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Abstract
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ticular, minimizing over transaction costs restores credibility in the capability of MV
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lowering downside risk and enhancing scalability. More generally, market timing and

estimation error are important drivers behind the dynamics of MV profitability in the
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1 Introduction

Recent years have witnessed a boost in the overall quality and efficiency of the U.S. stock

market.1 Using the words in Chordia et al. (2014): “The improvements in trading technology

and liquidity are dramatic and quite unprecedented”. In line with these findings, Chen and

Velikov (2020) find that profits from trading in anomalies disappeared. In contrast, we find

that investing according to the Mean-Variance (MV) criterion over all the common stocks

traded on the NYSE/AMEX and NASDAQ has never been so rewarding. Several of our

strategies perform better then the equally and value weighted market portfolios as well as

broad ETFs such as the SPDR (mimicking the S&P 500 index) and the IWM (mimicking the

Russell 2000 index), earning annualized out-of-sample after-cost Sharpe ratios well above 1.

On the contrary, the top-right graph of Figure 4 shows how the Sharpe ratios of the leading 23

anomalies analyzed in Novy-Marx and Velikov (2016) are almost always below 0.5 recently.

We analyze the performance of three standard textbook types of MV strategies – the

MV Tangency Portfolio (MVTP), the Global Minimum Variance Portfolio (GMVP), and

four frontier portfolios targeting an annualized risk premium of 1% (MVP1), 5% (MVP5),

10% (MVP10) and 15% (MVP15) respectively – and their cost-optimized versions when

appropriate.2 The two main contribution of our study are the findings that: 1) the stabilizing

role of cost minimization on portfolio weights can restore the credibility of MV strategies

to efficiently target risk premia, 2) market timing and estimation error are two key drivers

behind the profitability of MV strategies.

We find two robust patterns in the profitability of MV strategies over the recent past.

While the insights from the first one are mostly helpful in refreshing the typical known

properties of MV strategies, those from the second ones are new and represents the first

main contributions of this paper. We first document how GMV P , the simplest among all

MV strategies, is very profitable and stable, earning after-cost Sharpe ratios of 1.12 and 1.29

in the absence of price pressure (depending on whether we use the past 6 or 12 months to

estimate the covariance matrix). More generally, textbook MV strategies tend to be very

1See for example Hendershott et al. (2011), Chordia et al. (2011) and Chordia et al. (2014).
2Our cost-optimized strategies are versions of GMVP and the four frontiers portfolio that minimizes over

transaction cost inside the MV optimization as we detail in Section 2.1. There is no cost-optimized equivalent
to the MVTP strategy since its cost-optimized analog depends on a given level of risk aversion.
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profitable only when the impact of stock risk premia estimates is minimal and their main

source of profitability comes from timing stock covariances. That is, those strategies cannot

handle the estimation error present in the estimates of stock risk premia. What is new here is

the finding that the recent performance of GMV P is among the best over the last 100 years.

The rest is already well known.3 The second observed pattern, which represents the first

main result of this paper, is the finding that minimizing over costs within the MV setup is a

way to restore credibility in the ability of MV strategies to efficiently target risk premia. MV

strategies minimizing portfolio variance and transaction costs subject to a targeted level of

risk premium have Sharpe ratios indistinguishable from those of GMVP and dominates their

textbook analogs (not minimizing over costs) at targeting higher premia. Once stock risk

premia are estimated using at least the past 10 years of data, cost-optimized MV strategies

targeting premia of 5,10 and 15% per annum have Sharpe ratios never below 1.2. In contrast,

standard analogs have ratios almost always smaller than 1. Furthermore, cost-optimizing

strategies are less prone to downside risk and more scalable (i.e. their profits are eroded less

from the price impact of trades).

We can explain these findings by analyzing the role played by trading costs in the MV

optimization. Olivares-Nadal and DeMiguel (2016) show how trading costs in the MV op-

timization can be thought as tuning parameters for stabilizing the performance. More gen-

erally, explicitly accounting for costs represents an economically sounded way to impose

bounds on the MV weights. This is because, as we assume in our paper (and most of the

literature),4 when costs are proportional or proportional and quadratic there exists a no

trading region around the optimal allocation absent costs, and it is optimal to trade only

when the before-cost risk-return trade-off is enough far away from such optimum. We show

this point by illustrating how bounding the weights through cost minimization dominates

the adoption of standard MV strategies in the presence of either non-negative weights (no

short-selling allowed) or in the additional presence of uniform upper bounds on the maximal

positions in any single stock.

The stabilizing role played by cost-minimized weights allows to: i) unlock and profitably

exploit the information contained in stock risk premia, ii) attenuate downside risk, and

3See for example the literature on volatility timing, e.g. Fleming et al. (2001), and Moreira and Muir
(2017), and on the performance of GMV P , e.g. Jagannathan and Ma (2003), and Clarke et al. (2006, 2011)

4See for example Dybvig and Pezzo (2020) and reference therein.
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iii) scale up. First we argue that the stabilizing role of cost-optimized weights allows to

market time stock risk premia by smoothing out the extra noise that prevents MV standard

strategies to exploit the information contained in the stock premia. This is because we find

that cost-optimized strategies that dominate their standard analogs derive a considerable

portion of their Sharpe ratios from market timing stock risk premia in contrast to their less

profitable analogs. Moreover the most profitable standard strategies load very little on stock

premia estimates and mostly derive their profitability from timing stock covariances (while

actually suffering from stock premia estimation error when the stock premia estimates are

considered as inputs). Second, we find that cost-optimized strategies uniformly have lower

exposures to downside risk as measured by the worst observed loss (Maximum Draw Down)

and the average time to recover from it. This is because the lower volatility present in the

realized returns helps to cap losses. Finally, explicitly modeling for price impact, by means

of quadratic transaction costs in our setup, enables cost-optimized strategies to consistently

scale up more (and be less sensitive to changes in price impact). This is an important new

insight in that it suggests that also large institutional investors can gain efficient market

exposures by exploiting the MV criterion.

The fact that cost-optimized strategies targeting higher premia are more profitable than

their standard analogs can be rationalized by the Frazzini and Pedersen (2014) “betting

against beta” theory. The systematic pattern found in the alphas (higher) and betas (lower)

of cost-optimized strategies vis-a-vis those of standard strategies matches the theory’s pre-

dictions. Therefore, these findings are sustained by an equilibrium model populated by

investors with different levels of trading constraints. While the original theory attributes

such constraints to different margin requirements in our re-interpretation we attribute them

to the presence of trading costs, a different type of trading constraint.

It is instructive to compare the benefits of optimizing over transaction costs across differ-

ent markets. In the U.S. stock market, where estimation error is quite pervasive, especially

in the forecast of risk premia, the predominant role of cost minimization is that of stabiliz-

ing the performance. Using a setup very similar to ours, Maurer et al. (2020) analyze the

impact of costs in the FX markets. In such markets, as the authors show, estimation error

is much less pervasive, primarily because good and simple forecasts are available for the

currency risk premia. As a consequence the main benefits of cost minimization come from
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the direct reduction of execution costs. Also the implications for price impact are different.

