of the exact number and type of rules that have been 

considered, stakeholders are known to routinely mine financial price data in search of better 

forecasting models, this resulting in countless investigated alternatives over the years. Thus, we 

postulate that the number of distinct prediction models in the real, “true” universe is quite large. 

Are universes typically used in the literature representative for the data snooping efforts 

of others? We answer this question by first defining a trading rule universe that better proxies 

the “true” set. Trading rules that researchers typically use–such as filters, runs, moving 

averages, the RSI, and the Rate of Change indicators–are incorporated first. This initial 

selection is supplemented by trading rules inspired by the practitioner literature. In total, we 

define and use a set that contains 686,304 distinct rules. This is denoted thereafter as 686k. 

Table 1. Independent subsets of trading rules in 686k 
No. Name (Symbol) of Technical Analysis Method (Indicator) Indicator Type Number of trading rules 

1 Accumulation Swing Index (ASI) momentum 210 
2 Arms Ease of Movement (EMV) momentum 840 

3 Aroon Oscillator (AO) standardized momentum 10,507 

4 Balance of Market Power (BMP) standardized momentum 39,207 
5 Bollinger Oscillator (%b) momentum 12,402 

6 Center of Gravity Oscillator (COG)   momentum 252 

7 Chaikin Money Flow (CMF) standardized money flow 25,258 
8 Chaikin Oscillator (CO) money flow 6,174 

9 Chande Momentum Oscillator (CMO) standardized momentum 27,969 

10 Commodity Channel Index (CCI) momentum 616 
11 Demand Index (DI) standardized money flow 25,258 

12 Detrended Price Oscillator (DPO) momentum 672 

13 Dynamic Momentum Index (DYMOI) standardized momentum 37,584 
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14 Filter (F) momentum 51 

15 Inertia Indicator (INI) standardized momentum 22,464 

16 Kase Convergence Divergence (KCD) momentum 43,141 

17 Kase Peak Oscillator (KPO) momentum 8,624 
18 Klinger Volume Oscillator (KVO) money flow 6,174 

19 Know Sure Thing (KST) momentum 5,488 

20 Linear Regression Slope (LRS) momentum 371 
21 Market Volume Impact (MVI) money flow 252 

22 Money Flow Index (MFI) money flow 24,978 

23 Moving Average Convergence Divergence (MACD) momentum 4,704 
24 New Relative Volatility Index (NRVI) standardized momentum 30,331 

25 On Balance Volume (OBV) money flow 210 

26 Plus DM vs. Minus DM crossover (DMI) standardized momentum 441 
27 PI Opinion Oscillator (PI) standardized momentum 7,107 

28 Polarized Fractal Efficiency (PFE) standardized momentum 60,426 

29 Random Walk Index for High prices (RWI) momentum 450 
30 Rate of Change (ROC) momentum 672 

31 Relative Momentum Index (RMI) standardized momentum 48,600 

32 Relative Strength Index (RSI) standardized momentum 10,864 
33 Relative Vigor Index (RVig) standardized momentum 60,426 

34 Relative Volatility Index (RVI) standardized momentum 16,859 

35 Runs Indicator (R) momentum 11 
36 Stochastic Momentum Index (SMI) standardized momentum 33,250 

37 Stochastic Oscillator (%k) standardized momentum 1,769 

38 Stochastic RSI Oscillator (SRSI) standardized momentum 16,859 
39 The Quantitative Candlestick (Qstick) momentum 840 

40 Triple Exponential Smoothing (TRIX) momentum 3,402 

41 True Strength Index (TSI) standardized momentum 60,426 
42 Ultimate Oscillator (UO) standardized momentum 22,842 

43 Vortex Oscillator (VX) standardized momentum 7,114 

44 Williams Variable Accumulation Distribution (WVAD) money flow 210 

The search exercise for popular trading rules may be interesting in its own right and may 

deserve some additional attention. Table 1 lists the 44 technical analysis indicators used to 

construct 686k, while further details are provided in Appendix A from the supplementary 

materials. There, we discuss the terminology, the search procedure, how the choice was made, 

the ways in which specific trading rules are constructed, and the qualitative improvements in 

terms of diversity that this new universe brings over the ones previously used in the literature. 

To the extent of our knowledge, this is the largest trading rule universe considered so far. As a 

comparison, Sullivan et al. (1999) use 7,846 TTRs, Zarrabi et al. (2017) use 7,650 TTRs, 

Neuhierl and Schlusche (2010) use 10,256 TTRs, Shynkevich (2012) uses 12,937 TTRs, Hsu 

et al. (2016) use 21,000 TTRs, Shynkevich (2016) uses 27,000 TTRs, and Coakley et al. (2016) 

use 113,148 TTRs. Evidently, even 686k might still not be representative3, especially because 

                                                           
3 Some authors use TTRs derived from artificial intelligence and computer optimization algorithms (e.g., Brabazon 

el al., 2012). Also, hedge funds and other skilled investors may additionally incorporate more sophisticated 

mathematical rules, or may use combinations of rules from different areas, such as fundamental analysis, 

behavioral finance and so on. In this paper, we implement a conservative approach and disregard such alternatives 

in order to avoid hindsight bias (Timmermann and Granger, 2004) and also because they require more expertise 

and generate higher implementation costs, which makes them accessible to only a small fraction of investors. 



8 
 

the “true” universe is impossible to observe. However, it should be a better proxy because TTRs 

are selected based on what others use and are greatly diversified in terms of both type and 

parameter combinations. 

The representativeness hypothesis for rule universes previously used in the literature 

can now be tested by comparing their effective span4 to that of 686k. For brevity, the universe 

used by Sullivan et al. (1999)–denoted thereafter as STW–is selected as a benchmark, because 

of its relatively large size (only a handful of previously tested universes contain more rules) and 

because data on its span are reported by the authors (Figure 1 in Sullivan et al., 1999, p. 1660). 

Also, in order to ease computational demand, STW is actually compared with 31 of the 44 

independent rule universes contained within 686k5. The test is performed using daily closing 

prices for the Dow Jones Industrial Average (DJIA) index from 1897 to 1986.  

Figure 1. The effective span of trading rule universes 

  
Panel A. Eigenvalues 1 to 200 Panel B. Size vs. 11th eigenvalue 

NOTE. Panel A reports the first 200 eigenvalues for the covariance matrix of excess returns of TTRs in 31 of the 44 independent 

rule universes reported in Table 1, alongside the rule universe used by Sullivan et al. (1999), designated as STW. Panel B plots 

the 11th eigenvalue relative to the size of the rule universe it was estimated on. 

The results are reported in Figure 1 and show that STW is dominated in terms of 

effective span by 19 of the 31 considered universes, including some that have fewer than 7,846 

rules. For example, the universe derived from the MACD indicator has 4,704 rules, yet its span 

                                                           
4 This is defined as the total number of non-zero eigenvalues computed for the covariance matrix of excess returns, 

constructed using all the prediction models in the universe (Sullivan et al., 1999). 
5 The span is not estimated for 13 universes because either they are very large on their own, or because they require 

traded volume data that is not available for the DJIA index throughout the considered sample. 
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is on average 2.08 times higher compared to STW6. The universe with the largest span is derived 

from the DYMOI indicator; it contains 37,584 rules and has a span that is on average 34.06 

times higher compared to STW. Moreover, the results show that the span of rule universes is 

positively correlated with their size, implying that adding practitioner-oriented TTRs to account 

for the data snooping efforts of others helps extracts more information from financial prices. 

This happens even when the newly added rules are correlated with existing ones, although not 

perfectly. The span of 686k is not estimated but should be larger compared to all of the 

considered universes, which are contained within. 

Overall, we find that omitted trading rules that are considered by investors and other 

researchers do generate payoffs that increase the span of rule universes, implying that the 

representativeness assumption fails for rule universes typically used in the literature. Section 4 

explores if and how this leads to data snooping and biased test results. In preparation, Section 

3 discusses testing methodologies used to evaluate TTR excess performance. 

3. Tests of the Relative Performance of Multiple Forecasting Models 

3.1. The Reality Check (RC) test 

A typical test of the relative performance of multiple forecasting models defines the data 

sample and the universe of models to be evaluated, measures the relative performance of each 

model, and evaluates the statistical and economic significance of the results. Such a test is 

biased when not properly handling the errors arising from the associated multiple hypotheses. 

In the seminal paper for the field, White (2000) defines the Reality Check (RC) test and solves 

this issue by controlling for the Family-wise Error Rate, defined as 𝐹𝑊𝐸𝑅 = ℙ(𝑉 ≥ 1), where 

𝑉 is the total number of Type I errors. The RC delivers asymptotically valid p-values for 

evaluating the null hypothesis of no excess performance using an empirical distribution 

estimated via bootstrap simulation. The RC test procedure can be formally defined as follows. 

                                                           
6 This is computed as the average pairwise ratio of the first 200 eigenvalues. This proxies the relative difference 

in the effective spans of the two universes, assuming the eigenvalue series decay similarly. 
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TTRs are constructed from technical analysis indicators (denoted x), which are 

functions 𝑓𝑥: ℝ
𝑛𝑥 → ℝ that measure certain characteristics of price movements7. A TTR 

(denoted k) is defined using a “signal function” 𝛿𝑘,𝑡: ℝ
𝑝𝑘 → {0, 1}, which is based on the values 

of one or more indicators and is used to make predictions about the expected direction of price 

movements over a specified interval, typically set to one observation. The predictions are used 

by investors to mechanically time the market8, with the aim of earning economic returns. A 

trading rule universe is a collection of 𝐾 ∈ ℕ∗ technical trading rules. The RC test is used to 

evaluate the null hypothesis that the best performing TTR in a universe (and, thus, any rule) has 

no superiority over a benchmark prediction model, i.e. that its average excess return is not 

significantly positive. The test first defines the loss function associated with each TTR as: 

 𝐿(𝜁𝑡 ,  𝛿𝑘,𝑡−1) =  − 𝛿𝑘,𝑡−1𝜁𝑡 , 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (1) 

where 𝜁𝑡 denotes market log-returns. Using t–1 for the signal function eliminates 

contemporaneous trading and controls for the look-ahead bias. Considering the buy-and-hold 

rule as the benchmark (𝛿0,𝑡 = 1, 𝑡 = 1, 𝑇̅̅ ̅̅ ) and a sample length of T observations, the excess 

return series (𝑑𝑘,𝑡) and the average excess return (𝑑̅𝑘) for each TTR are: 

 𝑑𝑘,𝑡 =  𝐿(𝜁𝑡,  𝛿0,𝑡−1)  −  𝐿(𝜁𝑡,  𝛿𝑘,𝑡−1), 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (2) 

 
𝑑̅𝑘 =

1

𝑇
∑ 𝑑𝑘,𝑡

𝑇

𝑡=1
, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (3) 

                                                           
7 For example, the Moving Average Convergence/Divergence (MACD) indicator measures price momentum and 

is defined as 𝑓𝑀𝐴𝐶𝐷: ℝ
𝑛𝑀𝐴𝐶𝐷 → ℝ, 𝑓𝑀𝐴𝐶𝐷,𝑡(𝑚, 𝑛, 𝑃) = 𝐸𝑀𝐴𝑡(𝑚, 𝑃) − 𝐸𝑀𝐴𝑡(𝑛, 𝑃), where 𝐸𝑀𝐴𝑡(𝑚, 𝑃) denotes 

an exponential moving average of the price series, with smoothing factor 
2

𝑚+1
, computed at time 𝑡 = 1, 𝑇̅̅ ̅̅ ̅. The 

MACD takes 𝑛𝑀𝐴𝐶𝐷 = 3 parameters, namely the price vector P and the integers m, n representing the length of 

the “lookback window” for the two moving averages. In practical applications, the price series is omitted from the 

definition and the MACD is considered to have 𝑛𝑀𝐴𝐶𝐷 = 2 parameters. 
8 For example, the trading rule “𝑀𝐴𝐶𝐷_1” can be defined using the signal function  𝛿𝑀𝐴𝐶𝐷_1,𝑡 = 𝟙{𝑀𝐴𝐶𝐷𝑡(12,26,𝑃)>0}, 

where 𝟙{∙} represents the indicator function. A value of 1 predicts that prices will increase and 0 that they will 

remain constant or decrease. Thus, this rule instructs the investor to go long when the MACD(12,26) takes positive 

values and to stay out of the market otherwise. Trading rules can be extended to incorporate short positions (in this 

case, the signal function can take an additional value, 𝛿𝑘,𝑡: ℝ
𝑝𝑘 → {−1, 0, 1}), a flexible money management 

strategy that can partially open/close positions (𝛿𝑘,𝑡: ℝ
𝑝𝑘 → [−1, 1]), or margin trading (𝛿𝑘,𝑡: ℝ

𝑝𝑘 → [−𝐿, 𝐿], 

where 𝐿 is the leverage defined as the inverse of the margin requirement). 



11 
 

 The test statistic is defined as the maximum average excess return9 (𝑇𝑛
𝑅𝐶) and is 

evaluated using an empirical distribution (𝑇𝑏,𝑛
𝑅𝐶∗) estimated via bootstrap simulation with 𝐵 

iterations. The asymptotically valid p-value (𝑝̂𝑅𝐶) is directly computed to evaluate the null: 

 𝑇𝑛
𝑅𝐶 = max (𝑛1/2𝑑̅1, … , 𝑛

1/2𝑑̅𝐾), 𝑛 = 𝑇 (4) 

 𝑇𝑏,𝑛
𝑅𝐶∗ = max (𝑛1/2𝑑̅𝑏,1

∗ , … , 𝑛1/2𝑑̅𝑏,𝐾
∗ ), 𝑛 = 𝑇, 𝑏 = 1. . 𝐵 (5) 

 
𝑝̂𝑅𝐶 =

1

𝐵
∑ 𝟙{𝑇𝑏,𝑛

𝑅𝐶∗>𝑇𝑛
𝑅𝐶}

𝐵

𝑏=1
, 𝑛 = 𝑇 (6) 

In its original specification, the RC test does not account for transaction costs. One way 

to consider them would be to compute the ex-post break-even cost for the best TTR in the 

universe and to compare it with market costs (e.g., Metghalchi et al., 2012). However, this 

approach may bias the test in favor of TTRs that trade frequently and have high cost-free 

performance, but low cost-adjusted performance. To correct for this, we substitute Eq. (1) with 

an adjusted specification that directly incorporates trading costs into the loss function: 

 𝐿(𝜁𝑡 ,  𝛿𝑘,𝑡−1) =  𝑐𝑘,𝑡 −  𝛿𝑘,𝑡−1𝜁𝑡, 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (7) 

Eq. (7) also enables incorporating liquidity and price-impact costs, which are often 

overlooked, even though they can potentially bias results in favor of showing TTR excess 

performance more often. Here, the trading cost incurred by rule k at time t is defined as: 

 𝑐𝑘,𝑡 = 𝟙{𝛿𝑘,𝑡−1≠𝛿𝑘,𝑡−2}(0.5% + 𝑙𝑡), 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (8) 

This cost is positive when a trade is executed (if the value of the signal function changes) 

and zero otherwise. When a trade occurs, a fixed broker fee of 0.5% is added to the liquidity 

cost (𝑙𝑡), which is defined based on the daily price range: 

 

𝑙𝑡 =

{
 

 ln (
𝐻𝑡
𝐶𝑡
) , 𝛿𝑘,𝑡−1 > 0

ln (
𝐶𝑡
𝐿𝑡
) , 𝛿𝑘,𝑡−1 = 0

, 𝑡 = 1, 𝑇̅̅ ̅̅ ̅, 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ (9) 

                                                           
9 Even though we recognize that this definition of excess performance can be a bit too narrow, we decide to 

implement it for reasons mainly related to the comparability of results to previous work. Future research can extend 

this investigation to alternative specifications. 
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where 𝐻𝑡, 𝐿𝑡 and 𝐶𝑡 are the high, low, and close prices, respectively. Adjusting for liquidity 

costs in this way is equivalent to simulating trading at the least favorable daily prices: buy trades 

are executed at the maximum and sell trades are executed at the minimum. This should actually 

overestimate the liquidity cost incurred by traders, but should additionally account for the price 

impact cost, which is important especially in thin traded markets. 

3.2.Alternative tests for the Relative Performance of Multiple Forecasting Models 

Several alternatives to the RC testing framework exist. On the one hand, Hansen (2005), 

Romano and Wolf (2005), or Hsu et al. (2010) propose modified specifications that improve 

power or identify all overperforming models, while keeping FWER as the controlled compound 

error measure. In this paper, we use the Superior Predictive Ability (SPA) test of Hansen (2005) 

as a robustness check for the results obtained in the empirical analysis reported in Section 5. 

The main change in the SPA test is the use of a studentized test statistic: 

 
𝑇𝑛
𝑆𝑃𝐴 = max { max

𝑘=1…𝑚

𝑛1/2𝑑̅𝑘
𝜔̂𝑘

, 0}  
(10) 

where 𝜔̂𝑘
2 is a consistent estimator of 𝜔𝑘

2 = 𝑉𝐴𝑅(𝑛1/2𝑑̅𝑘). This adjustment essentially changes the 

way TTR performance is measured by replacing the simple excess return in the RC test with a 

scaled ratio of the excess return to its estimated variance. Additionally, the SPA test uses the 

law of the iterated logarithm to eliminate poorly performing models from the analysis (see 

Hansen, 2005, for more details). 

 On the other hand, Benjamini and Hochberg (1995), Storey (2002), or Barras et al. 

(2010) develop alternative tests of relative performance. These are based on Bonferroni bounds 

and control for the less stringent False Discovery Rate, 𝐹𝐷𝑅 = 𝔼(𝑉/𝑅 | 𝑅 > 0)ℙ(𝑅 > 1), 

where 𝑅 is the total number of rejected hypotheses. In this paper, we use the Positive False 

Discovery Rate (pFDR) test of Storey (2002) as a robustness check for the results obtained in 

the Monte Carlo exercise reported in Section 4. The test is implemented by fixing a rejection 

region [0, 𝛾], where 𝛾 ≥ 0 is the significance level, and using the ordered p-values (𝑝̂𝑘 ≤ 𝑝̂𝑘+1,
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𝑘 = 1, 𝐾 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) obtained from independently testing the K null hypotheses to estimate 𝑝𝐹𝐷𝑅 =

𝔼(𝑉/𝑅 | 𝑅 > 0) using: 

 
𝑝𝐹𝐷𝑅̂𝜆(𝛾) =

𝛾 ∑ 𝟙{𝑝𝑘>𝜆}
𝐾
𝑘=1

(1 − 𝜆)max {1,∑ 𝟙{𝑝𝑘<𝛾}
𝐾
𝑘=1 }[1 − (1 − 𝜆)𝐾]

  
(11) 

where 𝜆 is selected to minimize the mean squared error of the estimates via bootstrap 

simulation. Then, inferences are made based on the q-value (𝑞𝑘), which measures the strength 

of an observed statistic with respect to pFDR and is estimated recursively by: 

 
{
𝑞̂𝑘 = 𝑝𝐹𝐷𝑅̂(𝑝̂𝑘),                             𝑘 = 𝐾            

𝑞̂𝑘 = min{𝑝𝐹𝐷𝑅̂(𝑝̂𝑘), 𝑞̂𝑘+1} , 𝑘 = 1,𝐾 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

(12) 

4. Unrepresentative universes and data snooping bias: a Monte Carlo simulation 

Tests for the relative performance of multiple forecasting models seemingly eliminate 

data snooping by handling for the associated multiple hypotheses. However, because they 

require fixing the set of prediction models beforehand, they implicitly assume that the model 

universe is representative for the data snooping efforts of others. This might not always be the 

case and opens up the possibility of intentional or unintentional human error. In this section, 

we explicitly test the hypothesis that restricting the size and diversity of trading rule universes 

increases the number of false discoveries, i.e. that data snooping bias occurs when the relative 

performance of forecasting models is evaluated using unrepresentative universes. Two distinct 

Monte Carlo exercises are performed, one using the RC test and the other using the pFDR test 

for robustness. They both rely on simulated random data (on which TTRs should have no 

superior predictive ability) and estimate the number of Type I Errors arising in tests performed 

for trading rule universes of varying sizes, which contain at least one “lucky” rule. The actual 

bias is measured by the difference in false discovery rates (FDR)10 between tests that employ 

smaller, restricted universes and tests that employ a benchmark, which is 686k in our case. 

