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Abstract

We show that well-known under-diversification puzzles are linked to ambiguity

in the data. We develop a novel robust optimization model under data ambiguity

and show that the optimal portfolios satisfy second-order stochastic dominance.

We put the model to the data of 21 developed economies and 19 emerging markets,

and find that it generates optimal international portfolios with allocations that

match the observed home bias for reasonable ambiguity parameters and regardless

of investor risk-aversion. This speaks to the home-bias puzzle. We also apply the

model to individual investors and find that the under-diversification puzzle is also

explained by the portfolio ambiguity.
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1 Introduction

The equity home bias puzzle (French and Poterba, 1991) refers to the significant discrep-

ancy between international investor’s domestic equity holdings from what they should

hold if they were guided by the market portfolio being the optimal risky portfolio with

the highest diversification benefits (Adler and Dumas, 1983). Optimality of the market

portfolio assumes that nominal security returns are Brownian with known means, stan-

dard deviations, and covariance. Albeit, these data are only known to the extent that

they belong to an ambiguity set. We propose a novel robust Mean-to-Conditional Value-

at-Risk (robust MtC) portfolio optimization model under data ambiguity, prove that it

is second order stochastic dominance (SSD) consistent, and apply it to a universe of 21

developed economies and 19 emerging markets to find that it generates allocations that

match those of international equity investors for ambiguity sets obtained from market

data. The equity home allocations are not biased but, instead, are optimal for investors

with increasing and concave utility functions given the data ambiguity.

We test the implications of the model on the holdings of 60,000 US households, using

data from a large discount brokerage house spanning 1991–1996 (Barber and Odean, 2000,

2001), and find that the least diversified portfolios are the least exposed to ambiguity

in the distribution and mean returns of their portfolios. This suggests that the under-

diversification puzzle can be explained by market data ambiguity.

Ambiguity is offered in current literature as an explanation of the home equity and

under diversification puzzles, but our work differs in a fundamental way to contribute a

new explanation. The earlier studies show that ambiguity averse investors diversify less

than mean-variance based theory implies. This point is made in laboratory setups (Ahn

et al., 2014; Bossaerts et al., 2010) and with theoretical models (Bossaerts et al., 2010;

Cao et al., 2005; Dow et al., 1992; Easley and O’Hara, 2009; Epstein and Miao, 2003; Pei-

jnenburg, 2018; Uppal and Wang, 2003). Empirical research confirms that investor char-

acteristics relating to ambiguity aversion are strongly correlated with under-diversified

portfolios (Bianchi and Tallon, 2019; Dimmock et al., 2016b, 2021; Mitton and Vorkink,

2007; Polkovnichenko, 2005), although they suggest different channels (behavioural prob-

ability weighting, preference for skewness, prospect theory preferences), and supporting

evidence has not been found in all population samples (Dimmock et al., 2016a). In con-

trast to these studies we consider ambiguity in the market data to show, using a novel

SSD consistent model, that it is optimal for investors to hold the portfolios they hold.

This we show to be true for both international equity investors and US households.

Our contribution, beyond the methodological innovation of robust MtC, is twofold.

First, we offer a more general explanation of the channels identified in the empirical

studies by requiring only the mildest characteristic of a non-increasing convex utility
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Figure 1: Ambiguity in mean returns and optimal home allocation

This figure illustrates the optimal allocation to home as a function of foreign and home mean
return ambiguity parameters, δf and δh, respectively. The model optimizes robust MtC for
a portfolio consisting of home (US) and foreign (Canada) equity market indices. The sample
period spans 1 January 1999 to 31 December 2019.

investor. Second, and importantly, we fill a gap in the empirical setups. Namely, the

fact that some investor characteristic correlates with under-diversified portfolios does not

imply that the asset data justify this under-diversification nor that the held portfolios

are optimal given the investor characteristic. Likewise, to the theoretical models we add

ambiguity in the data instead of ambiguity aversion. Our approach leads to a data-driven

explanation of the puzzles instead of a behavioural explanation.

The robust mean-to-Conditional Value-at-Risk portfolio model is optimizing a per-

formance ratio for stable distributions (Martin et al., 2003) assuming ambiguity in dis-

tribution and mean returns, using the robust optimization methodology of Ben-tal and

Nemirovski (1998); Ben-Tal et al. (2009). We construct the ambiguity sets with two

different methods and two potential sources of ambiguity. One is based on ellipsoids con-

structed to include all parameter realisations obtained from market observed data, as is

standard in robust optimization literature (Ben-Tal et al., 2009; Lotfi and Zenios, 2018),

and the other using the economic policy uncertainty index (EPU of Baker et al. (2016) as

a source of ambiguity. Figure 1 illustrates the robust MtC model optimal home alloca-

tion for US investors under mean return ambiguity in US and Canadian market indices.

When there is no ambiguity in either market mean returns the optimal asset allocation

is roughly 0.5/0.5, but when ambiguity is introduced the allocation can shift up to 100%

towards home or towards foreign, depending on which market is more ambiguous.
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We show that the optimal solution of the robust MtC model is also SSD consistent so

that they are preferred by any investor with non-increasing convex utility functions. As a

by-product of our result on robust MtC, we inform the literature about the characteristics

of robust risk measures. Zhu and Fukushima (2009) show that if a risk measure is

coherent, then its robust counterpart is also coherent. We show that this transitivity

holds also for SSD consistency. We obtain analytically the solution of the two-securities

model (home and foreign) and illustrate how the optimal portfolio choice can be biased

toward domestic equity. The robust MtC model can be formulated as a second-order cone

program and solved efficiently using the interior-point method for problems with many

assets.

The recent literature models ambiguity-aversion in the context of expected utility

maximization using approaches introduced in Gilboa and Schmeidler (1989) and Klibanoff

et al. (2005). Gilboa and Schmeidler (1989) approach, known as the multiple-priors utility

model (or max-min), maximizes the minimal expected utility given the decision-maker set

of priors (see Bossaerts et al. (2010); Cao et al. (2005); Easley and O’Hara (2009); Epstein

and Miao (2003); Peijnenburg (2018); Ui (2011); Uppal and Wang (2003)). Klibanoff

et al. (2005) proposes a smooth ambiguity model that effectively weights all possible

beliefs using a weighting function similar to expected utility. Ambiguity-aversion implies

the concavity of the weighting function with the implication that worse beliefs will get

more weight (see Asano and Osaki (2020); Gollier (2011); Maccheroni et al. (2013)). They

are used to explain low market participation, equity home bias puzzle, and individuals

portfolio under-diversification under specific utility functional form, assumptions about

ambiguity-aversion and risk-aversion, and portfolio composition.

Ambiguity in the data does not enter any of the above models. Only Boyle et al.

(2012) study the role of data ambiguity in determining portfolio under-diversification

and his model can generate ‘flight to familiarity” episodes using a mean-variance portfolio

problem in which the asset mean returns belong to some confidence intervals. They find

that an agent who views the stock market as ambiguous, relative to some limited number

of familiar individual stocks, will invest in an under-diversified portfolio. This is the paper

closest to ours. Our modeling advance is that we have a model that accounts for higher

order moments and establish that it is SSD consistent. Importantly, however, we put

the model to the data for the large data sets of the two under-diversification problems to

show that i) the model matches observed home allocation weights with those observed

empirically, ii) the level of ambiguity tested in the model is actually the one observed in

the data, and iii) the puzzle ca be explained for reasonable ambiguity levels.

None of the papers cited above put their models to empirical data.1 Cooper et al.

1For example, Uppal and Wang (2003) apply their model to a portfolio of three market indices, and
find that the the optimal solutions generated under ambiguity do not match the observed allocation in
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(2012) emphasize that the challenge in explaining the equity home bias puzzle is not

only to generate allocations that have the same size as the observed allocations but also

whether they are obtained using realistic parameter values. This is what we achieve in

this paper. Our method uses ambiguity level implied by market data so we can determine

whether the ambiguity parameters for which we observe the match between model-implied

weights and actual home allocation are realistic and below the market-implied ambiguity

parameters.

Another strand of literature investigates empirically the potential explanation of the

home bias and household portfolio under-diversification puzzles. There are a few stud-

ies that investigate the association between the household portfolio characteristic and

under-diversification. Dimmock et al. (2021) show that people display inverse-S-shaped

probability weighting, i.e. overweighting low probability events, are less likely to own mu-

tual funds, and are more likely to hold individual stock. Using the Survey of Consumer

Finances data, Polkovnichenko (2005) shows that an investor with cumulative prospect

theory preferences may take an under-diversified position in positively skewed security.

Mitton and Vorkink (2007) test the preference for skewness in a sample of US households

and show the household portfolio under-diversification is positively related to their pref-

erence for skewness. Dimmock et al. (2016b) find the ambiguity-aversion is significant in

explaining the low market participation and home bias in a sample of US households. In

contrast, Dimmock et al. (2016a) do not find ambiguity-aversion significant in explain-

ing low equity market participation in a sample of Dutch households. However, it is

notable and interesting that they find it significant when interacting with their “proxy”

of ambiguity where this proxy itself is significant. This observation shows ambiguity on

its own is a significant factor in explaining low market participation (household under-

diversification). So there is no conclusive empirical evidence regarding the impact of

ambiguity-aversion in explaining the low market participation puzzle. More recently,

Bianchi and Tallon (2019) provide evidence that ambiguity affect households portfolio

using a sample of French household portfolio. In particular, they show that ambiguity

averse investors bear more risk due to a lack of diversification and are relatively more

exposed to the French than to the international stock market. We add to this strand of

literature by showing the household portfolio under-diversification is negatively related

to the ambiguity level of the expected returns of the securities in the portfolio, and that

is why ambiguity-averse investors hold less diversified portfolios.

Measurement of ambiguity is another angle that we contribute. Dow et al. (1992) mea-

home equity bias French and Poterba (1991) for reasonable ambiguity parameters. Using their model
with more recent data spanning 1999-2019, we confirm that the model still does not generate optimal
portfolio choices to match the observed ones. The direction of adjustment is unclear regarding when the
joint distribution ambiguity ambiguity increases but the ambiguity may decrease. Indeed, using their
model with more recent data, we observe this is the case (See Appendix Figure A1).
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sure ambiguity-aversion by the sum of the non-additive probabilities. Baillon et al. (2018)

extend this approach by measuring discrimination among different levels of likelihood.

Baillon and Bleichrodt (2015) propose five ambiguity indices for ambiguity-aversion mea-

surement using matching non-additive probabilities. These measures, however, cannot

be computed from the data and depend on investor characteristic. Garlappi et al. (2007)

and Boyle et al. (2012) measure data-driven ambiguity using a box or an ellipsoid around

the data point mean return estimates while Ui (2011) measures ambiguity by the dif-

ference between the minimal possible mean and the true mean, which is very similar to

the box ambiguity set used by Boyle et al. (2012). The interval ambiguity set ignore the

correlation present across assets. In addition, none of the three aforementioned studies

assumes ambiguity in the distribution of returns. Our ambiguity measurement is not only

data-driven but also do not force any assumption on returns distribution and is able to

capture the correlation among assets.

To the best of our knowledge, this is the first paper offering an explanation of the equity

home bias and household portfolio under-diversification puzzles via ambiguity in the

mean and distribution of returns, independently of a utility functional form. The robust

MtC model is SSD consistent and the maximum robust MtC portfolios are preferred by

the class of investors with concave and non-increasing utility functions. Our choice of

base model (MtC) does use a normality assumption, which is prevalent the literature

cited above and, furthermore, with an ellipsoidal ambiguity set we take into account the

correlation between returns. Finally, we gauge implied ambiguity from market data, and

we use it to evaluate model performance in resolving the equity home bias puzzle.

Robust optimization has been used extensively in portfolio optimization literature.2

We contribute to this strand of literature the robust counterpart of MtC optimization

model when distribution and means are ambiguous. The closet work in this respect is Goel

et al. (2019) who developed robust counterpart for two variants of stable tail-adjusted

return ratio (STARR), one with mixed conditional value-at-risk (MCVaR) and the other

with deviation MCVaR, under joint ambiguity in the distribution modeled using copulas.

The broad groups of explanations to home equity bias puzzle are: (i) hedging real

risk (real exchange rate risk and nontradable income risk), (ii) explicit costs and barrier

for foreign investors in international financial markets (transaction cost, differences in

tax treatments, in the legal framework and barriers for foreign investors), (iii) informa-

tion asymmetry, (iv) trade, (v) governance and transparency, and (vi) behavioral bias

(overconfidence, optimism, and familiarity). For a full description of the aforementioned

explanations, we refer the readers to (Coeurdacier and Rey, 2013; Cooper et al., 2012)

2see (Ceria and Stubbs, 2006; Chen et al., 2014; El Ghaoui et al., 2003; Gao et al., 2017; Goldfarb
and Iyengar, 2003; Lotfi and Zenios, 2018; Paç and Pınar, 2014; Tütüncü and Koenig, 2004; Ye et al.,
2012)
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and the references therein. Theoretical works build on macroeconomic modeling of an

open economy in which they find portfolio choice in a two-country equilibrium macro

model. The main motivation in this line of literature is the “homogeneity” assumption

of the standard model of Lucas (1982). Various source of heterogeneity introduced in the

model to explore the equity home bias puzzle (see e.g. Lewis (1999); Obstfeld and Rogoff

(2000); Sercu (1980); Stulz (1981); Uppal and Wang (2003)) and has been tested empir-

ically (see e.g. Coeurdacier and Guibaud (2011); Dahlquist et al. (2003); Errunza et al.

(1999); Fidora et al. (2007); Glassman and Riddick (2001); Massa and Simonov (2006);

Mishra and Ratti (2013)). So far, the empirical and theoretical literature on the equity

home bias puzzle has the conclusion that the puzzle is a combination of all discovered

channels, information asymmetries and economic openness channels shown to be empiri-

cally more significant, though (Cooper et al., 2012). We add to this strand of literature

by introducing a theoretical model for considering market data ambiguity in the optimal

portfolio choice selection and empirically testing it on two well-known puzzles.

The paper is organized as follow: First, we introduce the MtC portfolio optimization

model and obtain its robust counterpart in Section 2. In Section 3 we describe our

data and the application of the model to the equity home bias puzzle and individuals

under-diversification problem. Finally, Section 4 concludes the paper.

2 Robust Mean-to-CVaR portfolios

2.1 Preliminaries

Portfolio return r̃p = r̃>x is a function of the vector of portfolio weights x ∈ X ⊂ Rn
+ and

the random vector r̃ ∈ Rn of asset returns, with expected value r̄. X is the set of feasible

portfolios assumed, for simplicity, to be linear. Given a risk-free asset with return rf , the

investment problem is to decide the allocation of wealth between this asset and the risky

portfolio with random return r̃p. If y ≥ 0 is the proportion in the risky portfolio, the

return of the complete portfolio is

r̃c = yr̃p + (1− y)rf . (1)

To account for higher-order moments we use CVaR as the risk criterion in portfolio

selection. CVaR is coherent (Artzner, Delbaen, Eber, and Heath, 1999), and it can be

minimized as a linear program for discrete distributions (Rockafellar and Uryasev, 2002).