While explicitly modeling price impact as a trading cost always stabilize and substantially

improves the after-cost performance, profits of all our strategies are mostly eroded at a slow,

approximately linear, rate. This is in sharp contrast to the exponential profit decay found

by Maurer et al. (2020) in the FX markets while conducting the exact same type of anal-

ysis. What is crucial here is the number of assets invested. While in the FX markets no

more than 29 currencies are jointly traded, we invests in thousands of stocks. This makes

portfolio weights relatively small. Accordingly, rebalancing induces small buy and sell orders

generating a modest price impact from trading.5

According to our discussion so far a large chuck of the profits from the most profitable

strategies (GMVP and the cost-optimized strategies targeting higher returns) comes from

market timing at least one of the first two moments of the stock return distribution. We also

find that the least profitable strategies tends to suffer the most from estimation error. More

generally, our second main finding is that market timing and estimation error are key (and

closely related) drivers behind the dynamics of MV profitability in the U.S. stock market over

the last century. In our setup market timing and estimation error are mechanically related.

We measure their impact on the performance of a given MV strategy as the Sharpe ratio

differential between the real-time version of it and its unimplementable version where at

least one of the first two moments is kept fixed at its in-sample look-ahead biased estimate

(instead of being estimated recursively based on the information available at the time of

execution). Since the only difference between the two versions of the strategy comes from the

time-variation in the estimates for the moments, when the differential is positive(negative),

i.e. the real-time performance is higher(lower), we are capturing the impact of market

timing (estimation error). We find that market timing and estimation error have substantial

impact on the performance of MV strategies, with average Sharpe ratio increments (for

the case of market timing) and decrements (for the case of estimation error) between 0.3

and 0.45, as well as 0.26 and 0.66 respectively. Moreover, MV profitability displays a pro-

cyclical pattern with magnitudes increasing in expansions and decreasing in recessions over

time. Such dynamics can be explained by market timing in expansions and estimation

error in recessions. As a consequence, we find substantial positive correlation between the

5The same argument holds true even while investing in the smaller universe of SP500 stocks as shown in
Appendix E.
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profitability of MV strategies and their level of market timing (with low values associated to

estimation error), particularly for cost-optimized strategies. The average correlation over the

last 100 years is between 0.28 and 0.56 for standard strategies and between 0.5 and 0.82 for

cost-optimized strategies. Further corroborating the hypothesis of a causal relation between

market timing and estimation error and the profitability of our MV strategies, the majority

of most profitable strategies have market timing levels belonging to the top tercile, almost

always corresponding to positive gaps (our way to detect actual market timing activity). At

the same time, most of the least profitable strategies have market timing levels not higher

then the median, almost always corresponding to negative gaps (our way to detect estimation

error).

The implementation of MV strategies requires estimates for stocks risk premia and co-

variances. We deal with the well known issues associated with the estimation of the first

two moments for the entire cross section of stock returns by imposing a conditional factor

structure on the data generating process and exploiting the superior predictability of the

second moments at higher frequency. The conditional covariance matrix is estimated recur-

sively using the previous 6 or 12 months of daily returns, adjusting for infrequent trading and

missing values. While the vector of risk premia is generated by the two-step noise-filtering

missing-at-random procedure developed in Gagliardini et al. (2016) recursively using the

previous 5, 10 or 20 years of monthly returns. More details are provided in Section 2.2.

Our results are robust to the way we measure costs (with or without TAQ data), which

factor model (market versus Fama and French (1993) 3-factors) we use to estimate the

conditional stock risk premia µt and the conditional covariance matrix of stock returns Vt, as

well as to the specific re-balancing frequency (monthly vs. quarterly) and the composition

of the stock universe.6 From our robustness analysis we additionally learn that: 1) the

trade-off between bias and estimation error in the covariance matrix estimator is clearly in

favor of a reduction of the latter,7 2) adopting a parsimonious specification for the return

generating process and filtering out part of the noise in the risk premia estimates through

6Whether or not we reduce the stock universe to: i) the S&P 500 constituents, ii) the same sub-sample
of stocks implicitly selected by the most stringent analyzed rolling-window-length combination of 12 months
for estimating Vt and 20 years for estimating µt, or iii) the even more stringent sub-sample of stocks required
to estimate V and µ unconditionally).

7This is because the performance of our strategies are (much) better when we estimate Vt via factor
models rather then the Ledoit and Wolf (2017, 2020) shrinkage estimator.
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the Gagliardini et al. (2016) approach is the best way, among those analyzed in this paper,

to handle stock risk premia,8 3) there are economically sizable diversification benefits in

investing in all common stocks.9

The rest of the paper is structured as follows: section 2 details the setup and the strategies

employed in our analysis, including the measurement of market timing and estimation error.

Section 3 describes the U.S. stock market investment opportunity set over the last century,

highlighting the macro-trends useful for our analysis. Section 4 documents the recent stark

profitability of MV strategies, singling out the relevant patterns. Section 5 analyzes the role

of cost minimization in enabling MV strategies to efficiently target risk premia. Section 6

shows how market timing and estimation error are important drivers behind the profitability

of the analyzed MV strategies over the last century. Section 7 presents the summary of the

robustness analysis which is detailed in the Internet Appendix. Section 8 concludes.

2 Setup

The stock universe is taken to be that of all common stocks trading on the NYSE, AMEX

and NASDAQ10 from January 1926 through December 2017.

Let t be the end of a given period, and Nt the number of available stocks to trade in at

that time. Define rt and Ct to be the Nt-vector of realized excess returns and proportional

cost respectively. Returns are taken as the Center for Research in Security Prices (CRSP)

holding period returns in excess of the Ibbotson and Associates 1-month risk-free rate,11

while costs are the Chen and Velikov (2020) effective spreads.12

The trading dynamics for a generic strategy j works as follow: at any time t the positions

of the strategy inherited from t−1, θ0,j
t , equals the t−1 post-trade positions θjt−1 (which can

8The one-factor market model within the Gagliardini et al. (2016) is more efficient than the Fama and
French (1993) 3-factor formulation or the estimation of the factor models under the standard Fama and
MacBeth (1973) procedure.

9Performances are lower if we restrict the stock universe to the SP500 stocks.
10Stocks with the first two digits of the Center for Research in Security Prices (CRSP) variable “shrcd”

equal to 10 and 11.
11If the period is a quarter we compute the implied quarterly excess returns by compounding the monthly

ones.
12A measure of the implied half bid-ask spreads. We are grateful to the authors for sharing their data.
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be a vector of 0s if the strategy has just been set up) plus the vector of adjustments due to the

shocks associated with the realizations of the returns, rt ·θjt−1, where · defines the element-by-

element product. Then the time t weight vector θjt is set up given the available information

up to t and the following transaction costs are incurred TCj
t =

∑Nj
t

i |θ
j
t,i − θ

0,j
t,i |Ct,i, where

N j
t is the number of stocks accessible for trading by strategy j. From our definition of

trading costs it follows that the cost of trading each single stock i, Ct,i, is proportional to the

size of trade in that stock, |θjt,i − θ
0,j
t,i |. In t+ 1 the following after-cost excess return realizes

rAC,jt+1 = r′t+1θ
j
t −TC

j
t . Notice that the returns of our strategies are all obtained out-of-sample

and there is no look-ahead bias, i.e., such returns obtains in real-time.

