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Abstract

We show that large allocation in cryptocurrencies can be explained by Prospect the-
ory. Using piecewise linear value function, we show optimal portfolio construction
with eleven asset classes including two cryptocurrencies, Bitcoin and Ethereum. We
introduce a new Monte Carlo simulation approach that attaches tails to observed em-
pirical distributions. A combination of stochastic optimization and the new simulation
method shows that loss aversion and lottery type behavior are the main drivers behind
large allocations in the cryptocurrencies.
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1. Introduction

It is a well-known fact that standard expected utility theory cannot explain observed
investment decision making under uncertainty. One example is the large amount of
capital that went into crypto markets in 2017 and 2018. Pulse of Fintech 20191,
reports that the global private investment in blockchain and cryptocurrencies (cryptos)
totaled to $9.9 billion for years 2017 and 2018. Bitcoin price hit a high of $19, 783
in December 2017 before dropping to $6, 200 in February 2018. Normative utility
theories cannot obtain such allocations as optimal. However, Prospect theory is a
descriptive theory and allows modeling of the observed behavior. Value functions
replace utilities and decision weights replace probabilities. We optimize one such value
function in an attempt to identify the group of investors who may see large allocations
in cryptocurrencies as optimal.

The drastic increase in crypto prices have made them a potential new group of
financial assets that may have a role to play among asset classes. However, as of now,
whether cryptos are qualified as an asset class per traditional criteria is debatable,
see Kritzman (1999). Despite it has satisfied some of the criteria for asset class, their
total value as of now is still not large enough in terms of world investable wealth to
represent an asset class. Nevertheless, the return on cryptos, Bitcoin in particular, has
outperformed most traditional asset classes without any close competitor. However,
cryptos have also displayed enormous volatility, which is also second to none in recent

Email address: ip12@txstate.edu (Ivilina Popova)
1https://home.kpmg/xx/en/home/campaigns/2019/07/pulse-of-fintech-h1-2019.html.

November 14, 2019



history. The huge volatility was caused by the wide swings and crashes in prices, which
is referred to as tail risk. While the tails of a normal distribution have very small
probability of occurrence, some assets’ return distributions are leptokurtic, i.e., having
fat-tails, causing potentially huge losses and gains when prices experience extreme
volatility. Extreme volatility in the returns of cryptocurrencies seems to be pervasive.

Bitcoin is a digital currency introduced by Nakamoto (2008) as an electronic peer-
to-peer payment system with decentralized public validation of transactions using
blockchain technology2. Bitcoins may be purchased through a variety of platforms
such as Coindesk and Gemini. While Bitcoin is a relatively new alternative currency
(asset), there are ways to effectively place a Bitcoin short sale.3 Additionally, Bitcoin
futures are already traded and options on Bitcoin futures are coming in 20204.

There are several main differences between Bitcoin and fiat digital currencies (dol-
lars, euro, yen, etc.). The most often mentioned one is decentralization. Nobody
”owns” and ”controls” the network. Volunteers around the world maintain the network.
The protocol resolves the famous ”double spending” problem with digital currencies.
In the current banking system, this job function is performed by the banks. They have
the power to verify transactions. Bitcoin protocol is completely different. In place
of one large centralized system with information, the identity of every transaction is
verified and stored by nodes in the open network. The second difference is the limited
supply of Bitcoins. Fiat currencies have theoretically unlimited supply - central banks
has the power to issue as many as they want. The maximum number of Bitcoins is 21
million and it is estimated that this number will be reached by year 2140.

Bitcoin can be seen as an alternative to online banking and companies like PayPal,
Venmo and Zelle. Ethereum is based on a different concept. It has the goal to replace
internet third parties by using a blockchain. It expands on the Bitcoin idea going
beyond the banking system. Any providers that maintain large centralized databases
of information could potentially be viewed as targets. Ethereum idea is to replace
servers and clouds with ”nodes” run by volunteers. It goes back to the original ideas of
decentralized Internet and supporting a new type of applications (dapps). To imagine
Ethereum is to think of a ”world computer”. Nobody owns it but to support its
functionality is costly. The network uses ”ether” a unique computer code that can be
used to pay for using its computational resources. Similar to Bitcoin, Ether is a digital
asset. In crypto jargon, Ether is like a ”digital oil” and the Ethereum transaction fees
represent how much ”gas” it takes to complete a certain action. There is no limit to
how many Ether tokens can be mined. As of today, there are no mechanisms to place
a short sale on Ether. However, the CFTC chair said that Ether futures are likely in

2See, for example, https://www.coindesk.com/information/
3Onecontracts are offered by TF Global Markets in London. Another option to place a short sale

is via margin trading. Bitfinex, for example, requires initial equity of 30% of the position to be able
to short Bitcoin. One can also short a Bitcoin ETN (Exchange Traded Note) like Bitcoin Tracker
One. Additionally, new structured products (Short Notes) are developed by the Swiss product houses
Vontobel AG and Leonteq Securities AG.