                                                           
10 In this context, we use FDR to denote the number of null rejections divided by the total number of tests 

performed, as opposed to the number of Type I errors divided to the total number of rejections. 
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Six random generated data sets are constructed using a discretized zero-drift Geometric 

Brownian Motion process with volatility parameter 𝜎 ∈ {0.15; 0.20; 0.25; 0.30; 0.35; 0.40}. 

Each set contains 4,000 calendar years of price and volume data, with each year consisting of 

roughly 𝑛 = 260 observations (days). Starting with an initial fixed price of 𝐶0 = 1,000, the 

next day’s closing price is 𝐶𝑡 = 𝐶𝑡−1𝑒
𝜎𝜖𝑡√𝜏, the daily price range is 𝑅𝑡 = 𝐻𝑡 − 𝐿𝑡 = 𝜎𝐶𝑡𝜖𝑡

′√𝜏, 

the high (maximum) price is 𝐻𝑡 = 𝐶𝑡 + 𝑢𝑡𝑅𝑡, the low (minimum) price is 𝐿𝑡 = 𝐶𝑡 − (1 −

𝑢𝑡)𝑅𝑡, and the opening price is 𝑂𝑡 = 𝐿𝑡 + 𝑢𝑡
′𝑅𝑡; where 𝜖𝑡 and 𝜖𝑡

′  are independently drawn from 

a standard normal distribution, 𝑢𝑡 and 𝑢𝑡
′  are independently drawn from a standard uniform 

distribution and 𝜏 = 𝑛−1. The daily volume is 𝑉𝑡 = 𝑐𝑒
𝑥𝑡 , where 𝑥𝑡 is independently drawn from 

a standard normal distribution and 𝑐 = 1,000 is a fixed scale factor. 

4.1.Testing procedure and results for the RC test 

In the case of the RC methodology, the simulation proceeds in two stages. In the first, a 

single-rule universe is constructed using the “luckiest” rule in 686k (the one that generates the 

highest excess return relative to the buy-and-hold benchmark rule) and its performance is 

evaluated using the RC test at standard significance levels of 1%, 5%, and 10%. The distribution 

of the test statistic is estimated using the stationary bootstrap of Politis and Romano (1994), by 

resampling random blocks with average length 𝑞 = 1/√𝑛
4

 (this is based on the recommendation 

of Hall et al., 1995) directly from the excess return series. Resampling blocks of data accounts 

for the autocorrelation in market returns and it is not particularly useful in this exercise; 

however, it is useful for the empirical investigation in Section 5 and it’s also employed here for 

consistency. The number of bootstrap iterations is set to 𝐵 = 1000.  

In the second stage, consecutively larger rule universes are constructed and tested on 

the same sample by adding TTRs to the rule universe until 686k is tested. New TTRs are added 

in the order they are listed in Table A4.2 in the supplementary materials. With each additional 
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rule, the distribution of the RC test statistic is re-estimated by resampling an additional 100 

times11 from its excess return series, and the null hypothesis is re-evaluated. 

Figure 2. False discovery rates (FDR) and the size of the prediction model universes 

  
Sample length: 1 month Sample length: 1 quarter 

  
Sample length: 1 year Sample length: 4 years 

This procedure assures that adding new TTRs does not change the trading rule that is 

evaluated in the RC test, which is always the “luckiest” one in each sample. Instead, the 

characteristics of the RC distribution used to evaluate its excess performance changes, 

potentially influencing the result. Because of the random nature of the data, all RC null 

hypotheses are true and any null rejection constitutes a Type I error, false discovery. To also 

evaluate potential differences in data snooping bias when the sample length varies, we perform 

                                                           
11 The number of bootstrap iterations is restricted to 100 in the second stage to reduce computational demand, 

which would otherwise be very large. In a preliminary analysis, 1000 simulations are used to verify the robustness 

of this choice. The results show that the test outcomes do not materially change. 
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distinct RC tests on non-overlapping subsamples of 1 month, 1 quarter, 1 year and 4 years. In 

total, 4000 independent tests are performed for each rule universe on each data set12. 

For brevity, we focus on rule universes with a size of 2𝑚, 𝑚 = 1,19̅̅ ̅̅ ̅̅ , alongside the 

benchmark 686k universe. An overview of estimated false discovery rates is shown in Figure 2 

(the size of 686k is rounded to 220 for illustrative purposes). A pool regression for aggregate 

false discovery rates is also estimated and the results are reported in Table 2. Detailed results 

for the largest 11 universes, alongside absolute and relative estimates of the amount of data 

snooping bias, are shown in Appendix B of the supplementary materials. 

Table 2. Regression results for false discovery rates arising in RC tests 
This table reports the results of estimating the regression: 

𝐹𝐷𝑅(𝛼) = 𝛽0 + 𝛽1𝑆𝐼𝑍𝐸 + 𝛽2𝑉𝑂𝐿 + 𝛽3𝑆𝐿 + 𝜀 

where 𝐹𝐷𝑅(𝛼) is the number of false discoveries per 100 tests at the 𝛼 significance level, 𝑆𝐼𝑍𝐸 is the base 2 

logarithm of the total number of trading rules in the universe, 𝑉𝑂𝐿 is the volatility of the data generating process, 

and 𝑆𝐿 is the sample length expressed in years. In total, 504 observations are included (21 universes, 6 volatility 

parameters, 4 sample lengths); t-statistics are reported in square parentheses; p-values are reported in round 

parentheses; ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels respectively. 

  𝛼 = 0.10  𝛼 = 0.05  𝛼 = 0.01 

𝛽0  0.3511 

[20.60]*** 

 0.2198 

[15.69]*** 

 0.0898 

[11.99]*** 

𝛽1  -0.0250 

[-33.95]*** 

 -0.0166 

[-27.51]*** 

 -0.0072 

[-22.38]*** 

𝛽2  0.2169 

[4.18]*** 

 0.1528 

[3.58]*** 

 0.0714 

[3.13]*** 

𝛽3  0.0071 

[2.56]** 

 0.0057 

[2.48]** 

 0.0025 

[2.03]** 

Adjusted R2  0.7000  0.6057  0.5045 

F-statistic  392.34 

(0.0000) 

 258.64 

(0.0000) 

 171.71 

(0.0000) 

Several interesting findings are worth noting. First, the number of false discoveries 

significantly increases when the size of trading rule universes decreases, irrespective of test 

significance level, sample length, or volatility. This implies that data snooping bias does occur 

in RC tests when rule universes are small and unrepresentative. The regression reported in Table 

2 shows that halving the number of rules in a universe increases Type I errors on average by 

1.66 percentage points (pp.) at the 5% significance level (2.50 pp. and 0.72 pp., respectively, 

                                                           
12 1000 tests are performed for each sample length. When the length is 4 years, all 4,000 years of simulated data 

are used. When the length is smaller, only the first 1000 periods of that type are used. For example, when the 

sample length is 1 quarter, only the first 1,000 quarters are used. 
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when the 10% and 1% significance levels are used instead). It also shows that the size of the 

rule universe is the most significant determinant of false discoveries. Data snooping bias 

becomes especially large for universes that contain less than 211 trading rules, but remains 

significant even for the other restricted universes. Specifically, the average difference in false 

discoveries between the 10 largest restricted universes and the 686k benchmark is 0.39 to 2.62 

pp. (180% to 975% in relative terms), depending on testing conditions. 

Second, the number of false discoveries also increases with volatility, irrespective of the 

size of the selected universe, test significance level, or sample length. This implies that RC tests 

perform worse in more volatile markets. For example, when 𝜎 = 15%, average false discovery 

rates for the 11 largest universes are 2.69%, 1.28%, and 0.32%, at the 10%, 5%, and 1% levels, 

respectively. However, when 𝜎 = 40% the same averages are 7.08%, 3.82%, and 1.23%. The 

regression reported in Table 2 shows that an increase of 1 pp. in volatility increases Type I 

errors on average by 0.21 pp. at the 5% significance level (0.15  pp. and 0.07 pp., respectively, 

when the 10% and 1% significance levels are used instead). Interestingly, as volatility increases, 

the amount of data snooping bias caused by varying the size of trading rule universes increases 

in absolute terms but seems to decrease in relative terms. For example, the average difference 

in false discovery rates between the 10 largest restricted universes and the 686k benchmark is 

between 0.39 and 2.49 pp. (423% to 975% in relative terms) when 𝜎 = 15% and between 0.57 

and 2.62 pp. (180% to 469% in relative terms) when 𝜎 = 40%. 

Third, the number of false discoveries also increases with the length of the data sample, 

irrespective of the size of the selected universe, test significance level, or volatility. This implies 

that RC tests perform worse also when larger samples are used. The regression reported in Table 

2 shows that increasing the sample length by one year (roughly 260 daily observations) 

increases Type I errors on average by 0.71 pp. at the 5% significance level (0.57  pp. and 0.25 

pp., respectively, when the 10% and 1% significance levels are used instead). In this case, the 
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data snooping bias caused by varying the size of rule universes increases with the length of the 

data sample in both absolute and relative terms. For example, the average difference in false 

discovery rates between the 10 largest restricted universes and the 686k benchmark is between 

0.39 and 2.10 pp. (180% to 452% in relative terms) when a 1 month length is used but increases 

to between 0.63 and 2.62 pp. (220% to 975% in relative terms) when the length is 4 years. 

Overall, we find that using unrepresentative universes significantly overstates the excess 

performance of TTRs. This highlights the need to exercise more caution when interpreting 

existing evidence in favor of the economic relevance of TTRs. Even though previous findings 

are not invalidated, we argue that additional tests are required to evaluate their robustness when 

accounting for the data snooping efforts of others. More generally, the results show that the 

way researchers choose the size and diversity of prediction model universes has a significant 

impact on the outcomes of tests that examine the relative performance of multiple forecasting 

models.  

We also find that the potential of RC tests to eliminate data snooping bias negatively 

correlates with the volatility of the data generating process and the length of the data sample. 

This is a novel, surprising result that has two important implications. On the one hand, TTRs 

are able to fit more of the noise in the data and, thus, are “luckier” in extended samples, 

suggesting that any examination of TTR excess performance should be accompanied by 

robustness tests performed on shorter time intervals. On the other hand, TTRs are also “luckier” 

in more volatile markets, suggesting that testing superior predictive ability in such conditions 

is exposed to additional data snooping risks. As a result, even more caution should be exercised 

when analyzing evidence in favor of the economical relevance of TTRs in markets associated 

with high uncertainty, such as small-cap sector stocks (e.g., Shynkevich, 2012), emerging stock 

markets (e.g., Metghalchi et al., 2012), emerging market currencies (e.g., Hsu et al., 2016), or 

markets in which prices experience persistent declines (bear markets). Moreover, the concerns 
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can be extended to other research areas, such as “anomalous” asset pricing factors based on 

technical analysis, derived using portfolios sorted by volatility (e.g. Han et al., 2013). These 

and other similar findings should be ideally evaluated for robustness when controlling for the 

correlation between market volatility and data snooping bias. 

Finally, the simulation results show that false discoveries are not eliminated when the 

extended 686k rule universe is used in tests, even though they are significantly reduced 

compared to all other restricted universes. This finding raises some questions for researchers 

implementing existing tests of the relative performance of multiple forecasting models. How 

does the “true”, representative universe look like? What happens if more prediction models 

are added? When should one stop adding models? Situations in which the full set of alternatives 

used by others is very difficult, if not impossible, to observe, such as in the case of prediction 

models based on technical analysis, do not allow satisfactory answers to these questions. This 

exposes the associated statistical tests to ambiguity risk and decreases their scientific relevance. 

Ultimately, it makes testing for relative model performance subjective and problematic. 

Because of this, new testing methodologies that are robust to the choice of the prediction model 

universe should be developed and implemented. 

4.2.An illustration of how data snooping bias occurs 

To show how data snooping bias arises in tests of the relative performance of multiple 

forecasting models, we focus on the 1000 simulation results obtained when 𝜎 = 0.30 and the 

sample length is 1 year. Figure 3 displays the empirical distribution of the RC test statistic 

estimated for rule universes of various sizes. For a selection of these, Table 3 provides 

descriptive statistics, the average p-value for the associated RC test, and the estimated 

proportion of false discoveries. On the one hand, the results show that the distribution used to 

evaluate the RC null hypothesis moves to the right as the size of the TTR universe increases, 

which suggests that newly added rules are not perfectly correlated to existing ones (Arellano-
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Valle and Genton, 2008; Hartigan, 2014). On the other hand, the distribution derived from 686k 

dominates the other alternatives at every quantile, this showing that it has a significantly higher 

effective span. Put differently, we find that the distributions shift to the left when TTRs are 

removed from the benchmark universe, which implies that restricting the size of rule universes 

by not considering the data snooping efforts of others generates false discoveries and biases test 

results by decreasing the effective span (informativeness) of tested universes and downward 

biasing critical values used to evaluate null hypothesis. 

Figure 3. Size of rule universes and the empirical distribution of the RC test statistic 

  

Panel A. Probability density Panel B. Cumulative density 

Note. This figure shows the empirical distribution of the test statistic (maximum distributions of excess returns) estimated in 

RC tests that use consecutive larger rule universes of size 2𝑚,𝑚 = 1,19̅̅ ̅̅ ̅̅ . The large 686k universe is distinctively depicted using 

a red line. An intermediate 213 universe, comparable in size to what researchers typically use, is depicted using a black line. 

Table 3. The empirical distribution of the test statistic and outcomes of RC tests 
Panel A: Characteristics of the maximum distribution of excess returns estimated via bootstrap simulation 

log2(Size) 0 2 4 6 8 10 12 14 16 18 19.39 
Average 0.0000 0.0111 0.0150 0.0171 0.0201 0.0243 0.0251 0.0280 0.0297 0.0322 0.0343 

Std. Dev. 0.0133 0.0122 0.0118 0.0107 0.0105 0.0119 0.0119 0.0120 0.0118 0.0119 0.0119 

Skewness 0.0723 0.3361 0.3736 0.7294 0.8194 0.6509 0.6459 0.6724 0.6365 0.5931 0.5707 
Excess Kurtosis 0.4059 0.3360 0.4097 0.6126 0.8198 0.4206 0.4297 0.5201 0.5010 0.4181 0.4052 

Panel B: Outcomes of associated RC tests 

log2(Size) 0 2 4 6 8 10 12 14 16 18 19.39 
Average p-value 0.0527 0.1816 0.2607 0.2928 0.3602 0.4688 0.4882 0.5580 0.6040 0.6660 0.7143 

 [27.99] [35.32] [38.38] [38.88] [42.17] [52.33] [54.03] [60.21] [64.76] [73.52] [81.22] 

FDR(1%) 32.6% 10.7% 6.1% 5.7% 4.2% 2.1% 2.0% 1.4% 1.0% 0.5% 0.2% 
FDR(5%) 65.3% 26.2% 18.6% 16.7% 11.4% 6.1% 5.7% 4.2% 3.4% 2.4% 1.6% 

FDR(10%) 83.6% 42.8% 29.6% 26.3% 20.8% 11.3% 10.3% 7.1% 6.0% 4.4% 3.2% 

Note. Results based on 1000 tests on simulated random data, σ=0.30, sample size=1 year. FDR denotes the proportion of Type 

I errors (false discoveries). Square parentheses are used to report t-statistics. 

4.3.Testing procedure and results for the pFDR test 

We perform a complementary Monte Carlo simulation based on the pFDR test of Storey 

(2002). This can be considered as a robustness check for the results reported so far. For brevity, 
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only a significance level of 𝛾 = 5% and a sample length of 1 year are considered. For each 

sample, the average cost-adjusted excess return (𝑑̅𝑘) of all trading rules in the 686k universe is 

computed. Then, the K null hypotheses 𝐻𝑘
0: 𝑑̅𝑘 ≤ 0 are evaluated using an empirical distribution 

estimated via a bootstrap procedure similar to the RC test but performed independently for each 

rule and with 𝐵 = 500 iterations. Next, for the same rule universes of size 2𝑚, 𝑚 = 1,19̅̅ ̅̅ ̅̅  used 

before, plus the benchmark 686k universe, the K p-values are ordered and the associated q-

values are computed using Eq. (11) and (12) in Section 3.2. For a given sample and rule 

universe, we consider the composite null hypothesis 𝐻0: 𝑑̅𝑘 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1, 𝐾̅̅ ̅̅ ̅ rejected in 

the context of the pFDR test if 𝑞1 ≤ 𝛾. The aggregate proportion of samples for which the null 

is rejected is reported in Panel A of Table 4 and shows that data snooping bias is much more 

prevalent in pFDR tests. This estimated amount does not significantly change when varying the 

size of the trading rule universe (detailed results are available at request) but does seem to be 

positively correlated with the volatility of the data generating process. 