2.1 Strategies

We analyze three standard textbook types of MV strategies – the MV Tangency Portfolio

(MVTP), the Global Minimum Variance Portfolio (GMVP), and four frontier portfolios

targeting an annualized risk premium of 1% (MVP1), 5% (MVP5), 10% (MVP10) and 15%

(MVP15) respectively – and their cost-optimized versions when appropriate13 – namely,

the cost-minimized version of the GMVP (labeled GMVPtc), and that of the four frontier

portfolios (labeled MVP1tc,MVP5tc,MVP10tc and MVP15tc respectively). Moreover, we

evaluate our MV strategies against several popular U.S. market benchmarks: the equally

(EW) and value (VW) weighted portfolios as well as the S&P 500 ETF SPDR, and the

Russell 2000 ETF IWM, which are only available in the most recent time periods.

We next describe our strategies in details.

2.1.1 Equally Weighted portfolio (EW)

Is the strategy which weight vector at generic time t is defined as

θEWt ≡ 1

NEW
t

13There is no cost-optimized equivalent to the MVTP strategy since its cost-optimized analog depends on
a given level of risk aversion.
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where NEW
t , with a slight abuse of notation, is both the number and the set of stocks that

at time t have a trading cost estimate.

2.1.2 Value Weighted portfolio (VW)

Is the strategy which weight vector at generic time t is defined as

θVWt ≡ MktCapt,i∑NV W
t

i MktCapt,i

where NVW
t is the number of stocks, and subset of NEW

t , for which we have an estimate for

the market capitalization.

2.1.3 Global Minimum Portfolio (GMVP) and cost-optimized analog (GMVPtc)

The Global Minimum Variance Portfolio is the strategy which weights minimize the variance

of all possible weights that sum up to 1

θGMV P
t ≡ arg min

{θt|1′θt=1}
{θ′tVtθt} =

V −1
t 1

1′V −1
t 1

where 1 is the vector of 1s.

A cost-optimized version of GMVP additionally minimizes over transaction costs. That

is, the optimal weight vector, θGMV Ptc
t , is the solution of the following problem

min
{∆+

t ≥0,∆−t ≥0}
{θ′tVtθt + (∆+

t + ∆−t )′Ct}
s.t. θt = θ0

t + ∆+
t −∆−t

1 = 1′θt

where ∆+
t and ∆−t are the non-negative vectors of stock purchases and sales to be added and

subtracted to the initial position θ0
t = θ0,GMV Ptc

t inherited from t − 1 to get the after-trade

optimal vector of positions θt = θGMV Ptc
t . Notice that when Ct = 0, θGMV Ptc

t = θGMV P
t . If

Ct ≥ 0 than θGMV Ptc
t 6= θGMV P

t . Moreover, both vectors are uniquely identified as long as Vt

is positive-definite.

In practice for both strategies Vt is estimated using the NGMV P
t ⊆ NEW

t number of stocks
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for which we have estimates for the matrix entries.

2.1.4 Generic Frontier Portfolio (MVPE) and cost-optimized analog (MVPEtc)

A frontier portfolio is defined as a vector of weights, summing up to 1, minimizing the

portfolio variance given a target risk premium level E

θMV PE
t ≡ arg min

{θt|1′θt=1,µ′tθt=E}
{θ′tVtθt} =

V −1
t

Dt

[1(Bt − EAt)µt(ECt − At)]

where At = 1′V −1
t µt, Bt = µ′tV

−1
t µt, Ct = 1′V −1

t 1 and Dt = BtCt − A2
t .

Similarly to the case of GMVP, a cost-optimized version of MVPE additionally minimizes

over transaction costs. That is, the optimal weight vector, θMV PEtc
t , is the solution of the

following problem

min
{∆+

t ≥0,∆−t ≥0}
{θ′tVtθt + (∆+

t + ∆−t )′Ct}
s.t. θt = θ0

t + ∆+
t −∆−t

E = θ′tµt

1 = 1′θt.

When there are no costs MVPE and MVPEtc are identical and both strategy weight vectors

are uniquely identified as along as Vt is positive-definite.

In practice for both strategies Vt and µt are estimated using the NMV P
t ⊆ NGMV P

t number

of stocks for which we have estimates for both the matrix and the vector entries.

2.1.5 Mean-Variance Tangency Portfolio

Finally the Mean-Variance Tangency Portfolio is the proportion of (risky) stocks present in

the optimal portfolio of a Mean-Variance investor with coefficient of risk aversion λ investing

in the (risky) stocks and a risk-free asset. That is

θMV TP
t ≡ V −1

t µt

1′V −1
t µt

=
1

1′(λ
2
V −1
t µt)

(
λ

2
V −1
t µt) =

1

1′(λ
2
V −1
t µt)

arg max
{θt}
{θ′tµt −

λ

2
θ′tVtθt}
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notice how θMV TP
t is not a function of λ.14 In practice Vt and µt are estimated using the

NMV P
t ⊆ NGMV P

t number of stocks for which we have estimates for both the matrix and the

vector entries.

2.2 Estimation of parameters

In practice MV strategies require estimates for the vector of risk premia and the covariance

matrix of returns. We deal with the well know issues associated with the estimation of the

first two moments for the entire cross section of stock returns by imposing a conditional

factor structure on the data generating process and exploiting the superior predictability of

the second moments at higher frequency. Let ft be a k-th vector of traded factor returns

and assume the data generating process for the vector of excess stock return to be

rt = a+B′ft + et (1)

where et represents an independent mean-zero disturbance vector with diagonal covariance

Ve and each column of B contains the k stock-specific factor loadings.

Using daily returns over the previous 6 or 12 months, we recursively estimate (1) and

define the monthly covariance matrix of returns at time t as Vt = 12
252

(B′tVf,tBt + Ve,t) where

Bt, Vf,t and Ve,t are estimates for B, Ve and the covariance matrix for the factors Vf over

the past 6 to 12 months. We deal with the unbalanced nature of the panel of returns and

the illiquidity of small stocks by estimating (1) separately for each stock. The former issue

is dealt with by only retaining stocks that have at least 80% of the observations over the

previous 6 or 12 months. The latter problem is tackled by estimating the i-th stock loading

Bi (i-th column of B) as the average of the slopes of three different variations of (1) where

ft is in turn regressed on ri,t−1, ri,t, and ri,t+1.

Using monthly returns over the previous 5,10 or 20 years we recursively estimate (1) and

define the monthly vector of stock risk premia at time t as µt = b′tλt. Specifically, we follow

the noise-filtering missing-at-random two-pass approach of Gagliardini et al. (2016) in its

simpler time-invariant risk premia formulation as in Berrada and Coupy (2015). bt is the

first pass estimate for B in (1) for those stocks with enough non-missing observations as

14A cost-optimized version would instead depend on λ. This is why MV TP has no cost-optimized analog.

10



established by a statistical filter. λt equals the conditional mean of the factors’ returns plus

a miss-pricing adjustment. Such adjustment is estimated in the second pass by regressing

at, the intercept from (1) for the retained stocks, on bt via weighted least squares. The exact

steps followed in our estimation are described in Section 2.1 of Berrada and Coupy (2015).