4https://www.cmegroup.com/trading/cryptocurrency-indices.html.
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20205.
Observing the interest of individual investors, venture capital firms and private

equity in blockchain/crypto assets, it is clear that cryptos are here to stay. We may
not see the irrational exuberance from the 2017 but the extreme volatility may continue.

Insert Figure 1 and Figure 2 Here

Figure 1 shows the volatile behavior of Bitcoin with the highest price observed at
the end of 2017. Figure 2 compares the histograms of daily returns for Bitcoin and the
exchange traded fund (ETF), SPY, for the period September 2015 – September 2019.
Clearly, Bitcoin returns have heavier tails compared to the tails of SPY daily returns.
In the empirical section we provide summary statistics on a variety of indexes tracking
different types of assets as well as Bitcoin and Ethereum.

The main goal of this paper is to identify under what conditions large investment
in cryptos is optimal. To achieve this we pursue several goals. First, we use a piece-
wise linear value function rooted in Prospect theory, and show a methodology for
obtaining optimal solutions under uncertain asset returns. In order to model the tails
of cryptos, we introduce a new Monte Carlo simulation algorithm that attaches tails to
observed empirical distributions. Finally, we show by using the described optimization
model and simulation algorithm under what conditions large allocations in cryptos are
optimal.

The paper is organized as follows. Section 2 introduces the piecewise linear value
function, the stochastic optimization model and a new algorithm for simulating returns
by attaching tails to empirical distribution. Section 3 identifies the optimal tail simu-
lation model for eleven assets including two cryptos, Bitcoin and Ethereum. Section 4
shows optimal allocations for portfolios of the eleven assets. Section 5 concludes.

2. Stochastic Optimization Model with Piecewise Value Function

Consider a portfolio allocation problem with N assets that have random returns
R̃ = (R1, . . . , RN) ≥ 0. The random return of allocation ω is R̃ω ≡

∑N
i=1 Riωi. We

assume that R̃’s distribution is known and that we can generate independent and
identically distributed (i.i.d.) observations of R̃. The asset allocation problem is then

max
ω∈Ω

Eu(R̃ω), (1)

where Ω = {ω :
∑N

i=1 ωi = 1, ωi ≥ 0, i = 1, . . . , N} and u(·) is a value function
satisfying the conditions from Prospect theory, see Kahneman and Tversky (1979).

Our ability to solve model (1) rests, in large part, on our ability to evaluate Eu(R̃ω).
It is usually impossible to evaluate Eu(R̃ω) exactly, even for a fixed allocation vector
ω ∈ Ω, unless the distribution of R̃ is particularly simple. When exact computation is

5https://www.coindesk.com/cftc-chair-says-well-likely-see-ether-futures-in-6-months.
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not viable, it is natural to replace Eu(R̃ω) with a sampling-based estimator that lends
itself to computation. With R̃j, j = 1, . . . , n, i.i.d. as R̃, we can approximate (1) by:

max
ω∈Ω

[
ūn(ω) ≡ 1

n

n∑
j=1

u(R̃jω)

]
. (2)

So, we resort to an approximation in which the expected value function is replaced
with a sample mean estimate. For a detailed discussion about constructing simulation-
based approximations for stochastic programming problems with application in port-
folio optimization see King and Jensen (1992), Morton et al. (2003), Morton et al.
(2006), Partani et al. (2006) and Popova et al. (2007).

Details on solving, and assessing the quality of the solution to (2) are described in
Morton et al. (2006) and Popova et al. (2007).

Kahneman and Tversky (1992) propose a value function that is a two-part power
function. Figure 3 shows the plot of this function for the proposed values of the
estimated parameters shown in their paper. Such function satisfies the requirement
for concavity for gains, convexity for losses and loss aversion. The way to view such
function is that it is a typical decision maker’s value function. Different investors may
have different values for the parameters of the two-part power function.

Insert Figure 3

In this paper we consider a piece-wise linear value function. First, the piecewise
linear function is computationally easier to handle than nonlinear functions (like the
two-part power function) when attempting to solve a stochastic optimization model.
Second, Cumulative Prospect theory, Kahneman and Tversky (1992), identifies four
patterns of risk aversion:

1. Risk aversion for gains when the outcome probability is high.

2. Risk seeking for losses when the outcome probability is high.

3. Risk seeking for gains when the outcome probability is low.

4. Risk aversion for losses when the outcome probability is low.

By changing the slopes of the linear pieces of our value function and values of the two
benchmarks, we will look for instances of the above fourfold pattern of risk aversion.