Table 4. The empirical distribution of the test statistic and outcomes of RC tests 
Panel A: Average number of samples in which the null was rejected, divided by the total number of samples 

  σ=0.15  σ=0.20  σ=0.25  σ=0.30  σ=0.35  0.40 

  66.03%  64.39%  67.42%  75.90%  75.90%  72.51% 

Panel B: Average RNR aggregated by the size of TTR universes and volatility 

log2(Size)  σ=0.15  σ=0.20  σ=0.25  σ=0.30  σ=0.35  0.40 

0  65.80%  64.30%  67.30%  75.90%  75.90%  72.50% 

1  38.35%  36.80%  37.10%  40.30%  40.30%  40.30% 

2  32.05%  28.20%  26.50%  25.83%  25.80%  25.88% 

3  35.84%  31.29%  29.69%  28.38%  28.49%  28.98% 

4  38.03%  35.94%  34.90%  33.99%  34.40%  33.20% 

5  36.33%  33.78%  36.02%  37.02%  37.24%  36.70% 

6  26.08%  23.64%  25.87%  27.46%  27.34%  27.09% 

7  23.81%  24.35%  25.01%  25.59%  26.04%  24.47% 

8  3.03%  3.73%  4.75%  5.25%  5.34%  7.48% 

9  3.08%  3.42%  3.96%  4.86%  4.80%  6.40% 

10  1.97%  2.52%  3.04%  3.72%  3.72%  5.58% 

11  2.70%  3.23%  3.59%  4.26%  4.21%  6.07% 

12  3.52%  4.23%  5.45%  5.90%  5.81%  8.53% 

13  2.97%  3.57%  4.06%  4.60%  4.66%  6.35% 

14  2.97%  3.58%  4.14%  4.78%  4.78%  6.41% 

15  2.80%  3.33%  4.09%  4.72%  4.72%  6.54% 

16  2.46%  3.00%  3.73%  4.06%  4.03%  5.60% 

17  3.87%  4.37%  5.15%  5.97%  5.80%  7.32% 

18  6.04%  6.80%  7.46%  8.11%  8.20%  9.60% 

19  5.02%  5.46%  6.04%  6.71%  6.71%  8.01% 

19.39  4.80%  5.38%  5.93%  6.68%  6.69%  8.13% 
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We also count the average number of individual null rejections relative to the total 

number of tested hypotheses, 𝑅𝑁𝑅 = 𝐾−1∑ 𝑞𝑘 ≤ 𝛾𝐾
𝑘=1 , for each sample and each rule 

universe. The average RNRs are reported in Panel B of Table 4 and show that the size of the 

rule universe and the volatility of the data generating process do influence the total proportion 

of relative false discoveries. This resembles the earlier results obtained using the RC test and 

supports the main conclusion that using prediction model universes that do not account for the 

data snooping efforts of others falsely overstates their relative performance.  

Overall, the results show that the pFDR test is significantly more prone to data snooping 

bias in an absolute sense, this being rather expected because of the less stringent nature of the 

error measure used. However, when accepting a certain proportion of false discoveries, we find 

that the negative effects of using restricted prediction model universes can also be found in 

pFDR tests, even though they are less significant in terms of data snooping bias. Specifically, 

the relative number of false discoveries significantly increases when the size of the TTR 

universes is smaller than 28 but is fairly constant otherwise. Finally, data snooping bias also 

increases in pFDR tests with the volatility of the data generating process. Overall, these findings 

support our earlier conclusions based on the RC methodology and show that our results are 

robust to the way TTR excess performance is evaluated. 

5. Data snooping bias and TTR excess performance: an empirical investigation 

In this section, we evaluate if using small, unrepresentative trading rule universes also 

biases tests that employ real stock market data. We consider daily price and volume data for 

individual stocks listed in all markets tracked by Thomson Reuters Eikon on November 14, 

2013, which have at least 5 listings. In total, there are 81 markets that serve 88 countries. For 

each, we select up to 40 companies that are part of the main market index. For indices that 
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contain more companies, only 40 of them are randomly select13. For indices that contain less, 

all companies in the index are selected and the list is supplemented using other listings in the 

descending order of their market capitalization. This results in a sample of 2,579 stocks, for 

which all available historical trading price and volume data are retrieved up to November 14, 

2013. In total 8,667,038 daily stock-price observations are used. A summary of the data sample 

is presented in Appendix C in the supplementary materials, while additional details can be made 

available at request. 

The empirical exercise first uses the RC test to evaluate the excess performance of TTRs 

that are part of the benchmark 686k rule universe. The tests are performed for all stocks on non-

overlapping samples that span one calendar year each. Samples that have less than 65 

observations are excluded because of insufficient liquidity. To estimate the data snooping bias 

associated with restricting the size and diversity of the rule universes, the 44 small, 

unrepresentative universes formed using individual technical analysis indicators (listed in Table 

1) are also tested and the results are compared to the benchmark. These universes are similar to 

the ones typically employed in the literature, in terms of both size and effective span. Higher 

null rejection rates in tests that use the restricted universes compared to the ones that use the 

benchmark would indicate the presence of data snooping bias. Also, the difference would 

provide an estimate of the amount of false discoveries that is due to data snooping. 

5.1.Results for the RC test 

In total, 34,887 tests are performed for the 686k universe and 1,534,970 tests are 

performed for the rule universes constructed using individual indicators. Table 5 provides a 

summary of the results. In the case of the 686k universe, which is presented in Panel A, 

prediction models derived from technical analysis indicators generate positive cost adjusted 

                                                           
13 The companies are ordered by name and then every [N/40] in the list is drawn, where N represents the total 

number of stocks in the index and [x] represents the integer part of x. 
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excess returns in 34,678 tests, which amount to 99.4% of the total. However, when considering 

statistical significance, the RC null hypothesis is rejected only 227 times (0.65% of the total) at 

the 10% level, 96 times (0.27% of the total) at the 5% level, and 14 times (0.04% of the total) 

at the 1% level. The results obtained using the restricted rule universes, which are reported in 

Panel B, show that the RC null hypothesis is rejected 13,525 times (0.88% of the total) at the 

10% level, 5,725 times (0.37% of the total) at the 5% level, and 1,132 times (0.07% of the total) 

at the 1% level. For all significance levels, the average rate of null rejections is approximately 

two times higher for restricted universes compared to the benchmark: null rejections are inflated 

2 times at the 1% level, 1.81 times at the 5% level, and 1.8 times at the 10% level.  

Results grouped by both stock and year are reported in Panel C of Table 5. This enables 

the analysis of instances when at least one of the 44 tests that use unrepresentative rule universes 

rejects the RC null hypothesis; it evaluates the scenario in which researchers independently test 

unrepresentative universes on the same data sample and then make inferences based on a meta-

analysis of their results. The null hypothesis is rejected at least once for 773 stock-years (2.21% 

of the total) at the 10% level, 337 stock-years (0.96% of the total) at the 5% level, and 70 stock-

years (0.20% of the total) at the 1% level. This shows that considering the positive results of 

others without accounting for their data snooping efforts widely increases the number of false 

discoveries. Specifically, the evidence in favor of economically profitable TTRs is inflated on 

average 7.93 times at the 1% level, 6.61 times at the 5% level, and 6.16 times at the 10% level. 

Results grouped by rule universe are reported in Table 6. For the 44 restricted universes, 

rejection rates at the 10% significance level vary from a minimum of 0.22% to a maximum of 

2.99%, with a median (mean) of 1.19% (1.18%). This is significantly higher compared to the 

null rejection rate obtained when the benchmark 686k is used, which is 0.65%. This pattern 

replicates when analyzing test results at the 5% and 1% levels: both median and average 

rejection rates are 1.8-2 times higher when the restricted universes are used, even though the 
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rules in the benchmark generate positive excess returns more often14. The maximum difference 

is recorded for the smallest rule universe, which is the one derived from the Runs indicator. In 

this case, rejection rates are 4.6-7.3 higher, depending on the significance level. 

Table 5. Summary statistics of RC test results on real stock market data 
Panel A. Aggregate results when using 686k 

Statistic  Value  Percent of total 
i. Number of valid tests  34,887  100.00% 

ii. Number of tests in which best TTR obtained positive excess returns  34.678  99.40% 

iii. Number of RC null rejections     
     10% confidence level  227  0.65% 

     5% confidence level  96  0.27% 

     1% confidence level  14  0.04% 
iv. Likelihood of TTRs to repeat positive excess returns┴     

     Conditional on TTR indicator class**  2284  6.54% 

     Conditional on TTR indicator class and trading strategy***  1572  4.50% 
     Conditional on TTR indicator class, trading strategy, and parameters****  21  0.06% 

v. Likelihood of TTRs to repeat economically significant performance (10% significance)┼     

     Unconditional*  5  0.01% 
     Conditional on TTR indicator class**  1  0.00% 

     Conditional on TTR indicator class and strategy***  0  0.00% 

     Conditional on TTR indicator class, strategy and parameters****  0  0.00% 

Panel B. Aggregate results when using 44 small, unrepresentative rule universes 
Statistic  Value  Percent of total 

i. Number of valid tests  1,534,970  100.00% 

ii. Number of tests in which best TTR obtained positive excess returns  1,071,904  69.83% 
iii. Number of RC null rejections     

     10% confidence level  18,132  1.18% 

     5% confidence level  7,867  0.51% 
     1% confidence level  1,242  0.08% 

iv. Likelihood of TTRs to repeat best performance┴     

     Conditional on TTR indicator class, trading strategy, and parameters****  74,502  4.85% 
v. Likelihood of TTRs to repeat economically significant performance (10% significance)┼     

     Unconditional*  496  0.03% 

     Conditional on TTR indicator class, trading strategy, and parameters****  28  0.00% 

Panel C. Results for tests using the 44 restricted rule universes, aggregated at the stock-year level 
Statistic  Value  Percent of total 

i. Number of subsamples  34,887  100.00% 

ii. Number of tests in which TTRs obtained positive excess returns  25,878  74.17% 
iii. Number of subsamples with at least 1 null rejection (out of 44 independent RC tests)     

     10% confidence level  1,399  4.01% 

     5% confidence level  635  1.82% 
     1% confidence level  111  0.31% 

iv. Likelihood of TTRs to repeat best performance┴     

     Conditional on TTR indicator class**  6,965  19.96% 
     Conditional on TTR indicator class and strategy***  6,866  19.68% 

     Conditional on TTR indicator class, strategy and parameters****  1,555  4.45% 

v. Likelihood of TTRs to repeat economically significant performance (10% significance)┼     
     Unconditional*  70  0.20% 

     Conditional on TTR indicator class**  7  0.02% 

     Conditional on TTR indicator class and trading strategy****  7  0.02% 
     Conditional on TTR indicator class, trading strategy, and parameters****  5  0.01% 

NOTE: ┴The number of times in which TTRs earn positive excess returns in two consecutive years, expressed as a percent of the total number 

of stock-years. ┼The number of tests in which the RC null hypothesis of no economic profitability is rejected at the 10% level in two consecutive 

years, expressed as a percent of the total number of stock-years. *Unconditional–estimated for all TTRs in the rule universe. **Conditional 
on TTR indicator class–estimated only for TTRs that are derived from the same technical analysis indicator (entry/exit strategy and parameter 

values can vary). ***Conditional on TTR indicator class and trading strategy–estimated for TTRs that are derived from the same technical 

analysis indicator and the same entry/exit strategy (parameter values can vary). ****Conditional on TTR indicator class, strategy, and 
parameters– estimated for identical TTRs (are the same in terms of all aspects, including parameter values). 

                                                           
14 There are 6 restricted rule universes for which RC null rejection rates are lower compared to 686k. However, 

these occur for the least profitable indicators, which generate positive excess returns less than half of the time and 

implies that rejection rates are low not because data snooping bias decreased, but because the indicators are not 

able to consistently predict price movements. All other results show that null rejections in tests that use restricted 

rule universes are significantly higher compared to those that use the benchmark. 
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Table 6. Null Rejection Rates aggregated by trading rule universe 
Trading rule universe rPR* NRR, α=0.10 NRR, α=0.05 NRR, α=0.01 
Accumulation Swing Index  26.14% 1.72% 0.66% 0.07% 
Arms Ease of Movement  24.92% 0.78% 0.35% 0.07% 

Aroon Oscillator  88.28% 1.41% 0.65% 0.08% 

Balance of Market Power  83.45% 1.20% 0.49% 0.06% 
Bollinger Oscillator  76.55% 1.36% 0.57% 0.08% 

Center of Gravity Oscillator  44.17% 0.25% 0.08% 0.00% 

Chaikin Money Flow  89.51% 1.21% 0.54% 0.08% 
Chaikin Oscillator  68.94% 1.03% 0.45% 0.07% 

Chande Momentum Oscillator  93.03% 1.29% 0.55% 0.09% 

Commodity Channel Index  46.03% 1.00% 0.41% 0.08% 
Demand Index  87.24% 1.61% 0.74% 0.10% 

Detrended Price Oscillator  81.79% 0.79% 0.35% 0.07% 

Dynamic Momentum Index  96.58% 0.80% 0.32% 0.04% 
Filter  50.70% 2.04% 0.87% 0.16% 

Inertia Indicator  92.64% 1.30% 0.57% 0.08% 

Kase Convergence Divergence  97.91% 1.43% 0.62% 0.08% 
Kase Peak Oscillator  94.66% 0.98% 0.41% 0.06% 

Klinger Volume Oscillator  46.99% 0.22% 0.09% 0.01% 

Know Sure Thing  80.78% 1.15% 0.47% 0.06% 
Linear Regression Slope  66.59% 1.04% 0.47% 0.06% 

Market Volume Impact  36.71% 0.40% 0.17% 0.03% 

Money Flow Index  87.85% 1.33% 0.57% 0.08% 
Moving Average Convergence Divergence  88.01% 1.02% 0.43% 0.06% 

New Relative Volatility Index  90.47% 1.10% 0.49% 0.05% 

On Balance Volume  8.85% 0.47% 0.22% 0.04% 
Plus DM vs. Minus DM crossover 57.29% 1.63% 0.69% 0.12% 

PI Opinion Oscillator  84.45% 1.29% 0.55% 0.08% 

Polarized Fractal Efficiency  95.40% 1.30% 0.52% 0.08% 
Random Walk Index for High prices  50.43% 0.97% 0.42% 0.08% 

Rate of Change  70.23% 0.83% 0.37% 0.06% 

Relative Momentum Index  92.47% 1.63% 0.72% 0.11% 
Relative Strength Index  84.86% 1.33% 0.55% 0.09% 

Relative Vigor Index  94.78% 1.73% 0.75% 0.11% 

Relative Volatility Index  87.84% 1.13% 0.47% 0.07% 
Runs  Indicator 33.23% 2.99% 1.42% 0.29% 

Stochastic Momentum Index  92.97% 1.77% 0.76% 0.11% 
Stochastic Oscillator  57.48% 0.93% 0.43% 0.07% 

Stochastic RSI Oscillator  57.10% 0.93% 0.38% 0.05% 

The Quantitative Candlestick  20.76% 0.55% 0.23% 0.04% 
Triple Exponential Smoothing  75.74% 1.50% 0.70% 0.08% 

True Strength Index  89.57% 1.64% 0.72% 0.11% 

Ultimate Oscillator  79.49% 1.18% 0.51% 0.07% 
Vortex Oscillator  89.43% 1.19% 0.48% 0.06% 

Williams Variable Accumulation Distribution  10.20% 0.28% 0.11% 0.01% 

SUMMARY RESULTS FOR THE 44 RESTRICTED RULE UNIVERSES 

Minimum 8.85% 0.22% 0.08% 0.00% 
Maximum 97.91% 2.99% 1.42% 0.29% 

Median 81.29% 1.19% 0.49% 0.07% 

Average 69.83% 1.18% 0.51% 0.08% 
Std. Deviation 25.88% 0.51% 0.23% 0.04% 

BENCHMARK RESULTS–686k 99.40% 0.65% 0.27% 0.04% 

NOTE. *rPR is the rate of positive returns, which is defined as the number of tests for which the excess average return of the best rule was 

higher compared to the buy-and-hold, divided by the total number of tests performed. The Null Rejection Rate (NRR) is the number of tests 

that reject the null hypothesis of no economic profitability at the  level, expressed as a percentage of the total number of tests 
performed. 

 

Overall, we find that the data snooping bias arising from using small, unrepresentative 

universes also inflates the number of null rejections in RC tests performed on real stock market 

data. Because false discoveries skew results in favor of showing TTR excess performance more 

often, this supports our earlier conclusion in favor of exercising more caution when interpreting 

positive results from existing tests examining the superior predictive ability of TTRs. 
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The results obtained when testing the extended 686k rule universe allow us to reconsider 

the economic profitability of TTRs when controlling for the data snooping efforts of others. 

Specifically, we find very few instances in which TTRs display economic relevance. Also, null 

rejection rates (Table 5, Panel A, section iii) are similar and even lower compared to the ones 

obtained when employing the same universe and the same sample length, but randomly 

generated data (Table B3 in the supplementary materials). This implies that the observed null 

rejections fall within the bounds of randomness. Moreover, the likelihood of TTRs replicating 

significant performance in consecutive years is close to zero (Table 5, Panel A, section v). 

Overall, the results show that deviations from market efficiency are small, rare, and most likely 

random. This implies that stock prices are efficient at pricing information obtained using 

technical analysis indicators and supports the weak-form Efficient Market Hypothesis of Fama 

(1970). We thus conclude that TTRs do not have any economic relevance and are not able to 

help investors earn significant, systematic excess returns by timing stock markets around the 

world. This contradicts some previous conclusions reported in the related literature, which are 

more favorable to TTRs. Based on the analysis performed in this paper, we argue that the 

disagreement is at least partially caused by a data snooping bias arising in previous tests from 

using small, unrepresentative universes. 

5.2.Results for the RC test in restricted samples 

 To get a better understanding of the impact of data snooping bias from using small, 

unrepresentative universes in limited data samples, we group and analyze the results by year 

and by stock market. As before, we compare null rejections obtained for the 686k universe, the 

44 restricted universes, and the restricted universes grouped by both stock and year. 

The results aggregated by year are reported in Table 7. On the one hand, they show that 

RC tests using the benchmark 686k rule universe reject the null hypothesis less often compared 

to tests that use restricted rule universes, in any time interval. Depending on the year and on the 
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way the analysis is conducted, the excess performance of TTRs in tests that use restricted 

universes is inflated by up to 24 times. For example, null rejections increase on average 2.26 

times in 2008 at the 1% level, 5.75 times in 2012 at the 5% level and 3.44 times in 2010 at the 

10% level. If more researchers conduct independent tests using unrepresentative rule universes 

and then draw conclusions based on a meta-analysis of their results, false discoveries increase 

by 975% in 2011 at the 1% level, 2275% in 2012 at the 5% level and 1744% in 2010 at the 10% 

level. Overall, the results show that data snooping biases test results in favor of TTR excess 

performance, irrespective of the period in which the analysis is performed. 