The advantage of this method over the standard Fama and MacBeth (1973) approach lies in

the noise reduction in the premia achieved through the first pass filter and the second pass

adjustment condensing the information contained in the whole cross-section.

Throughout our main analysis we parsimoniously specify ft as the market factor (time

series of the CRSP value-weighted portfolio excess returns). In the online appendix we show

how our results are robust to the Fama and French (1993) 3-factor specification. We confirm

the superiority of the Gagliardini et al. (2016) risk-premia estimates over the standard Fama

and MacBeth (1973) approach (finding that the 1-factor specification under the Gagliardini

et al. (2016) is indeed the most efficient approach). We also find that estimating a large

covariance matrix via a factor model rather than via the nonlinear Ledoit and Wolf (2017,

2020) Shrinkage estimator induces a substantial improvement in the out-of-sample profitabil-

ity (thus validating the claim that a reduction of estimation error over bias is what matters

for large scale covariance estimators). Finally, in line with the literature15 we confirm in an

unreported robustness check (available upon request) that estimating the covariance matrix

at the monthly frequency is suboptimal from a performance standpoint.

2.3 Market timing and estimation error

In this paper we primarily measure the ability of a given MV strategy to time the market

or alternatively to suffer from the impact of estimation error by comparing its out-of-sample

real-time performance with that under a scenario where the first and/or second moments of

the stock return distribution are kept fixed at their in-sample look-ahead biased estimates.

Specifically, define {t}Tt=1 as the reference sample. Let θjt (µ̂t, V̂t) be the weight vector

of strategy j at time t ∈ {t}Tt=1 for given conditional estimates for the stock risk premia,

µ̂t, and their covariance matrix, V̂t. Define µ̂ and V̂ as the fixed in-sample look-ahead

biased estimates. Then if the out-of-sample performance from {rjt+1(µ̂t, V̂t)}T−1
t=0 is different

15See Fleming et al. (2001) (and references therein) as well as Moreira and Muir (2017).
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than that from {rjt+1(µ̂, V̂ )}T−1
t=0 such difference is entirely due to the time variation in the

estimates for the risk premia and/or their covariance matrix. In particular, if the gap is

positive, i.e. the real-time performance is higher, this is because the strategy is benefiting

from the time-variation in the weights coming from the conditional moments. That is, the

strategy is displaying market timing abilities. On the other hand, if the gap is negative,

i.e. the real-time performance is negative, this is because the extra variation in the weights

coming from the conditional estimates µ̂t and V̂t is compromising the overall performance,

thus representing estimation error.

3 The U.S. stock market investment opportunity set

Two quantities an investor always needs to consider while forming a portfolio strategy are

the number of available stocks and the cost of trading those stocks. The number of available

stocks are proportional to the achievable degree of diversification but also to the amount of

estimation error a strategy (which requires stock-level estimates) might suffer from. While

trading costs can be thought of proxies for market frictions (e.g. liquidity, or simply anything

that prevents trades to be those available in a frictionless world).

Figure 1 represents the U.S. stock market investment opportunity set over the monthly

period January 1926 - December 2017. The left y-axis reports in blue the time series of

the Chen and Velikov (2020) cross-sectional median effective spreads (implied half bid-ask

spreads). While the right y-axis displays in orange the time series of the total number of

common stocks available from the CRSP database as defined in Section 2. Combining the

structural brakes in these time series we can divide roughly the last 100 years into four sub-

samples: 1926-44 as a sample with high costs and low number of stocks, 1945-72 as a sample

where costs turn to low, 1973-02 as a sample characterized by the spikes in the number of

available stocks (due to the inclusion of the NASDAQ stocks in CRSP) but also by very high

trading costs, and 2003-17 as a sample characterized by the all-times-low costs level.

We argue that these two quantities (costs and number of stocks) roughly pick-up the

long-term cyclicality in the U.S. stock market investment opportunity set. 1926-44 is a

recessionary period (including the 1929-39 Great Depression, followed by the WWII) defined

by an exceptionally high documented level of market volatility (see Schwert (1990)). The
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post-war sample 1945-72 is an expansionary period as documented by the steady growth of

the stock market relative to the broader economy. Such growth is captured by the green time

series which reports the ratio of the stock market capitalization to the U.S. Gross Domestic

Product (GDP) as in Ludvigson et al. (2020). 1973-02 is again mostly recessionary as

indicated by the 74-94 two-decade-long sluggish market growth (green line) occupying more

than two-third of the sub-sample. Finally, as documented by several recent studies, after 2002

an exceptional boost in market quality takes place. We observe a simultaneous dramatic drop

in transaction costs and increment in volume traded (captured by the dot-dashed magenta

line and measured as the cross-sectional median of the monthly median daily number of

trades as reported by CRSP) and a steady decreasing pattern for the number of available

stocks (orange line) culminating in an average market growth (green line) at record heights.16

3.1 The U.S. Mean-Variance investment opportunity set

It has been known since the seminal work of Markowitz (1952) that the Capital Allocation

Line (CAL) describes the mean-variance frontier in the presence of a risk-free asset and a

generic number of risky assets with risk premia µ and variance-covariance V . Therefore, the

slope of the CAL, the highest achievable Sharpe rario SR =
√
µV −1µ, is a sufficient statistic

to characterize the MV investment opportunity set.

Figure 2 plots the time series of ex-ante MV Sharpe ratios obtainable in real time at

every date t by suitably estimating µt and Vt only using information up to t (blue lines, left

y-axes). The top graph plots such time series when the vector of risk premia µt and the

covariance matrix of returns Vt are estimated over a rolling-window covering the previous

60 months. Similarly the center and bottom graphs plot the time-series for rolling windows

16The beginning of 2003 corresponds to the inclusion of the NYSE autoquote trading system. This event
can be regarded as an exogenous shock capturing the sharp increment in algorithmic trading and ultimately
resulting in a liquidity boost (see Hendershott et al. (2011)). Moreover, as highlighted by the black dashed
vertical line, in August 2005 the Security Exchange Commission introduced the NMS Regulation, which
opened the gates for competition among market venues. Angel et al. (2015) and Chordia et al. (2011),
among others, argue that these changes brought an unprecedented increment in market quality and market
efficiency. Finally, we can see how the increment in competition is consistent with the observed downward
patter in the number of available stocks: an unreported analysis (available upon request) shows how 55% of
the variation in the number of stocks after 2002 is explained by stocks being dropped out of the NYSE/AMEX
and NASDAQ (adding the explanatory power of stocks merged brings the explained variation up to 80%
while still keeping the expiatory power of the number of stock dropped highly statistically significant).
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of 120 and 240 months respectively. Underneath each sub-sample date, we report the ex-

post MV Sharpe ratio, computed by using the fixed in-sample estimates for µ and V . The

time series of the U.S. market growth relative to the economy are also super-imposed in the

same graphs (green lines, right y-axes). While the solid lines represent the already discussed

ratio between the U.S. market cap. and the GDP, the dot-dashed series displays the ratio

between the U.S. market cap and the U.S. total personal consumption expenditures. Finally,

the horizontal dashed green lines enable to quickly locate periods where market growth is

faster/slower that that of the economy (namely, when the solid and dot-dashed green time

series are above/below it).