2.1. Piecewise Linear Value Function

Let r1 < r2 are given benchmarks and s2 > s1 > s0 ≥ 0 are slopes governing a
three-piecewise linear value function. The value function, u(r), satisfies the following
conditions:

u′(r) = s2, r ∈ (−∞, r2);u′(r) = s1, r ∈ (r2, r1);u′(r) = s0, r ∈ (r1,∞)

Figure 4 shows a plot of one such value function for different values of the slopes,
s2 = 1, 0.5, 0.1 and 0.025.
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Insert Figure 4 here

The approximating model when optimizing a piecewise linear value function for
the model defined in (1) can be constructed as follows. Let Ri, i = 1, . . . , n be IID
observations of the random return vector. Additional decision variables yi2, y

i
1, y

i
0, i =

1, . . . n represent returns that are associated with each of the three pieces of the value
function, under realization i. Note that since s2 > s1 > s0 ≥ 0 and the objective is
maximization, yi1 > 0 only if yi2 = ri2 and yi0 > 0 only if yi1 = ri1−ri2. The approximating
model is:

max
y,ω

1

n

n∑
i=1

s2(yi2 − ri2) + s1y
i
1 + s0y

i
0

ω′e = 1

ω′Ri = yi2 + yi1 + yi0, i = 1, . . . , n

ω′ ≥ 0

−∞ ≤ yi2 ≤ ri2, i = 1, . . . , n

0 ≤ yi1 ≤ ri1 − ri2, i = 1, . . . , n

0 ≤ yi0, i = 1, . . . , n

(3)

The above formulation allows the return realizations, ω′R, to take any real value (note
that yi2 is unrestricted in sign with its allowable values only being bounded above by
ri2). The intercept of the value function is selected so that it is positive when the
lower target is exceeded and negative when it is not. We will experiment with different
values of the slope parameters to analyze the change in the optimal portfolio allocation,
especially when we introduce fat tails through the simulation procedure discussed later
in the paper.

2.2. Attaching Exponential Tails to Empirical Distribution

In order to be able to generate instances of the approximating model described in (3)
we need to generate random returns from a multivariate distribution. The algorithm
described in Morton et al. (2006) and Popova et al. (2007) uses Nelson and Cario
(1997) approach for simulating returns from different distributions. In one of its steps
we need a formulation of the marginal distributions. We do so by using a mixture of
empirical/exponential distributions. The procedure described next is a modification of
the method described in Section 5.2.4 in Bratley et al. (1987).

We show two modifications, the first one attaches exponential tails on the left and
right sides of the empirical distribution. The second one attaches only a left tail.
Suppose that we have n observations (returns). First, we order them in increasing
order so that X1 < X2 < . . . < Xn. For the two tail modification we fit a piecewise
linear CDF for the values between Xk and Xn−k, where k can be chosen to be the 5th

or 1st percentile of the empirical return distribution. Then the two tail modified CDF
is:
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F (t) =



k/n× exp[(Xk − t)/ΘL], for t < Xk

i/n + (t−Xi)/[n(Xi+1 −Xi)],

for Xi ≤ t ≤ Xi+1, i = k + 1, · · ·n− k − 1

1− k/n× exp[−(t−Xn−k)/ΘR], for t > Xn−k

(4)

Where

ΘR =

[
Xn−k

2
+

n∑
i=n−k+1

(Xi −Xn−k)

]
/k (5)

and

ΘL =

[
Xk

2
+

k−1∑
i=1

(Xi −Xk)

]
/k. (6)

To generate a variate from this two tailed mixed distribution by inversion can be
done by following the next steps:

1. Generate a random U , Uniform on (0, 1);

2. If U > 1− k/n then return X = Xn−k −ΘR × ln[n(1− U)/k];

3. If U < k/n, then return X = Xk −ΘL × ln[nU/k];

4. Otherwise set V ← nU, I ← bV c, and return X = (V − I)(XI+1 −XI) + XI .

For the left tail modification, we fit a piecewise linear CDF for the values between
Xk+1 and Xn, where k can be chosen to be the 5th or 1st percentile of the empirical
return distribution. Then the left tail modified CDF is:

F (t) =


k/n× exp[(Xk − t)/ΘL], for t < Xk

i/n + (t−Xi)/[n(Xi+1 −Xi)],

for Xi ≤ t ≤ Xi+1, i = k + 1, · · ·n

(7)

Where

ΘL =

[
Xk

2
+

k−1∑
i=1

(Xi −Xk)

]
/k. (8)

To generate a variate from this left tail mixed distribution by inversion can be done by
following the next steps:

1. Generate a random U , Uniform on (0, 1);

2. If U < k/n, then return X = Xk −ΘL × ln[nU/k];

3. Otherwise set V ← nU, I ← bV c, and return X = (V − I)(XI+1 −XI) + XI .
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3. Modeling Tails for Daily Returns

For the empirical experiment we select the following Exchange Traded Funds:

• GLD: SPDR Gold Shares,

• HYG: iShares iBoxx High Yield Corporate Bond,

• BND: Vanguard Total Bond Market,

• GSG: iShares S&P GSCI Commodity-Indexed Trust,

• VNQ: VANGUARD Real Estate Index Fund,

• UUP: Invesco DB US Dollar Index Bullish Fund,

• SPY: SPDR S&P 500 trust,

• IWM: iShares Russell 2000,

• EFA: iShares MSCI EAFE Index Fund,

• BTH: Bitcoin,

• ETH: Ethereum.