These clear advantages turned CVaR into a widely used risk measure, with Basel III

shifting to CVaR to capture tail risk (Basel Committee, 2019), and with several financial
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and other applications.3 Additional background is given in Appendix C.1.

Following Pagliardi et al. (2021), we define the mean-to-CVaR ratio as

MtCα =
E(r̃p − rf )

CVaRα(r̃p − rf )
. (2)

This is a reward ratio, like Sharpe, in the sense that it measures the expected excess

return per unit of risk (see (Farinelli, Ferreira, Rossello, Thoeny, and Tibiletti, 2008)).

The MC tangency portfolio is obtained by solving

MtC∗ = max
x∈X

E(r̃p − rf )
CVaR(r̃p − rf )

. (3)

where X denotes the constraint set specifying feasible portfolios, and is defined as follows:

X = {x ∈ Rn | x ≥ 0,
n∑
i=1

xi = 1}. (4)

From this tangency portfolio every other mean-CVaR (MC) efficient portfolio can be

generated as a linear combination with the risk-free rate. Sharpe ratio is the slope of the

tangency portfolio using variance as the risk measure, whereas MtC∗ uses the coherent

CVaR risk measure. CVaR under normality is given by CVaRα(r̃p) = −r̄p+κ1−ασr̃p where

r̄p and σr̃p are the mean and standard deviation of r̃p, and κ1−α = 1
1−αφ(Ψ−1(1−α)) with

φ and Ψ the normal density and cumulative distribution functions, respectively. In this

case the Sharpe ratio portfolio is a solution of model (3). Beyond the attractive properties

of MtC optimization (coherence, SSD consistency, and a tractable linear programming

model), Pagliardi et al. (2021) also demonstrate empirical advantages. Mean-CVaR model

optimal weights are more robust than Mean-Variance model, and MtC portfolios are more

positively skewed than Sharpe portfolios.

To understand the impact of ambiguity in the process of the portfolio optimization

problem, we apply the robust pptimization approach, whose main building block is the

ambiguity set. For example, when the distribution of return is ambiguous, that means

you do not possess any information beforehand about neither probabilities nor the realiza-

tions, and they are only known to the extent that they belong to the so-called ambiguity

set. The novelty of this approach is that for a given ambiguity set, it formulates the

model and finds an optimal solution that assures the objective function is insensitive to

3Financial applications of CVaR optimization include, among others, Alexander and Baptista (2004);
Alexander, Coleman, and Li (2006); Gotoh, Shinozaki, and Takeda (2013); Huang, Zhu, Fabozzi,
and Fukushima (2008); Kibzun and Kuznetsov (2006); Mausser and Romanko (2018); Topaloglou,
Vladimirou, and Zenios (2002); Xiong and Idzorek (2011). CVaR optimization also finds applications in
areas such as the news vendor problem, radiation therapy treatment planning, carbon markets hedging,
and water resources and energy management. See also (Zenios, 2007, ch. 5).
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ambiguity and the constraints are satisfied with ambiguous data. This approach has a

cost in the sense that optimal values are conservative.

The MtC model (3) depends on mean returns and the joint distributions of all securi-

ties in the portfolio.4 To the extent this information is fully known, we have no ambiguity

in the data and therefore there is no model mis-specification to address. Apparently, this

is not the case. Practically speaking, the researchers adopt the following standard ap-

proach. They rely on discrete empirical distributions where the random variable of asset

returns take discrete values from a finite set of equiprobable scenarios and obtain the cor-

responding formulation. Neither the scenarios nor the assigned equiprobable probabilities

are presumed in reality.

In the next sub-section, we obtain the model under ambiguity by obtaining the robust

MtC model and show that the model can be cast as a second-order cone program (SOCP)

which can be solved efficiently using the interior-point methods. Furthermore, we show

that the optimal solution of the model is SSD consistent.

2.2 Robust model formulation

In this section, we develop the robust counterpart of the MtC maximization model (3)

under ambiguity in distribution and mean returns.5 Doing so, we assume that the joint

probability distribution of returns, π, is ambiguous and belong to the class of all distri-

butions with means r̄ ∈ Rn and covariance matrix Σ ∈ Sn+.6 Further, the mean values of

returns, r̄, belong to an ellipsoidal ambiguity set. The advantage of ellipsoidal ambigu-

ity set over the interval one is the following. The ellipsoidal ambiguity set preserve the

correlation information between the assets while the interval ambiguity set assumes the

returns are independent. Below we present the formal definitions.

Definition 2.1 (Ambiguity in distribution). The random variable r̃ assumes a distribu-

tion from

D = {π | Eπ[r̃] = r̄, Covπ[r̃] = Σ � 0},

where r̄ and Σ are given and Σ � 0 indicates Σ is a positive definite matrix.

As it can be observed from definition (2.1), the returns distribution are ambiguous

and specified only to the extent that their first and second central moments are known to

be equal to r̄ and Σ, respectively. We further extend the ambiguity to the mean returns

next.

4From the fundamental minimization formula of CVaR in Appendix C.1, one can see that CVaR and,
therefore MtC model depends on the conditional distribution of portfolio return that is linked to the
joint distribution of returns.

5The model can be extended to the case where the joint distribution of returns are ambiguous, and
means and covariance matrix belong to a box ambiguity set as described in Appendix D.

6Sn+ indicates the space of all positive semi-definite matrices.
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Definition 2.2 (Ellipsoidal ambiguity for mean returns). Mean returns belong to the

joint ellipsoidal set:

Uδ(r̂) = {r̄ ∈ Rn | S(r̄ − r̂)>Σ̂−1(r̄ − r̂) ≤ δ2},

where r̂ indicates the center of this ambiguity set, and parameter δ controls the size of

the ambiguity set. he S is the number of scenarios used for estimation of means (r̂ ) and

covariance matrix (Σ̂) entries.

The application of ellipsoidal ambiguity sets is prevalent in robust optimization lit-

erature since they result in less conservative optimal solutions than standard interval

ambiguity sets. To specify an ellipsoidal ambiguity set, one would require to determine

center r̂ and parameter δ that controls the size of ambiguity set. Construction of the

ambiguity set is an important step toward more parsimonious model as the size of the

ambiguity set associates with conservativeness of optimal solutions. The larger the δ, the

more conservative the robust optimal solutions are. To this end, we rely on the heuristic

and algorithm developed by Lotfi and Zenios (2018).

Note that if we let δ = 0, then the ambiguity set reduces to the single point of center

r̂. Intuitively, this suggests there is no ambiguity, and the mean returns are fully known.

The ambiguity in mean returns is the most important source of ambiguity and model

mis-specification since the optimal portfolios have a much higher sensitivity to the mean

returns estimation errors compared to the covariance matrix estimation error (see e.g.

(Chopra and Ziemba, 1993) for mean-variance model and Kaut et al. (2007) for mean-

CVaR model). For this reason, we disregard the ambiguity in the covariance matrix. This

helps to simplify the analyses and obtain solutions that are less conservative.7

For the purpose of the application of our model to home bias puzzle in Section 3, we

develop our model where the joint distribution of assets returns is ambiguous like Uppal

and Wang (2003) and additionally, the mean returns belong to an ellipsoidal ambiguity

set.8 We separate the ambiguity in the information of the last asset (henceforth home)

from the rest of first n − 1 assets (henceforth foreign assets). In particular, we consider

two ambiguity sets, one containing the information of home mean return and the other

set integrates the information of mean returns for foreign assets in the portfolio. In

mathematical terms, we consider the following two ambiguity sets for home and foreign

7Many applications of robust optimization in portfolio optimization and risk management literature
have adopted the same approach (see e.g. (Ceria and Stubbs, 2006; Garlappi et al., 2007; Paç and Pınar,
2014)).

8Note that ambiguity in joint distribution implies the marginal distribution of returns are also ambigu-
ous, so we have the same generality as Uppal and Wang (2003), and in addition, we consider ambiguity
in mean returns.

12



assets denoted by U(r̂h, δh) and U(r̂f , δf ), respectively.

U(r̂h, δh) = {r̄h ∈ R | S(
r̄h − r̂h
σ̂h

)2 ≤ δ2
h}, (5)

U(r̂f , δf ) = {r̄f ∈ Rn−1 | S(r̄f − r̂f )>Σ̂−1
f (r̄f − r̂f ) ≤ δ2

f},

This is the first study that does such separation while keeping the correlation infor-

mation. To take into account the ambiguity in the joint distribution and mean returns

when optimizing the MtC model (3), we consider the robust counterpart of MtC model

(robust MtC) as follows:

max
x∈X

min
r̄f∈U(r̂f ,δf )
r̄h∈U(r̂f ,δf )

min
π∈D

E(r̃p − rf )
CVaRα(r̃p − rf )

. (6)

The following theorem gives a second order cone programming (SOCP) formulation of

the robust MtC model.

Theorem 2.1. Assuming positive worst-case CVaR on excess returns of the optimal

portfolio of robust MtC maximization model (6) with feasible set X, then the robust MtC

portfolio optimization model can be cast as follows:

max
x′f∈R

n−1
+ ,x′h∈R+

(r̂h − rfe)x′h + (r̂f − rfe)>x′f −
δh√
S
x′hσh −

δf√
S

√
x′>f Σfx′f (7)

s.t.

−(r̂h − rf )x′h − (r̂f − rfe)>x′f +
δh√
S
x′hσh +

δf√
S

√
x′>f Σfx′f

+

√
α√

1− α

√
x′>f Σfx′f + 2xhσ>hfxf + x2

hσ
2
h ≤ 1

e>x′ > 0.

Given x
′∗
h and x

′∗
f , the optimal solution of (7), the optimal allocation to home asset in

(6) would be x∗h = 1

e>(x
′∗
h +x

′∗
f )
x
′∗
h . Likewise, the optimal allocation to foreign asset can be

obtained as x∗f = 1

e>(x
′∗
h +x

′∗
f )
x
′∗
f .

(For the proof see Appendix C.2.)

In the next section, we first illustrate the robust MtC model for the case of two assets

where we can obtain the analytical solution. We compare our theoretical model impli-

cation with that of Uppal and Wang (2003) and find the same qualitative results. It is

notable that in our set-up ambiguity parameter and consequently the optimal allocation

under ambiguity are independent from risk-aversion because we select the tangency port-

folio while in the model Uppal and Wang (2003) the optimal solutions that are adjusted
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for ambiguity are a function of ambiguity parameter and risk-aversion. Next, we show

robust MtC portfolio is SSD consistent. This observation has an important implication

as it elevates the application of robust risk measure further.

2.3 Second order stochastic dominance consistency

Zhu and Fukushima (2009) show that robustification preserve coherence property of

Artzner et al. (1999) in the sense if the risk measure ρ is coherent, then its robust coun-

terpart, ρw, defined as worst-case ρ over a distribution ambiguity set P , is coherent too.

Here we shed light on another aspect of robust risk measure i.e. SSD consistency. The

stochastic dominance offers a way of analyzing risky decisions when a decision maker’s

utility function is known, to the extent that it belongs to a specific class of real-valued

functions (see Appendix C.1 for definitions of stochastic dominance).

Proposition 2.1 (SSD consistency of robust risk measure). If risk measure associated

with probability distribution π is SSD consistent, then the corresponding robust risk mea-

sure ρw associated with distribution ambiguity set P remains SSD consistent.

Proof. Assume random variables X̃ and Ỹ are arbitrary given and X̃ dominates Ỹ , or

equivalently, X̃ �SSD X̃. That is X̃ is preferred to Ỹ within all risk-averse preference

models with an increasing and concave utility function. Since the risk measure ρ is SSD

consistent then ρ(X̂) ≤ ρ(Ŷ ), and therefore ρw(X̂) = max
π∈P

ρ(X̂) ≤ max
π∈P

ρ(Ŷ ) = ρw(Ŷ ).

That completes the proof.

Theorem 2.2 (Second order stochastic dominance of robust MtC portfolios). Let X+

denote the space of all feasible portfolios that have positive worst-case mean excess return

and worst-case CVaR associated with ambiguity sets D, U(r̂f , δf ), and U(r̂h, δh). Then

robust MtC is SSD consistent for all portfolios in X+.

Proof. Let us assume the portfolios x1 and x0 belong to X+, and x1 dominates x0. It

means r̃x1 �SSD r̃x0 or r̃ex1 �SSD r̃ex0 where re denotes the excess returns over risk-free.

This implies that E(r̃ex1) ≥ E(r̃ex0) > 0 (Whang, 2019, Theorem 1.1.5), and, equivalently,

E(r̃x1 − rf ) ≥ E(r̃x0 − rf ) > 0. This implies worst-case mean excess returns of portfolios

x1 and x0 satisfy the following inequality.

min
r̄f∈Uδ
r̄h∈Uδh

min
π∈P

E(r̃x1 − rf ) ≥ min
r̄f∈Uδ
r̄h∈Uδh

min
π∈P

E(r̃x0 − rf ) > 0.

We also have that CVaR is SSD consistent (Ogryczak and Ruszczyński, 2002, Theorem

3.2). Applying Proposition 2.2 to CVaR implies that worst-case CVaR is SSD consistent

14



or,

0 < max
r̄f∈Uδ
r̄h∈Uδh

max
π∈P

CVaRα(r̃x1 − rf ) ≤ max
r̄f∈Uδ
r̄h∈Uδh

max
π∈P

CVaRα(r̃x0 − rf ).

Therefore the ratio of worst-case CVaR to worst-case mean return for portfolio x1 is

less than or equal to worst-case CVaR to worst-case mean return of portfolio x0. That

means the worst-case CVaR-to-mean ratio of portfolio x1 is less than or equal to the

worst-case CVaR-to-mean ratio of portfolio x0. Hence, the inverse of worst-case MtC

ratio is consistent with SSD. Since the assumptions made assures a positive worst-case

MtC, one can easily see that the condition of ρ(X̃) ≤ ρ(Ỹ ) is equivalent to 1
ρ(Ỹ )
≤ 1

ρ(X̃)
in

Definition of risk measure consistency (see Appendix C.3), and therefore the robust MtC

optimal portfolio satisfies that. Therefore robust MtC is SSD consistent.

2.4 Robust MtC optimal portfolios

To understand the robust MtC optimal portfolio choice characteristics, we consider the

case that the portfolio consist of two risky assets indicated as xh and xf and find the

analytical solution of robust MtC model (6). Let us denote the covariance matrix Σ as

follows:

Σ =

(
σ2
f σhf

σhf σ2
h

)
.