Table 7. Null Rejection Rates aggregated by year 

Year 

Number 

of tests 

using 

686k 

 686k  Restricted rule universes  Restricted rule universes 

(aggregated by stock-year) 

 NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01 

 NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01  

NRR, 
=0.10 

NRR, 
=0.05 

NRR, 
=0.01 

1979 4  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1980 18  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1981 86  2.33% 1.16% 1.16%  2.69% 2.16% 1.10%  8.13% 3.48% 1.16% 
1982 94  0.00% 0.00% 0.00%  1.28% 0.14% 0.00%  5.31% 2.12% 0.00% 

1983 97  0.00% 0.00% 0.00%  0.39% 0.00% 0.00%  1.03% 0.00% 0.00% 

1984 133  2.26% 0.75% 0.00%  2.90% 1.65% 0.11%  4.51% 3.00% 1.50% 
1985 202  0.50% 0.00% 0.00%  0.50% 0.20% 0.00%  1.48% 0.49% 0.00% 

1986 214  0.00% 0.00% 0.00%  0.10% 0.00% 0.00%  1.40% 0.00% 0.00% 

1987 247  0.81% 0.00% 0.00%  1.02% 0.53% 0.01%  2.83% 0.80% 0.80% 
1988 278  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1989 293  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 

1990 343  2.04% 1.17% 0.00%  3.20% 1.68% 0.29%  9.32% 4.37% 1.16% 
1991 406  0.00% 0.00% 0.00%  0.22% 0.00% 0.00%  1.97% 0.00% 0.00% 

1992 461  0.65% 0.22% 0.00%  1.19% 0.45% 0.00%  4.77% 2.16% 0.00% 

1993 560  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.17% 0.00% 0.00% 
1994 660  0.45% 0.15% 0.00%  0.79% 0.22% 0.00%  2.72% 0.75% 0.00% 

1995 759  1.05% 0.13% 0.00%  1.29% 0.30% 0.00%  3.42% 1.71% 0.00% 

1996 907  0.44% 0.44% 0.00%  0.87% 0.48% 0.07%  3.19% 1.32% 0.33% 
1997 997  0.60% 0.10% 0.00%  1.35% 0.46% 0.02%  4.91% 2.00% 0.20% 

1998 1083  1.29% 0.37% 0.00%  1.95% 0.79% 0.04%  6.18% 3.13% 0.46% 

1999 1159  0.26% 0.26% 0.00%  0.42% 0.25% 0.00%  1.63% 0.60% 0.08% 
2000 1265  1.26% 0.79% 0.24%  2.33% 1.14% 0.28%  8.14% 3.55% 0.86% 

2001 1353  0.81% 0.22% 0.00%  1.19% 0.39% 0.04%  3.47% 2.06% 0.22% 

2002 1432  0.28% 0.00% 0.00%  0.94% 0.36% 0.00%  4.60% 1.53% 0.13% 
2003 1535  0.00% 0.00% 0.00%  0.04% 0.00% 0.00%  0.58% 0.13% 0.00% 

2004 1620  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.30% 0.12% 0.06% 
2005 1686  0.00% 0.00% 0.00%  0.05% 0.00% 0.00%  0.83% 0.29% 0.05% 

2006 1784  0.22% 0.00% 0.00%  0.33% 0.08% 0.00%  1.56% 0.56% 0.05% 

2007 1941  0.10% 0.10% 0.05%  0.22% 0.10% 0.06%  1.08% 0.46% 0.10% 

2008 2043  4.89% 2.40% 0.34%  8.53% 4.05% 0.77%  23.25% 12.28% 2.59% 

2009 2102  0.10% 0.00% 0.00%  0.06% 0.00% 0.00%  0.57% 0.14% 0.00% 

2010 2223  0.09% 0.00% 0.00%  0.31% 0.11% 0.00%  1.66% 0.67% 0.08% 
2011 2283  0.74% 0.31% 0.04%  1.97% 0.73% 0.07%  8.49% 3.54% 0.43% 

2012 2308  0.35% 0.04% 0.00%  0.57% 0.23% 0.00%  2.38% 0.95% 0.12% 

2013 2311  0.22% 0.13% 0.04%  0.34% 0.15% 0.05%  1.29% 0.51% 0.08% 

Minimum  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 
Maximum  4.89% 2.40% 1.16%  8.53% 4.05% 1.10%  23.25% 12.28% 2.59% 

Median  0.26% 0.00% 0.00%  0.50% 0.20% 0.00%  1.97% 0.67% 0.06% 

Average  0.62% 0.25% 0.05%  1.06% 0.48% 0.08%  3.46% 1.51% 0.30% 
Std. Deviation  0.99% 0.49% 0.20%  1.58% 0.82% 0.23%  4.35% 2.27% 0.56% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  

level, expressed as a percentage of the total number of tests performed. 
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On the other hand, tests that use the 686k universe show temporal variations in the 

excess performance of TTRs and can be used to derive implications for the discussion on time-

varying market efficiency. Specifically, periods in which prediction models have low success 

rates (stock markets are more efficient) relate to calm and favorable (positive) market 

conditions, while periods in which they are able to earn economically significant excess returns 

(stock markets are less efficient) relate to periods of financial, macroeconomic, social 

instability. The most successful year for TTRs is by far 2008, the climax of the recent financial 

crisis. About half of all RC null rejections originate in this year alone. Other periods of financial 

market instability rank high, such as the European sovereign debt crisis around 2011, the dot-

com bubble burst at the beginning of the current millennia, or the Asian financial crisis around 

1998. Also, the average excess returns earned by trading strategies and the null rejection rates 

of RC tests are lower in the first half of the sample, which generally corresponds to a period of 

more stable (rising) markets.  

These findings are consistent with existing evidence that shows rising return 

predictability when prices decline (e.g., Lim and Brooks, 2011) and seem to support the 

Adaptive Market Hypothesis of Lo (2004). They also hint that TTRs may have some merit as a 

risk management aid in timing exit points around the onset of bear markets. However, we argue 

that the results rather support the Efficient Market Hypothesis and reinforce the conclusion that 

TTRs lack economic relevance. First, we show in Section 4 that data snooping bias increases 

with volatility. Thus, the similarities between the null rejection rates obtained in this empirical 

investigation and the ones obtained in the simulation exercise (Section 4) blur the distinction 

between true economic relevant results and data snooping. Second, null rejection rates are low 

even in 2008: they do not exceed 4.89% at the 10% level, 2.4% at the 5% level and 1.16% at 

the 1% level. Most would agree that investors would not use trading strategies with such low 
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maximum success rates. Third, the randomness observed in excess performance would not 

encourage an ex-ante decision to use TTRs in any year. 

Table 8. Null Rejection Rates aggregated by stock market 

Market 

Number of 

tests using 

686k 

 Extended rule universe 

(686k) 

 Restricted rule universes  Restricted rule universes 

(aggregated by stock-year) 

 =0.10 =0.05 =0.01  =0.10 =0.05 =0.01  =0.10 =0.05 =0.01 

AE 295  0.34% 0.00% 0.00%  1.64% 0.56% 0.01%  7.79% 2.37% 0.33% 

AR 600  1.50% 0.17% 0.00%  2.10% 0.65% 0.00%  5.50% 3.00% 0.16% 

AT 301  0.00% 0.00% 0.00%  0.27% 0.06% 0.00%  3.32% 0.66% 0.33% 
AU 865  0.00% 0.00% 0.00%  0.08% 0.00% 0.00%  1.27% 0.23% 0.00% 

BA 75  9.33% 6.67% 5.33%  10.46% 7.74% 5.43%  16.00% 12.00% 8.00% 
BE 352  0.28% 0.00% 0.00%  0.85% 0.47% 0.01%  2.27% 1.13% 0.56% 

BG 143  2.10% 0.70% 0.00%  4.96% 2.93% 0.15%  7.69% 6.29% 1.39% 

BH 260  3.85% 2.31% 0.38%  4.89% 2.62% 0.81%  12.30% 6.92% 1.92% 
BR 574  0.17% 0.17% 0.00%  0.34% 0.19% 0.00%  1.56% 0.52% 0.00% 

BRVM 120  0.83% 0.00% 0.00%  0.45% 0.01% 0.00%  3.33% 0.83% 0.00% 

CA 1060  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.75% 0.00% 0.00% 
CH 342  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.29% 0.00% 0.00% 

CL 532  1.13% 0.75% 0.00%  2.16% 0.85% 0.29%  7.14% 3.00% 0.93% 

CN 349  0.00% 0.00% 0.00%  0.52% 0.08% 0.00%  6.01% 2.29% 0.00% 
CO 168  1.19% 0.00% 0.00%  0.96% 0.64% 0.00%  2.38% 1.19% 0.00% 

CY 222  0.00% 0.00% 0.00%  3.53% 0.92% 0.04%  11.26% 4.95% 0.00% 

CZ 136  0.00% 0.00% 0.00%  0.18% 0.06% 0.01%  0.73% 0.00% 0.00% 
DE 662  0.00% 0.00% 0.00%  0.04% 0.01% 0.00%  0.90% 0.30% 0.00% 

DK 419  0.00% 0.00% 0.00%  0.19% 0.02% 0.00%  2.62% 0.71% 0.00% 

EE 154  2.60% 1.95% 0.00%  4.06% 2.72% 0.42%  6.49% 4.54% 1.94% 
EG 325  2.77% 1.54% 0.00%  3.99% 1.79% 0.17%  12.92% 5.53% 0.61% 

ES 578  0.00% 0.00% 0.00%  0.15% 0.03% 0.00%  2.59% 0.86% 0.00% 

FI 436  0.23% 0.00% 0.00%  0.39% 0.05% 0.00%  2.98% 1.60% 0.00% 
FR 926  0.11% 0.00% 0.00%  0.20% 0.09% 0.00%  1.29% 0.43% 0.10% 

GR 624  1.12% 0.00% 0.00%  2.06% 0.78% 0.03%  8.17% 3.04% 0.16% 

HK 758  0.00% 0.00% 0.00%  0.22% 0.02% 0.00%  0.65% 0.52% 0.00% 
HR 214  0.47% 0.00% 0.00%  2.12% 0.75% 0.07%  7.94% 3.73% 0.00% 

HU 183  0.00% 0.00% 0.00%  0.44% 0.11% 0.00%  2.73% 0.54% 0.00% 

ID 567  0.71% 0.35% 0.00%  1.08% 0.56% 0.02%  3.35% 1.05% 0.35% 

IE 412  0.73% 0.49% 0.00%  1.95% 0.94% 0.04%  5.58% 2.91% 0.48% 

IL 664  0.30% 0.00% 0.00%  1.14% 0.27% 0.00%  3.61% 1.50% 0.00% 

IN 470  0.00% 0.00% 0.00%  0.08% 0.00% 0.00%  1.70% 0.42% 0.00% 
IQ 153  2.61% 0.00% 0.00%  2.80% 1.27% 0.00%  7.84% 3.92% 0.00% 

IS 59  1.69% 1.69% 0.00%  1.57% 1.27% 0.00%  3.38% 3.38% 0.00% 

IT 566  0.00% 0.00% 0.00%  0.21% 0.03% 0.00%  3.71% 1.23% 0.00% 
JO 487  0.21% 0.00% 0.00%  1.32% 0.22% 0.00%  5.95% 1.64% 0.20% 

JP 981  0.00% 0.00% 0.00%  0.07% 0.00% 0.00%  1.01% 0.20% 0.00% 

KE 560  0.00% 0.00% 0.00%  0.75% 0.10% 0.00%  6.78% 2.14% 0.00% 
KR 705  0.00% 0.00% 0.00%  0.02% 0.00% 0.00%  0.85% 0.14% 0.00% 

KW 572  0.17% 0.00% 0.00%  1.52% 0.31% 0.00%  5.41% 2.62% 0.17% 

KZ 45  4.44% 2.22% 2.22%  4.74% 2.52% 1.91%  11.11% 8.88% 2.22% 
LB 115  0.00% 0.00% 0.00%  1.87% 0.98% 0.11%  6.95% 4.34% 2.60% 

LK 609  1.64% 0.82% 0.00%  2.36% 1.29% 0.17%  6.23% 3.77% 0.98% 

LT 257  3.11% 2.33% 0.00%  4.16% 2.50% 0.60%  8.17% 4.66% 1.55% 
LV 182  3.85% 2.75% 1.10%  4.08% 3.12% 1.36%  6.04% 4.39% 2.74% 

MA 400  0.50% 0.25% 0.25%  1.34% 0.61% 0.18%  4.00% 2.25% 0.50% 

MU 147  0.68% 0.00% 0.00%  2.21% 0.54% 0.00%  10.20% 2.72% 0.00% 
MX 485  0.62% 0.21% 0.00%  0.93% 0.56% 0.00%  3.09% 1.44% 0.20% 

MY 963  0.52% 0.00% 0.00%  0.83% 0.32% 0.00%  3.32% 1.34% 0.20% 

NA 193  1.04% 0.00% 0.00%  0.83% 0.29% 0.00%  4.14% 2.59% 1.55% 
NG 217  2.30% 0.00% 0.00%  2.11% 0.47% 0.00%  5.99% 2.76% 0.00% 

NL 833  0.84% 0.12% 0.00%  1.00% 0.52% 0.09%  2.52% 1.44% 0.36% 

NO 622  0.32% 0.16% 0.00%  0.65% 0.12% 0.00%  3.37% 1.28% 0.00% 
NZ 547  1.10% 0.73% 0.00%  1.32% 0.89% 0.12%  3.10% 1.64% 0.91% 

OM 381  3.15% 1.84% 0.00%  3.85% 1.95% 0.11%  10.49% 5.24% 0.78% 

PE 492  3.05% 1.42% 0.41%  4.44% 1.83% 0.43%  10.56% 5.28% 0.81% 
PH 505  0.79% 0.40% 0.00%  1.75% 0.62% 0.07%  5.34% 2.57% 0.19% 

PK 538  0.56% 0.19% 0.00%  1.97% 0.60% 0.02%  5.94% 2.60% 0.18% 
PL 364  0.55% 0.27% 0.00%  0.55% 0.37% 0.01%  1.64% 0.54% 0.27% 

PT 545  0.37% 0.00% 0.00%  2.09% 0.66% 0.00%  8.44% 4.22% 0.00% 

QA 407  0.25% 0.00% 0.00%  0.64% 0.25% 0.01%  2.94% 0.98% 0.24% 
RO 458  1.53% 0.87% 0.00%  2.93% 1.50% 0.15%  6.11% 3.93% 1.09% 

RS 102  1.96% 0.00% 0.00%  5.35% 1.50% 0.04%  13.72% 7.84% 0.00% 

RU 149  3.33% 2.67% 0.00%  4.24% 2.34% 0.12%  8.72% 5.36% 1.34% 
SA 415  0.00% 0.00% 0.00%  0.44% 0.12% 0.00%  3.37% 2.16% 0.00% 
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SE 666  0.00% 0.00% 0.00%  0.26% 0.07% 0.00%  1.95% 0.30% 0.00% 

SG 686  0.15% 0.00% 0.00%  0.53% 0.19% 0.01%  2.18% 0.87% 0.14% 

SI 82  2.44% 1.22% 0.00%  5.70% 3.70% 1.24%  13.41% 9.75% 3.65% 

SK 72  0.00% 0.00% 0.00%  0.85% 0.00% 0.00%  4.16% 0.00% 0.00% 
TH 701  0.71% 0.29% 0.14%  1.36% 0.58% 0.14%  5.13% 2.28% 0.28% 

TN 313  0.00% 0.00% 0.00%  0.30% 0.00% 0.00%  2.55% 0.31% 0.00% 

TR 636  0.31% 0.00% 0.00%  0.42% 0.14% 0.00%  1.41% 0.62% 0.00% 
TW 729  0.00% 0.00% 0.00%  0.18% 0.01% 0.00%  2.19% 0.54% 0.00% 

TZ 69  1.45% 0.00% 0.00%  3.22% 0.79% 0.09%  14.49% 5.79% 4.34% 

UA 153  7.19% 1.96% 0.00%  8.49% 3.59% 0.11%  26.79% 14.37% 1.30% 
UK 821  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.48% 0.00% 0.00% 

US 1072  0.00% 0.00% 0.00%  0.04% 0.00% 0.00%  0.65% 0.18% 0.00% 

VE 138  0.00% 0.00% 0.00%  1.79% 1.18% 0.08%  2.89% 2.89% 1.44% 
VN 227  4.85% 3.52% 0.88%  6.89% 4.09% 1.31%  13.65% 8.81% 3.96% 

ZA 682  0.15% 0.00% 0.00%  0.06% 0.00% 0.00%  0.73% 0.14% 0.00% 

Minimum  0.00% 0.00% 0.00%  0.01% 0.00% 0.00%  0.29% 0.00% 0.00% 

Maximum  9.33% 6.67% 5.33%  10.46% 7.74% 5.43%  26.79% 14.37% 8.00% 
Median  0.42% 0.00% 0.00%  1.11% 0.50% 0.00%  3.86% 2.16% 0.15% 

Average  1.10% 0.51% 0.13%  1.83% 0.87% 0.20%  5.45% 2.77% 0.64% 

(Std. Deviation)  1.67% 1.07% 0.66%  2.05% 1.26% 0.68%  4.56% 2.83% 1.26% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  
level, expressed as a percentage of the total number of tests performed. 
 

Results aggregated by stock market are reported in Table 8. One the one hand, the excess 

performance recorded by TTRs in the 686k universe shows that some asymmetries also exist 

between the different markets in our sample. At the 10% confidence level, no RC null rejections 

occur for 26 stock markets (mainly developed ones), while TTRs earn excess returns 9.33% of 

the time in Bosnia and Herzegovina, 7.19% of the time in Ukraine, 4.85% of the time in 

Vietnam, 4.44% of the time in Kazakhstan, and at rates between 1% and 4% in other 50 (mainly 

emerging) stock markets. As we lower the confidence level towards 1%, TTRs become 

unprofitable in all but 8 stock markets. Overall, these results are consistent with the literature 

showing that TTRs are not relevant in developed stock markets and are more informative and 

more profitable in smaller, less developed ones.  

On the other hand, our analysis shows that the positive results should be treated with 

caution, as they may be impacted by data snooping bias and may not necessarily imply that 

some markets are inefficient. First, given that volatility tends to be higher in emerging and 

frontier markets, TTRs are “luckier” and a higher rate of false discoveries is expected. Second, 

the null rejection rates obtained in tests using 686k are at most similar compared to the ones 

obtained in the simulation exercise presented in Section 4. Only 8 markets can be realistically 

considered as exceptions but these are very small and have important trading barriers for 
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investors. This decreases the likelihood that superior information gained using prediction 

models based on technical analysis is used for making actual investment decisions. Third, the 

rates of null rejections do not surpass 10% even in these markets and are generally low from an 

economic perspective. Because of this, we argue that these results are within the bounds of the 

Efficient Market Hypothesis (Fama, 1970; Jensen, 1978; Timmermann and Granger, 2004). 

Our conclusion thus departs from the related literature that supports the excess performance of 

TTRs in less developed stock markets. 

Comparing the tests conducted using restricted rule universes to the ones that use the 

benchmark shows that data snooping bias is the factor that causes this disagreement. 

Specifically, RC tests that use the 686k universe reject the null hypothesis less often for all 

markets in the sample. For example, compared to 686k, positive discoveries increase 2.13 times 

at the 1% level in tests that use the restricted rule universes for Bahrain. Similarly, positive 

discoveries for The Netherlands increase 4.33 times at the 5% level, while positive discoveries 

for Kuwait increase 8.94 times at the 10% level. In the extreme, but not entirely unrealistic 

scenario in which researchers conduct independent tests using unrepresentative universes and 

then draw conclusions based on a meta-analysis of the reported results, null rejections are 

inflated for Bahrain 5.05 times at the 1% level, for Argentina 17.65 times at the 5% level, and 

for Kuwait 31.82 times at the 10% level. 