The goal is to have representations from a variety of asset classes. The above selection
includes, gold, high yield corporate bonds, total bond market, commodities, real estate,
US Dollar, US stock market, small cap stocks, international stocks and cryptos. Daily
prices for all ETFs are downloaded from Bloomberg while daily prices for Bitcoin and
Ethereum are obtained from Yahoo!Finance. The selected time period is September
2015 – September 2019. Table 1 shows summary statistics for all assets.

Insert Table 1 Here

Note that EFA is the asset with the highest kurtosis, followed by Ethereum, SPY
and Bitcoin. Additionally, EFA shows the largest negative skewness and eight out of
eleven asset classes show negative skewness.

Previous studies (e.g., Elendner et al. (2018); Osterrieder et al. (2017); Wu and
Pandey (2014)) have shown that returns of cryptos exhibit a high degree of asym-
metry and occurrence of extreme events. Wu and Pandey (2014) find that Bitcoin’s
return distribution was leptokurtic and fat-tailed. Osterrieder et al. (2017) find that
cryptocurrencies exhibit strong non-normal characteristics, large tail dependencies, de-
pending on the particular cryptocurrencies and heavy tails. They investigated the tail
dependence of cryptocurrencies using both empirical and Gaussian copulas.

To investigate what is the best simulation model to use, we apply the procedure
described in the previous section that allows for introducing tails in empirical distri-
butions to the daily historical returns for all eleven ETFs. To understand the impact
of the choice of the cutoff points used in (4) and (7), we simulate 10,000 scenarios by
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using the 5th, 1st and 0.1st percentiles as cutoff points from assets’ empirical return
distributions. Table 2 shows the choice of either left tailed or two tailed distribution
and the corresponding cutoff points that bring the simulated and historical distribu-
tions as close as possible. The match uses the first four moments, the median, min
and max values and minimizes the sum of squared differences. Table 3 shows summary
statistics for the historical and simulated assets’ returns for the best fit found6 and
shown in Table 2.

Insert Table 2 and Table 3 here

Results illustrate that the left tail modification with the cutoff point at the 5th

percentile works for majority of the assets. Exceptions are UUP, EFA, Bitcoin and
Ethereum. The best fit for UUP comes from the two tails model with a cutoff at the
1st percentile, EFA best fit is the two tail model with a cutoff at the 0.1st percentile,
Bitcoin and Ethereum best fit is the left tail model with a cutoff at the 1st percentile.

4. Computing Optimal Portfolios

In this section we construct optimal portfolios using the approximating model de-
scribed in (3) for the piecewise linear value function. To obtain optimal solutions we
follow the combination of simulation and optimization steps from Morton et al. (2006)
and Popova et al. (2007). The simulated returns are based on the new methods shown
in (4) and (7). The optimization follows the procedure from Morton et al. (2006), page
511. They construct a six steps algorithm for identifying a solution for the portfolio
allocation problem and establishing its quality. In our case we simply follow their steps
by replacing the objective function with the piecewise linear value function.

There are several parameters that could influence the optimal allocation. The two
benchmarks, r1 and r2, and the slopes, s0, s1 and s2. If we fix u(r1) = 1, and s0 = 0,
we get a probability like value function when r > r1. If we set u(r2) = 0, the value of
s1 can be computed as s1 = 1/(r1−r2). The value of s2 depends on how much we want
to penalize the downside. Figure 4 shown earlier, has u(r1) = 1, s0 = 0, u(r2) = 0 and
s1 = 1/(r1− r2). Additionally, the three linear equations describing the value function
become:

1. y = 1 when r > r1.

2. y = r/(r1 − r2)− r2/(r1 − r2) when r2 < r < r1.

3. y = s2r − s2r2 when r < r2.

Following the algorithm from Morton et al. (2006), we solve 30 instances of the
approximating model (3) and compute the optimal weights as the averages of the 30
optimal solutions7. The optimal values of the objective function are used to compute
an upper bound of the value function. Given the optimal weights, we generate 100,000

6Detailed results for all cutoff points and distributions are available upon request.
7The approximating models are generated using C++ code and solved with the academic version

of IBM CPLEX solver.

8



scenarios and obtain a lower bound of the optimal value function. We report the lower
bounds of the solutions.

Table 4 shows optimal results for a combination of parameter values. To obtain
the optimal upper bound of the solution, the approximating models use scenarios with
1,000 returns by simulating from the mix of empirical and left tail distribution described
in (7) with a cutoff point at the 0.1st percentile. Four different values are used for s2:
1, 0.5, 0.1 and 0.025. The value of the second benchmark r2 is fixed at zero and the
value of the first benchmark, r1 varies from 1% to 9%.