The following theorem finds analytical formulation of optimal allocations in the pres-

ence of ambiguity.

Theorem 2.3. Let us define

c1 =
√
S
[
σ2
f (r̂h − rf )− σhf (r̂f − rf )

]
(8)

c2 =
√
S
[
σ2
h(r̂f − rf )− σhf (r̂h − rf )

]
c3 =

√
S
[
(σ2

f − σoh)(r̂h − rf )− (σhf − σ2
h)(r̂f − rf )

]
.

Assuming optimal solutions of robust MtC model (6), x∗h and x∗f , both being positive, then

they can be obtained as a function of pair of (δh, δf ) as follows:

x∗h(δh, δf ) =
c1 − δhσhσ2

f + δfσfσhf

c3 − δh(σhσ2
f − σhσhf ) + δf (σhσ2

f − σoσ2
h)

(9)

x∗f (δh, δf ) =
c2 + δhσhσhf − δfσfσ2

h

c3 − δh(σhσ2
f − σhσhf ) + δf (σhσ2

f − σoσ2
h)
.
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(For the proof see Appendix C.3.)

The first implication of Theorem 2.3 is that x∗f (δh, δf ) increases with δh and decreases

with δf and since the sum of allocations adds up to one, that means optimal home

allocation x∗h(δh, δf ) decreases with δh and increases with δf . That is as the ambiguity

in foreign asset increases, the allocation to home increases. This theoretical observation

can explain the equity home equity bias puzzle where the investors allocate to domestic

equities more than they should allocate according to International CAPM. It is consistent

with the observation of Uppal and Wang (2003) that when the joint distribution of the

two assets are fully ambiguous, and we know more on asset one, then allocations are

biased toward asset one. Further, one can easily check that Theorem (2.3) implies

x∗h(δh, δf ) =

(
c1 − δhσhσ2

f + δfσfσhf

c2 + δhσhσhf − δfσfσ2
h

)
x∗f (δh, δf ). (10)

First, let us consider the case that there is ambiguity in the joint distribution of all

assets, and additionally no ambiguity in mean return of home, but the foreign asset

mean returns are ambiguous (δh = 0, δf > 0). The impact of ambiguity is two-folded.

As it can be seen from equation (10), the numerator of slope coefficient increases with

δf and simultaneously its denominator decreases with δf . Therefore, when there is no

ambiguity in home asset, ambiguity on foreign asset can shift the allocations from foreign

asset to home significantly. When both home and foreign assets are ambiguous and

besides δh < deltaf , then the slope adjustment depends on covariance matrix. The

same holds when δh > deltaf . Finally, when the ambiguity in home and foreign asset

is the same, the optimal allocations of robust MtC and MtC coincide if and only if

(r̂h − rf )(σ
3
fσ

2
h − σfσ

2
hf ) − (r̂f − rf )(σhσ

2
hf − σ3

hσ
2
o) = 0. Intuitively, this suggests the

robust model is indifferent to the same level of ambiguity in the two assets if such a

condition holds. For instance, if r̂h = r̂f and σh = σf , the aforementioned condition is

satisfied. So, if the means and standard deviation of the two assets are equal, we will

get the same solution as in the case there is no ambiguity in means. It is noticeable that

aforementioned results are independent of the investor’s risk-aversion.

3 Application to under-diversification puzzles

In this section, we use our robust MtC model to examine the extent that our robust

MtC model can explain home bias puzzles on equity and the household portfolio under-

diversification problem.9 First, we present the data we use in our analyses, explain

9We extend our model and obtain the robust MtC model where the joint distribution is ambiguous,
and additionally, means and covariance matrix entries belong to an interval ambiguity set. This is a
generalization of our initial ambiguity set. The details related to the definition of ambiguity set and the
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how we measure ambiguity and discuss our empirical results for two instances of under-

diversification puzzles.

3.1 Data

The first database we use to address the home equity bias puzzle includes information

on equity market indices, market capitalization, and actual equity holdings across 21

developed and 19 emerging economies as per the MSCI classification, and it spans over

January 1, 1999, to December 31, 2019.10

We use the MSCI Investable indices to avoid positive biases when ignoring investa-

bility frictions, such as illiquidity risk and index replicability that can be important in

emerging markets. For investors in a specific country, country end-of-month index prices

are calculated by multiplying the end-of-the-month country index price in USD currency

by the corresponding contemporaneous spot rate. We then calculate the excess return

using the risk-free rate chosen for investors as in Data Appendix Section. Data are from

Datastream. The set of countries and descriptive statistics of their excess returns (cal-

culated using index price in USD currency) during the sample period are in the Data

Appendix Section. There are large differences in the return moments across countries,

with most country indices being negatively skewed with considerable tail risk, especially

in emerging markets.

Market capitalization (in USD) are from World Development Indicators of World Bank

and World Federation of Exchanges databases.11 IMF’s Coordinated Portfolio Investment

Surveys (CPIS), available from 2001-2019, provide holdings of equity across countries.

Holdings are measured in USD. Even though the CPIS database suffers from measurement

errors, it has been widely adopted in the international investment literature. Further Lane

and Milesi-Ferretti (2008) showed the reporting of holdings by developed markets is of

high quality.12

model development are gathered in Appendix D. The model with interval ambiguity sets is formulated
as a semi-definite program (SDP) that are solvable using efficient interior-point methods. The advantage
of interval ambiguity sets is that it considers the ambiguity in each security independently, giving more
flexibility for ambiguity parameters. We can derive country-specific ambiguity parameters for each mean
return and covariance matrix entry.

10The developed markets in our sample include Australia, Austria, Belgium, Canada, Denmark, Fin-
land, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan, Netherlands, New Zealand, Norway,
Portugal, Spain, Sweden, Switzerland, United Kingdom, and the US. The emerging markets in our
sample include Brazil, Chile, China, Colombia, Czech Republic, Egypt, Hungary, India, Israel, Korea,
Malaysia, Mexico, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, and Turkey.

11For Italy and Finland, we have missing values for which we use market capitalization (in EUR)
from their Central Bank databases along with the foreign exchange rates from ECB. We fill in the
missing values for Denmark and Sweden using market capitalization data from NASDAQ OMX and the
corresponding foreign exchange rates from Thomson Reuters. The data are from Datastream.

12The first CPIS reported data for 1997 for 29 source countries, but some major investing nations did
not participate, and therefore, we rely on data from the second CPIS, reporting holdings for 2001 and
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To measure the magnitude of equity home bias, we use the standard measure in the

literature (see Cooper et al. (2012); Mishra (2015)). Let EQi represent the holdings of

investors in country i’s stock market, TEQi, the value of the total equity holding for

country i, and MCi, the stock market capitalization of country i. Then actual holdings

of domestic equities in the total equity portfolio of investors from country i, ai is equal to

EQi/TEQi.
13 Further, assuming ICAPM holds true, market-cap weight can be computed

as wi = MCi/
∑n

i=1MCi, and equity home bias therefore is equal to:

EHBi =
ai − wi
1− wi

. (11)

When the EHB for country i is equal to one, there is full equity home bias while when

it is equal to zero, the portfolio is optimally diversified.

To measure ambiguity in financial data, we apply the heuristic developed in Lotfi and

Zenios (2018) where the covariance matrix is assumed un-ambiguous and is estimated

using the whole sample. For robustness, we use an alternative measure of ambiguity for

which we rely on Economic Policy Uncertainty indices which is available only for 23 coun-

tries in our primary sample.14 The next sub-section describes ambiguity measurement in

more details.

The second database is a record of monthly investor portfolio holdings at a major U.S.

discount brokerage house. The database consists of the portfolios of 78,000 households

and contains portfolio positions for the period of January 1991 through November 1996.15

Similar to Mitton and Vorkink (2007), we aggregate all holdings to the household level. To

measure the ambiguity of household portfolios, we obtain monthly return data from the

Center for Research in Security Prices (CRSP). We exclude from our analysis household

portfolios that have no investment in individual equities at any point during the sample

period and additionally remove the households for which they have missing CUSIP or the

equity price information from CRSP can not be found. Moreover, we exclude observations

of monthly returns that are below -150% or higher than 150%. The descriptive statistics

of portfolio value sorted by size indicate heterogeneity among household portfolios. For

further information on this database, we refer the readers to Barber and Odean (2000,

2001, 2008).

onward.
13Note that the total equity holding comprises both foreign and domestic holdings. Domestic equity

holding is the difference between the country’s total market capitalization and foreign equity liabilities.
14The developed economies with available EPU index include Australia, Belgium, Canada, Denmark,

France, Germany, Greece, Hong Kong, Italy, Japan, Netherlands, Spain, Sweden, United Kingdom, and
the US. The emerging markets with available EPU index include Brazil, Chile, China, Colombia, India,
Korea, Mexico, and Russia. The data are available at http://www.policyuncertainty.com.

15This database is subject to concern that the portfolios do not necessarily represent the entire invest-
ment holdings of the households in the database. Goetzmann and Kumar (2008) conclude that, by and
large, the accounts in this database represent substantial portions of investor wealth.
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3.2 Ambiguity measurement

In some cases, ambiguity can be defined as the confidence regions of the statistical es-

timators of the model parameters. For other cases like the applications we present, the

ambiguity may be given via multiple estimates of model parameters, which raises the

question of the appropriate ambiguity set. To measure ambiguity in financial data asso-

ciated with the mean returns, we follow Lotfi and Zenios (2018) to compute the tightest

ellipsoid that contains all potential realizations of model parameters. This method first

finds the best possible center among all realizations where the “best” refers to the ob-

servation of the mean return vector with the minimum sum of distances from all others.

Once the center of the ellipsoid is determined, the size of the ambiguity set (δ) is obtained

by calculating the distance of each point in the ellipsoid from the center and letting δ be

the maximum value. In this way we guarantee that all available estimates of the parame-

ters are included in this ellipsoid. We use a rolling window of length L months to obtain

instances of mean returns, and then using this information, we derive the center of the

two ambiguity sets in (5) along with the corresponding parameter that controls the size

of ambiguity set. Applying their method, we estimate the covariance matrix using whole

data (data-based ellipsoidal ambiguity set hereafter).

We also measure ambiguity using the monthly Economic Policy uncertainty (EPU)

index of Baker et al. (2016). To construct such an ambiguity set, we first construct a

confidence interval for each mean return using the following formula:

µ̄i − EPU
F−1(β)σi√

S
≤ µ ≤ µ̄i + EPU

F−1(β)σi√
S

, i = 1, . . . , n, (12)

where EPU is the maximum (or mean) value of the normalized EPU index (EPU

indices are normalized by dividing the EPU index value by maximum EPU among all

observations). The β is the confidence level, and F is the normal cumulative distribution

function. S is the number of observations, and µ̄ and σ are the mean and standard

deviation of returns obtained using all observations. The idea is that ambiguity can

determine how the confidence interval is enlarged or tightened according to the EPU

index. To capture the ambiguity effect implied by the EPU index, we select the highest

confidence level, i.e. we set β = 0.99. This way, we can conclusively capture ambiguity

implied by EPU variability, assuming there is no ambiguity in variance values.

The above formulation ensures a larger confidence interval for countries with high EPU

indices, such as Greece. However, the interval ambiguity set is not an ideal selection for

the type of ambiguity set. It ignores the correlation information among securities and

robust optimal allocation are the most conservative. So we use simulation to generate the

tightest ellipsoid as follows. First, we obtain the box (n-dimensional interval) implied by

19



single interval ambiguity sets as (12) where EPU is set to be either maximum or mean

value of EPU for each country. Next, we generate 5000 random observations within the

box and find the ellipsoid containing these data points per the heuristic described above

(EPU-based ellipsoidal ambiguity set hereafter). The ambiguity intervals obtained using

maximum EPU are more compatible to those implied by the purely data-based ellipsoidal

ambiguity set when compared to the ambiguity intervals obtained using mean EPU (see

Online Appendix Figure A2).

3.3 Equity home bias puzzle

In this section, we first show the persistence of home equity bias using more recent data

and illustrate the relevance of ambiguity to the equity home bias puzzle in the universe

of 21 developed economies and 19 emerging markets and with recent data spanning over

1999-2019.

French and Poterba (1991) show the observed international investors’ portfolios are

under-diversified and heavily biased toward domestic equities. This observation goes

against modern portfolio theory in which International CAPM is well-accepted and is

well-known as “equity home bias puzzle”. The market and observed weights in their

paper implies an EHB index of 0.92 for Japan and 0.88 for the US as of 1989.16 In our

sample, we use more recent data from 2001 to 2018 and broaden the universe of countries

by including 21 developed and 19 emerging equity market indices, including the universe

of countries in (French and Poterba, 1991). The most recent data also illustrates the same

picture with a smaller magnitude of the EHB index. In particular, we observe Japan and

US have an average EHB index of 0.86 and 0.73 (see the last column of Table 1).17 The

same observation holds for all countries in our sample. In general, the HBI is much lower

for developed markets than emerging markets (Average HBI among developed markets

is 0.70 while the average HBI among the emerging markets is 0.94.). Also, there is huge

variability among developed markets. In contrast, the HBI of emerging markets remains

almost constant (HBI of developed markets has a standard deviation of 0.14 while for

emerging markets, this value reaches as low as 0.06.).18

16The market capitalization data for Japan and US in French and Poterba (1991) are different from
those reported in the World Bank database. In fact, market weights for Japan and the US using the
same universe as French and Poterba (1991) are 44% and 35%, respectively, and therefore the calculated
EHB index would be 0.96 and 0.91 for Japan and US, accordingly, indicating a much higher equity home
bias.

17Note that the EHB index time series stops at 2018 because there are missing market capitalization
values for Belgium, Canada, France, and the Netherlands for 2019, and this will bias the calculation of
total market capitalization value and, therefore, home bias index, severely.

18Among European countries in our sample, Greece and Spain HBIs (0.96 and 0.91, respectively) are
the highest while the Netherlands and Norway HBIs (0.39 and 0.38, respectively) are the lowest. Among
non-European countries, Hong Kong and Japan HBIs (0.90 and 0.86, respectively) are the highest while
New Zealand and United Kingdom HBIs (0.62 and 0.65, respectively) are the lowest (see Table 1). The
lowest HBI among emerging markets belongs to Israel and Peru (0.82 and 0.84, respectively), while
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[ Insert Table 1 Near Here ]

[ Insert Table 2 Near Here ]

We construct the ambiguity sets according to the formulation (5), and we rely on

the heuristic developed in Lotfi and Zenios (2018) (see subsection 3.2 for details) for

obtaining the ambiguity parameters. We define m = δh/δf that measures the mean

return ambiguity of home equity index relative to the foreign equity indices, and values

of m < 1 reflect the cases where there is less ambiguity in the mean return of home

index compared to the foreign equity indices. Obtained ambiguity parameters δf , δh, and

m show reasonable amount of variations. The δf changes from a minimum of 8.21 for

Belgium to a maximum value of 8.97 for the United Kingdom, with a standard deviation

of 0.21. The m changes from minimum of 0.18 for Finland to maximum of 0.28 for

Austria, with standard deviation of 0.03 (see Table 1). In the case of emerging markets,

the δf changes from a minimum of 8 for the Philippines to a maximum value of 9.01 for

Malaysia, with a standard deviation of 0.27. The m changes from 0.15 for Malaysia to

0.41 for Colombia and Russia, with standard deviation of 0.07 (see Table 2).19 The data

tabulated in Tables 1 and 2 shows there is a non-linear relationship between either HBI

or Home weight and any of ambiguity parameters which are aligned with the observation

of Figure 1 and optimal home allocation explicit formulation, equation (10).