5.3.Results for the SPA test 

We evaluate the robustness of the empirical results to changes in the testing 

methodology. Particularly, the data snooping bias is reevaluated using the SPA test of Hansen 

(2005). The rate of null rejections is estimated and compared for tests that use the benchmark 

686k rule universe and tests that use 43 smaller, unrepresentative universes. The same as before 

are used, except that the universes generated by the Filter and Runs indicators (which are very 

small) are merged. For this exercise, only data from 18 emerging stock markets in Central and 
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Eastern Europe (listed in Table 9, Panel C) is considered, because the results in Section 5.2 

show that this is where RC test null rejections predominantly occur. A total of 4,208 tests are 

performed using the benchmark universe and 180,944 tests using the 43 restricted alternatives. 

Table 9. Null rejection rates and data snooping bias in SPA tests 
Panel A: NRR aggregated by rule universe  Panel B: NRR aggregated by year 

 686k  Restricted rule universes 

Rule universe =0.1 =0.05 =0.01  Year =0.1 =0.05 =0.01  Year =0.1 =0.05 =0.01 

%b 3.35% 1.64% 0.38%  1991 0.00% 0.00% 0.00%  1991 3.15% 3.15% 1.37% 

%k 2.99% 1.52% 0.38%  1992 0.00% 0.00% 0.00%  1992 1.95% 1.67% 0.37% 
AO 3.49% 1.64% 0.36%  1993 0.00% 0.00% 0.00%  1993 13.24% 12.34% 9.48% 

ASI 23.08% 21.22% 11.86%  1994 2.70% 0.00% 0.00%  1994 4.90% 4.53% 2.14% 

BMP 3.49% 2.21% 1.00%  1995 0.00% 0.00% 0.00%  1995 3.98% 3.67% 2.28% 
CCI 4.25% 2.28% 0.57%  1996 0.00% 0.00% 0.00%  1996 8.34% 6.58% 3.51% 

CMF 2.85% 1.66% 0.76%  1997 0.00% 0.00% 0.00%  1997 5.59% 5.41% 3.61% 

CMO 2.88% 1.45% 0.36%  1998 0.00% 0.00% 0.00%  1998 5.13% 3.62% 1.47% 
CO 2.50% 1.50% 0.76%  1999 0.00% 0.00% 0.00%  1999 7.35% 6.98% 4.67% 

COG 6.63% 5.30% 1.21%  2000 1.41% 0.70% 0.70%  2000 5.26% 3.32% 1.72% 

DI 3.54% 2.00% 0.48%  2001 1.84% 0.61% 0.00%  2001 3.65% 2.74% 1.46% 
DMI 2.26% 1.07% 0.24%  2002 2.25% 0.56% 0.00%  2002 5.62% 3.78% 1.20% 

DPO 0.95% 0.48% 0.14%  2003 0.00% 0.00% 0.00%  2003 4.72% 4.45% 2.63% 

DYMOI 2.14% 0.97% 0.21%  2004 0.00% 0.00% 0.00%  2004 6.14% 5.80% 3.87% 
EMV 19.77% 18.23% 9.91%  2005 0.41% 0.00% 0.00%  2005 5.74% 5.29% 3.38% 

F 5.44% 3.49% 0.88%  2006 0.00% 0.00% 0.00%  2006 5.15% 4.67% 2.77% 

INI 2.66% 1.40% 0.45%  2007 0.66% 0.33% 0.33%  2007 5.72% 5.32% 3.27% 
KCD 1.28% 0.55% 0.12%  2008 7.59% 4.11% 0.32%  2008 20.54% 10.93% 2.66% 

KPO 1.73% 0.67% 0.14%  2009 0.00% 0.00% 0.00%  2009 4.40% 4.14% 2.52% 

KST 1.52% 0.67% 0.12%  2010 0.00% 0.00% 0.00%  2010 4.32% 4.02% 2.48% 
KVO 4.56% 2.54% 0.45%  2011 1.13% 0.00% 0.00%  2011 4.61% 2.71% 1.14% 

LRS 2.57% 1.05% 0.21%  2012 0.00% 0.00% 0.00%  2012 5.17% 4.50% 2.61% 

MACD 1.05% 0.40% 0.05%  2013 0.00% 0.00% 0.00%  2013 3.96% 3.60% 1.95% 

MFI 3.07% 1.45% 0.33%  Min 0.00% 0.00% 0.00%  Min 1.95% 1.67% 0.37% 

MVI 4.06% 2.76% 0.67%  Max 7.59% 4.11% 0.70%  Max 20.54% 12.34% 9.48% 

NRVI 2.92% 1.52% 0.31%  Median 0.00% 0.00% 0.00%  Median 5.15% 4.45% 2.52% 
OBV 43.96% 43.13% 31.44%  Average 0.78% 0.27% 0.06%  Average 6.03% 4.92% 2.72% 

PFE 3.16% 1.45% 0.33%  St.Dev. 1.70% 0.87% 0.17%  St.Dev. 3.83% 2.47% 1.79% 

PI 2.73% 1.28% 0.29%           

Qstick 22.24% 21.06% 11.64%  Panel C: NRR aggregated by stock market 

RMI 4.33% 2.26% 0.45%  Extended rule universe (686k)  Restricted rule universes 

ROC 1.90% 0.88% 0.19%  Market =0.1 =0.05 =0.01  Market =0.1 =0.05 =0.01 

RSI 3.42% 1.64% 0.48%  BA 9.33% 5.33% 0.00%  BA 13.95% 10.45% 6.48% 
RVI 2.71% 1.31% 0.33%  BG 1.40% 0.70% 0.00%  BG 7.63% 4.91% 2.18% 

RVig 3.26% 1.78% 0.88%  CY 1.80% 0.45% 0.00%  CY 4.92% 2.67% 1.04% 

RWI 5.58% 4.61% 2.14%  CZ 0.00% 0.00% 0.00%  CZ 5.35% 4.79% 2.77% 
SMI 3.33% 1.50% 0.29%  EE 1.30% 1.30% 0.00%  EE 5.68% 4.20% 1.43% 

SRSI 4.23% 2.19% 0.40%  GR 0.80% 0.32% 0.00%  GR 6.28% 4.99% 2.66% 

TRIX 3.11% 1.45% 0.21%  HR 0.47% 0.00% 0.00%  HR 5.17% 3.61% 1.66% 
TSI 3.64% 2.04% 0.38%  HU 1.09% 0.00% 0.00%  HU 6.40% 5.71% 3.43% 

UO 2.57% 1.43% 0.36%  LT 1.56% 0.39% 0.00%  LT 5.86% 4.04% 1.49% 

VX 2.61% 1.33% 0.40%  LV 2.75% 1.10% 1.10%  LV 5.67% 4.36% 1.97% 
WVAD 40.54% 39.42% 26.19%  PL 0.27% 0.00% 0.00%  PL 6.54% 6.06% 3.60% 

Min 0.95% 0.40% 0.05%  RO 0.22% 0.22% 0.00%  RO 5.09% 3.53% 1.51% 

Max 43.96% 43.13% 31.44%  RS 0.00% 0.00% 0.00%  RS 6.36% 3.28% 1.44% 
Median 3.16% 1.52% 0.38%  RU 0.66% 0.66% 0.66%  RU 5.62% 4.14% 2.08% 

Average 6.24% 4.85% 2.53%  SI 3.66% 1.22% 0.00%  SI 11.17% 9.36% 4.23% 

St.Dev. 9.44% 9.49% 6.52%  SK 0.00% 0.00% 0.00%  SK 2.07% 1.65% 0.90% 

Benchmark– 

686k 
0.97% 0.40% 0.07% 

 TR 0.00% 0.00% 0.00%  TR 6.80% 6.34% 4.12% 
 UA 1.96% 0.65% 0.00%  UA 7.14% 3.62% 0.87% 

 Min 0.00% 0.00% 0.00%  Min 2.07% 1.65% 0.87% 

     Max 9.33% 5.33% 1.10%  Max 13.95% 10.45% 6.48% 

     Median 0.95% 0.35% 0.00%  Median 6.07% 4.28% 2.02% 

     Average 1.52% 0.69% 0.10%  Average 6.54% 4.87% 2.44% 
     St.Dev. 2.20% 1.24% 0.29%  St.Dev. 2.53% 2.17% 1.46% 

NOTE. The Null Rejection Rate (NRR) is the number of tests that reject the null hypothesis of no economic profitability at the  

level, expressed as a percentage of the total number of tests performed. 
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Table 9 reports the results, showing that data snooping bias also has a significant impact 

on tests that use the SPA methodology. Particularly, compared to tests that use the 686k 

universe, null rejection rates for unrepresentative universes occur on average (median) 6.4 to 

35.4 (3.2 to 5.3) times more often, depending on the selected confidence level. When 

aggregating the data by year and by stock market, the relative differences in null rejection rates 

are similar. Moreover, many years and markets exist for which tests that use restricted rule 

universes reject the null hypothesis, while tests that use the benchmark do not. Overall, the 

results support earlier conclusions regarding the impact of data snooping bias on tests that 

analyze the relative performance of multiple forecasting models. In particular, they show that 

the excess performance of TTRs is overstated when using small, unrepresentative universes 

also when the SPA test is employed. 

Regarding market efficiency, even though the SPA test is more powerful and rejects the 

null of no economic profitability more often compared to the RC test, analyzing the excess 

performance of TTRs in this context yields that null rejection rates remain scarce. Particularly, 

when employing the 686k universe, only 41 tests (0.97%) reject the null at the 10% confidence 

level, 17 tests (0.40%) reject the null at the 5% confidence level, and 3 tests (0.07%) reject the 

null at the 1% confidence level. Because these results are obtained for some of the smallest 

stock markets in our sample, they provide additional support for the Efficient Market 

Hypothesis and our earlier conclusion that TTRs are not relevant from an economic perspective 

when used by investors for timing stock markets around the world. 

6. Conclusions 

This paper performs a novel investigation into how selecting and using small universes 

of prediction models, which do not account for what investors and other researchers use, biases 

statistical tests that evaluate their relative performance. The paper focuses on the literature 

concerned with the performance of models derived from technical analysis, technical trading 
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rules (TTRs). A preliminary analysis shows that the effective span of trading rule universes is 

positively correlated with their size. Even though universes employed in the literature are 

becoming larger, they do not typically account for the data snooping efforts of others. In 

particular, their size and effective span are lower compared to a more representative universe 

of 686,304 models, which we define and use as a benchmark. 

In a simulation exercise performed on randomly generated data, we find that restricting 

the size and diversity of trading rule universes increases false discoveries and biases RC test 

results in favor of showing that some TTRs have superior predictive ability. False discoveries 

increase with the volatility of the underlying data generating process and the length of the data 

sample. Changing the testing methodology from the RC test of White (2000) to the pFDR test 

of Storey (2002) does not significantly alter these findings. In a complementary empirical 

exercise performed on historical stock market data, we find that using unrepresentative 

universes (comparable in size and information span to the ones that are typically employed in 

the literature) overestimates the economic relevance of TTRs by 1.8-2 times on average. In the 

extreme, but not entirely unrealistic case in which independent researchers perform tests using 

unrepresentative universes and then draw conclusions based on a meta-analysis of their results, 

the excess performance of TTRs is inflated by 6.16-7.93 times on average, and even by as much 

as 32 times. We obtain almost identical results when changing the testing methodology from 

the RC test of White (2000) to the SPA test of Hansen (2005). 

Overall, our findings have several important implications. First, they highlight the need 

to thoroughly investigate and mitigate data snooping as a way to increase the relevance and 

robustness of tests that evaluate the relative performance of multiple forecasting models. This 

contributes to the important debate on the quality of scientific output in the financial economics 

literature (Harvey, 2017). In particular, we argue that previous findings showing TTRs to be 

economically relevant should be treated with more caution. Trading rules can appear relevant 
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even in tests that use randomly generated data and their “luckiness” increases in some setups 

(e.g., higher volatility, longer data samples). As a consequence, existing evidence should be 

reexamined using tests that control for the data snooping efforts of others. New tests should 

also consider and control for this problem. Here, when reevaluating the economic relevance of 

TTRs by accounting for transaction costs and adjusting for data snooping bias using a more 

representative prediction model universe, we find no significant evidence to support that they 

are able to earn excess returns when used for timing stock markets around the world. This 

implies that prices in stock markets incorporate information efficiently relative to a broad set 

of technical trading rules, which supports the weak-form Efficient Market Hypothesis of Fama 

(1970), as opposed to the Adaptive Market Hypothesis of Lo (2004) that has recently gained 

some visibility (Lim and Brooks, 2011). 

Second and more generally, our results imply that data snooping bias occurs and is 

significant in statistical tests that evaluate the relative performance of multiple forecasting 

models without accounting for relevant alternatives. Moreover, when all alternatives are not 

observable, such as in the case of TTRs, then testing for relative performance becomes 

problematic. Testing for absolute performance avoids this problem and should provide more 

robust results, but evaluating relative performance remains important for answering important 

scientific questions. This implies the need to develop new testing methodologies that examine 

the relative performance of multiple forecasting models while handling for the data snooping 

bias caused by subjectively fixing the set of alternatives. 
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Appendix A. Constructing the benchmark 686k trading rule universe 

A1. Motivation 

How large is the “true” universe of relevant technical trading rules? Researchers 

typically test around 103 to 104 of the most popular rules and a few recent papers marginally 

surpass 105. However, anecdotal evidence and a review of the practitioner-orientated literature 

suggests that the universe from which traders select rules is much larger and diverse. More 

specifically: (1) technical analysis is relatively easy and cheap to learn and implement compared 

to other forecasting methods; (2) technological advances (such as increased computing power) 

and wider data availability have decreased the cost of designing, testing and implementing 

mechanical trading systems; (3) there is a wide market for technical analysis services that are 

offered by brokers and financial consultants; (4) there has been rapid development of many 

dedicated software packages that contain hundreds of build-in indicators and also give users the 

possibility to define custom trading rules; (5) the typical procedure for backtesting TTRs 

involves some kind of optimization algorithm that iterates through many possible parameter 

combinations. Also, the attractiveness of technical analysis to investors may have increased due 

to findings that support its predictive power in financial markets, even compared with other 

forecasting methods. For example, Avramov et al. (2018) find that technicians are able to 

predict individual stock returns to economically significant degrees up to a one-year horizon, 

while fundamental analysis has little ability to predict future returns. Also, Lin (2018) finds that 

a technical analysis aligned index exhibits statistically and economically significant in-sample 

and out-of-sample predictive power and outperforms well-known macroeconomic variables. 

The rule universe that we define, denoted as 686k, takes account of these developments and 

should be more representative for the “true” universe that investors and other researchers use.  



A2. The search exercise for popular trading rules 

On the one hand, 686k contains rules that have been extensively used in key related 

papers, such as Brock et al. (1992), Sullivan et al. (1999) or Bajgrowicz and Scaillet (2012). 

Park and Irwin (2007) review the relevant literature on which we base our choice. On the other 

hand, we supplement 686k with other popular trading rules developed by practitioners and not 

used before in statistical tests. In general, the practitioner orientated literature is large and 

consists of articles published in non-scientific journals, books, or various online materials. For 

constructing the trading rules in this paper, we search the Journal of Technical Analysis, 

published by the Chartered Market Technician Association; the IFTA Journal, published by the 

International Federation of Technical Analysts; and the Technical Analysis of Stocks & 

Commodities: The Traders’ Magazine (see www.traders.com/). Technical analysis books, such 

as Wilder (1978), Achelis (2001), or Colby (2002), are also examined. Proposals for trading 

strategies that allegedly “beat the market” are frequently published.  Most of the time, the 

arguments are based on valid economic reasoning. However, these are only accompanied by 

anecdotal evidence, while statistical tests that thoroughly evaluate their performance, especially 

in a way that controls for data snooping, are not implemented.  

We focus on unambiguous trading rules that can be mechanically implemented, 

technical analysis indicators. Depending on the characteristics of their output series, indicators 

can be classified as simple, oscillators, or standardized oscillators. Oscillators are indicators 

that display a mean-reverting behavior and “oscillate” around an “equilibrium” level. 

Standardized oscillators are additionally bounded within a fixed interval, usually [-100, 100] or 

[0, 100]. Depending on their functionality, several types of indicators exist. Trend indicators 

measure the intensity of price movements without measuring their direction. Examples are the 

Average Directional Movement Index or the Commodity Selection Index (Wilder, 1978). 

Momentum indicators measure both the intensity and the direction of price movements. They 



constitute the largest and the most popular (frequently published or analyzed) group of 

indicators. Examples are the Stochastic Oscillator (Lane, 1984), the Relative Strength Index 

(Wilder, 1978), or the Moving Average Convergence Divergence indicator (Appel, 1999). 

Volume indicators measure the amplitude or direction of traded volume. Dormeier (2011) 

provides several examples. Money Flow indicators are volume-adjusted momentum indicators, 

meaning that they measure the momentum of price movements and modify this by 

incorporating information regarding the amount of volume supporting it. Some examples are 

the On Balance Volume (Sweeney, 1997), the Williams Variable Accumulation Distribution 

indicator (Williams, 1986) or the Money Flow Index (Quong and Soudack, 1989). Volatility 

indicators measure the variability of prices or returns. Practitioners use standard measures of 

volatility, such as the standard deviation or the semivariance, alongside specialized measures 

that also use the information in the open, high, and low prices. Examples are the Average True 

Range indicator (Wilder, 1978), the Bollinger Band Width Index (Bollinger, 2001), or the Ulcer 

Index (Martin and McCann, 1989). Market Breadth indicators gauge overall investor attitude 

(optimistic, pessimistic, or neutral) towards the state and future direction of the market. They 

are similar to market sentiment indicators, except they are calculated based on backward-

looking historical market data, instead of forward-looking investor surveys. Colby (2002) gives 

several examples of such indicators, which include the Advance/Decline Ratio and the Breadth 

Advance/Decline Indicator. 

Pure trend, pure volume, and pure volatility indicators are seldom used on their own to 

construct trading rules because they do not provide information regarding the direction of 

expected price movements. Also, market breadth indicators are more appropriate for tactical 

allocation decisions and are difficult to use for predicting expected prices at the individual asset 

level. Thus, given their stand-alone usage, intuitive interpretation, versatility, and popularity, 

we decide to only use momentum and money flow indicators. 