We can see how MV investment opportunities are: i) volatile: especially when the mo-

ments (i.e. µ and V ) of the ex-ante Sharpe ratios are estimated at the higher frequencies

(shorter rolling windows), ii) pro-cyclical: the ex-ante Sharpe-ratios are highly correlated

with the stock market growth (as reported in the graphs’ legends, approximately 47% at the

60-month rolling window, 60% at the 120-month rolling window, and 83% at the 240-month

rolling window), iii) increasing over time: the ex-ante Sharpe ratios display a marked long-

term increasing trend, while the in-sample estimates gets higher as time goes by and jump

at an all-time record high of 0.85 starting in 2003.

In summary, roughly over the past century, when the U.S. stock market goes up, trading

frictions (as measured by median bid-ask spreads) go down and the MV investment oppor-

tunities go up and vice-versa. Moreover, these long-term trends are well captured by our

sub-samples. In Section 6.2 we further show how the documented ex-ante real-time pro-

cyclical and increasing pattern displayed by the MV opportunities is systematically reflected

in the ex-post out-of-sample performance of our MV strategies.

4 Recent stark mean-variance profitability

According to the discussed characteristics of the investment opportunity set, investing fol-

lowing the MV criterion never seemed so appealing as recently. MV strategies are designed

to maximize the Sharpe ratio in an i.i.d. world and: i) we observed a secular long-term

increasing trend in the ex-ante MV Sharpe ratio (matched by an ex-post Sharpe ratio after

2002 almost 2.5 times bigger than ever before), ii) the market is perceived as more efficient
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(see Chordia et al. (2011)) and, iii) returns’ auto-correlation at the analyzed (monthly and

quarterly) frequencies are (notoriously) low. We find indeed that, in sharp contrast to in-

vesting in anomalies, the real-time profitability of MV strategies has never been so high as

recently.

Figure 3 displays the out-of-sample after-cost annualized Sharpe ratios of the equally

(EW) and valued weighted (VW) strategies as they compare to those of our MV strategies:

namely the Mean Variance Tangency Portfolio (MVTP), the Global Minimum Variance

Portfolio (GMVP), and four frontier strategies targeting an annualized risk premium of 1%

(MVP1), 5% (MVP5), 10% (MVP10) and 15% (MVP15) respectively. The reported Sharpe

ratio of a given MV strategy is the average across six strategies only differing in the estimates

for µt and Vt.
17 Solid lines report the ratios of standard textbook strategies while dotted lines

(only available for the GMVP and the four frontier portfolios) those belonging to transaction-

cost-optimized analogs. Finally, the different colors refers to the four different sub-samples

introduced in Section 3. Notice how the after-cost performances of the MV strategies post

2002 (displayed in green) have never been so high, and how cost optimized strategies (in

dotted green) dominates the textbook analogs (in solid green) at targeting higher returns

with average Sharpe ratios above 1. One of the main result of this paper is the finding that

minimizing over cost within the MV setup is a way to restore credibility in the ability of MV

strategies to efficiently target risk premia.

The recent performance of MV strategies is particularly impressive even when taken

into perspective. While investing in the entire market, either equally or through a value

weighted scheme or via broad ETFs (such as the S&P 500 SPDR or the Russell 2000 IWM),

generates an after cost Sharpe ratio between 0.6 and 0.75,18 the average Sharpe ratios of

our most profitable MV strategies are in the 1.05-1.25 neighborhood. Therefore gaining

market exposure via the MV criterion is much more efficient. Also, as we show in Section

5.4, especially with respect to cost-optmized strategies, these outcomes are likely obtainable

not just by marginal price-taker investors. Indeed cost-optimize strategies appear to scale

up nicely even in the presence of substantial price impact and the same is true for GMV P

17For each given MV strategy we compute six strategies only differing in the length of the rolling window
used to estimate the risk premia (employing either the past 60, 120 or 240 months of data) and the covariance
matrix (employing either the past 6 or 12 months of data).

18Where EW and VW produce a Sharpe ratio of 0.62 and 0.73, and the S&P 500 SPDR and the Russell
2000 IWM a ratio of 0.70 and 0.63 respectively.
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if we estimate Vt using the past year of daily data. Moreover this recent profitability is in

sharp contrast with that from investing in anomalies. Figure 4 compares the performance

of our strategies with those of the leading 23 anomalies analyzed in Novy-Marx and Velikov

(2016). While before 2003 the average profitability of anomalies was similar and perhaps

higher than those of MV strategies, after 2002 it is only slightly above zero on average.

4.1 Main features of recent mean-variance profitability

Two main features characterize the recent stark profitability of mean-variance strategies:

GMV P is the simplest way to profitably gain market exposure (given an estimate for the

covariance matrix we have a closed form solution for the optimal weights) and cost-optimized

strategies are valid alternatives, especially when it comes to target risk premia. Decompos-

ing the strategies’ Sharpe ratios reveals that the main source of profitability of GMV P

(expectedly) comes from its variance reduction while the documented superior Sharpe ratios

of cost-optimized strategies targeting higher returns come both from lower volatilities and

higher average excess returns.

Figure 5 decomposes the post-2002 average performance shown in Figure 3 (solid green

for the standard strategies and dotted-green for the cost-optimized MV strategies). Each

graph only differs in the rolling-window lengths used to estimate the conditional risk premia

µt and the covariance matrix Vt for our set of analyzed MV strategies. EW and VW are

reported each time for convenience but they do not depend on such estimates. Each row

correspond to a different rolling window for µt, going from 60 months (or 5 years) in the

top graphs to 240 months (or 20 years) in the bottom ones. Similarly, each column fixes the

window for Vt to 6 months (left column) or 12 months (right column). Every point estimate

(ex-post after cost annualized Sharpe ratio) is denoted with a green bold circle. Sharpe ratios

of given strategies that are statistically better at the 10% level than: the EW, the VW, both

the SPDR and the IWM ETFs,19 and their standard analogs (if they refer to cost-optimized

strategies) are marked with a star, a diamond, a square and a circle respectively. Markers

for standard strategies are reported in black while for cost-optimized analogs in red.

GMV P has the highest most stable performance with a annualized after-cost out-of-

19Which mimic the exposure to the S&P 500 and the Russell’s 2000 indices.
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sample Sharpe ratio of 1.12 and 1.29 when the covariance Vt is estimated using the last 6

months and year of data respectively. Moreover its performance is higher (at least at the

10% level) than that of EW (0.61) and VW (0.73) as well as those of the market ETFs,

SPDR (0.70) and IWM (0.63). Even if the finding of the recent performance of GMV P

being among the best over the last 100 years is new, the efficient out-of-sample performances

of this strategy and the fact that a major portion of it comes from the ability to time stock

covariances (which we confirm in Section 5.2) are not (see Clarke et al. (2006, 2011), Fleming

et al. (2001), Jagannathan and Ma (2003) and Moreira and Muir (2017)). What is also new,

and documented later, is the fact that GMV P can actually scale up.