Insert Table 4 here

Note first that as the value of s2 increases, the loss aversion increases. This is
visually represented in Figure 4 as well. In Table 4 we fix the value of the second
benchmark, r2, in order to analyze the behavior of the solution associated with ”gains”.
We vary the value of the first benchmark, r1 from 1% to 9%. Keep in mind that we are
working with daily returns and we construct daily portfolios. Clearly a daily return
of 9% is an extreme event. Daily return of 1% is still high but more within a normal
range. Lets compare the optimal portfolios for fixed value of the slope s2. For s2 = 1
and r1 = 1%, the highest allocation is in the fixed income fund, BND. Given that the
benchmark is not aggressive, and within highly probably range, this is evidence of risk
aversion for gains when the outcome probability is high. However, when r1 = 9%, a
very low probability event, the highest allocation switches to Bitcoin and Ethereum.
Investor preferences switch from risk aversion to risk seeking in order to chase the
rare event. This behavior was described as risk seeking for gains when the outcome
probability is low and used to explain why people buy lottery tickets in Kahneman and
Tversky (1992). We observe similar pattern for s2 = 0.5 and s2 = 0.1, i.e. initial high
allocation in BND for r1 = 1% and high allocation in cryptos for r1 = 9%. However,
when s2 = 0.025, there is no notable change in the optimal portfolio allocation for
different values of the benchmark r1. In our model, the triggers of the risk aversion/risk
seeking preferences could come from the benchmarks and from the slope parameter,
s2. When s2 is very small, there is almost no loss aversion and the investor does not
exhibit a switch between risk aversion and risk seeking preferences. Table 4 showed
optimal portfolio weights from a perspective of what happens in the ”positive domain”.
We see that the highest allocations in cryptos occur when investors are after lottery
gains.

Insert Table 5 here

Next, we move into analyzing the optimal weights in the ”negative domain”, i.e.
what happens when investors are facing losses associated with missing the second
benchmark, r2. Table 5 shows optimal portfolio statistics and weights for different
values of the two benchmarks r1 and r2, and the slope parameter, s2. The risk seeking
behavior and loss aversion associated with higher values for the slope parameter s2

is clearly present. Allocations in cryptos increase as s2 increases. For s2 = 0.025,
r2 = 0%, the optimal weight on Bitcoin is 0.39%. However, when s2 = 1, the weight
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increases to 37.26%. Similar behavior is observed for the other values of the second
benchmark, r2. We can also observe the switch from risk seeking in the negative domain
to risk aversion, the fourth pattern of risk attitudes in Prospect theory. Note that the
highest weight for s2 = 0.1 and r2 = 0% is in the fixed income fund, BND. However,
when r2 = 4%, the highest allocation is in Bitcoin, 30.19%. Clearly, as the value of the
second benchmark becomes less extreme and as a result the probability of loss declines,
risk preferences switch from risk seeking to risk averse. This is analogous to purchasing
insurance discussed in Kahneman and Tversky (1992). In summary, in the ”negative
domain”, highest allocation in cryptos are for risk seeking investors8.

5. Conclusion

In this paper we show under what preferences large investment in cryptocurrencies
are optimal. We use a Prospect theory value function, and an approximating model
to solve the general investment stochastic optimization model. Our results show that
high allocations in cryptos are optimal when investors become risk seekers or bet on
lottery type event.

Future work currently in progress includes attaching a quadratic function in the
”negative” domain in order to better capture the nonlinear nature of the loss aversion
behavior of investors; a detailed sensitivity analysis identifying the effect of the optimal
portfolio allocation when simulating based on different cutoff points; and a trading
strategy using a sliding window of daily historical returns to compare the behavior of
the portfolios representing the fourfold pattern of risk aversion.

8We have results for a wide range of benchmarks and slope values showing similar patterns of
behavior. They are available upon request.
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Table 1: Daily Summary Statistics for Eleven Assets

GLD HYG BND GSG VNQ

Arithmetic Mean 0.0255% 0.0013% 0.0039% -0.0147% 0.0231%
Standard Deviation 0.7709% 0.3902% 0.1939% 1.1465% 0.9102%
Skewness 0.3125 0.0010 -0.2809 -0.1710 -0.5109
Kurtosis 2.9356 3.3568 1.2582 1.0313 1.5861
Min -3.5328% -2.0167% -0.9938% -4.1409% -4.0408%
Max 4.7953% 1.6688% 0.6927% 4.4543% 3.2907%

UUP SPY IWM EFA Bitcoin Ethereum

Arithmetic Mean 0.0064% 0.0403% 0.0262% 0.0088% 0.3638% 0.4777%
Standard Deviation 0.4120% 0.8368% 1.0361% 0.8831% 4.5904% 7.8240%
Skewness -0.1470 -0.5480 -0.3490 -1.3384 -0.0856 0.5911
Kurtosis 3.0160 4.1063 1.6922 11.5348 4.0171 4.6298
Min -2.4116% -4.2722% -4.3508% -8.9772% -24.5886% -28.5872%
Max 2.5752% 4.9290% 4.6942% 3.0162% 22.7618% 49.7580%