Table A2.1. Summary of technical analysis indicators 
No. Indicator Name (Symbol) Indicator Type References 

1 Accumulation Swing Index (ASI) momentum Wilder (1978) 

2 Arms Ease of Movement (EMV) momentum Arms (1983) 

3 Aroon Oscillator (AO) standardized momentum Chande (1995) 

4 Balance of Market Power (BMP) standardized momentum Livshin (2001) 

5 Bollinger Oscillator (%b) momentum Bollinger (2001) 

6 Center of Gravity Oscillator (COG) momentum Ehlers (2002b) 

7 Chaikin Money Flow (CMF) standardized money flow Chaikin (1994) 

8 Chaikin Oscillator (CO) money flow Ehrlich(2000), Achelis (2001) 

9 Chande Momentum Oscillator (CMO) standardized momentum Colby (2002) 

10 Commodity Channel Index (CCI) momentum Lambert (1982) 

11 Consecutive Runs (CR) momentum  

12 Demand Index (DI) standardized money flow Aspray (1986) 

13 Detrended Price Oscillator (DPO) momentum Achelis (2001) 

14 Dynamic Momentum Index (DYMOI) standardized momentum Chande and Kroll (1994) 

15 Filter (F) momentum Alexander (1961, 1964) 

16 Inertia Indicator (INI) standardized momentum Dorsey (1995) 

17 Kase Convergence Divergence (KCD) momentum Kase (1996) 

18 Kase Peak Oscillator (KPO) momentum Kase (1996) 

19 Klinger Volume Oscillator (KVO) money flow Klinger (1994), Klinger (1995) 

20 Know Sure Thing (KST) momentum Pring (1997) 

21 Linear Regression Slope (LRS) momentum Hayashi (2000) 

22 Market Volume Impact (MVI) money flow Macek (1993) 

23 Money Flow Index (MFI) money flow Quong and Soudack (1989) 

24 Moving Average Convergence Divergence (MACD) momentum Appel (1999) 

25 New Relative Volatility Index (NRVI) standardized momentum Dorsey (1995) 

26 On Balance Volume (OBV) money flow Sweeney (1997) 

27 PDM (+DM) vs MDM (-DM) crossover rule (DMI) standardized momentum Wilder (1978) 

28 PI Opinion Oscillator (PI) standardized momentum Colby (2002) 

29 Polarized Fractal Efficiency (PFE) standardized momentum Hannula (1994) 

30 Random Walk Index for High prices (RWI) momentum Poulos (1991) 

31 Rate of Change (ROC) momentum Pring (1992), Faber (1994) 

32 Relative Momentum Index (RMI) standardized momentum Altman (1993) 

33 Relative Strength Index (RSI) standardized momentum Wilder (1978) 

34 Relative Vigor Index (RVig) standardized momentum Ehlers (2002a) 

35 Relative Volatility Index (RVI) standardized momentum Dorsey (1993) 

36 Stochastic Momentum Index (SMI) standardized momentum Blau (1993) 

37 Stochastic Oscillator (%k) standardized momentum Lane (1984), Schirding (1984) 

38 Stochastic RSI Oscillator (SRSI) standardized momentum Chande and Kroll (1994) 

39 The Quantitative Candlestick (Qstick) momentum Chande and Kroll (1994) 

40 Triple Exponential Smoothing (TRIX) momentum Hutson (1983) 

41 True Strength Index (TSI) standardized momentum Blau (1991) 

42 Ultimate Oscillator (UO) standardized momentum Williams (1985) 

43 Vortex Oscillator (VX) standardized momentum Botes and Siepman (2010) 

44 Williams Variable Accumulation Distribution (WVAD) money flow Williams (1986) 

 

We select the indicators based on their popularity and distinctiveness. Popularity is 

subjectively evaluated using the number of references we find for each indicator. 

Distinctiveness is also subjectively applied as a criterion by avoiding as much as possible 

indicators that have similar characteristics and, thus, produce highly correlated predictions. In 

the end, we decide on a sample of 44 indicators, which are summarized in Table A2.1. For each, 

we provide at least one reference that explains how to implement and interpret its values. For 

brevity, other details are not presented. Many are also described in Colby (2002), while 

additional explanations can be provided at request. 

  



A3. Trading strategies 

Besides incorporating a large and diverse selection of indicators, the new universe 

distinguishes itself by also diversifying the type of entry and exit strategies used to define TTRs. 

This is important, as recent results show that seldom considered strategies may extract valuable 

information from financial price data. For example, Hudson et al. (2017) find that contrarian 

rules are able to better predict prices and are more profitable compared to trend-following rules. 

Three types of entry strategies are implemented. The “standard trend-seeking strategy” 

goes long when the value of an indicator is larger than a specified threshold1. This type of 

strategy can be used for almost any type of indicator, as it does not depend on its characteristics. 

The “trend anticipation strategy” goes long when the value of the indicator increases. This is 

usually implemented using “signal bands (lines)”, which are typically a short-term moving 

average or a delayed series of the indicator2. This type of strategy can mainly be used for 

oscillators, as it specifically relies on their mean-reverting characteristics. Finally, the “trend 

reversal” strategy goes long when unusual low values are reached by the indicator, these 

signaling that the market is “oversold”3. This type of strategy can only be implemented for 

standardized oscillators, which take values in a fixed interval. 

To close positions, exit strategies that mirror the entry ones are used: (1) exit when the 

value of the indicator reaches a threshold that signals that a declining trend is about to begin 

(applicable for all indicators), (2) exit when the value of the indicator crosses below the signal 

band (applicable for oscillators), and (3) exit when a high extreme value is reached for an 

indicator, which signals that the market is “overbought” (applicable for standardized 

                                                           
1 For example, an investor would go long when the MACD indicator takes positive values and would stay out of 

the market otherwise. In this example, the threshold value of zero distinguishes between rising and declining 

expected trends. This threshold is a parameter and other values can be used instead. 
2 For example, when the MACD indicator crosses over its “signal line”, it suggests that a new rising trend is about 

to form and instructs the investor to go long. 
3 The classic example is based on the RSI indicator. Investors go long when the RSI falls below and then rises 

above the threshold value of 20, which is yet another parameter that can be modified as considered. 



oscillators). Some authors test TTRs by closing positions after a designated number of 

observations. This exit strategy is not implemented here because it does not generally 

correspond to how traders make decisions and also because the considered time interval is just 

another parameter that exposes the analysis to an extra layer of data snooping risk,  

The open and exit strategies are applied in all possible combinations to the 44 indicators 

depending on their type. This results in 167 template trading rules that depend on a set of 

parameters, such as the lookback windows for indicators and threshold values for strategies. 

The actual trading rules are then defined by setting values for all parameters of each template 

rule. Note that, because of the known limitations on short selling, we only consider trading rules 

that go long and earn the next day’s market return, while exiting the market is equivalent to 

going into cash and earning a zero return. Section A3 in this supplementary materials presents 

the template trading rules and provides a description of the parameterization procedure, which 

produces universes of between 11 and 60,426 trading rules for each indicator, depending on its 

characteristics, such as the number of parameters and the type of trading strategies it supports. 

A4. Assigning parameters to template trading rules 

Here, we summarize the procedure used to construct the 686,304 trading rules in the 

686k benchmark rule universe. Table A4.1 presents a legend of symbols, while Table A4.2 

presents the template trading rules and detailed instructions and restrictions used to set 

parameters. The parameterization procedure goes as follows. For all trading rule templates, the 

first rule is defined by assigning the minimum value to all parameters. All other rules are 

defined by consecutively incrementing the value of all parameters (in the order they appear in 

the template) until all possible combinations within the defined bounds have been reached. For 

example, in the case of the Balance of Market Power (BMP) indicator, there are five types of 

template trading rules. The first one, “BMP(n) > x”, represents a pure momentum strategy. The 

first set of assigned parameters are n = 2 and x = -90 and make the rule “BMP(2) > -90”, which 



instructs the investor to go long when the value of the 2-day BMP is higher than -90 and stay 

out of the market otherwise. The second rule is “BMP(4) > -90”; the third one is “BMP(6) > -

90” and so on until “BMP(42) > -90” is defined. Then, x is incremented once and “BMP(2) > -

85”, “BMP(4) > -85”, …,“BMP(42) > -85”, “BMP(2) > -80”, “BMP(4) > -85” are defined. This 

continues until the rule “BMP(42) > 90” is defined. The procedure then moves to the second 

template, “BMP(n1) > S(n2)”, and assigns parameters in a similar fashion until all possible 

parameter combinations within the specified bounds have been used. 

Table A4.1. Legend 

Symbol Significance 

# Number of. 

> [Operator] “Greater than.” 

< [Operator] “Lower than.” 

|↗ [Operator] “The value (of the series) on the left falls below and then rises above the value (of 

the series) on the right.” E.g. evaluating xt |↗ yt: if xt-1 ≤ yt-1 and xt > yt then true, else false. 

|↘ [Operator] “The value (of the series) on the left rises above and then falls back below the value 

(of the series) on the right.” E.g. evaluating xt |↘ yt: if xt-1 ≥ yt-1 and xt < yt then true, else false. 

|| A separator between entry rule(s) and exit rule(s) for a trading strategy. E.g. usage: “entry 

rule(s) || exit rule(s)”. When missing, the exit rule is defined as the negated entry rule. 

n, n1, n2, …  Parameters associated with the length of the lookback period (window lengths). 

x, x1, x2, … Parameters associated with threshold values for trading strategies based on technical analysis 

indicators. 

S(n) Signal line (band) based on a simple moving average of historical indicator values, where the 

time window is n observations. 

D(n) Signal line (band) based on a delayed series of historical indicator values, where the delay is n. 



Table A4.2. Indicators, template trading rules, and parameter iteration rules/restrictions 
Indicator (Symbol) Trading rule template  Window length (n) parameters  Threshold (x) parameters  Additional 

restrictions 

 # trading rules 

 # Min Max Incr.  # Min Max Incr.   

Filter (F)              50 

 F > x       1  0.01 0.5 0.01    50 

Runs indicator (R)              11 

 R > x       1 0 10 1    11 

PDM (+DM) vs MDM (-DM) crossover              441 
 DM_PLUS(n1) > DM_MINUS(n2)  2 2 43 2             441 

Accumulation Swing Index (ASI)              210 

  ASI(n1) > S(n2)  2 2 43 2           n2≤14  147 
  ASI(n1) > D(n2)  2 2 43 2           n2≤7  63 

Arms Ease of Movement (EMV)              840 

  EMV(n) > x  1 2 43 1       x=0  42 
  EMV(n1) > S(n2)  2 2 43 1           n2≤14  546 

  EMV(n1) > D(n2)  2 2 43 1           n2≤7  252 

Aroon Oscillator (AO)              10,507 
  AO(n) > x  1 2 43 2  1 -90 90 10    399 

 AO(n) |↗ x1 || AO(n) > x2  1 2 43 3  2 -90 90 10    5054 

 AO(n) |↗ x1 || AO(n) |↘ x2  1 2 43 3  2 -90 90 10    5054 

Balance of Market Power (BMP)              39,207 

  BMP(n) > x  1 2 43 2  1 -90 90 5    777 

  BMP(n1) > S(n2)  2 2 43 3           n2≤14  70 
  BMP(n1) > D(n2)  2 2 43 3           n2≤7  28 

  BMP(n) |↗ x1 || BMP(n) > x2  1 2 43 3  2 -90 90 5    19,166 

  BMP(n) |↗ x1 || BMP(n) |↘ x2  1 2 43 3  2 -90 90 5    19,166 

Bollinger Oscillator (%b)              12,402 

  %B(n) > x  1 2 43 5  1 -100 100 10    189 

  %B(n1) > S(n2)  2 2 43 5           n2≤14  27 
  %B(n1) > D(n2)  2 2 43 5           n2≤7  18 

  %B(n) |↗ x1 || %B(n) > x2  1 2 43 5  2 -150 100 10    6,084 

  %B(n) |↗ x1 || %B(n) |↘ x2  1 2 43 5  2 -150 100 10    6,084 

Center of Gravity Oscillator (COG)              252 

  COG(n) > x  1 2 43 1       x=0  42 

  COG(n1) > S(n2)  2 2 43 2           n2≤14  147 
  COG(n1) > D(n2)  2 2 43 2           n2≤7  63 

Chaikin Money Flow (CMF)              25,258 

  CMF(n) > x  1 2 43 3  1 -90 90 5    518 
  CMF(n1) > S(n2)  2 2 43 3           n2≤14  70 

  CMF(n1) > D(n2)  2 2 43 3           n2≤7  28 

  CMF(n) |↗ x1 || CMF(n) > x2  1 2 43 5  2 -90 90 5    12,321 

  CMF(n) |↗ x1 || CMF(n) |↘ x2  1 2 43 5  2 -90 90 5    12,321 

Chaikin Oscillator (CO)              6,174 

  CO(n1,n2) > x  2 2 43 1       x=0  1,764 
  CO(n1,n2) > S(n3)  3 2 43 2           n2≤14  3,087 

  CO(n1,n2) > D(n3)  3 2 43 2           n2≤7  1,323 

Chande Momentum Oscillator (CMO)              27,969 
  CMO(n) > x  1 2 43 3  1 -95 95 5    546 

  CMO(n1) > S(n2)  2 2 43 5           n2≤14  27 



  CMO(n1) > D(n2)  2 2 43 5           n2≤7  18 

  CMO(n) |↗ x1 || CMO(n) > x2  1 2 43 5  2 -95 95 5    13,689 

  CMO(n) |↗ x1 || CMO(n) |↘ x2  1 2 43 5  2 -95 95 5    13,689 

Commodity Channel Index (CCI)              616 

  CCI(n) > x  1 2 43 3  1 -90 90 5    518 
  CCI(n1) > S(n2)  2 2 43 3           n2≤14  70 

  CCI(n1) > D(n2)  2 2 43 3           n2≤7  28 

Demand Index (DI)              25,258 
  DI(n) > x  1 2 43 3  1 -90 90 5    518 

  DI(n1) > S(n2)  2 2 43 3           n2≤14   70 

  DI(n1) > D(n2)  2 2 43 3           n2≤7   28 
  DI(n) |↗ x1 || DI(n) > x2  1 2 43 5  2 -90 90 5     12,321 

  DI(n) |↗ x1 || DI(n) |↘ x2  1 2 43 5  2 -90 90 5     12,321 

Detrended Price Oscillator (DPO)              672 
  DPO(n) > x  1 2 43 3  1 -20 20 1    574 

  DPO(n1) > S(n2)  2 2 43 3           n2≤14  70 

  DPO(n1) > D(n2)  2 2 43 3           n2≤7  28 

Dynamic Momentum Index (DYMOI)              37,584 

  DYMOI(n1,n2,n3) > x  3 2 43 7  1 10 90 10    1,944 

  DYMOI(n1,n2,n3) > S(n4)  4 2 43 7           n2≤14  432 
  DYMOI(n1,n2,n3) > D(n4)  4 2 43 7           n2≤7  216 

  DYMOI(n1,n2,n3) |↗ x1 || DYMOI(n1,n2,n3) > x2  3 2 43 7  2 10 90 10    17,496 

  DYMOI(n1,n2,n3) |↗ x1 || DYMOI(n1,n2,n3) |↘ x2  3 2 43 7  2 10 90 10    17.496 

Inertia Indicator (INI)              22,464 

  INI(n1,n2,n3) > x  3 2 43 5  1 30 70 4    8,019 
  INI(n1,n2,n3) > S(n4)  4 2 43 5           n2≤14  2,187 

  INI(n1,n2,n3) > D(n4)  4 2 43 5           n2≤7  1,458 

  INI(n1,n2,n3) |↗ x1 || INI(n1,n2,n3) > x2  3 2 43 7  2 30 70 10    5,400 

  INI(n1,n2,n3) |↗ x1 || INI(n1,n2,n3) |↘ x2  3 2 43 7  2 30 70 10    5,400 

Kase Convergence Divergence (KCD)              43,141 

  KCD(n1,n2,n3,n4) > x  4 2 43 10  1 -90 90 10    11,875 
  KCD(n1,n2,n3,n4) > S(n5)  5 2 43 7           n2≤14  2,592 

  KCD(n1,n2,n3,n4) > D(n5)  5 2 43 7           n2≤7  1,296 

  KCD(n1,n2,n3,n4) |↗ x1 || KCD(n1,n2,n3,n4) > x2  4 2 43 15  2 -90 90 15    13,689 

  KCD(n1,n2,n3,n4) |↗ x1 || KCD(n1,n2,n3,n4) |↘ x2  4 2 43 15  2 -90 90 15    13,689 

Kase Peak Oscillator (KPO)              8,624 

  KPO(n1,n2) > x  2 2 43 3  1 -180 180 10    7,252 
  KPO(n1,n2) > S(n3)  3 2 43 3           n2≤14  980 

  KPO(n1,n2) > D(n3)  3 2 43 3           n2≤7  392 

Klinger Volume Oscillator (KVO)              6,174 
  KVO(n1,n2) > x  2 2 43 1       x=0  1,764 

  KVO(n1,n2) > S(n3)  3 2 43 2           n2≤14  3,087 

  KVO(n1,n2) > D(n3)  3 2 43 2           n2≤7  1,323 

Know Sure Thing (KST)              5,488 

  KST(n1,n2) > x  2 2 43 3  1 -50 50 5    4,116 

  KST(n1,n2) > S(n3)  3 2 43 3           n2≤14  980 
  KST(n1,n2) > D(n3)  3 2 43 3           n2≤7  392 

Linear Regression Slope (LRS)              371 

  LRS(n) > x  1 2 43 2  1 -30 30 5    273 
  LRS(n1) > S(n2)  2 2 43 3           n2≤14  70 



  LRS(n1) > D(n2)  2 2 43 3           n2≤7  28 

Market Volume Impact (MVI)              252 
  MVI(n) > x  1 2 43 1       x=0  42 

  MVI(n1) > S(n2)  2 2 43 2           n2≤14  147 

  MVI(n1) > D(n2)  2 2 43 2           n2≤7  63 

Money Flow Index (MFI)              24,978 

  MFI(n) > x  1 2 43 3  1 10 90 5    238 

  MFI(n1) > S(n2)  2 2 43 3           n2≤14  70 
  MFI(n1) > D(n2)  2 2 43 3           n2≤7  28 

  MFI(n) |↗ x1 || MFI(n) > x2  1 2 43 5  2 -90 90 5    12,321 

  MFI(n) |↗ x1 || MFI(n) |↘ x2  1 2 43 5  2 -90 90 5    12,321 

Moving Average Convergence Divergence (MACD)              4,704 

  MACDp*(n1,n2) > x  2 2 43 3  1 -16 16 2    3,332 

  MACD(n1,n2) > S(n3)  3 2 43 3           n3≤14  980 
  MACD(n1,n2) > D(n3)  3 2 43 3           n3≤7  392 

New Relative Volatility Index (NRVI)              30,331 

  NRVI(n1,n2) > x  2 2 43 3  1 20 80 5    2,548 
  NRVI(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  NRVI(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