Next, to assess the model performance, we run the robust MtC model (7) where we

use the estimated center from the heuristic of Lotfi and Zenios (2018). However, instead

of using the data-driven δf and m, we use a range of δf and m values below the data-

driven estimated threshold and obtain the allocation to home country for each country’s

investors. The depicted results for selected sample of countries shows that robust MtC

optimal home allocation increases with foreign ambiguity, and it is persistence for differ-

ent values of m below the data-driven estimated m (see Figures 2, 3, and 4 for the sample

of developed European, developed non-European, and emerging markets, respectively).

Further, for a given δf , increasing home equity index ambiguity reduces home allocation.

These observations are aligned with the theoretical implication of Theorem (2.3). How-

ever, the most important observation of this test is that the model can generate home

allocations that match the actual home allocations for values of foreign and relative am-

biguity far below data-implied ones.

[ Insert Figure 2 Near Here ]

[ Insert Figure 3 Near Here ]

[ Insert Figure 4 Near Here ]

Egypt, India, Philippines, Russia, and Turkey have the maximum home bias (see Table 2).
19The same qualitative observation can be found when we look at δh instead of m.
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In particular, our test with selected European developed countries shows the model

behaves in a way that we can achieve the actual home allocations for δf ≤ 3 and for

m ≤ 0.2 (The only exception is France that reaches it at δf = 3.1 when m = 0.2). For

investors in selected non-European developed economies, values of δf ≤ 2.5 and m ≤ 0.2

can generate allocations to home as high as actual ones (The exceptions are Canada

and Japan. When m = 0.2, our model reaches actual home allocation for Canada and

Japan at δf = 2.7 and 3, respectively).20 Comparing these limits of δf and m with those

obtained from data, we can gauge the credibility of our model in explaining the equity

home bias puzzle. In particular, we report the approximate δf (hereafter δ†f ) for which

the robust MtC optimal home allocation matches with the actual home weight when the

relative ambiguity parameter is fixed at m = 0.2 (see first column of Tables 1 and 2 for

developed and emerging economies, respectively).21

In all case, the estimated δ†f is much lower than the data-driven δf . The maximum

δ†f in developed economies sub-sample is obtained for Greece (δ†f = 7.3) and in emerging

market sub-sample, it is obtained for Turkey (δ†f = 8) where the data-driven δ is equal

to 8.87 and 8.99, respectively. The mean δ†f for developed and emerging markets equals

2.86 and 2.66, with a high standard deviation of 1.28 and 1.69, respectively.

These observations establish that our model is capable of generating allocations com-

parable to observed ones and obtaining them for reasonable ambiguity parameters. This

is an important step in claiming resolving puzzle as pointed out by Cooper et al. (2012).

However, we are careful in interpreting our results for the case of emerging markets since

we know most of these countries are bounded by other restrictions and that is why we

select in our main illustration (Figure 4) only emerging markets with lowest EHB indices.

The same applies to developed economies to a much less extent as these economies have

less international investment barriers. Also, we do not claim the puzzle is only explained

by ambiguity in financial data as we have not taken into account in our model other

limitations such as transaction cost, international investment barrier, exchange risk, etc.

[ Insert Table 3 Near Here ]

Therefore, the robust MtC model that we developed in sub-section 2.2 can (i) link the

equity home bias puzzle to ambiguity in the financial data used for finding the optimal

portfolio choice, (ii) show how overall ambiguity in joint distribution and relative ambi-

guity of home to the foreign market indices can bias the optimal portfolio choice toward

the home, and (iii) generate optimal allocations to home equity index that matches the

observed ones for reasonable values of ambiguity parameters.

20The same qualitative observation can be found with other European developed economies (see Ap-
pendix Figure A3).

21The only exception is Greece, in which we obtain delta†f when m = 0.10. Note that this is not

against us as we still can find delta†f within the feasible range of values for selected feasible m.

22



Further, to complement our analyses, we use EPU-based ambiguity measurement de-

scribed in sub-section 3.2 which has been used by Aı̈t-Sahalia et al. (2021) as well. The

sample of countries with available EPU indices is much less than the initial sample (15 de-

veloped and eight emerging economies). We first repeat the analysis using our ambiguity

measurement (see the first four columns of Table 3). That is, we repeat the tests similar

to those in Tables 1 and 2 for the sample of 23 countries. This is a robustness test, and

we observe the results are qualitatively the same. All the δ†f values for which the robust

MtC optimal home allocation matches with actual ones are below the data-driven.22

We use the interval ambiguity sets defined as in equation (12) where we use maximum

EPU for each country in our sample. Following the instruction in sub-section 3.2, we

obtain the implied ellipsoidal ambiguity sets parameters (see Table 3 where columns

containing the EPU-based ambiguity parameters are indicated with a subscript EPU).

Comparing the home ambiguity parameters, EPU-implied ones are much smaller (average

EPU-based home ambiguity value is almost half of pure data-driven one). On the other

side, the foreign ambiguity parameters are much higher than those purely data-driven.

Most importantly, given the average mEPU = 0.09, we set mEPU = 0.10 and find

δf,EPU for which that the robust MtC optimal home allocation matches with that of actual

ones (denoted as δ†f,EPU). All δ†f,EPUs are below the EPU-based δf,EPU . So our model

performance in explaining the puzzle is robust with respect to ambiguity measurement.23

Moreover, when comparing the results obtained in Tables B1 with those in Tables 1

and 2, we observe the mean foreign ambiguity decreases sharply (from 8.76 to 6.94 and

from 8.69 to 6.72 for developed and emerging economies, respectively). The data suggests

the possibility of a negative relationship between ambiguity and number of assets in the

portfolio. This interesting observation is consistent with our model prediction, as we will

see in the following sub-section.

3.4 Household portfolio under-diversification

To compare the portfolios in terms of diversification, we use two different diversification

measures. First diversification measure, D2, is a Herfindahl index of the weights of each

security in the household’s portfolio defined as D2 =
∑n

i=1 w
2
i where wi is the weight

of security i in the household’s portfolio. However, D2 still does not capture covariance

between securities in a household’s portfolio. So we use the D3 diversification measure

22In the case of Greece, we use the sub-sample that exclude the crisis period (2010-2015) and report
values based on this sub-sample.

23We also use mean EPU and repeat the tests. The results are robust (see Appendix Table B1).
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proposed by Mitton and Vorkink (2007) defined as:

D3 =
n∑
i=1

w2
i + (1−

n∑
i=1

w2
i )ρ̄ (13)

where ρ̄ =
∑n
i,j=1 wiwjρij∑n
i,j=1 wiwj

. The ρij indicates the correlation between security i and j. Higher

values of D2 and D3 indicate lower levels of diversification.

To investigate the relationship between ambiguity and diversification, we use our model

when there is only one ambiguity set that captures overall ambiguity in mean returns, and

we show the corresponding parameter controlling the size of ambiguity set with δ. We use

our robust MtC model to study the prediction of our model concerning the relationship

between ambiguity and diversification.24 We study the simple case of two assets where

the random returns are generated from a multivariate distribution with annual mean and

standard deviation of 3.6% and 3.1%, respectively, and with the correlation value varying

between -0.30 and 0.90.25 We also let the ambiguity parameter be exogenous and change

between 0 and 6. For a given correlation and ambiguity parameter δ, we run the robust

MtC model 500 times, find optimal weights, calculate the diversification measures D2

and D3, and report the average values of these measures (see Figure 5).

First, our results are in accordance with standard finance theory. Portfolios are less

diversified as the correlation increase. Most importantly, the lower diversification measure

D2 and D3 values correspond to optimal portfolios with lower ambiguity levels (see panel

A and B of Figure 5, respectively). This observation is consistent with the finding of

Dimmock et al. (2016a) where they show ambiguity-averse investors hold less diversified

portfolios.26 However, our novel model suggests a channel explaining that if you are

ambiguity-averse, you hold less diversified portfolios because primarily these portfolios

are less ambiguous.

[ Insert Figure 5 Near Here ]

We take a step further and empirically examine our channel credibility on actual

household portfolio holdings data described in sub-section 3.1. We sort all household

portfolios into quintiles according to diversification levels at three representative dates

in our sample period (January 1991, 1993, and 1996).27 We calculate returns of these

24This requires an adjustment and can be easily obtained from current model formulation (7) by setting
xh = 0.

25Note that we choose the portfolio of size two for the simplicity and better illustration reason.
26The D3 measure figure does not offer a significant reduction as in the case of D2. It is probably due

to the chosen hypothetical correlation values that we use in our testing, and as we will see in the next
test, there are significant reductions in D3.

27The results when we use decile shows the same trend (see Appendix Table B2), although, around the
middle deciles, the average δs are very similar, and that is why in a few cases, we observe diversification
increases (D2 and D3 reduces) while δ decreases. However, when we use fewer quantiles, as we did with
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portfolio holdings for nine subsequent years and use a rolling window of a length of

24 months to generate samples of mean returns for each security in the portfolio held.

We use this information to construct the one unified ambiguity set according to the

method described in sub-section 3.2 per each portfolio held. We then calculate the average

ambiguity parameter, δ, of all portfolios within each quintile (as well as the average mean,

standard deviation, skewness, and kurtosis).

[ Insert Table 4 Near Here ]

The portfolios sorted on D2 and D3 have reasonable variations, and the number of

observations within each quintile is considerable. We observe that as D2 and D3 decrease,

the estimated ambiguity parameter δ increases (see Table 4). That is, the less diversified

portfolios held are those with low levels of ambiguity. Therefore, invests are ambiguity-

averse and hold the less diversified portfolios that are less ambiguous. Moreover, we

confirm the results of Mitton and Vorkink (2007) regarding the preference for skewness

as both diversification measures show a negative relationship with skewness. The least

diversified portfolios have the highest level of skewness. In addition to that, the results

show the portfolios with higher D2 and D3 have higher kurtosis levels. Therefore, the

investors prefer kurtosis as well, and the portfolios with fat-tail return distribution are

preferred.

4 Conclusion

The equity home bias puzzle has been addressed in the literature extensively, both empir-

ically and theoretically. However, there is not yet a conclusive answer to the puzzle. This

study examines the impact of ambiguity on the optimal allocation in the international

portfolio, applying it to equity home bias and household portfolio under-diversification.

We show the robust MtC model that finds ambiguity-adjusted optimal allocation is able

to (i) link the equity home bias puzzle to ambiguity in the financial data used for finding

the optimal portfolio choice, (ii) show how overall ambiguity in joint distribution and

relative ambiguity of home to the foreign market indices can bias the optimal portfolio

choice toward the home, and (iii) generate optimal allocations to home equity index that

matches the observed ones for reasonable values of ambiguity parameters. These results

are robust with respect to sample specification and ambiguity measurement.

In addition, our theoretical model predicts a negative relationship between ambiguity

and under-diversification. The empirical results from real household portfolio holding

validate our model prediction and suggest the less diversified portfolios held by households

are those with low levels of ambiguity. This is in line with literature findings regarding

quintile, we observe enough variations in δ.
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the behavior of ambiguity-averse investors.

26



References

M. Adler and B. Dumas. International portfolio choice and corporation finance: A syn-

thesis. The Journal of Finance, 38(3):925–984, 1983.

D. Ahn, S. Choi, D. Gale, and S. Kariv. Estimating ambiguity aversion in a portfolio

choice experiment. Quantitative Economics, 5:195–223, 2014.

Y. Aı̈t-Sahalia, F. Matthys, E. Osambela, and R. Sircar. When uncertainty and volatility

are disconnected: Implications for asset pricing and portfolio performance. Finance

and Economics Discussion Series 2021-063, Washington: Board of Governors of the

Federal Reserve System, 2021.

G. J. Alexander and A. M. Baptista. A Comparison of VaR and CVaR constraints

on portfolio selection with the mean-variance model. Management Science, 50(March

2015):1261–1273, 2004.

S. Alexander, T. F. Coleman, and Y. Li. Minimizing CVaR and VaR for a portfolio of

derivatives. Journal of Banking & Finance, 30(2):583–605, 2006.

P. Artzner, F. Delbaen, J. M. Eber, and D. Heath. Coherent measures of risk. Mathe-

matical Finance, 9(3):203–228, 1999.

T. Asano and Y. Osaki. Portfolio allocation problems between risky and ambiguous

assets. Annals of Operations Research, 284:63–79, 2020.

A. Baillon and H. Bleichrodt. Testing ambiguity models through the measurement of

probabilities for gains and losses. American Economic Journal: Microeconomics, 7:

77–100, 2015.

A. Baillon, Z. Huang, A. Selim, and P. P. Wakker. Measuring Ambiguity Attitudes for

All (Natural) Events. Econometrica, 86:1839–1858, 2018.

S. R. Baker, N. Bloom, and S. J. Davis. Measuring economic policy uncertainty. The

Quarterly Journal of Economics, 131(4):1593–1636, 2016.

B. M. Barber and T. Odean. Trading is hazardous to your wealth: The common stock

investment performance of individual investors. Journal of Finance, 55:773–806, 2000.

B. M. Barber and T. Odean. Boys will be boys: Gender, overconfidence, and common

stock investment. Quarterly Journal of Economics, 116:261–292, 2001.

B. M. Barber and T. Odean. All that glitters: The effect of attention and news on the

buying behavior of individual and institutional investors. Review of Financial Studies,

21:785–818, 2008.

27



Basel Committee. Minimum capital requirements for market risk. Tech-

nical report, Bank for International Settlements, Basel, Switzerland, 2019.

https://www.bis.org/bcbs/publ/d457.pdf.

A. Ben-tal and A. Nemirovski. Convex optimization in engineering: modeling , analysis

, algorithms. Lecture notes available at http://ssor. twi. tudel, 1998.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University

Press, Princeton, NJ, 2009.

M. Bianchi and J. M. Tallon. Ambiguity preferences and portfolio choices: Evidence from

the field. Management Science, 65:1486–1501, 2019.