The Exchange Traded Funds are: GLD: SPDR Gold Shares, HYG: iShares iBoxx High

Yield Corporate Bond, BND: Vanguard Total Bond Market, GSG: iShares S&P GSCI Com-

modity Indexed Trust, VNQ: VANGUARD Real Estate Index Fund, UUP: Invesco DB US

Dollar Index Bullish Fund, SPY: SPDR S&P 500 trust, IWM: iShares Russell 2000, EFA:

iShares MSCI EAFE Index Fund, BTH: Bitcoin and ETH: Ethereum. Daily prices for all

ETFs are downloaded from Bloomberg while daily prices for Bitcoin and Ethereum are ob-

tained from Yahoo!Finance. The selected time period is September 2015 – September 2019.
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Table 2: Best Fit Simulation Model

Distribution Cut off

GLD Left Tail 5.0%
HYG Left Tail 5.0%
BND Left Tail 5.0%
GSG Left Tail 5.0%
VNQ Left Tail 5.0%
UUP Two Tails 1.0%
SPY Left Tail 5.0%
IWM Left Tail 5.0%
EFA Two Tails 0.1%
Bitcoin Left Tail 1.0%
Ethereum Left Tail 1.0%

We simulate 10,000 scenarios by using the 5th, 1st and 0.1st percentiles as cutoff points

from assets’ empirical return distributions. Results show the choice of either left tailed or two

tailed distribution and the corresponding cutoff points that bring the simulated and historical

distributions as close as possible. The match minimizes the sum of squared differences based

on the first four moments, the median and the min and max values.
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Table 3: Historical and Simulated Moments

GLD GLD HYG HYG BND BND
Simulated Historical Simulated Historical Simulated Historical

Min -3.8670% -3.5328% -2.4305% -2.0167% -1.0947% -0.9938%
Max 4.7463% 4.7953% 1.6687% 1.6688% 0.6892% 0.6927%
Average 0.0333% 0.0255% 0.0051% 0.0013% 0.0062% 0.0039%
StDev 0.7680% 0.7709% 0.3912% 0.3902% 0.1946% 0.1939%
Medan 0.0232% 0.0000% 0.0139% 0.0114% 0.0120% 0.0000%
Skewness 0.2006 0.3125 -0.0635 0.0010 -0.3415 -0.2809
Kurtosis 2.2654 2.9356 3.3004 3.3568 1.2467 1.2582

GSG GSG VNQ VNQ UUP UUP
Simulated Historical Simulated Historical Simulated Historical

Min -6.4938% -4.1409% -5.8063% -4.0408% -2.9854% -2.4116%
Max 4.4188% 4.4543% 3.2617% 3.2907% 2.7958% 2.5752%
Average -0.0017% -0.0147% 0.0333% 0.0231% 0.0113% 0.0064%
StDev 1.1527% 1.1465% 0.9155% 0.9102% 0.4164% 0.4120%
Medan 0.0580% 0.0000% 0.0490% 0.0356% 0.0000% 0.0000%
Skewness -0.2885 -0.1710 -0.6264 -0.5109 -0.2454 -0.1470
Kurtosis 1.3572 1.0313 2.0098 1.5861 2.8425 3.0160

SPY SPY IWM IWM EFA EFA
Simulated Historical Simulated Historical Simulated Historical

Min -6.5402% -4.2722% -6.6226% -4.3508% -9.2507% -8.9772%
Max 4.8360% 4.9290% 4.6355% 4.6942% 7.3376% 3.0162%
Average 0.0471% 0.0403% 0.0370% 0.0262% 0.0192% 0.0088%
StDev 0.8438% 0.8368% 1.0420% 1.0361% 0.8897% 0.8831%
Medan 0.0482% 0.0380% 0.0706% 0.0364% 0.0326% 0.0158%
Skewness -0.8610 -0.5480 -0.5107 -0.3490 -0.9455 -1.3384
Kurtosis 5.0747 4.1063 2.1759 1.6922 8.3610 11.5348

Bitcoin Bitcoin Ethereum Ethereum
Simulated Historical Simulated Historical

Min -28.7043% -24.5886% -48.4620% -28.5872%
Max 22.6342% 22.7618% 49.1847% 49.7580%
Average 0.3999% 0.3638% 0.5370% 0.4777%
StDev 4.6271% 4.5904% 7.8700% 7.8240%
Medan 0.4020% 0.3643% 0.0729% 0.0000%
Skewness -0.2166 -0.0856 0.3641 0.5911
Kurtosis 4.0303 4.0171 4.4678 4.6298

Table shows the historical and simulated daily asset moments based on the best match

model shown in Table 2. The match minimizes the sum of squared differences based on the

first four moments, the median and the min and max values. GLD, HYG, BND, GSG, NQ,