One of the main results of this paper is the finding that cost minimization is a way to

restore the credibility of MV strategies to efficiently target risk premia. When the stock

risk premia µt are reliably estimated (with a rolling window of at least 10 years), Figure 5

shows how cost-optimized strategies targeting higher return (namelyMV P5tc,MV P10tc and

MV P15tc) are valid alternative to GMV P . With respect to the 10% statistical level their

performances are indistinguishable from that of GMV P , with Sharpe ratios which are always

significantly grater than those of EW , VW , and the market ETFs SPDR and IWM (with

point estimates above 1.2). Moreover, their performances is always economically better than

those of their standard analogs (with a minimum out-performance of 0.14 for the strategies

targeting an annualized premium of 5% under the rolling window configuration 10 years - 1

year for µt and Vt respectively), with the statistical significance being more pronounced when

Vt is estimated over the past 6 months as indicated by the red circle around the markers of

MV P5tc,MV P10tc and MV P15tc. In Section 5 we show how cost-optimized strategies are

also less prone to downside risk (measured as the worse suffered loss and the average time

to recover from it) and scale up better then standard strategies (including GMV P ).

We conclude this section by decomposing the Sharpe ratios of our analyzed strategies.

The leftmost top two plots of Figure 6 show the average excess returns for the standard

and the cost-optimized strategies (the Sharpe ratio numerators) while the leftmost bottom

two plots report the respective volatilities (the Sharpe ratio denominators). As expected,

the main source of profitability of GMV P comes from its ability to shrink the portfolio

variance. Both versions of GMV P , whether we estimate Vt using the past 6 or 12 months,
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have a volatility of roughly 5%, one of the lowest among all strategies.20 The volatilities

of cost-optimized strategies when we estimate the stock risk premia with at least 10 years

of data are uniformly below 15% and less spread out that those from the analog standard

strategies. By the same token, the average excess return of cost-optimized strategies display

a more consistent upward pattern. The higher degree of consistency in the volatility and

average return patterns of cost-optimized strategies is in line with the stabilizing role played

by the cost-optimizing MV weights which we further discuss in Section 5. Therefore we

conclude that the documented superior Sharpe ratios of cost-optimized strategies targeting

higher returns come both from lower volatilities and higher average excess returns. This

insight is indeed confirmed by the rightmost graphs of Figure 6 plotting the difference in

average returns (top) and volatilities (bottom) between the cost-optimized and the standard

MV strategies. Cost-optimized strategies have average returns at least 1.36% higher (mostly

between 2 and 4% higher), while the volatility of MV P5, MV P10 and MV P15 when stock

risk premia are estimated using at least 10 years of data are almost always lower (i.e. the

volatility differential is negative).

5 Cost-minimization to efficiently target risk premia

The stabilizing role played by cost-minimized weights allows to: i) unlock and profitably

exploit the information contained in stock risk premia, ii) attenuate downside risk, and iii)

scale up. In particular, the fact that cost-optimized strategies targeting higher premia are

more profitable than their standard analogs can be rationalized by the Frazzini and Pedersen

(2014) “betting against beta” theory.

5.1 Cost-minimization as a good way to stabilize the performance

Standard MV weights are simple and available in close form. However small variation in their

estimates often cause large swings in the weights making the performance of such strategies

unstable (see for example DeMiguel et al. (2009)). Olivares-Nadal and DeMiguel (2016)

show how trading costs in the MV optimization can be thought as tuning parameters for

20The higher Sharpe ratio when Vt is estimated annually, 1.29 versus 1.12 when Vt uses the past 6 months
of data, therefore mainly come from the higher average return of approximately 9.33% versus 8.70%.
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stabilizing the performance. In line with this interpretation we find that the performances

of cost-optimized strategies are much less impacted by estimation error.

More generally, explicitly accounting for trading costs represents an economically sounded

way to impose bounds on such MV weights. This is because in the presence of costs it is

not always optimal to trade. When costs are proportional as in our case (or proportional

and quadratic when we consider price impact), there exists a no trading region around the

portfolio weights that would have been optimal in the absence of costs. So that at any given

time t if our initial position (inherited from time t−1 after returns in t have realized) in some

stocks is too close to the optimal one we do not trade in those stocks because the marginal

benefits are lower than the marginal costs. As a result weights become less sensitive to

changes in µt or Vt and we adjust positions to the optimal before cost risk-return trade-off

only when we are far enough away from it. For a comprehensive analysis of the topic we

refer the interested reader to Dybvig and Pezzo (2020) and references therein.

Minimizing costs within the MV optimization is not the only way to bound the weights.

The common practice is actually to impose no-short sale constraints and/or upper bounds

on the maximum exposure on given stocks. However, most of the times these constraints are

not economically justified and even labeled as “wrong” (see Jagannathan and Ma (2003)).

Table 1 reports the Sharpe ratio differentials between the cost-optimized strategies and the

ratios of the standard strategies: in the presence of no-short selling constraints (top panel),

in the additional presence of a uniform upper bound of 1% (central panel), and 2% (bottom

panel). Notice how imposing ad-hoc constraints vis-a-vis cost-optimized constraints is al-

most always sub-optimal (generating positive differentials). The drag in the performance is

particularly marked for standard strategies targeting specific risk-premia. These results show

how bounding the MV weights by minimizing over costs is a superior strategy economically

justified by the aim of preserving the before-cost risk-return trade-off.

5.2 Cost-minimization to unlock stock premia information

We argue that the stabilizing role of cost-optimized weights allows to market time stock risk

premia by smoothing out the extra noise that prevents MV standard strategies to exploit

the information contained in the stock premia.
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We first show that, once stock premia are estimated using at least the previous 10 years

of data, unlike their less profitable standard analogs, the profitable cost-optimized strategies

targeting higher returns derive a substantial portion of their profitability from timing stock

risk premia (more than twice that from targeting stock covariances and substantially more

as compared to the stock premia timing taking place in the analog standard strategies if

any). In the process we also confirm the literature insight that the most profitable standard

strategies derive most of their profitability from timing the stock covariances while suffering

from estimation error contained in stock premia when their estimates are considered as inputs

(as in Clarke et al. (2006, 2011), Fleming et al. (2001), Jagannathan and Ma (2003) and

Moreira and Muir (2017)). Indeed we find an inverse relationship between their profitability

and ability to time covariances and the level of premium they target.

Figure 7 and 8 plot performance ratios to evaluate the market timing abilities of our

strategies when positive. The performance ratio of a given strategy is the ratio of the Sharpe

ratio gap between our analyzed real-time strategy and its version where at least one of the

first two moments of the returns distribution has been fixed to the in-sample look-ahead

biased estimate divided by Sharpe ratio of the real-time version of the strategy. For a

given rolling window length for Vt, six months in Figure 7 and 1 year for Figure 8, the

leftmost(rightmost) graphs plot the ratios belonging to standard(cost-optimized) strategies.

In particular, in the top graphs the vector of stock premia are artificially held fixed in the

unimplementable version of our strategies, in the middle graphs is the covariance matrix

which is kept fixed, and in the bottom plots both moments are kept fixed. Therefore the

top graphs capture the abilities of our real-time analyzed strategies to time the stock risk

premia, the middle graphs the abilities to time the stock covariances and the bottom graphs

the abilities to jointly time the premia and the covariances. Finally the starred markers

signal gap statistically different from zero at the 10% level.

Focusing on the blue and red lines in the rightmost graphs of the two figures, representing

the parametrizations of cost-optimized strategies which use at least 10 years of data to

estimate µt, we notice that: the gaps are more positive in the top graphs than in the middle

ones, and the patterns in the bottom graphs mostly resemble the ones from the top graphs.