  NRVI(n1,n2) |↗ x1 || NRVI(n1,n2) > x2  2 2 43 5  2 20 80 5    13,689 

  NRVI(n1,n2) |↗ x1 || NRVI(n1,n2) |↘ x2  2 2 43 5  2 20 80 5    13,689 

On Balance Volume (OBV)              210 

  OBV(n1) > S(n2)  2 2 43 2             147 
  OBV(n1) > D(n2)  2 2 43 2             63 

PI Opinion Oscillator (PI)              7,107 
  PI(n) > x  1 2 43 2  1 5 95 5    399 

  PI(n1) > S(n2)  2 2 43 2           n2≤14  147 

  PI(n1) > D(n2)  2 2 43 2           n2≤7  63 
  PI(n) |↗ x1 || PI(n) > x2  1 2 43 5  2 5 95 5    3,249 

  PI(n) |↗ x1 || PI(n) |↘ x2  1 2 43 5  2 5 95 5    3,249 

Polarized Fractal Efficiency (PFE)              60,426 
  PFE(n1,n2) > x  2 2 43 5  1 -90 90 10    1,539 

  PFE(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  PFE(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 
  PFE(n1,n2) |↗ x1 || PFE(n1,n2) > x2  2 2 43 5  2 -90 90 10    29,241 

  PFE(n1,n2) |↗ x1 || PFE(n1,n2) |↘ x2  2 2 43 5  2 -90 90 10    29,241 

Random Walk Index (RWI) for High prices              450 
  RWI_High(n1) > RWI_Low(n2)  2 2 19 1             324 

  RWI_High(n1) > S(n2)  2 2 19 1           n2≤6  90 

  RWI_High(n1) > D(n2)  2 2 19 1           n2≤3  36 

Rate of Change (ROC)              672 

  ROC(n) > x  1 2 43 3  1 -0.2 0.2 0.01    574 

  ROC(n1) > S(n2)  2 2 43 3           n2≤14  70 
  ROC(n1) > D(n2)  2 2 43 3           n2≤7  28 

Relative Momentum Index (RMI)              48,600 

  RMI(n1,n2) > x  2 2 43 5  1 10 90 5    1,377 
  RMI(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  RMI(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

  RMI(n1,n2) |↗ x1 || RMI(n1,n2) > x2  2 2 43 5  2 10 90 5    23,409 

  RMI(n1,n2) |↗ x1 || RMI(n1,n2) |↘ x2  2 2 43 5  2 10 90 5    23,409 



Relative Strength Index (RSI)              10,864 

  RSI(n) > x  1 2 43 1  1 4 96 2    1,974 
  RSI(n1) > S(n2)  2 2 43 1           n2≤14  546 

  RSI(n1) > D(n2)  2 2 43 1           n2≤7  252 

  RSI(n) |↗ x1 || RSI(n) > x2  1 2 43 3  2 10 90 5    4,046 

  RSI(n) |↗ x1 || RSI(n) |↘ x2  1 2 43 3  2 10 90 5    4,046 

Relative Vigor Index (RVig)              60,426 

  Rvig(n1,n2) > x  2 2 43 5  1 -90 90 10    1,539 
  Rvig(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  Rvig(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

  Rvig(n1,n2) |↗ x1 || Rvig(n1,n2) > x2  2 2 43 5  2 -90 90 10    29,241 

  Rvig(n1,n2) |↗ x1 || Rvig(n1,n2) |↘ x2  2 2 43 5  2 -90 90 10    29,241 

Relative Volatility Index (RVI)              16,859 

  RVI(n1,n2) > x  2 2 43 3  1 10 90 5    3,332 
  RVI(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  RVI(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

  RVI(n1,n2) |↗ x1 || RVI(n1,n2) > x2  2 2 43 5  2 10 90 10    6,561 

  RVI(n1,n2) |↗ x1 || RVI(n1,n2) |↘ x2  2 2 43 5  2 10 90 10    6,561 

Stochastic Momentum Index (SMI)              33,250 

  SMI(n1,n2,n3) > x  3 2 43 10  1 -50 50 5    2,625 
  SMI(n1,n2,n3) > S(n4)  4 2 43 10           n2≤14  250 

  SMI(n1,n2,n3) > D(n4)  4 2 43 10           n2≤7  125 

  SMI(n1,n2,n3) |↗ x1 || SMI(n1,n2,n3) > x2  3 2 43 10  2 -50 50 10    15,125 

  SMI(n1,n2,n3) |↗ x1 || SMI(n1,n2,n3) |↘ x2  3 2 43 10  2 -50 50 10    15,125 

Stochastic Oscillator (%K)              1,769 
  %k(n) > x  1 2 43 3  1 5 95 5    266 

  %k(n1) > S(n2)  2 2 43 5           n2≤14  27 

  %k(n1) > D(n2)  2 2 43 5           n2≤7  18 
  %k(n) |↗ x1 || %k(n) > x2  1 2 43 5  2 10 90 10    729 

  %k(n) |↗ x1 || %k(n) |↘ x2  1 2 43 5  2 10 90 10    729 

Stochastic RSI Oscillator (SRSI)              16,859 
  SRSI(n1,n2) > x  2 2 43 3  1 10 90 5    3,332 

  SRSI(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  SRSI(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 
  SRSI(n1,n2) |↗ x1 || SRSI(n1,n2) > x2  2 2 43 5  2 10 90 10    6,561 

  SRSI(n1,n2) |↗ x1 || SRSI(n1,n2) |↘ x2  2 2 43 5  2 10 90 10    6,561 

The Quantitative Candlestick (Qstick)              840 
  Qstick(n) > x  1 2 43 1       x=0  42 

  Qstick(n1) > S(n2)  2 2 43 1           n2≤14  546 

  Qstick(n1) > D(n2)  2 2 43 1           n2≤7  252 

Triple Exponential Smoothing (TRIX)              3,402 

  TRIX(n1,n2) > x  2 2 43 5  1 -90 90 5    2,997 

  TRIX(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 
  TRIX(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

True Strength Index (TSI)              60,426 

  TSI(n1,n2) > x  2 2 43 5  1 -90 90 10    1,539 
  TSI(n1,n2) > S(n3)  3 2 43 5           n2≤14  243 

  TSI(n1,n2) > D(n3)  3 2 43 5           n2≤7  162 

  TSI(n1,n2) |↗ x1 || TSI(n1,n2) > x2  2 2 43 5  2 -90 90 10    29,241 

  TSI(n1,n2) |↗ x1 || TSI(n1,n2) |↘ x2  2 2 43 5  2 -90 90 10    29,241 



Ultimate Oscillator (UO)              22,842 

  UO(n1,n2,n3) > x  3 2 43 7  1 10 90 10    1,944 
  UO(n1,n2,n3) > S(n4)  4 2 43 7           n2≤14  432 

  UO(n1,n2,n3) > D(n4)  4 2 43 7           n2≤7  216 

  UO(n1,n2,n3) |↗ x1 || UO(n1,n2,n3) > x2  3 2 43 10  2 10 90 10    10,125 

  UO(n1,n2,n3) |↗ x1 || UO(n1,n2,n3) |↘ x2  3 2 43 10  2 10 90 10    10,125 

Vortex Oscillator (VX)              7,114 

  VX(n) > x  1 2 43 3  1 -90 90 5    518 
  VX(n1) > S(n2)  2 2 43 3           n2≤14  70 

  VX(n1) > D(n2)  2 2 43 3           n2≤7  28 

  VX(n) |↗ x1 || VX(n) > x2  1 2 43 5  2 -90 90 10    3,249 

  VX(n) |↗ x1 || VX(n) |↘ x2  1 2 43 5  2 -90 90 10    3,249 

Williams Variable Accumulation Distribution (WVAD)              210 

  WVAD(n1) > S(n2)  2 2 43 2           n2≤14   147 
  WVAD(n1) > D(n2)  2 2 43 2           n2≤7   63 

NOTE: The columns in this table present the following information on the construction of TTRs: 

Column 1: Indicator name and symbol. 

Column 2: Trading rule templates. 

Columns 3-6: Parameterization rules for window length parameters:  

Column 3: the number of window-length parameters associated with each the trading rule template; 

Column 4: the minimum value for this type of parameter. 

Column 5: the maximum value for this type of parameter. 

Column 6: the increment value for this type of parameter. 

Columns 7-10: Parameterization rules for threshold parameters (similar to the window-length parameters in columns 3-6). 

Column 11: Additional restrictions. 

Column 12: The total number (sum) of trading rules constructed after applying the parameterization procedure for each template trading rule or indicator. 

Aggregate values at the indicator level are additionally underlined. 

  

*MACDp represents the Moving Average Convergence Divergence (MACD) indicator expressed as a relative difference between the two moving average 

components. Specifically, if STMA designates the short-term moving average and LTMA designates the long-term one, then MACDp = (STMA – LTMA) / LTMA. 

For comparison, in its standard form, MACD = STMA – LTMA. 

 

  



References 

Achelis, S. B., 2001. Technical Analysis from A to Z. New York, McGraw Hill. Available at: 

http://freetradingdownloads.com/Technical%20Analysis%20from%20A%20to%20Z.pdf 

(accessed January 24, 2017). 

Alexander, S. S., 1961. Price movements in speculative markets: Trends or random walks. 

Industrial Management Review, 2, 7-27. 

Alexander, S. S., 1964. Price Movements in Speculative Markets: Trends or Random Walks. 

Industrial Management Review, 5, 25-46. 

Altman, R., 1993). Relative Momentum Index: Modifying Rsi. Technical Analysis of Stocks 

& Commodities, 11(2), 57-60. 

Appel, G., 1999. Technical Analysis Power Tools for Active Investors. Financial Times 

Prentice Hall. 

Arms, R. W., 1983. Volume cycles in the stock market: market timing through equivolume 

charting. Dow Jones-Irwin. 

Aspray, T.E., 1986. Fine-tuning the demand index. Technical Analysis of Stocks & 

Commodities, 4(4), 141-143. 

Avramov, D., Kaplanski, G., Levy, H., 2018. Talking Numbers: Technical versus fundamental 

investment recommendations. Journal of Banking and Finance, 92, 100-114. 

Bajgrowicz, P., Scaillet, O., 2012. Technical trading revisited: False discoveries, persistence 

tests, and transaction costs. Journal of Financial Economics, 106(3), 473-491. 

Blau, W., 1991. True Strength Index. Technical Analysis of Stocks & Commodities, 9(11), 

438-446. 



Blau, W., 1993. Stochastic Momentum. Technical Analysis of Stocks & Commodities, 11(1), 

11-18. 

Bollinger, J., 2001. Bollinger on Bollinger bands. McGraw Hill Professional. 

Botes, E., Siepman, D., 2010. The Vortex Indicator. Technical Analysis of Stocks & 

Commodities, 28(1), 20-30. 

Brock, W., Lakonishok, J., LeBaron, B., 1992. Simple technical trading rules and the 

stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764. 

Chaikin, M., 1994. Chatting With Marc Chaikin. Technical Analysis of Stocks & 

Commodities, 12(1), 30-37. 

Chande, T., 1995. The Time Price Oscillator. Technical Analysis of Stocks & Commodities, 

13(9), 369-374. 

Chande, T. S., Kroll, S., 1994. The New Technical Trader. John Wiley & Sons. 

Colby, R.W., 2002. The Encyclopedia Of Technical Market Indicators, Second Edition. 

McGraw-Hill. 

Dormeier, B. P., 2011. Investing with Volume Analysis. Identify, Follow, and Profit from 

Trends. FT Press. 

Dorsey, D.G., 1993. The Relative Volatility Index. Technical Analysis of Stocks & 

Commodities, 11(6), 253-256. 

Dorsey, D.G., 1995. Refining the Relative Volatility Index. Technical Analysis of Stocks & 

Commodities, 13(9), 388-391. 

Ehlers, J.F., 2002a. Relative Vigor Index. Technical Analysis of Stocks & Commodities, 

20(1), 16-20. 



Ehlers, J.F., 2002b. The Center Of Gravity Oscillator. Technical Analysis of Stocks & 

Commodities, 20(5), 20-24. 

Ehrlich, C.F., 2000. Using Oscillators With On-Balance Volume. Technical Analysis of 

Stocks & Commodities, 18(9), 22-29. 

Faber, B.R., 1994. The Rate Of Change Indicator. Technical Analysis of Stocks & 

Commodities, 12(10), 403-405. 

Hannula, H., 1994. Polarized Fractal Efficiency. Technical Analysis of Stocks & 

Commodities, 12(1), 38-41. 

Hayashi, F., 2000. Econometrics. Princeton University Press. 

Hudson, R., McGroarty, F., Urquhart, A., 2017. Sampling frequency and the performance of 

different types of technical trading rules. Finance Research Letters, 22, 136-139. 

Hutson, J.K., 1983. Good Trix. Technical Analysis of Stocks & Commodities, 1(5), 105-108. 

Kase, C. A., 1996. Trading with the odds: using the power of probability to profit in the futures 

market. Irwin Professional Publishing. 

Klinger, S.J., 1994. The Klinger Volume Oscillator (KVO): A Theoretical Model. Journal of 

Technical Analysis, 44, 45-52. 

Klinger, S.J., 1995. Identifying Trends with Volume Analysis. Technical Analysis of Stocks 

& Commodities, 15(12), 556-560. 

Lambert, R.D., 1982. Commodity Channel Index: Tool for Trading Cyclic Trends. Volume. 

Technical Analysis of Stocks & Commodities, 1(5), 120-122. 

Lane, G.C., 1984. Lane's Stochastics. Technical Analysis of Stocks & Commodities, 2(3), 87-

90. 



Lin, Q., 2018. Technical analysis and stock return predictability: An aligned approach. Journal 

of Financial Markets, 38, 103-123. 

Livshin, I., 2001. Balance Of Market Power. Technical Analysis of Stocks & Commodities, 

19(8), 18-32. 

Macek, A.J., 1993. Combining Volume And Market Change. Technical Analysis of Stocks & 

Commodities, 11(4), 162-165. 

Martin, P. G., McCann, B. B., 1989. The Investor's Guide to Fidelity Funds. John Wiley & 

Sons. 

Park, C.H., Irwin, S.H., 2007. What do we know about the profitability of technical analysis?. 

Journal of Economic Surveys, 21(4), 786-826. 

Poulos, E.M., 1991. Of Trends And Random Walks. Technical Analysis of Stocks & 

Commodities, 9(2), 49-52. 

Pring, M. J., 1997. Martin Pring on market momentum. McGraw-Hill. 

Pring, M.J., 1992. Rate of Change. Technical Analysis of Stocks & Commodities, 10(8), 325-

327. 

Quong, G., Soudack, A., 1989. Volume-weighted RSI: money flow. Technical Analysis of 

Stocks & Commodities, 7(3), 76-77. 

Schirding, H., 1984. Stochastic Oscillator. Technical Analysis of Stocks & Commodities, 

2(3), 94-97. 

Sullivan, R., Timmermann, A., White, H., 1999. Data‐snooping, technical trading rule 

performance, and the bootstrap. The Journal of Finance, 54(5), 1647-1691. 

Sweeney, J., 1997. On-Balance Volume. Technical Analysis of Stocks & Commodities, 

15(10), 468-471. 



Wilder, J. W., 1978. New concepts in technical trading systems. Trend Research. 

Williams, L., 1985. The Ultimate Oscillator. Technical Analysis of Stocks & Commodities, 

3(4), 140-141. 

Williams, L.R., 1986. The Secrets of Selecting Stocks for Immediate and Substantial Gains. 

Windsor Books; 2 edition. 

  



Appendix B. False discoveries and data snooping bias in RC tests estimated via Monte Carlo Simulation 

Table B1. Sample length of 1 month 

Significance level:  𝛼 = 10%  𝛼 = 5%  𝛼 = 1% 

σ 
No. TTRs   

0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40 

1024  6.03 6.84 7.22 7.32 7.65 7.82  3.86 4.80 5.05 5.15 5.41 5.72  1.56 2.13 2.49 2.41 2.52 2.77 

2048  2.90 3.49 3.82 3.75 3.84 4.20  1.58 2.15 2.41 2.41 2.34 2.69  0.60 0.83 0.84 1.11 0.98 1.17 

4096  2.14 2.68 2.91 2.88 2.87 3.35  1.14 1.61 1.61 1.68 1.67 2.01  0.40 0.59 0.58 0.85 0.68 0.78 

8192  2.01 2.54 2.53 2.41 2.53 2.78  1.05 1.40 1.44 1.48 1.34 1.66  0.36 0.50 0.49 0.68 0.56 0.57 

16384  1.96 2.45 2.48 2.27 2.36 2.57  1.03 1.37 1.37 1.41 1.24 1.52  0.36 0.50 0.48 0.64 0.53 0.55 

32768  1.92 2.38 2.38 2.21 2.30 2.54  0.97 1.36 1.37 1.35 1.22 1.44  0.36 0.47 0.47 0.62 0.51 0.55 

65536  1.71 2.26 2.24 2.13 2.16 2.47  0.83 1.28 1.25 1.28 1.16 1.37  0.31 0.43 0.43 0.57 0.46 0.53 

131072  1.68 2.24 2.20 2.10 2.15 2.47  0.83 1.27 1.23 1.27 1.16 1.35  0.30 0.40 0.42 0.54 0.46 0.52 

262144  0.74 1.25 1.36 1.39 1.49 1.84  0.39 0.62 0.66 0.82 0.84 0.89  0.14 0.20 0.23 0.34 0.30 0.35 

524288  0.45 0.85 0.89 1.09 1.10 1.31  0.27 0.45 0.45 0.61 0.64 0.66  0.06 0.15 0.18 0.22 0.23 0.25 

688896  0.39 0.68 0.70 0.92 0.98 1.12  0.22 0.35 0.41 0.51 0.53 0.57  0.06 0.12 0.14 0.15 0.22 0.22 

Absolute data snooping bias* 

Minimum  0.06 0.17 0.19 0.17 0.12 0.19  0.05 0.10 0.04 0.10 0.11 0.09  0.00 0.03 0.04 0.07 0.01 0.03 

Average  1.76 2.02 2.10 1.84 1.87 2.02  0.98 1.28 1.27 1.24 1.17 1.36  0.39 0.50 0.52 0.65 0.50 0.58 

Maximum  5.64 6.16 6.52 6.40 6.67 6.70  3.64 4.45 4.64 4.64 4.88 5.15  1.50 2.01 2.35 2.26 2.30 2.55 

Relative data snooping bias** 

Minimum  15% 25% 27% 18% 12% 17%  23% 29% 10% 20% 21% 16%  0% 25% 29% 47% 5% 14% 

Average  452% 297% 300% 199% 190% 180%  443% 366% 311% 242% 221% 239%  642% 417% 372% 432% 229% 265% 

Maximum  1446% 906% 931% 696% 681% 598%  1655% 1271% 1132% 910% 921% 904%  2500% 1675% 1679% 1507% 1045% 1159% 

Note: This table reports the number of false discoveries per 100 tests, aggregated by the size of rule the universe, the volatility of the data generating process and 

significance level for the RC test. 