P. Bossaerts, P. Ghirardato, S. Guarnaschelli, and W. R. Zame. Ambiguity in asset

markets: Theory and experiment. Review of Financial Studies, 23:1325–1359, 2010.

P. Boyle, L. Garlappi, R. Uppal, and T. Wang. Keynes meets Markowitz: The trade-off

between familiarity and diversification. Management Science, 58:253–272, 2012.

H. H. Cao, T. Wang, and H. H. Zhang. Model uncertainty, limited market participation,

and asset prices. Review of Financial Studies, 18:1219–1251, 2005.

S. Ceria and R. A. Stubbs. Incorporating estimation errors into portfolio selection: Robust

portfolio construction. Journal of Asset Management, 7(2):109–127, 2006.

X. B. Chen, P. Silvapulle, and M. Silvapulle. A semiparametric approach to value-at-risk,

expected shortfall and optimum asset allocation in stock-bond portfolios. Economic

Modelling, 42:230–242, 2014.

V. K. Chopra and W. T. Ziemba. The effect of errors in means, variances, and covariances

on optimal portfolio choice. The Journal of Portfolio Management, 19(2):6–11, 1993.

N. Coeurdacier and S. Guibaud. International portfolio diversification is better than you

think. Journal of International Money and Finance, 30:289 – 308, 2011.

N. Coeurdacier and H. Rey. Home bias in open economy financial macroeconomics.

Journal of Economic Literature, 51:63–115, 2013.

I. Cooper, P. Sercu, and R. Vanpée. The equity home bias puzzle: A survey. Foundations

and Trends in Finance, 7:289–416, 2012.

M. Dahlquist, L. Pinkowitz, R. M. Stulz, and R. Williamson. Corporate governance and

the home bias. Journal of Financial and Quantitative Analysis, 38(1):87–110, 2003.

doi: 10.2307/4126765.

S. G. Dimmock, R. Kouwenberg, O. S. Mitchell, and K. Peijnenburg. Ambiguity aver-

28



sion and household portfolio choice puzzles: Empirical evidence. Journal of Financial

Economics, 119:559–577, 2016a.

S. G. Dimmock, R. Kouwenberg, and P. P. Wakker. Ambiguity attitudes in a large

representative sample. Management Science, 62:1363–1380, 2016b.

S. G. Dimmock, R. Kouwenberg, O. S. Mitchell, and K. Peijnenburg. Household portfolio

underdiversification and probability weighting: Evidence from the field. Review of

Financial Studies, 34:4524–4563, 2021.

B. Y. J. Dow, S. R. Da, and C. Werlang. Uncertainty Aversion , Risk Aversion , and the

Optimal Choice of Portfolio. Econometrica, 60:197–204, 1992.

D. Easley and M. O’Hara. Ambiguity and nonparticipation: The role of regulation.

Review of Financial Studies, 22:1817–1843, 2009.

L. El Ghaoui, M. Oks, and F. Oustry. Worst-case Value-at-Risk and robust portfolio

optimization: A conic programming approach. Operations Research, 51(4):543–556,

2003.

L. G. Epstein and J. Miao. A two-person dynamic equilibrium under ambiguity. Journal

of Economic Dynamics and Control, 27:1253–1288, 2003.

V. Errunza, K. Hogan, and M.-W. Hung. Can the gains from international diversification

be achieved without trading abroad? The Journal of Finance, 54(6):2075–2107, 1999.

S. Farinelli, M. Ferreira, D. Rossello, M. Thoeny, and L. Tibiletti. Beyond sharpe ratio:

Optimal asset allocation using different performance ratios. Journal of Banking &

Finance, 32(10):2057–2063, 2008.

M. Fidora, M. Fratzscher, and C. Thimann. Home bias in global bond and equity markets:

The role of real exchange rate volatility. Journal of International Money and Finance,

26:631–655, 2007.

K. R. French and J. M. Poterba. Investor diversification and international equity markets.

The American Economic Review, 81(2):222–226, 1991.

J. Gao, K. Zhou, D. Li, and X. Cao. Dynamic mean-lpm and mean-cvar portfolio op-

timization in continuous-time. SIAM Journal on Control and Optimization, 55(3):

1377–1397, 2017.

L. Garlappi, R. Uppal, and T. Wang. Portfolio selection with parameter and model

uncertainty: A multi-prior approach. Review of Financial Studies, 20:41–81, 2007.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal of

Mathematical Economics, 18:141–153, 1989.

29



D. A. Glassman and L. A. Riddick. What causes home asset bias and how should it be

measured? Journal of Empirical Finance, 8:35–54, 2001.

A. Goel, A. Sharma, and A. Mehra. Robust optimization of mixed CVaR STARR ratio

using copulas. Journal of Computational and Applied Mathematics, 347:62–83, 2019.

W. N. Goetzmann and A. Kumar. Equity portfolio diversification. Review of Finance,

12:433–463, 2008.

D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics of Oper-

ations Research, 28(1):1–38, 2003.

C. Gollier. Portfolio choices and asset prices: The comparative statics of ambiguity

aversion. Review of Economic Studies, 78:1329–1344, 2011.

J.-Y. Gotoh, K. Shinozaki, and A. Takeda. Robust portfolio techniques for mitigat-

ing the fragility of CVaR minimization and generalization to coherent risk measures.

Quantitative Finance, 13(10):1621–1635, 2013.

D. Huang, S.-S. Zhu, F. J. Fabozzi, and M. Fukushima. Portfolio selection with uncertain

exit time: A robust CVaR approach. Journal of Economic Dynamics and Control, 32

(2):594–623, feb 2008.

M. Kaut, S. Wallace, H. Vladimirou, and S. Zenios. Stability analysis of portfolio man-

agement with conditional value-at-risk. Quantitative Finance, 7(4):397–409, 2007.

A. I. Kibzun and E. A. Kuznetsov. Analysis of criteria VaR and CVaR. Journal of

Banking and Finance, 30(2):779–796, 2006.

P. Klibanoff, M. Marinacci, and S. Mukerji. A Smooth Model of Decision Making under

Ambiguity. Econometrica, 73:1849–1892, 2005.

P. R. Lane and G. M. Milesi-Ferretti. International investment patterns. Review of

Economics and Statistics, 90:538–549, 2008.

K. K. Lewis. Trying to Explain Home Bias in Equities and Consumption. Journal of

Economic Literature, 37:571–608, 1999.

S. Lotfi and S. Zenios. Robust VaR and CVaR optimization under joint ambiguity in

distributions, means, and covariances. European Journal of Operational Research, 269

(2):556–576, 2018.

R. E. Lucas. Interest rates and currency prices in a two-country world. Journal of

Monetary Economics, 10:335–359, 1982.

F. Maccheroni, M. Marinacci, and D. Ruffino. Alpha as Ambiguity: Robust Mean-

Variance Portfolio Analysis. Econometrica, 81:1075–1113, 2013.

30



R. D. Martin, S. Z. Rachev, and F. Siboulet. Phi-alpha optimal portfolios and extreme

risk management. Willmot Magazine of Finance, pages 70–83, 2003.

M. Massa and A. Simonov. Hedging, familiarity and portfolio choice. Review of Financial

Studies, 19:633–685, 2006.

H. Mausser and O. Romanko. Long-only equal risk contribution portfolios for CVaR

under discrete distributions. Quantitative Finance, 18(11):1927–1945, 2018.

A. V. Mishra. Measures of equity home bias puzzle. Journal of Empirical Finance, 34:

293–312, 2015.

A. V. Mishra and R. A. Ratti. Home bias and cross border taxation. Journal of Inter-

national Money and Finance, pages 169–193, 2013.

T. Mitton and K. Vorkink. Equilibrium underdiversification and the preference for skew-

ness. The Review of Financial Studies, 20(4):1255–1288, 2007.

M. Obstfeld and K. Rogoff. The six major puzzles in international macroeconomics: Is

there a common cause? NBER Macroeconomics Annual, 15:326–390, 2000.

W. Ogryczak and A. Ruszczyński. Dual stochastic dominance and related mean-risk

models. SIAM Journal on Optimization, 13:60–78, 2002.
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R. H. Tütüncü and M. Koenig. Robust asset allocation. Annals of Operations Research,

132(1-4):157–187, 2004.

T. Ui. The ambiguity premium vs. the risk premium under limited market participation.

Review of Finance, 15:245–275, 2011.

R. Uppal and T. Wang. Model Misspecification and Underdiversification. The Journal

of Finance, 58:2465–2486, 2003.

Y.-J. Whang. Econometric Analysis of Stochastic Dominance: Concepts, Methods, Tools,

and Applications. Cambridge University Press, Cambridge, 2019.

J. X. Xiong and T. M. Idzorek. The impact of skewness and fat tails on the asset allocation

decision. Financial Analysts Journal, 67(2):23–35, 2011.

K. Ye, P. Parpas, and B. Rustem. Robust portfolio optimization: a conic programming

approach. Computational Optimization and Applications, 52(2):463–481, 2012.

S. Zenios. Practical Financial Optimization. Decision making for financial engineers.

Blackwell-Wiley Finance, Malden, MA, 2007.

S. Zhu and M. Fukushima. Worst-case conditional value-at-risk with application to robust

portfolio management. Operations Research, 57(5):1155–1168, 2009.

32



Data Appendix

Descriptive statistics of market return indices

This table reports descriptive statistics for all countries in our sample, respectively, mean,
standard deviation, skewness, excess kurtosis, Value-at-Risk and Conditional-Value-at-Risk for
the monthly series of each country’s excess returns, denominated in USD, over the US one-
month T-Bill rate. “MtC” and “Sharpe” denote the mean-to-CVaR for each country’s excess
returns, and the Sharpe ratio. VaR, CVaR and MtC are computed at the 5% confidence level.
The sample period spans January 1, 1999 to December 31, 2019. All statistics are reported
at monthly frequency, except for the politics and policy variables that are semiannual. Mean,
StdDev, VaR, and CVaR are in percentage points.

Country Mean StdDev Skew Kurt VaR CVaR MtC Sharpe

Australia 0.77 5.98 -0.54 1.99 8.35 13.77 0.06 0.13
Austria 0.60 6.81 -0.87 4.32 9.45 15.91 0.04 0.09
Belgium 0.35 6.00 -1.22 5.60 9.46 15.09 0.02 0.06
Brazil 1.38 10.55 -0.04 1.16 14.06 21.93 0.06 0.13
Canada 0.71 5.61 -0.53 2.62 8.39 12.09 0.06 0.13
Chile 0.67 6.26 -0.23 1.34 9.15 13.24 0.05 0.11
China 0.85 8.21 0.41 3.98 13.07 17.24 0.05 0.10
Colombia 1.15 8.20 -0.16 0.26 12.88 16.34 0.07 0.14
Czech Republic 1.02 7.43 -0.09 1.24 10.59 15.39 0.07 0.14
Denmark 0.87 5.70 -0.73 2.69 9.38 13.63 0.06 0.15
Egypt 0.79 8.93 0.07 2.14 13.41 18.50 0.04 0.09
Finland 0.60 8.11 0.10 2.07 13.42 18.13 0.03 0.07
France 0.49 5.80 -0.46 0.99 10.58 13.62 0.04 0.08
Germany 0.46 6.50 -0.37 1.64 10.25 15.48 0.03 0.07
Greece -0.37 10.55 -0.23 0.68 18.01 24.24 -0.02 -0.03
Hong-Kong 0.70 6.04 -0.17 1.46 9.77 13.12 0.05 0.12
Hungary 0.88 9.16 -0.51 2.19 14.60 21.38 0.04 0.10
India 1.12 8.28 -0.02 2.04 13.22 17.38 0.06 0.13
Israel 0.62 6.26 -0.23 1.38 10.55 14.06 0.04 0.10
Italy 0.24 6.61 -0.22 0.58 11.20 14.70 0.02 0.04
Japan 0.32 4.77 -0.12 0.33 7.98 9.91 0.03 0.07
Malaysia 0.75 5.78 0.63 4.58 9.01 11.37 0.07 0.13
Mexico 0.80 6.67 -0.50 1.58 10.62 14.55 0.05 0.12
Netherlands 0.46 5.76 -0.71 1.94 9.65 14.05 0.03 0.08
New Zealand 0.93 5.74 -0.44 0.79 8.72 12.55 0.07 0.16
Norway 0.86 7.28 -0.65 2.79 9.39 16.38 0.05 0.12
Peru 1.19 7.64 -0.28 2.14 11.51 15.72 0.08 0.16
Philippines 0.57 6.95 -0.02 0.97 11.08 14.56 0.04 0.08
Poland 0.74 9.11 -0.10 0.79 13.16 18.98 0.04 0.08
Portugal 0.09 6.30 -0.33 0.82 10.03 13.97 0.01 0.01
Russia 1.91 10.59 0.55 3.44 15.09 20.26 0.09 0.18
South Africa 0.91 7.14 -0.31 0.10 10.62 14.36 0.06 0.13
South Korea 0.95 8.50 0.20 0.92 13.94 16.61 0.06 0.11
Spain 0.40 6.70 -0.14 1.04 10.08 14.31 0.03 0.06
Sweden 0.78 6.98 -0.15 1.93 11.70 16.00 0.05 0.11
Switzerland 0.51 4.43 -0.46 0.62 7.37 10.35 0.05 0.12
Thailand 1.07 8.47 -0.01 2.92 11.46 18.95 0.06 0.13
Turkey 1.18 13.51 0.53 3.12 17.10 27.07 0.04 0.09
UK 0.33 4.67 -0.38 1.45 7.22 10.17 0.03 0.07
US 0.52 4.33 -0.64 1.02 7.85 9.84 0.05 0.12
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Risk-free source

This table reports the risk-free description for all countries in our sample. The data for all
countries are obtained from Datastream except for Euro-area and USA that are obtained from
Refinitiv and Kenneth French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html#Developed.