SPY, IWM simulated returns use a mixture of their empirical distributions and exponential

left tail based on a cutoff at the 5th percentile; UUP simulated returns use a mixture of

the empirical distribution and exponential two tails with cutoff at the 1st percentile; EFA

simulated returns use a mixture of the empirical distribution and exponential two tails with

cutoff at the 0.1st percentile; Bitcoin and Ethereum simulated returns use a mixture of the

empirical distributions with an exponential left tail with cutoff at the 1st percentile.
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Table 4: Optimal portfolio statistics and weights for different values of benchmark r1 and slope parameter s2.

s2 Portfolio Mean Portfolio STD r1 r2 GLD HYG BND GSG VNQ UUP SPY IWM EFA Bitcoin Ethereum

1 5.40% 53.79% 1% 0% 15.70% 2.28% 13.79% 1.33% 11.75% 21.30% 15.83% 7.58% 1.03% 6.88% 2.53%
1 13.81% 148.67% 3% 0% 18.89% 0.00% 4.11% 1.04% 12.62% 4.29% 14.29% 13.78% 0.48% 21.96% 8.54%
1 21.80% 247.47% 5% 0% 13.20% 0.00% 2.36% 1.49% 9.09% 1.99% 8.90% 10.88% 0.01% 37.51% 14.57%
1 29.73% 347.00% 7% 0% 8.29% 0.00% 0.40% 0.80% 4.55% 0.65% 5.17% 6.77% 0.00% 52.74% 20.62%
1 36.23% 429.91% 9% 0% 3.15% 0.00% 0.00% 0.10% 1.63% 0.01% 1.32% 3.10% 0.00% 64.43% 26.26%

0.5 1.32% 16.58% 1% 0% 4.50% 8.03% 57.54% 0.57% 1.93% 19.21% 3.83% 1.49% 1.37% 1.07% 0.46%
0.5 13.81% 148.67% 3% 0% 18.89% 0.00% 4.11% 1.04% 12.62% 4.29% 14.29% 13.78% 0.48% 21.96% 8.54%
0.5 21.80% 247.47% 5% 0% 13.20% 0.00% 2.36% 1.49% 9.09% 1.99% 8.90% 10.88% 0.01% 37.51% 14.57%
0.5 29.73% 347.00% 7% 0% 8.29% 0.00% 0.40% 0.80% 4.55% 0.65% 5.17% 6.77% 0.00% 52.74% 20.62%
0.5 36.23% 429.91% 9% 0% 3.15% 0.00% 0.00% 0.10% 1.63% 0.01% 1.32% 3.10% 0.00% 64.43% 26.26%

0.1 0.78% 14.32% 1% 0% 3.35% 10.34% 58.95% 0.76% 0.77% 17.02% 2.24% 1.10% 1.64% 0.36% 0.15%
0.1 0.95% 15.14% 3% 0% 3.73% 9.94% 60.27% 0.63% 1.12% 18.05% 2.77% 1.20% 1.49% 0.57% 0.24%
0.1 1.33% 16.60% 5% 0% 4.51% 8.05% 57.48% 0.57% 1.94% 19.22% 3.83% 1.49% 1.37% 1.08% 0.46%
0.1 5.65% 57.21% 7% 0% 9.06% 3.89% 32.34% 0.56% 7.32% 19.84% 10.71% 3.61% 1.46% 7.82% 3.38%
0.1 29.51% 344.05% 9% 0% 9.92% 0.00% 0.06% 0.97% 4.79% 0.27% 4.15% 6.83% 0.00% 53.21% 19.80%

0.025 0.77% 14.74% 1% 0% 3.44% 10.79% 61.37% 0.85% 0.68% 17.44% 2.16% 1.09% 1.73% 0.33% 0.13%
0.025 0.80% 14.79% 3% 0% 3.50% 10.69% 61.18% 0.82% 0.76% 17.49% 2.28% 1.10% 1.66% 0.36% 0.15%
0.025 0.82% 14.84% 5% 0% 3.52% 10.63% 61.05% 0.77% 0.79% 17.58% 2.37% 1.13% 1.62% 0.39% 0.16%
0.025 0.85% 14.89% 7% 0% 3.53% 10.50% 61.02% 0.72% 0.83% 17.57% 2.46% 1.16% 1.59% 0.43% 0.18%
0.025 0.89% 14.98% 9% 0% 3.60% 10.28% 60.73% 0.70% 0.94% 17.78% 2.57% 1.16% 1.56% 0.49% 0.20%

Table shows optimal results for four different values for s2: 1, 0.5, 0.1 and 0.025. The value of the second benchmark r2 is fixed at zero and the value

of the first benchmark, r1 varies from 1% to 9%. To obtain the optimal upper bound of the solution, the approximating models use scenarios with 1,000

returns by simulating from the mix of empirical and left tail distribution described in (7) with a cutoff point at the 0.1st percentile. Table shows the

optimal portfolios average daily returns, standard deviations and the optimal weights on the eleven assets.
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Table 5: Optimal portfolio statistics and weights for different values of the two benchmarks r1 and r2, and the slope parameter, s2.