The first fact tell us that most of the market timing abilities of cost-optimized strategies

come from timing the stock premia. For MV P10tc and MV P15tc the impact of premia
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timing is always significant and at least twice as much as that from volatility. Moreover the

ratio for MV P10tc is at least 0.31 and that of MV P15tc at least 0.54, that is, stock primia

timing explain roughly at least one-third and half of the total performance of our real-time

strategies. The fact that the patterns in the bottom graphs (measuring the impact of jointly

timing premia and covariances) mostly resemble the ones from the top graphs (measuring the

exclusive impact of premia timing), with performance ratios which are always statistically

significant for MV P10tc and MV P15tc, confirms that the premia timing is the predominant

type of timing. The performance ratios in the bottom graphs are actually roughly the same

as those in the top graphs implying that roughly the totality of the joint timing comes from

timing the risk premia.

Focusing on the standard strategies (leftmost graphs in the two figures) tell us a radical

different story. The impact of premia timing for standard strategies targeting higher returns

when significant is mostly less then half that for the cost-optimized analogs. When Vt is

estimated using the previous six months of data the only statistically positive gap is found

for MV P15 when µt is estimated using the previous 20 years of data in the amount of 0.25

versus a ratio of 0.58 for MV P15tc. When Vt is estimated annually MV P10 has a ratio of

0.14 against a ratio of 0.31 for MV P10tc and MV P15 has a ratio of 0.34 vs a ratio of 0.54

for MV P15tc. Moreover as reported in Figure 5 standard strategies targeting higher returns

are less profitable than their cost-optimized analogs.

Finally, turning to the most profitable standard strategies, GMV P and MV P1, notice

how a large portion of their profitability comes from timing the stock covariances (at least

60% of the baseline performance for GMV P mechanically accounting for all the joint impact,

and at least one-third for MV P1 when µt is estimated over the previous 20 years). More

generally, looking at the patterns of covariance timing among the standard strategies and

considering GMV P as a special case of a strategy with no target, we can see a predominant

inverse relation between the timing abilities and the level of targeted premium (the average

downward patter present in the leftmost middle graphs in the two figures). This suggests that

the more important is the role played by the stock premia in the MV optimization the less

impact come from timing the stock covariances. This decreasing pattern is roughly matched

by the real-time performances of standard strategies reported in Figure 5. Therefore the

bigger the role played by the stock premia the less the role played by covariance timing and
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the less efficient the performance. Last but not least, it is also noteworthy to see how the

most profitable standard strategies except GV GP , namely MV P1 and MV P5, are the ones

that suffer the most from risk premia estimation error (see the negative values in the top

left graphs of both Figure 7 and 8. Therefore, the most profitable standard strategies derive

most of their profitability from timing the stock covariances while suffering from estimation

error contained in stock premia when their estimates are considered as inputs.

In summary, these results suggest that the stabilizing role of cost-optimized weights

smooths out the extra noise present in the stock risk premia estimates preventing standard

strategies to profitably timing them.

One caveat in this analysis is represented by the different stock universe composition

under the conditional versus unconditional estimates of the analyzed moments over which

we construct our gaps. In order to compute unconditional moments we require stocks that

have been present in the market throughout the sample,21 while for computing conditional

premia, and conditional covariances in particular, we require a (much) shorter horizon. This

means that we have more stocks at disposal when we conditionally estimates the first two

returns moments. Therefore we might be picking up the joint effect of market timing and the

implied stocks availability. To avoid spurious inference in Section C of the Online Appendix

we compute Sharpe ratio differentials between our baseline strategies restricted to the stock

universe required to compute µt and Vt unconditionally over the entire sample and those

introduced in this subsection where we keep some of the moments fixed. We find similar

results.22

5.3 Cost-minimization to reduce downside risk

The stabilizing role of cost minimization also helps reducing the downside risk of a MV

strategy as measured via its Maximum Draw Drown (MDD) or the number of years required

to recover from the worst loss. The MDD of a strategy is the maximum observed loss in

value from a peak to a trough before a new peak is obtained, and it is a popular downside

risk measure in the financial industry.

21More precisely we require stocks for which we have at least 80% of the data.
22We relegate such analysis to Section 7 of the Online Appendix since eliminating stocks that are not

present over the entire sample make the strategies not implementable in real time.
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Figure 10 makes clear how the the stabilizing role of cost-optimized weights helps reducing

MDD. We compare the realized after-cost returns of MV P15, referred to as “Std.”, and that

of its cost-optimized analog MV P15tc, referred to as “TC”, over the sample 2003-2017 when

Vt and µt are estimated over a rolling window length of 0.5 and 10 years respectively. MDD is

computed as the minimum between the running minimum of the cumulative realized return

from a given date and the end of the sample (“Running mi.” in the two central graphs) and

the cumulative realized return itself (“Cum. ret.” in the two central graphs). The rightmost

graphs plot the difference over which to take the minimum for the case ofMV P15 (top graph)

and its analog MV P15tc (bottom graph). The leftmost biggest graph plots the time series of

realized returns for MV P15, in dashed red, and MV P15tc, in solid blue (the cumulative sum

of which yields the cumulative returns). Notice how the realized returns of MV P15tc are

less volatile, with the blue line almost always inside the red one. This is due to the presence

of the no-trading region bounding the weights of MV P15tc. This element of stability is

crucial especially around the financial crises (end of 2008) where the two biggest negative

realizations of MV P15 are capped (the first) and neutralized (the second) in MV P15tc.

This results in a running minimum, the trough, of 0.49 for MV P15tc as opposed to a

running minimum of -0.15 for MV P15 as can be seen by the middle bottom and top graph

respectively. Because MDDs are computed as the difference between the reported troughs

and the highest peaks before such troughs, we have an MDD of −0.15 − 0.73 = −0.88 for

MV P15 and 0.49− 0.87 = −0.38 for MV P15tc.

The top graph of Figure 11 reports the differential in the absolute value of MDDs between

the standard and the cost-optimized strategies. Notice how the MDDs of all cost-optimized

strategies are smaller (negative differentials), with differentials generally increasing in the pre-

mium level to be targeted. Almost all MDDs of cost-optimized strategies (except MV P1tc

when µt uses a rolling window estimation of 5 year, which only experience losses approx-

imately 1% lower than its analog MV P1) are at least approximately 8% lower. That is,

cost minimization almost always allows strategies to suffer losses in their worst case that are

lower by 8% in levels.

A simple comparison of two strategy MDDs does not take into account the effect of

potentially different average returns. If a strategy has a lower MDD but a higher average

return it might still take less than another strategy with a higher MDD but a lower average
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return to recover. Hence comparing the average time (in years) a strategy takes to recover

from the worst experienced loss might be a better metric. Such metric can be readily

computed as the ratio of the absolute MDD over the average excess return of our strategies.