Country Description

Australia One-month Australian Dollar deposit rate
Brazil Brazil interbank deposit certificates rate
Canada One-month Canada Treasury Bill rate
Chile 90-days Chile Disctb Promi Ssory Notes rate
China One-month China Repo rate
Colombia 90-days Colombia certificate of deposit rate
Czech Republic 90-days Czech Republic inter-bank delayed rate
Denmark One-month Denmark inter-bank delayed rate
Egypt One-month Egypt inter-bank rate
Euro area One-month Euribor rate
Hong Kong One-month Hong Kong inter-bank rate
Hungary One-month Hungary inter-bank rate
India Overnight India deposit rate rate
Israel One-month Tel Aviv inter-bank rate
Japan 30-days Japan domestic banks deposit rate
Korea One-month South Korea inter-bank rate
Malaysia One-month Malaysia inter-bank rate
Mexico 28-days Mexico Cetes closing rate
New Zealand One-month New Zealand Dollar deposit rate
Norway One-month Norway inter-bank delayed rate
Peru Peru inter-bank rate
Philippine 30-60 days Philippine time deposit rate
Poland One-month Polish Zloty deposit rate
Russia 30-days Russia inter-bank actual credit rate
South Africa One-month South African JIBAR rate
Sweden 30-days Sweden Treasury Bill rate
Switzerland One-month Swiss Franc deposit rate
Thailand One-month Thailand inter-bank (Bangkok Bank) rate
Turkey One-month Turkey deposit rate rate
United Kingdom One-month United Kingdom Treasury Bill Tender rate
USA One-month USA Treasury Bill rate
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Descriptive statistics of household portfolio value by size

This table reports the descriptive statistics of household portfolios in the dataset. The dataset
consists of the portfolio holding of 60000 investors at a large brokerage house in USA. The
panels A, B, and C represents the portfolio value (in USD) statistics correspond to January
1991, 1993, and 1996, respectively over the sample period. The household portfolios are sorted
based on the number of stocks held in the portfolio.

Panel A: Portfolio as of January 1991

Portfolio Number of Mean 25th Median 75th Standard
Size Observation quantile quantile deviation

1 15931 11724 1797 4700 10547 38833
2 9469 14333 3726 7125 13825 37986
3 6105 18941 5306 9700 18981 45434
4 4015 23745 6813 12531 23655 54879
5 2696 30604 8764 16144 32161 61555
6-9 5023 43486 12106 23594 46953 79655
10+ 3134 138800 27568 61636 132462 541508
All 46373 27374 3982 9200 22074 151858

Panel B: Portfolio as of January 1993

1 13704 16041 2313 6070 14325 52090
2 8875 21142 4985 9785 19508 91930
3 6158 25652 7413 13656 25844 53132
4 4309 32676 10128 17975 31631 66179
5 3279 39371 12206 21503 40394 77219
6-9 6482 64519 18189 31869 61784 346836
10+ 4632 181512 41824 82888 181549 368124
All 47439 44147 6113 14688 35549 188386

Panel C: Portfolio as of January 1996

1 6265 18605 1500 5844 15493 69342
2 4012 24457 5105 11487 24133 75819
3 2772 33524 8671 16920 33233 134177
4 2108 46735 12598 23069 44156 115110
5 1520 54535 16057 29326 52853 106611
6-9 3437 92919 23032 42356 78868 576715
10+ 3126 271978 53491 116788 262775 709035
All 23240 71368 6850 19850 50945 360578

35



Figure 2: Optimal robust MtC weights for European developed markets

This figure illustrates the optimal allocation to home equity index for investors in developed
markets as a function of foreign equity mean return ambiguity parameter δf when the relative
ambiguity of mean return of home to foreign (m) is equal to 0, 0.1, and 0.2. The solid and dashed
horizontal lines are average home and market capitalization weights, respectively. The model
optimizes the robust MtC model over the sample of 40 equity market indices (21 developed and
19 emerging) and the sample period spans January 1, 1999 to December 31, 2019.

(a) Belgium (b) Germany

(c) France (d) Spain

(e) Switzerland (f) United Kingdom

36



Figure 3: Optimal robust MtC weights for non-European developed markets

This figure illustrates the optimal allocation to home equity index for investors in developed
markets as a function of foreign equity mean return ambiguity parameter δf when the relative
ambiguity of mean return of home to foreign (m) is equal to 0, 0.1, and 0.2. The solid and dashed
horizontal lines are average home and market capitalization weights, respectively. The model
optimizes the robust MtC model over the sample of 40 equity market indices (21 developed and
19 emerging) and the sample period spans January 1, 1999 to December 31, 2019.

(a) Australia (b) Canada

(c) Hong Kong (d) Japan

(e) New Zealand (f) USA
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Figure 4: Optimal robust MtC weights for emerging markets

This figure illustrates the optimal allocation to home equity index for investors in emerging
markets as a function of foreign equity mean return ambiguity parameter δf when the relative
ambiguity of mean return of home to foreign parameter m is equal to 0, 0.1, and 0.2. The solid
and dashed horizontal lines are average home and market cap weights, respectively. The model
optimizes the robust MtC model over the sample of 40 equity market indices (21 developed and
19 emerging) and the sample period spans January 1, 1999 to December 31, 2019.

(a) Chile (b) Colombia

(c) Hungary (d) Israel

(e) Peru (f) South Africa
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Figure 5: Diversification and ambiguity

This figure illustrates the results with simulation that estimate diversification measures and
ambiguity parameter δ in a portfolio of two assets. Panel A and B shows the results for
diversification measures D2 and D3, respectively. The model optimizes the robust MtC model
over the sample of two assets where the returns are generated from a multivariate normal
distribution with annual mean and standard deviation of 3.6% and 3.1%, respectively, and the
correlation values vary between -0.30 and 0.90.

(a) D2

(b) D3
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Table 1: Ambiguity in financial data and the home bias puzzle in developed markets

This table reports the estimated ambiguity parameters, average market and actual weights,
and home bias index (HBI) for the sample of developed markets in our sample. The δf and
δh are the parameters controlling the size of ambiguity sets of foreign and home equity mean
returns obtained using the heuristic developed in Lotfi and Zenios (2018) and m indicates the

relative ambiguity of home to foreign equity mean returns. The δ†f corresponds to level of δf for
which the optimal allocation to home country coincide the average actual weight when m = 0.2
(exception is Greece where we set m = 0.10). The robust MtC model is solved for a portfolio of
40 equity market indices (21 developed and 19 emerging markets) and the sample period spans
January 1, 1999 to December 31, 2019.

Country δ†f δf δh m Market Home HBI

cap weight

Australia 2.14 8.65 2.19 0.25 0.022 0.81 0.80
Austria 2.87 8.93 2.47 0.28 0.002 0.59 0.59
Belgium 2.53 8.21 2.15 0.26 0.006 0.67 0.67
Canada 2.77 8.88 2.07 0.23 0.034 0.70 0.69
Denmark 2.12 8.93 1.65 0.19 0.005 0.58 0.58
Finland 3.92 8.93 1.58 0.18 0.004 0.66 0.65
France 3.06 8.79 1.74 0.20 0.038 0.76 0.75
Germany 3.00 8.85 1.75 0.20 0.029 0.72 0.71
Greece 7.30 8.87 2.32 0.26 0.002 0.96 0.96
Hong Kong 1.15 8.49 1.78 0.21 0.045 0.91 0.90
Italy 4.04 8.93 2.26 0.25 0.013 0.75 0.75
Japan 2.93 8.83 2.37 0.27 0.080 0.87 0.86
Netherlands 3.02 8.92 1.74 0.20 0.013 0.40 0.39
New Zealand 1.47 8.61 2.36 0.27 0.001 0.62 0.62
Norway 2.12 8.83 2.42 0.27 0.004 0.38 0.38
Portugal 4.08 8.89 2.39 0.27 0.001 0.77 0.77
Spain 3.07 8.93 2.07 0.23 0.020 0.91 0.91
Sweden 2.36 8.57 1.90 0.22 0.011 0.65 0.64
Switzerland 2.05 8.80 1.97 0.22 0.023 0.75 0.74
United Kingdom 2.98 8.97 1.76 0.20 0.061 0.67 0.65
USA 1.15 8.27 2.17 0.26 0.381 0.84 0.73

Mean 2.86 8.76 2.05 0.23 0.038 0.71 0.70
StdDev 1.28 0.21 0.28 0.03 0.079 0.15 0.14
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Table 2: Ambiguity in financial data and the home bias puzzle in emerging market

This table reports the estimated ambiguity parameters, average market and actual weights, and
home bias index (HBI) for the sample of emerging markets in our sample. The δf and δh are
the parameters controlling the size of ambiguity sets of foreign and home equity mean returns
obtained using the heuristic developed in Lotfi and Zenios (2018) and m indicates the relative

ambiguity of home to foreign equity mean returns. The δ†f corresponds to level of δf for which
the optimal allocation to home country coincide the average actual weight when m = 0.2. The
robust MtC model is solved for a portfolio of 40 equity market indices (21 developed and 19
emerging markets) and the sample period spans January 1, 1999 to December 31, 2019.

Country δ†f δf δh m Market Home HBI

cap weight

Brazil 3.00 8.88 2.56 0.29 0.017 0.99 0.99
Chile 2.06 8.73 2.52 0.29 0.004 0.87 0.87
China 0.99 8.40 2.39 0.28 0.085 0.96 0.95
Colombia 0.74 8.80 3.58 0.41 0.002 0.92 0.92
Czech Republic 2.86 8.98 2.81 0.31 0.001 0.89 0.89
Egypt 1.52 8.68 3.02 0.35 0.001 1.00 1.00
Hungary 3.29 8.86 1.90 0.22 0.001 0.85 0.85
India 1.55 8.49 2.21 0.26 0.023 1.00 1.00
Israel 3.35 8.42 1.63 0.19 0.003 0.82 0.82
Korea 2.69 8.75 1.50 0.17 0.019 0.93 0.93
Malaysia 2.52 9.01 1.38 0.15 0.006 0.96 0.96
Mexico 2.54 8.90 2.55 0.29 0.007 0.99 0.99
Peru 2.06 8.83 2.60 0.30 0.001 0.84 0.84
Philippines 2.33 8.00 2.34 0.29 0.003 1.00 1.00
Poland 6.00 8.91 2.22 0.25 0.003 0.97 0.97
Russia 2.11 8.29 3.40 0.41 0.012 1.00 1.00
South Africa 1.94 8.73 1.95 0.22 0.015 0.90 0.90
Thailand 1.02 8.49 1.49 0.18 0.005 0.99 0.99
Turkey 8.00 8.99 2.13 0.24 0.004 1.00 1.00

Mean 2.66 8.69 2.33 0.27 0.011 0.94 0.94
StdDev 1.69 0.27 0.60 0.07 0.019 0.06 0.06
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Table 3: Ambiguity measures and the home bias puzzle

This table reports the estimated ambiguity parameters using alternative methods, average mar-
ket and actual weights and home bias index (HBI) for the sample of 23 countries that have EPU
index data available. The δf and δh are the parameters controlling the size of ambiguity sets
of foreign and home equity mean returns obtained using the heuristic developed in Lotfi and
Zenios (2018) and m indicates the relative ambiguity of home to foreign equity mean returns.

The δ†f corresponds to level of δf for which the optimal allocation to home country coincide the
average actual weight when m = 0.2. The δEPU,f and δEPU,h are the parameters controlling
the size of ambiguity sets of foreign and home equity mean returns obtained using maximum
EPU index in equation 12 and mEPU indicates the relative ambiguity of home to foreign equity
mean returns. The δ†EPU,f corresponds to level of δEPU,f for which the optimal allocation to
home country coincide the average actual weight when mEPU = 0.1. The robust MtC model is
solved for a portfolio of 23 equity market indices (15 developed and 8 emerging markets) and
the sample period spans January 1, 1999 to December 31, 2019.

Country δ†f δf δh m δ†EPU,f δEPU,f δEPU,h mEPU Market Home HBI

cap weight

Panel A: Developed economies

Australia 1.50 6.73 2.19 0.33 1.20 10.11 0.90 0.09 0.024 0.82 0.81
Belgium 2.32 7.03 2.15 0.31 2.10 11.20 0.67 0.06 0.006 0.69 0.69
Canada 2.03 7.06 2.07 0.29 1.87 10.54 1.33 0.13 0.037 0.71 0.70
Denmark 1.38 7.15 1.65 0.23 1.31 10.78 0.71 0.07 0.005 0.62 0.62
France 2.50 6.96 1.74 0.25 2.26 8.79 1.54 0.18 0.041 0.79 0.78
Germany 2.43 7.03 1.75 0.25 2.20 10.24 1.22 0.12 0.032 0.77 0.76
Greece 3.50 5.75 1.87 0.33 3.00 12.33 0.92 0.08 0.003 0.96 0.96
Hong Kong 2.10 7.22 1.78 0.25 1.93 12.28 1.14 0.09 0.049 0.91 0.90
Italy 4.00 7.13 2.26 0.32 2.79 10.99 0.65 0.06 0.014 0.78 0.77
Japan 2.80 6.91 2.37 0.34 2.21 13.96 0.64 0.05 0.086 0.88 0.87
Netherlands 2.44 7.12 1.74 0.25 2.15 11.12 0.63 0.06 0.014 0.44 0.43
Spain 3.00 7.11 2.07 0.29 2.33 11.07 1.09 0.10 0.022 0.91 0.91
Sweden 1.70 6.77 1.90 0.28 1.58 10.75 0.42 0.04 0.012 0.71 0.70
United Kingdom 2.42 7.06 1.76 0.25 2.17 10.99 1.50 0.14 0.067 0.71 0.69
USA 2.01 7.10 2.17 0.31 1.85 13.01 0.76 0.06 0.413 0.86 0.75

Mean 2.41 6.94 1.97 0.28 2.06 11.21 0.94 0.09 0.055 0.77 0.76
StdDev 0.68 0.35 0.22 0.04 0.46 1.22 0.33 0.04 0.098 0.13 0.13

Panel B: Emerging economies

Brazil 3.50 6.80 2.56 0.38 1.21 15.40 1.81 0.12 0.019 0.99 0.99
Chile 1.80 6.62 2.52 0.38 1.32 11.78 0.76 0.07 0.004 0.88 0.88
China 3.30 7.12 2.39 0.34 1.82 12.45 2.60 0.21 0.092 0.96 0.95
Colombia Any 6.45 3.58 0.56 Any 11.52 0.87 0.08 0.003 0.93 0.93
India 1.80 7.12 2.21 0.31 1.68 11.63 0.76 0.07 0.025 1.00 1.00
Korea 2.03 6.83 1.50 0.22 1.92 11.04 1.44 0.13 0.020 0.93 0.93
Mexico 2.30 6.93 2.55 0.37 1.81 11.03 1.15 0.10 0.008 0.99 0.99
Russia 1.80 5.93 3.40 0.57 1.63 12.41 1.16 0.09 0.013 1.00 1.00

Mean 2.36 6.72 2.59 0.39 1.63 12.16 1.32 0.11 0.023 0.96 0.96
StdDev 0.64 0.35 0.58 0.11 0.23 1.25 0.56 0.04 0.026 0.04 0.04

42



Table 4: Ambiguity in household portfolio and under-diversification

This table reports the estimated ambiguity parameters δ and return statistics of household portfolio for nine years subsequent to portfolio formation.
Panel A and B correspond to the portfolio sorted into quintiles corresponding to their level of diversification as measure by D2 and D3, respectively.
Returns are reported subsequent to three representative months during the sample period (January 1991, January 1993, and January 1996). N
is the number of portfolios in the quintile. The Means, StdDev, Skew, and Kurt are the average of monthly returns mean, standard deviation,
skewness and kurtosis over all the portfolios in the quintile.