s2 Portfolio Mean Portfolio STD r1 r2 GLD HYG BND GSG VNQ UUP SPY IWM EFA Bitcoin Ethereum

1 21.82% 247.48% 5% -4% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
1 21.82% 247.48% 5% -2% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
1 21.82% 247.48% 5% 0% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
1 21.82% 247.48% 5% 2% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
1 21.82% 247.48% 5% 4% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%

0.5 21.17% 239.93% 5% -4% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 8.88% 0.00% 36.55% 14.00%
0.5 21.82% 247.48% 5% -2% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
0.5 21.82% 247.48% 5% 0% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
0.5 21.82% 247.48% 5% 2% 14.26% 0.00% 1.89% 1.02% 9.20% 1.64% 9.21% 10.77% 0.00% 37.26% 14.73%
0.5 19.84% 222.55% 5% 4% 16.03% 0.00% 2.63% 1.07% 10.26% 1.29% 10.73% 11.40% 0.00% 33.34% 13.24%

0.1 20.09% 226.80% 5% -4% 15.35% 0.00% 2.58% 1.13% 7.74% 1.37% 9.56% 11.09% 0.32% 33.99% 13.55%
0.1 14.95% 163.08% 5% -2% 18.38% 0.00% 3.40% 1.38% 11.83% 5.40% 15.29% 11.08% 0.11% 22.48% 10.65%
0.1 1.35% 16.70% 5% 0% 4.68% 8.03% 57.09% 0.58% 2.04% 19.36% 3.95% 1.54% 1.18% 1.09% 0.47%
0.1 11.53% 120.98% 5% 2% 19.80% 0.00% 4.41% 1.27% 14.09% 6.06% 18.56% 11.14% 0.43% 17.35% 6.91%
0.1 18.16% 201.82% 5% 4% 16.85% 0.00% 2.66% 1.24% 10.65% 2.37% 11.46% 12.66% 0.00% 30.19% 11.93%

0.025 13.44% 145.59% 5% -4% 20.02% 0.00% 3.87% 2.47% 10.13% 6.64% 15.27% 11.97% 0.37% 19.66% 9.61%
0.025 7.10% 72.41% 5% -2% 17.41% 1.05% 7.95% 2.75% 11.15% 17.79% 16.65% 8.19% 0.29% 8.90% 4.54%
0.025 0.82% 14.84% 5% 0% 3.60% 10.64% 60.90% 0.78% 0.80% 17.62% 2.40% 1.13% 1.58% 0.39% 0.16%
0.025 10.16% 105.26% 5% 2% 20.11% 0.00% 4.57% 1.27% 14.77% 7.51% 18.92% 11.35% 0.81% 14.92% 5.79%
0.025 17.94% 199.03% 5% 4% 17.06% 0.00% 2.92% 1.17% 10.72% 2.20% 11.77% 12.61% 0.00% 29.90% 11.65%

Table shows optimal results for four different values for s2: 1, 0.5, 0.1 and 0.025. The value of the first benchmark r1 is fixed at 5% and the value

of the second benchmark, r2 varies between −4% and 4%. To obtain the optimal upper bound of the solution, the approximating models use scenarios

with 1,000 returns by simulating from the mix of empirical and left tail distribution described in (7) with a cutoff point at the 0.1st percentile. Table

shows the optimal portfolios average daily returns, standard deviations and the optimal weights on the eleven assets.
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Figure 1: Bitcoin Historical Prices
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Bitcoin Price Chart 2015-2019

Figure shows the time series of daily Bitcoin prices for the period September 2015-2019.

Daily prices are obtained from Yahoo!Finance.
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Figure 2: Histogram Bitcoin and S&P 500 (SPY)
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Figure shows histograms for Bitcoin and S&P 500 (SPY) based on daily returns for the

period September 2015-2019. SPY daily prices are obtained from Bloomberg and Bitcoin

daily prices are obtained from Yahoo!Finance.
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Figure 3: Value Function Prospect Theory
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Two Part Power Function - Prospect Theory

Figure shows a plot of the two part power function from Kahneman and Tversky (1992).

The function is: v(z) = zα when 0 < α < 1 and z ≥ 0; v(z) = −λ(−z)β when λ > 1,

0 < β < 1 and z < 0. Kahneman and Tversky (1992) estimated the following values of the

parameters: α = 0.88, β = 0.88 and λ = 2.25.
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Figure 4: Linear Piecewise Value Function
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Figure shows plot of the piecewise linear value function where u(r1) = 1, s0 = 0, u(r2) = 0

and s1 = 1/(r1 − r2). The three linear equations describing the value function are: y = 1

when r > r1, y = r/(r1 − r2) − r2/(r1 − r2) when r2 < r < r1 and y = s2r − s2r2 when

r < r2. The two benchmarks plotted are: r1 = 10% and r2 = −5%. The values of the slope

parameter s2 are 1, 0.5, 0.1 and 0.025.

21