*Absolute data snooping bias denotes the average difference in the number of false discoveries between the 10 restricted (smaller) rule universes and the benchmark 

rule universe; it is expressed as a number per 100 simulations, i.e. percentage points.  

**Relative data snooping bias denotes the average percentage difference in the number of false discoveries between the 10 restricted (smaller) rule universes and 

the benchmark rule universe. It is calculated as the absolute bias divided by the number of false discoveries obtained for the benchmark universe. 

 

  



Table B2. Sample length of 1 quarter 

Significance level:  𝛼 = 10%  𝛼 = 5%  𝛼 = 1% 

σ 

No. TTRs   

0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40 

1024  6.80 7.40 7.37 7.70 7.78 8.09  4.39 5.09 5.32 5.53 5.84 5.89  1.65 2.51 2.46 2.63 2.71 2.81 

2048  3.12 3.81 3.98 4.31 4.48 4.48  1.80 2.44 2.47 2.67 2.58 2.86  0.61 0.94 1.08 1.02 1.07 1.07 

4096  2.15 2.85 3.12 3.20 3.34 3.42  1.19 1.70 1.73 1.93 1.85 2.08  0.40 0.62 0.62 0.68 0.72 0.73 

8192  1.91 2.46 2.46 2.68 2.58 2.83  1.04 1.43 1.44 1.47 1.46 1.56  0.34 0.54 0.49 0.55 0.54 0.57 

16384  1.84 2.34 2.29 2.57 2.33 2.42  0.99 1.38 1.32 1.32 1.30 1.40  0.32 0.53 0.44 0.50 0.49 0.51 

32768  1.80 2.29 2.27 2.49 2.18 2.36  0.96 1.34 1.28 1.28 1.26 1.39  0.32 0.50 0.44 0.47 0.47 0.50 

65536  1.71 2.23 2.19 2.40 2.11 2.30  0.91 1.29 1.22 1.25 1.20 1.36  0.31 0.48 0.43 0.46 0.46 0.49 

131072  1.71 2.21 2.19 2.38 2.10 2.29  0.90 1.29 1.22 1.24 1.20 1.36  0.31 0.48 0.43 0.46 0.46 0.49 

262144  0.92 1.42 1.60 1.59 1.47 1.72  0.40 0.74 0.77 0.89 0.77 0.95  0.14 0.20 0.22 0.31 0.34 0.33 

524288  0.53 1.00 0.92 1.12 1.06 1.26  0.30 0.47 0.51 0.63 0.55 0.69  0.11 0.10 0.14 0.19 0.21 0.27 

688896  0.39 0.75 0.76 0.94 0.96 1.03  0.22 0.36 0.35 0.47 0.51 0.58  0.06 0.08 0.12 0.16 0.17 0.21 

Absolute data snooping bias* 

Minimum  0.14 0.25 0.16 0.18 0.10 0.23  0.08 0.11 0.16 0.16 0.04 0.11  0.05 0.02 0.02 0.03 0.04 0.06 

Average  1.86 2.05 2.08 2.10 1.98 2.09  1.07 1.36 1.38 1.35 1.29 1.37  0.39 0.61 0.56 0.57 0.58 0.57 

Maximum  6.41 6.65 6.61 6.76 6.82 7.06  4.17 4.73 4.97 5.06 5.33 5.31  1.59 2.43 2.34 2.47 2.54 2.60 

Relative data snooping bias** 

Minimum  36% 33% 21% 19% 10% 22%  36% 31% 46% 34% 8% 19%  83% 25% 17% 19% 24% 29% 

Average  477% 273% 274% 224% 207% 203%  485% 377% 394% 287% 253% 237%  652% 763% 463% 354% 339% 270% 

Maximum  1644% 887% 870% 719% 710% 685%  1895% 1314% 1420% 1077% 1045% 916%  2650% 3038% 1950% 1544% 1494% 1238% 

Note: This table reports the number of false discoveries per 100 tests, aggregated by the size of rule the universe, the volatility of the data generating process and 

significance level for the RC test. 

*Absolute data snooping bias denotes the average difference in the number of false discoveries between the 10 restricted (smaller) rule universes and the benchmark 

rule universe; it is expressed as a number per 100 simulations, i.e. percentage points.  

**Relative data snooping bias denotes the average percentage difference in the number of false discoveries between the 10 restricted (smaller) rule universes and 

the benchmark rule universe. It is calculated as the absolute bias divided by the number of false discoveries obtained for the benchmark universe. 

 

  



Table B3. Sample length of 1 year 

Significance level:  𝛼 = 10%  𝛼 = 5%  𝛼 = 1% 

σ 

No. TTRs   

0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40 

1024  7.83 7.80 7.82 8.30 8.32 8.27  5.79 5.56 5.77 6.16 6.44 6.38  2.66 2.64 2.91 2.94 3.25 3.16 

2048  4.53 4.35 4.47 4.64 5.04 5.00  2.59 2.79 3.05 3.19 3.26 3.19  1.11 0.99 1.04 1.47 1.32 1.52 

4096  3.29 3.28 3.37 3.76 3.94 3.98  1.94 2.06 2.21 2.41 2.52 2.60  0.72 0.67 0.79 1.04 0.91 1.07 

8192  2.62 2.66 2.80 3.17 3.24 3.44  1.49 1.56 1.75 1.94 1.93 2.16  0.54 0.49 0.57 0.73 0.68 0.88 

16384  2.43 2.35 2.41 2.72 2.72 2.89  1.30 1.36 1.45 1.67 1.57 1.84  0.47 0.44 0.49 0.56 0.52 0.69 

32768  2.30 2.20 2.33 2.56 2.42 2.61  1.25 1.25 1.34 1.47 1.47 1.61  0.45 0.42 0.48 0.49 0.50 0.60 

65536  2.15 2.12 2.27 2.48 2.36 2.54  1.17 1.20 1.30 1.42 1.41 1.50  0.42 0.40 0.48 0.47 0.48 0.57 

131072  2.15 2.12 2.27 2.48 2.36 2.54  1.17 1.20 1.30 1.42 1.41 1.50  0.42 0.40 0.48 0.47 0.48 0.57 

262144  1.32 1.48 1.64 1.87 1.74 1.99  0.63 0.74 0.90 0.93 0.94 1.13  0.18 0.26 0.31 0.28 0.32 0.39 

524288  0.69 0.87 1.04 1.24 1.21 1.29  0.42 0.45 0.58 0.64 0.61 0.85  0.13 0.17 0.24 0.20 0.20 0.25 

688896  0.56 0.70 0.87 0.98 0.88 1.08  0.33 0.30 0.49 0.47 0.51 0.65  0.07 0.14 0.19 0.14 0.13 0.18 

Absolute data snooping bias* 

Minimum  0.13 0.17 0.17 0.26 0.33 0.21  0.09 0.15 0.09 0.17 0.10 0.20  0.06 0.03 0.05 0.06 0.07 0.07 

Average  2.37 2.22 2.17 2.34 2.46 2.38  1.45 1.52 1.48 1.66 1.65 1.63  0.64 0.55 0.59 0.73 0.74 0.79 

Maximum  7.27 7.10 6.95 7.32 7.44 7.19  5.46 5.26 5.28 5.69 5.93 5.73  2.59 2.50 2.72 2.80 3.12 2.98 

Relative data snooping bias** 

Minimum  23% 24% 20% 27% 38% 19%  27% 50% 18% 36% 20% 31%  86% 21% 26% 43% 54% 39% 

Average  423% 318% 250% 239% 279% 220%  438% 506% 301% 352% 323% 250%  914% 391% 310% 518% 566% 439% 

Maximum  1298% 1014% 799% 747% 845% 666%  1655% 1753% 1078% 1211% 1163% 882%  3700% 1786% 1432% 2000% 2400% 1656% 

Note: This table reports the number of false discoveries per 100 tests, aggregated by the size of rule the universe, the volatility of the data generating process and 

significance level for the RC test. 

*Absolute data snooping bias denotes the average difference in the number of false discoveries between the 10 restricted (smaller) rule universes and the benchmark 

rule universe; it is expressed as a number per 100 simulations, i.e. percentage points.  

**Relative data snooping bias denotes the average percentage difference in the number of false discoveries between the 10 restricted (smaller) rule universes and 

the benchmark rule universe. It is calculated as the absolute bias divided by the number of false discoveries obtained for the benchmark universe. 

 

  



Table B4. Sample length of 4 years 

Significance level:  𝛼 = 10%  𝛼 = 5%  𝛼 = 1% 

σ 

No. TTRs   

0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40  0.15 0.20 0.25 0.30 0.35 0.40 

1024  8.04 8.31 8.26 8.40 8.49 8.76  5.96 6.21 6.48 6.70 6.76 7.00  2.83 3.28 3.37 3.47 3.55 3.61 

2048  4.68 5.01 5.17 5.39 5.57 5.67  2.93 3.31 3.54 3.42 3.74 3.60  1.10 1.26 1.35 1.56 1.72 1.61 

4096  3.54 3.83 4.12 4.17 4.55 4.59  2.10 2.30 2.57 2.62 2.84 2.87  0.70 0.95 0.96 1.13 1.30 1.11 

8192  2.89 3.16 3.42 3.28 3.69 3.79  1.58 1.81 1.94 2.19 2.30 2.30  0.52 0.74 0.71 0.84 0.99 0.89 

16384  2.41 2.69 2.83 2.86 3.14 3.12  1.28 1.47 1.67 1.79 1.97 1.93  0.43 0.57 0.56 0.61 0.72 0.72 

32768  2.26 2.37 2.52 2.55 2.80 2.73  1.18 1.30 1.42 1.48 1.69 1.58  0.38 0.48 0.48 0.51 0.55 0.57 

65536  2.09 2.25 2.43 2.39 2.62 2.55  1.13 1.23 1.36 1.39 1.59 1.49  0.36 0.46 0.45 0.47 0.52 0.53 

131072  2.09 2.25 2.43 2.39 2.62 2.55  1.13 1.23 1.36 1.39 1.59 1.49  0.36 0.46 0.45 0.47 0.52 0.53 

262144  1.13 1.52 1.73 1.83 2.15 2.01  0.63 0.77 0.89 1.04 1.16 1.13  0.21 0.26 0.30 0.28 0.37 0.41 

524288  0.66 0.85 1.15 1.27 1.38 1.36  0.39 0.53 0.66 0.69 0.76 0.76  0.14 0.14 0.17 0.14 0.23 0.27 

688896  0.49 0.67 0.93 1.08 1.13 1.09  0.27 0.36 0.49 0.51 0.51 0.63  0.07 0.08 0.11 0.11 0.15 0.18 

Absolute data snooping bias* 

Minimum  0.17 0.18 0.22 0.19 0.25 0.27  0.12 0.17 0.17 0.18 0.25 0.13  0.07 0.06 0.06 0.03 0.08 0.09 

Average  2.49 2.55 2.48 2.37 2.57 2.62  1.56 1.66 1.70 1.76 1.93 1.79  0.63 0.78 0.77 0.84 0.90 0.85 

Maximum  7.55 7.64 7.33 7.32 7.36 7.67  5.69 5.85 5.99 6.19 6.25 6.37  2.76 3.20 3.26 3.36 3.40 3.43 

Relative data snooping bias** 

Minimum  35% 27% 24% 18% 22% 25%  44% 47% 35% 35% 49% 21%  100% 75% 55% 27% 53% 50% 

Average  508% 381% 266% 220% 228% 241%  578% 460% 347% 345% 378% 283%  904% 975% 700% 762% 598% 469% 

Maximum  1541% 1140% 788% 678% 651% 704%  2107% 1625% 1222% 1214% 1225% 1011%  3943% 4000% 2964% 3055% 2267% 1906% 

Note: This table reports the number of false discoveries per 100 tests, aggregated by the size of rule the universe, the volatility of the data generating process and 

significance level for the RC test. 

*Absolute data snooping bias denotes the average difference in the number of false discoveries between the 10 restricted (smaller) rule universes and the benchmark 

rule universe; it is expressed as a number per 100 simulations, i.e. percentage points.  

**Relative data snooping bias denotes the average percentage difference in the number of false discoveries between the 10 restricted (smaller) rule universes and 

the benchmark rule universe. It is calculated as the absolute bias divided by the number of false discoveries obtained for the benchmark universe. 

 

  



Appendix C. Overview of data sample used in the empirical analysis 

Table C1. Summary 
Market 

symbol 

Country (Countries) No. selected 

companies 

First day Last day Total days 

(observations) 

Average days 

per company 

AE United Arab Emirates 40 15.11.2000 14.11.2013 63,041 1,576 

AR Argentina 40 11.04.1990 13.11.2013 139,421 3,486 
AT Austria 20 02.01.1987 13.11.2013 84,396 4,220 

AU Australia 40 02.01.1981 14.11.2013 218,022 5,451 

BA Bosnia And Herzegovina 20 09.07.2002 13.11.2013 14,522 726 
BE Belgium 20 02.01.1987 13.11.2013 90,858 4,543 

BG Bulgaria 15 27.05.1998 14.11.2013 31,327 2,088 

BH Bahrain 40 06.06.1995 12.11.2013 47,333 1,183 
BR Brazil 40 19.03.1993 13.11.2013 143,404 3,585 

BRVM Benin, Burkina Faso, Guinea 

Bissau, Côte d'Ivoire, Mali, 

Niger, Senegal, Togo 

36 29.12.2006 13.11.2013 21,394 594 

CA Canada 40 17.03.1980 13.11.2013 269,234 6,731 

CH Switzerland 20 05.01.1987 14.11.2013 99,041 4,952 
CL Chile 40 27.09.1993 13.11.2013 134,396 3,360 

CN China 40 02.01.1991 14.11.2013 84,580 2,115 

CO Colombia 20 09.02.1995 13.11.2013 38,934 1,947 
CY Cyprus 19 15.12.1994 13.11.2013 46,014 2,422 

CZ Czech Republic 13 10.01.1996 14.11.2013 34,075 2,621 

DE Germany 40 05.04.1991 14.11.2013 169,714 4,243 
DK Denmark 20 02.01.1985 14.11.2013 103,631 5,182 

EE Estonia 16 06.09.1996 14.11.2013 33,176 2,074 

EG Egypt 30 06.07.1993 13.11.2013 76,014 2,534 
ES Spain 35 02.01.1990 14.11.2013 148,755 4,250 

FI Finland 25 04.01.1988 14.11.2013 109,865 4,395 

FR France 40 07.01.1985 14.11.2013 235,149 5,879 
GR Greece 40 02.01.1991 13.11.2013 157,728 3,943 

HK Hong Kong 40 02.01.1980 14.11.2013 186,807 4,670 

HR Croatia 23 30.06.1994 13.11.2013 49,235 2,141 

HU Hungary 13 23.12.1992 14.11.2013 45,871 3,529 

ID Indonesia 40 04.01.1982 14.11.2013 128,820 3,221 

IE Ireland 40 09.11.1994 14.11.2013 109,985 2,750 
IL Israel 40 08.10.1992 14.11.2013 163,151 4,079 

IN India 30 01.01.1990 14.11.2013 134,296 4,477 

IQ Iraq 37 04.06.2008 13.11.2013 22,398 605 
IS Iceland 13 29.07.1992 13.11.2013 12,980 998 

IT Italy 40 02.01.1987 14.11.2013 166,499 4,162 
JO Jordan 40 22.11.1993 14.11.2013 109,470 2,737 

JP Japan 40 04.01.1984 14.11.2013 241,640 6,041 

KE Kenya 40 24.04.1995 14.11.2013 122,025 3,051 
KR South Korea 40 03.05.1983 14.11.2013 187,222 4,681 

KW Kuwait 40 03.01.1993 14.11.2013 124,355 3,109 

KZ Kazakhstan 7 27.10.1998 14.11.2013 8,844 1,263 
LB Lebanon 17 03.01.1993 13.11.2013 23,549 1,385 

LK Sri Lanka 40 01.06.1987 14.11.2013 126,926 3,173 

LT Lithuania 25 07.08.1997 14.11.2013 53,474 2,139 
LV Latvia 31 09.02.1998 14.11.2013 37,270 1,202 

MA Morocco 40 23.01.1998 13.11.2013 83,847 2,096 

MU Mauritius 40 25.10.1996 14.11.2013 170,310 4,258 
MW Malawi 8 10.07.2008 13.11.2013 3,160 395 

MX Mexico 35 02.01.1990 13.11.2013 117,463 3,356 

MY Malaysia 40 02.03.1984 14.11.2013 235,309 5,883 
NA Namibia 29 18.10.1996 13.11.2013 52,818 1,821 

NG Nigeria 40 20.04.1998 13.11.2013 51,206 1,280 

NL Netherlands 40 02.01.1985 14.11.2013 210,676 5,267 
NO Norway 40 03.01.1980 14.11.2013 162,526 4,063 

NZ New Zealand 40 16.06.1986 14.11.2013 133,777 3,344 

OM Oman 30 24.06.1995 14.11.2013 80,319 2,677 
PE Peru 38 02.03.1992 13.11.2013 105,446 2,775 

PH Philippines 30 02.01.1986 14.11.2013 120,718 4,024 

PK Pakistan 40 25.05.1994 13.11.2013 123,991 3,100 
PL Poland 40 13.08.1992 14.11.2013 92,865 2,322 



PT Portugal 40 05.01.1994 14.11.2013 130,597 3,265 

QA Qatar 40 12.12.1999 14.11.2013 93,066 2,327 
RO Romania 39 20.11.1995 14.11.2013 100,047 2,565 

RS Serbia 14 26.11.2003 14.11.2013 21,956 1,568 

RU Russian Federation 40 01.09.1995 14.11.2013 30,959 774 
SA Saudi Arabia 40 10.01.1999 14.11.2013 108,614 2,715 

SE Sweden 30 02.01.1987 14.11.2013 165,922 5,531 

SG Singapore 40 02.01.1979 14.11.2013 172,560 4,314 
SI Slovenia 7 09.04.1996 14.11.2013 20,862 2,980 

SK Slovakia 11 05.01.1994 13.11.2013 12,305 1,119 

TH Thailand 40 02.01.1981 14.11.2013 184,656 4,616 
TN Tunisia 40 24.06.1993 14.11.2013 104,468 2,612 

TR Turkey 40 02.01.1991 14.11.2013 160,842 4,021 

TW Taiwan 40 05.01.1981 14.11.2013 187,881 4,697 
TZ Tanzania 13 06.06.2000 13.11.2013 11,596 892 

UA Ukraine 20 15.10.1998 14.11.2013 32,461 1,623 

UK United Kingdom 40 02.01.1985 14.11.2013 211,146 5,279 
US United States 39 17.03.1980 13.11.2013 275,298 7,059 

VE Venezuela 11 12.08.1993 13.11.2013 24,658 2,242 

VN Vietnam 40 28.07.2000 14.11.2013 57,676 1,442 
ZA South Africa 40 07.04.1988 14.11.2013 166,196 4,155 

TOTAL 2,579 02.01.1979 14.11.2013 8,667,038 3,361 

 