Panel A: Portfolio sorted on D2

January 91

Quintile N D2 δ Mean StdDev Skew Kurt
Low div. 2469 0.80 2.96 1.79 0.86 0.24 0.88
2 2531 0.57 2.95 1.75 0.69 0.23 0.89
3 2530 0.49 3.06 1.69 0.59 0.22 0.80
4 2531 0.36 3.44 1.60 0.41 0.16 0.64
5 2530 0.21 4.13 1.52 0.26 0.14 0.40

January 93

Low div. 2532 0.79 2.66 1.54 0.98 0.17 1.01
2 2584 0.56 2.64 1.41 0.77 0.16 0.95
3 2584 0.46 2.81 1.42 0.62 0.12 0.74
4 2584 0.33 3.12 1.41 0.42 0.02 0.52
5 2584 0.19 3.72 1.37 0.24 -0.12 0.25

January 96

Low div. 754 0.82 2.74 1.65 1.39 0.23 0.90
2 755 0.58 2.87 1.53 1.13 0.18 0.80
3 756 0.50 2.85 1.48 0.97 0.15 0.78
4 755 0.37 3.24 1.64 0.81 0.07 0.58
5 756 0.22 3.81 1.78 0.54 -0.14 0.45

Panel B: Portfolio sorted on D3

January 91

Quintile N D3 δ Mean StdDev Skew Kurt
Low div. 2529 0.96 2.93 1.78 0.87 0.24 0.88
2 2531 0.86 2.94 1.76 0.69 0.21 0.89
3 2530 0.79 3.06 1.68 0.58 0.21 0.78
4 2531 0.67 3.47 1.62 0.42 0.16 0.63
5 2530 0.50 4.15 1.52 0.28 0.17 0.43

January 93

Low div. 2583 0.96 2.62 1.53 0.97 0.17 1.03
2 2584 0.85 2.62 1.46 0.78 0.14 0.91
3 2584 0.76 2.83 1.41 0.61 0.12 0.76
4 2584 0.64 3.12 1.40 0.43 0.02 0.52
5 2584 0.46 3.75 1.36 0.26 -0.08 0.27

January 96

Low div. 754 0.97 2.73 1.62 1.41 0.24 0.95
2 755 0.88 2.80 1.60 1.17 0.19 0.78
3 756 0.80 2.90 1.52 0.96 0.14 0.75
4 755 0.69 3.31 1.63 0.79 0.07 0.60
5 756 0.52 3.76 1.71 0.50 -0.14 0.45
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Online Appendix

A Figures

Figure A1: Portfolio weights adjusted for ambiguity as Uppal and Wang (2003)

This figure illustrates the dynamic of Uppal and Wang (2003) model’s home allocation for
US investor obtained in the universe of 3 countries and when there is ambiguity in joint and
marginal distribution of return. Panel (A) illustrates the replication of Figure 1 in Uppal and
Wang (2003) which uses the data points from French and Poterba (1991) (see Uppal and Wang
(2003) for details). Panel (B) illustrate their model replication for the universe of Europe,
Japan, and US where Europe index is constructed using equally-weighted portfolio of EMU
constituent country indices. The filled circles show the model-based threshold of φ. The sample
period spans January 1, 1999 to December 31, 2019.

(a) French and Poterba (1991) data

(b) 1999-2019 data
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Figure A2: Difference in EPU-based confidence interval

This figure illustrates the interval centers and boundaries implied by different methods. Panel
A and B illustrate the intervals implied when we use maximum and mean EPU for finding the
mean returns confidence interval, respectively. In both panels we additionally illustrates the
intervals implied by financial data using Lotfi and Zenios (2018) heuristic. The sample covers
23 countries that have EPU index data available and the sample period spans January 1, 1999
to December 31, 2019.

(a) Max EPU

(b) Mean EPU
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Figure A3: Optimal robust MtC weights for Other European developed markets

This figure illustrates the optimal allocation to home equity index for investors in developed
markets as a function of foreign equity mean return ambiguity parameter δf when the relative
ambiguity of mean return of home to foreign (m) is equal to 0, 0.1, and 0.2. The solid and dashed
horizontal lines are average home and market capitalization weights, respectively. The model
optimizes the robust MtC model over the sample of 40 equity market indices (21 developed and
19 emerging) and the sample period spans January 1, 1999 to December 31, 2019.

(a) Austria (b) Denmark

(c) Finland (d) Greece

(e) Italy (f) Netherlands
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Figure A3: (continued)

(a) Norway (b) Portugal

(c) Sweden
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B Tables

Table B1: Alternative ambiguity measures and the home bias puzzle

This table reports the estimated ambiguity parameters using alternative methods, average mar-
ket and actual weights and home bias index (HBI) for the sample of 23 countries that have EPU
index data available. The δf and δh are the parameters controlling the size of ambiguity sets
of foreign and home equity mean returns obtained using the heuristic developed in Lotfi and
Zenios (2018) and m indicates the relative ambiguity of home to foreign equity mean returns.

The δ†f corresponds to level of δf for which the optimal allocation to home country coincide the
average actual weight when m = 0.2. The δEPU,f and δEPU,h are the parameters controlling
the size of ambiguity sets of foreign and home equity mean returns obtained using mean EPU
index in equation 12 and mEPU indicates the relative ambiguity of home to foreign equity mean
returns. The δ†EPU,f corresponds to level of δEPU,f for which the optimal allocation to home
country coincide the average actual weight when mEPU = 0.1. The robust MtC model is solved
for a portfolio of 23 equity market indices (15 developed and 8 emerging) and the sample period
spans January 1, 1999 to December 31, 2019.

Country δ†f δf δh m δ†EPU,f δEPU,f δEPU,h mEPU Market Home HBI

cap weight

Panel A: Developed economies

Australia 1.50 6.73 2.19 0.33 1.20 3.09 0.27 0.09 0.024 0.82 0.81
Belgium 2.32 7.03 2.15 0.31 2.10 3.26 0.28 0.09 0.006 0.69 0.69
Canada 2.03 7.06 2.07 0.29 1.87 3.16 0.42 0.13 0.037 0.71 0.70
Denmark 1.38 7.15 1.65 0.23 1.31 3.29 0.29 0.09 0.005 0.62 0.62
France 2.50 6.96 1.74 0.25 2.26 2.54 0.46 0.18 0.041 0.79 0.78
Germany 2.43 7.03 1.75 0.25 2.20 3.03 0.36 0.12 0.032 0.77 0.76
Greece 3.50 5.75 1.87 0.33 12.33 3.00 0.92 0.08 0.003 0.96 0.96
Hong Kong 2.10 7.22 1.78 0.25 1.93 3.75 0.34 0.09 0.049 0.91 0.90
Italy 4.00 7.13 2.26 0.32 2.79 3.36 0.29 0.09 0.014 0.78 0.77
Japan 2.80 6.91 2.37 0.34 2.21 4.18 0.28 0.07 0.086 0.88 0.87
Netherlands 2.44 7.12 1.74 0.25 2.15 3.17 0.25 0.08 0.014 0.44 0.43
Spain 3.00 7.11 2.07 0.29 2.33 3.29 0.31 0.09 0.022 0.91 0.91
Sweden 1.70 6.77 1.90 0.28 1.58 3.39 0.25 0.07 0.012 0.71 0.70
United Kingdom 2.42 7.06 1.76 0.25 2.17 3.44 0.33 0.10 0.067 0.71 0.69
USA 2.01 7.10 2.17 0.31 1.85 3.74 0.33 0.09 0.413 0.86 0.75

Mean 2.44 6.93 1.95 0.28 2.74 3.28 0.36 0.10 0.029 0.76 0.76
StdDev 0.68 0.35 0.22 0.04 2.61 0.37 0.16 0.03 0.098 0.13 0.13

Panel B: Emerging economies

Brazil 3.50 6.80 2.56 0.38 1.21 4.60 0.40 0.09 0.02 0.99 0.99
Chile 1.80 6.62 2.52 0.38 1.32 3.42 0.29 0.09 0.00 0.88 0.88
China 3.30 7.12 2.39 0.34 1.82 3.69 0.51 0.14 0.09 0.96 0.95
Colombia Any 6.45 3.58 0.56 Any 3.48 0.28 0.08 0.00 0.93 0.93
India 1.80 7.12 2.21 0.31 1.68 3.56 0.25 0.07 0.03 1.00 1.00
Korea 2.03 6.83 1.50 0.22 1.92 3.29 0.35 0.11 0.02 0.93 0.93
Mexico 2.30 6.93 2.55 0.37 1.81 3.18 0.23 0.07 0.01 0.99 0.99
Russia 1.80 5.93 3.40 0.57 1.63 3.77 0.36 0.09 0.01 1.00 1.00

Mean 2.36 6.72 2.59 0.39 1.63 3.62 0.33 0.09 0.023 0.96 0.96
StdDev 0.68 0.37 0.61 0.11 0.25 0.41 0.09 0.02 0.027 0.04 0.04

OA - 5



Table B2: Ambiguity in household portfolio and under-diversification: decile-based

This table reports the estimated ambiguity parameters δ and return statistics of household portfolio for nine years subsequent to portfolio formation.
Panel A and B correspond to the portfolio sorted into decile corresponding to their level of diversification as measure by D2 and D3, respectively.
Returns are reported subsequent to three representative months during the sample period (January 1991, January 1993, and January 1996). N is
the number of portfolios in the decile. The Means, StdDev, Skew, and Kurt are the average of monthly returns mean, standard deviation, skewness
and kurtosis over all the portfolios in the decile.

Panel A: Portfolio sorted on D2

January 91

Decile N D2 δ Mean StdDev Skew Kurt
Low div. 1204 0.90 2.96 1.81 0.92 0.25 0.90
2 1265 0.71 2.96 1.77 0.80 0.23 0.87
3 1266 0.60 2.99 1.75 0.72 0.22 0.83
4 1265 0.54 2.91 1.75 0.66 0.23 0.96
5 1265 0.51 2.87 1.66 0.64 0.24 0.91
6 1265 0.47 3.25 1.72 0.55 0.19 0.69
7 1265 0.39 3.38 1.61 0.44 0.18 0.66
8 1266 0.33 3.51 1.60 0.38 0.14 0.62
9 1265 0.26 3.78 1.57 0.30 0.12 0.44
10 1265 0.16 4.47 1.46 0.21 0.17 0.35

January 93

Low div. 1240 0.88 2.63 1.56 1.05 0.19 1.09
2 1292 0.70 2.68 1.52 0.92 0.16 0.94
3 1292 0.59 2.63 1.42 0.80 0.16 0.92
4 1292 0.53 2.65 1.41 0.74 0.16 0.99
5 1292 0.50 2.61 1.43 0.72 0.16 0.84
6 1292 0.42 3.01 1.41 0.53 0.07 0.65
7 1292 0.36 3.01 1.42 0.46 0.04 0.56
8 1292 0.30 3.22 1.41 0.39 0.01 0.49
9 1292 0.24 3.47 1.39 0.29 -0.06 0.37
10 1292 0.15 3.96 1.35 0.19 -0.17 0.14

January 96

Low div. 376 0.91 2.78 1.74 1.48 0.25 0.92
2 378 0.73 2.71 1.55 1.31 0.21 0.89
3 377 0.62 2.84 1.56 1.14 0.19 0.82
4 378 0.55 2.89 1.49 1.13 0.17 0.78
5 378 0.51 2.75 1.39 1.02 0.16 0.86
6 378 0.48 2.96 1.57 0.93 0.15 0.71
7 378 0.40 3.25 1.62 0.81 0.06 0.59
8 377 0.34 3.22 1.67 0.81 0.08 0.57
9 378 0.27 3.57 1.71 0.58 -0.07 0.44
10 378 0.18 4.06 1.85 0.50 -0.22 0.47

Panel B: Portfolio sorted on D3

January 91

Decile N D3 δ Mean StdDev Skew Kurt
Low div. 1264 0.99 2.92 1.83 0.98 0.26 0.96
2 1265 0.94 2.93 1.73 0.76 0.21 0.80
3 1266 0.88 2.88 1.76 0.70 0.20 0.83
4 1265 0.84 3.00 1.76 0.69 0.22 0.96
5 1265 0.81 2.97 1.71 0.62 0.22 0.84
6 1265 0.76 3.15 1.65 0.54 0.21 0.73
7 1265 0.71 3.38 1.64 0.45 0.16 0.67
8 1266 0.64 3.56 1.60 0.38 0.15 0.59
9 1265 0.56 3.80 1.56 0.32 0.16 0.49
10 1265 0.43 4.50 1.49 0.23 0.19 0.38

January 93

Low div. 1291 0.99 2.61 1.57 1.08 0.20 1.11
2 1292 0.93 2.63 1.49 0.87 0.14 0.95
3 1292 0.87 2.56 1.45 0.82 0.14 0.95
4 1292 0.83 2.67 1.46 0.74 0.14 0.88
5 1292 0.79 2.72 1.41 0.65 0.14 0.80
6 1292 0.73 2.93 1.41 0.56 0.10 0.71
7 1292 0.67 3.00 1.42 0.48 0.03 0.56
8 1292 0.60 3.24 1.38 0.38 0.01 0.48
9 1292 0.52 3.49 1.37 0.31 -0.05 0.40
10 1292 0.40 4.00 1.35 0.22 -0.12 0.14

January 96

Low div. 376 0.99 2.76 1.74 1.46 0.24 0.92
2 378 0.95 2.69 1.49 1.37 0.23 0.98
3 377 0.90 2.76 1.62 1.17 0.17 0.73
4 378 0.85 2.85 1.58 1.18 0.20 0.82
5 378 0.82 2.89 1.39 1.03 0.15 0.87
6 378 0.78 2.91 1.64 0.90 0.13 0.63
7 378 0.73 3.24 1.49 0.84 0.08 0.58
8 377 0.66 3.39 1.77 0.74 0.06 0.62
9 378 0.58 3.47 1.68 0.58 -0.05 0.36
10 378 0.46 4.05 1.74 0.43 -0.24 0.53
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C Background results and proofs

C.1 Definitions and background

Definition C.1 (Conditional Value-at-Risk, CVaR). The conditional Value-at-Risk at

confidence level α ∈ (0, 1), for a continuously distributed random variable r̃p is

CVaRα(r̃p) = −E[r̃p | r̃p ≤ ζ], (14)

where E is the expectation operator, and ζ1−α ∈ R is the Value-at-Risk.

The astute reader should note that Rockafellar and Uryasev (2002) develop their model

for a loss random variable z̃ and not for returns. Their CVaR of losses is the expected

value above a threshold ζ, whereas we take the CVaR of return to be the negative of

expected value of returns below the 1 − α probability threshold ζ. We use their results

with z̃ = −r̃p to develop our model in returns.

Value-at-Risk is the highest γ such that r̃p will not exceed γ with probability 1− α,

VaR1−α(r̃p)
.
= ζ1−α = max{γ ∈ R | Prob(r̃p ≤ γ) ≤ 1− α}. (15)

By definition, ζ is the (1 − α)-quantile of the random variable r̃p. It depends on the

portfolio x and the confidence level α, and so does CVaR.

Theorem C.1 (Fundamental minimization formula). (Rockafellar and Uryasev, 2002)

As a function of γ ∈ R, the auxiliary function

Fα(r̃p, γ) = γ +
1

1− α
E
[

max{−r̃p − γ, 0}
]

is finite and convex, with

CVaRα(r̃p) = min
γ∈R

Fα(r̃p, γ).

Definition C.2 (Stochastic dominance). Random variable X̃ dominates random variable

Ỹ under first order stochastic dominance (FSD, X̃ �FSD Ỹ ) if E(U(X̃)) ≥ E(U(Ỹ )) for

all increasing utility functions U . Similarly, X̃ dominates random variable Ỹ under

second order stochastic dominance (SSD, X̃ �SSD Ỹ ) if E(U(X̃)) ≥ E(U(Ỹ )) for all

increasing concave utility functions U .

Definition C.3 (Risk measure consistency). Given a stochastic order �SSD we say that

a risk measure ρ is SSD consistent if X̃ �SSD Ỹ implies ρ(X̃) ≤ ρ(Ỹ ).

.
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C.2 Proof of Theorem 2.1

We start by rewriting the MtC model as follows. Given the assumption that worst-case

CVaR of optimal solution is positive, we can find a neighborhood for which CVaR(r̃p −
rf ) > 0 for all π ∈ D, r̄h ∈ Uδh , and r̄f ∈ Uδf . Defining ξ = CVaR(r̃p − rf ) > 0, we can

write the maximum MtC ratio maximization model as:

max
x∈X, ξ∈R

1

ξ
(E(r̃)− rfe)>x (16)

s.t.

CVaRα((r̄ − rfe)>x) ≤ ξ

ξ > 0.

Setting x′ = x
ξ

and ν = 1
ξ

and using the positive homogeneity property of coherent risk

measure we can re-write the above as:

max
x′∈Rn+

(E(r̃)− rfe)>x′ (17)

s.t.

CVaRα((r̄ − rfe)>x′) ≤ 1

e>x′ > 0.

Therefore, the robust counterpart of MtC model is as follows:

max
x′∈Rn+

max
r̄f∈Uδf
r̄h∈Uδh

max
π∈D

(E(r̃)− rfe)>x′ (18)

s.t.

max
r̄f∈Uδf
r̄h∈Uδh

max
π∈D

CVaRα((r̄ − rfe)>x′) ≤ 1

e>x′ > 0.
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Using the fundamental minimization formula of CVaR in Online Appendix C.1, one can

write the above as:

max
x′∈Rn+

max
r̄f∈Uδ
r̄h∈Uδh

max
π∈D

(E(r̃)− rfe)>x′ (19)

s.t.

max
r̄f∈Uδ
r̄h∈Uδh

max
π∈D

Fα((r̃ − rfe)>x′, γ) ≤ 1

e>x′ > 0.

Obviously, max
π∈D

(E(r̃) − rfe)
>x′ = (r̄ − rfe)

>x′. Further, the innermost maximization

in the first constraint with respect to ambiguity in distribution can be obtained using

Proposition (1) in Lotfi and Zenios (2018). Therefore the above formulation can be

written as follows:

max
x′∈Rn+

max
r̄f∈Uδf
r̄h∈Uδh

(r̄ − rfe)>x′ (20)

s.t.

max
r̄f∈Uδf
r̄h∈Uδh

− (r̄h − rfe)>x′ +
√
α√

1− α
√
x′>Σx′ ≤ 1

e>x′ > 0.

Let us consider x =

(
xf

xh

)
where xf ∈ Rn−1

+ is the first n− 1 elements of x, indicating

the allocation to foreign assets rather than home and xh ∈ R+ indicates the allocation to

home. Thus, we re-write the above formulation as

max
x′∈Rn+

max
r̄h∈Uδh

max
r̄f∈Uδf

(r̄f − rfe)>x′f + (r̄h − rf )x′h (21)

s.t.

max
r̄h∈Uδh

max
r̄f∈Uδf

− (r̄f − rfe)>x′f − (r̄h − rf )x′h +

√
α√

1− α

√
x′>f Σfx′f + 2xhσ>hfxf + x2

hσ
2
h ≤ 1

e>x′ > 0.

First we obtain the robust model with respect to r̄f ∈ Uδf . Following the technique used
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in Lotfi and Zenios (2018), one can obtain the following formulation

max
x′∈Rn+

[
max
r̄h∈Uδh

(r̄h − rf )x′h
]

+ (r̂f − rfe)>x′f −
δf√
S

√
x′>f Σfx′f (22)

s.t. [
− min
r̄h∈Uδh

(r̄h − rf )x′h
]
− (r̂f − rfe)>x′f +

δf√
S

√
x′>f Σfx′f

√
α√

1− α

√
x′>f Σfx′f + 2xhσ>hfxf + x2

hσ
2
h ≤ 1

e>x′ > 0.

(see Appendix A.1 of Lotfi and Zenios (2018) for more details). Finally one can easily

check that

max
r̄h∈Uδh

(r̄h − rf )x′h = (r̂h − rf )x′h −
δh√
S
x′hσh (23)

min
r̄h∈Uδh

(r̄h − rf )x′h = (r̂h − rf )x′h +
δh√
S
x′hσh.

This completes the proof.
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C.3 Proof of Theorem 2.3

The assumption that the optimal solution of robust MtC model (6) are positive implies

that the optimal solutions of (7), i.e. x
′∗
h and x

′∗
f , are also positive. The robust MtC model

(7) is convex and satisfy Slater regularity condition, therefore the Karush-Kuhn-Tucker

(KKT) optimality conditions are the necessary and sufficient condition for optimality.

Let us define σp = x
′∗
h

2
σ2
h + x

′∗
f

2
σ2
f + 2x

′∗
h x
′∗
f σhf . Therefore, KKT optimality conditions

reduces to:

r̂h − rf −
δhσh√
S

+ λ∗
(
−r̂h + rf +

δhσh√
S

+

√
α

σp
√

1− α
(σ2

hx
′∗
h + σhfx

′∗
f )

)
= 0

r̂f − rf −
δfσf√
S

+ λ∗
(
−r̂f + rf +

δfσf√
S

+

√
α

σp
√

1− α
(σ2

fx
′∗
f + σhfx

′∗
h )

)
= 0,

where λ∗ > 0 is the Lagrange multiplier. Rewriting the condition above, one can easily

check

λ∗ − 1

λ∗
=

√
α

σp
√

1− α

(
σ2
hx
′
h + σhfx

′
f

r̂h − rf − δhσh√
S

)
λ∗ − 1

λ∗
=

√
α

σp
√

1− α

(
σ2
fx
′
f + σhfx

′
h

r̂f − rf − δfσf√
S

)
.

Therefore,
σ2
hx
′∗
h + σhfx

′∗
f

r̂h − rf − δhσh√
S

=
σ2
fx
′∗
f + σhfx

′∗
h

r̂f − rf − δfσf√
S

,

or equivalently,

(r̂f − rf −
δfσf√
S

)(σ2
hx
′∗
h + σhfx

′∗
f )− (r̂h − rf −

δhσh√
S

)(σ2
fx
′∗
f + σhfx

′∗
h ) = 0.

Multiplying the above by
√
S and dividing by x

′∗
h + x′∗f > 0

(
√
S(r̂f − rf )− δfσf )(σ2

hx
∗
h + σhfx

∗
f )− (

√
S(r̂h − rf )− δhσh)(σ2

fx
∗
f + σhfx

∗
h) = 0.

where x∗h and x∗f now are the optimal solutions of robust MtC model (6). Replacing x∗h
with 1− x∗f , and re-arranging the terms we get

(
√
S(r̂h − rf )− δhσh)(σ2

f − σhf )− (
√
S(r̂0 − rf )− δfσf )(σhf − σ2

h)x
∗
f =

σ2
h(
√
S(r̂0 − rf )− δfσf )− σhf (

√
S(r̂h − rf )− δhσh).
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Finally,

x∗f =
σ2
h(
√
S(r̂0 − rf )− δfσf )− σhf (

√
S(r̂h − rf )− δhσh)

(
√
S(r̂h − rf )− δhσh)(σ2

fxh − σhf )− (
√
S(r̂0 − rf )− δfσf )(σhf − σ2

h)
.

Defining

c1 =
√
S
[
σ2
f (r̂h − rf )− σhf (r̂f − rf )

]
,

c2 =
√
S
[
σ2
h(r̂f − rf )− σhf (r̂h − rf )

]
,

and

c3 =
√
S
[
(σ2

f − σoh)(r̂h − rf )− (σhf − σ2
h)(r̂f − rf )

]
,

one can easily see that

x∗f =
c2 + δhσhσhf − δfσfσ2

h

c3 + δf (σohσf − σoσ2
h)− δh(σhσ2

f − σhσhf )
.

and

x∗h = 1− x∗f =
c1 + δfσfσhf − δhσhσ2

f

c3 + δf (σhσ2
f − σoσ2

h)− δh(σhσ2
f − σhσhf )

.

This completes the proof.
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D Interval ambiguity extension

In this section, we develop the robust MtC model under ambiguity in distribution, means,

and covariance matrix. We first construct interval ambiguity sets as in El Ghaoui et al.

(2003) and derive the robust counterpart of MtC maximization model (3). In particular,

we assume that the probability distribution of returns are ambiguous, and further the

mean values and the covariance matrix of returns are only known within some interval

ambiguity sets.

Definition D.1 ( Interval ambiguity for mean returns and covariance matrix).

(El Ghaoui et al., 2003)

Mean returns and covariance matrix belong to the following interval set:

UI = {(r̄,Σ) ∈ Rn × Sn | r̄− ≤ r̄ ≤ r̄+, Σ− ≤ Σ ≤ Σ+},

where r̄−, r̄+, Σ−,Σ+ are given vectors and matrices, and the inequalities are component-

wise, and Sn denotes the cone of positive semi-definite matrices. We assume there is at

least one (r̄,Σ) ∈ UI for which Σ � 0.

We consider the robust counterpart of MtC model with respect to ambiguity set UI

as follows:

max
x∈X

min
(r̄,Σ)∈UI

E(r̃p − rf )
CVaRα(r̃p − rf )

. (24)

The following theorem obtains the SOCP formulation of robust MtC model.

Theorem D.0. Assuming positive worst-case CVaR on excess returns of the optimal

portfolio of robust MtC maximization model (24) with feasible set X is positive, then the

robust MtC portfolio optimization model can be cast as follows:

max
v′+,v

′
−∈Rn, υ∈R,Λ,Λ+,Λ−∈Sn

(r̄− − rfe)>v′− − (r̄+ − rfe)>v′+ (25)

s.t.

(r̄+ − rfe)>v′+ − (r̄− − rfe)>v′− +
α

1− α
υ + tr(Λ+Σ+)− tr(Λ−Σ−)+ ≤ 1[

Λ
v′−−v′+

2
(v′−−v′+)

2

>
υ

]
� 0

Λ � Λ+ − Λ−

e>(v′− − v′+) > 0

v′+, v
′
− ≥ 0, Λ, Λ+, Λ− � 0,

where tr and r̄ shows the trace operator (defined as the sum of diagonal elements of
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a matrix) and vector of risky assets mean returns, respectively. Given v
′∗
+ and v

′∗
− , the

optimal solutions of (24), the optimal solution of robust MtC portfolio optimization can

be obtained as x∗ = 1
e>v′∗v

′∗ where v′∗ = v
′∗
− − v

′∗
+ .

Proof. Similar to the proof of Theorem (2.1) in Online Appendix C.2, we can write

the maximum MtC ratio maximization model as:

max
x′∈Rn+

(E(r̃)− rfe)>x′ (26)

s.t.

CVaRα((r̄ − rfe)>x′) ≤ 1

e>x′ > 0,

where x′ = x
ξ

and ν = 1
ξ
. Therefore the robust counterpart of maximum MtC is as follows:

max
x′∈Rn,ν∈R

min
(r̄,Σ)∈UI , π∈D

(r̄ − rfe)>x′ (27)

s.t.

max
(r̄,Σ)∈UI , π∈D

CVaRα((r̄ − rfe)>x′) ≤ 1

e>x′ > 0

x′ ≥ 0, .

Using the representation of CVaR in Theorem C.1 of Online Appendix C.1, one can write

the above as:

max
x′∈Rn,ν,γ∈R

min
(r̄,Σ)∈UI , π∈D

(r̄ − rfe)>x′ (28)

s.t.

max
(r̄,Σ)∈UI , π∈D

Fα((r̃ − rfe)>x′, γ) ≤ 1

e>x′ > 0

x′ ≥ 0, .

The above is equivalent to:

max
x′∈Rn, ν∈R

min
(r̄,Σ)∈UI

(r̄ − rfe)>x′ (29)

s.t.

max
(r̄,Σ)∈UI

− (r̄ − rfe)>x′ +
√
α√

1− α
√
x′>Σx′ ≤ 1

e>x′ > 0

x′ ≥ 0, .
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(see Proposition 1 of (Lotfi and Zenios, 2018)). Appendix A4. of the same paper allow

us to reformulate the inner minimization in the objective function and the maximization

appeared in the first constraint and get the following formulation.

max
v′+,v

′
−∈Rn, υ,ν∈R,Λ,Λ+,Λ−∈Sn

(r̄− − rfe)>v′− − (r̄+ − rfe)>v′+ (30)

s.t.

(r̄+ − rfe)>v′+ − (r̄− − rfe)>v′− +
α

1− α
υ + tr(Λ+Σ+)− tr(Λ−Σ−)+ ≤ 1[

Λ
v′−−v′+

2
(v′−−v′+)

2

>
υ

]
� 0

Λ � Λ+ − Λ−

e>(v′− − v′+) > 0

v′+, v
′
− ≥ 0, Λ, Λ+, Λ− � 0.

This completes the proof.

OA - 15


	Introduction
	Robust Mean-to-CVaR portfolios
	Preliminaries
	Robust model formulation
	Second order stochastic dominance consistency
	Robust MtC optimal portfolios

	Application to under-diversification puzzles
	Data
	Ambiguity measurement
	Equity home bias puzzle
	Household portfolio under-diversification

	Conclusion
	References
	Data Appendix
	Figures
	Tables
	Background results and proofs
	Definitions and background
	Proof of Theorem 2.1
	Proof of Theorem 2.3

	Interval ambiguity extension