This is exactly what the bottom graph of Figure 11 reports. We notice a similar pattern to

that displayed in the top graph, making an even stronger case for the role of cost-optimize

strategies in reducing downside risk. Cost-optimized strategies take less to recover from

their worst losses. As for the absolute MDDs differentials, MV P1 is the closest to MV P1tc

when µt is estimated using a rolling window of 5 years. However, even in this case where

the severity of losses among cost-optimized and standard strategies are almost the same,

MV P1tc take approximatelly one year less to recover. All other cost-optimized strategies

(including MV P1tc under the other analyzed rolling window length combinations for µt and

Vt) take at least approximately 2 years less to recover with MV P15tc, when µt is estimated

over the past 5 years, taking at least approximately 12 years less.

5.4 Cost-minimization to scale up

Our results so far applies to Mean-Variance investors small enough not to distort prices.

This assumption is implied by the fact that we do not model any price impact on the trades

we execute. However, in practice as soon as the value of our positions become big enough the

price impact of our trades is no more negligible. Therefore an important question, especially

for big institutional investors, concerns the scalability of our strategies. The answer to this

question depends on the ability of a given strategy to handle price impact.

We find that explicitly modeling price impact as a form of (quadratic) transaction cost

makes a difference. Our cost-optimized strategies consistently scale up more and are less

sensitive to changes in price impact than our standard strategies. In particular, our results

suggest that cost-optimized strategies are profitable options to gain exposure on the market

even for large institutional investors.

We model price impact of strategy j at time t as the quadratic cost

1

2
π(θjt − θ

0,j
t )′(θjt − θ

0,j
t ).

The parameter π captures the average cross-sectional level of price impact in the market.
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Specifically, we should think of π to be inversely related to the liquidity and depth of the

market and positively related to the portfolio size of the MV investor. Under our specification

if we increment(decrement) the position in stock i with respect to strategy j by θjt,i−θ
0,j
t,i , the

price of stock i increases(decreases) by 1
2
π(θjt,i − θ

0,j
t,i ) cents per dollar traded. Equivalently,

we suffer a reduction of 1
2
π(θjt,i−θ

0,j
t,i )2 in the return of stock i. Quadratic costs are a popular

way to model price impact (see for example Dybvig and Pezzo (2020) and discussion therein)

and nicely fit our quadratic mean-variance framework.23

We could be more general and allow for a stock-specific and time-varying price impact,

however estimating these parameters is very hard in practice. For this reason in this paper

we follow Maurer et al. (2020) and limit ourselves to a sensitivity analysis where we let π

varies over a fixed interval [0, π]. To get sensible estimates for π we linearize the square-root

price impact function derived in Figure 2 of Frazzini et al. (2015) and make use of the size of

the trades, {∆j
t,i}, of our analyzed strategies j in the absence of price impact.24 Frazzini et al.

(2015) compute their estimates using the 2000 biggest (by market cap) and most traded (in

23While our specification for the price impact vector 1
2π(θjt−θ

0,j
t ) is linear in the size of the trades θjt−θ

0,j
t ,

another popular alternative assumes price impact to growth at a square root rate with the size of the trades

as in Frazzini et al. (2015). In such specification, the price impact vector is 1
2π
»
|θjt − θ

0,j
t |. Under such

specification we lose the computational scalability of quadratic programs, therefore executing our algorithms
for thousands of stocks become computationally unfeasible.

24Frazzini et al. (2015) provide conservative estimates for the price impacts of many stocks in the U.S.
market (and internationally) from over a trillion dollars of live trading proprietary data from a large insti-
tutional money manager in the monthly period 1998-2013. In particular, they plot the average price impact
function (in basis points), which in our setup translates to 1

2π∆ where ∆ = |θ̄ − θ̄0| represents the absolute
average size of our strategies’ trades, as a function of the percentage daily traded volume, which in our setup
translates to AUM∆

V̄
×100 where AUM is the dollar value of the assets under management and V̄ the average

dollar volume traded.
Concentrating on the sub-sample 2003-2017 for a given strategy j and AUM we construct the time series

of median daily treading volume for each common stock and we use it to get the best linear approximation
that fits our quadratic cost function. We do so by recovering the slope, β̂AUM,j , of a line going through
the origin obtained by vectorizing the T × N matrix of median daily trading volume and regressing it on
the square-root price impact function from Figure 2 of Frazzini et al. (2015). We then obtain the per-dollar

linear price impact estimate for stock i at time t as β̂AUM,j
AUM∆j

t,i

Vt,i
100. The time-stock specific price impact

parameter πAUM,j
t,i is then recovered by equating such estimate to our definition of per-dollar price impact

1
2π

AUM,j
t,i ∆t,i.
Finally to get π: we first compute at each time t for a given strategy j and AUM , the cross-sectional 90th

quantile of the distribution of πAUM,j
t,i . Second, for a given strategy j and AUM , we compute the time-series

median of such quantiles. Third, for a given AUM we compute the median of such values across strategies.
Fourth, we take the mean across AUM ranging from 1 million through 10000 billion USD.
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terms of dollar volume) stocks. In the same spirit, we compute π retaining the intersection

of the 2000 biggest and 2000 most traded stocks (for a total of approximately 1800). We

obtain a monotonically increasing upper-bound π as a function of portfolio sizes ranging

from 1 million to 10000 billions USD. In particular for sizes bigger than 10 billions π caps

at a value of 3.42. We therefore present our results for the range π ∈ [0, 3.4]

Figure 12 plots the annualized out-of-sample after-cost Sharpe ratios of our standard

strategies as a function of the price impact of trades captured by the parameter π. Starred

markers highlight ratios higher than those of EW and VW at the 10% level. Every plot

is different in that the vector of conditional risk premia µt and the covariance matrix Vt

are estimated over different combinations of rolling window lengths (expressed in years and

reported as titles of each graph).

Notice first how the equally and value weighted portfolios, EW and VW , are insensitive

to price impact. Such strategies are not function of µt and Vt, therefore their ratios are the

same in every graph (black horizontal lines). Focusing on a given graph we see how their

ratios remain virtually constant as a function of π. Hence, EW and VW appear to be very

scalable.

Looking at standard MV strategies tell us a different story. Their Sharpe ratios are

strictly decreasing in the level of price impact and this effect is particularly pronounced

when we estimate Vt over the previous six months (see all colored lines). As for the case

of π = 0, GMV P (purple line) remains one among the most profitable standard strategies.

While its performance quickly deteriorates when Vt is estimated using the previous 6 months

of data (its Sharpe ratio ceases to be statistically better than those of EW and VW for

π > 0.4), it is interesting to notice how it can scale up when we estimate Vt using the

previous year of data. Therefore, while standard strategies in general suffer from the adverse

effect of price pressure, GMV P can actually scale up if properly parametrized.

Similarly to Figure 12, Figure 13 plots the performance of our cost-optimized strategies

as a function of π. Notice now how all the patterns are flatter and no strategy turn un-

profitable.25 More importantly ,results are more robust: there is now not much difference

with respect to how we estimate the covariance matrix (whether we use the past 6 or 12

25In contrast, for the case of standard strategies the Sharpe ratios of MV P10 and MV P15 are all negative
for π > 0.5.
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months), and given risk premia are estimated over at least 10 years of data all Sharpe ratios

remain well above 1 (see the bottom 4 graphs). In particular, the Sharpe ratios of strategies

targeting higher premia, i.e. MV P5tc through MV P15tc, are always statistically better

than EW and VW . Hence, MV P5tc through MV P15tc appear to be profitable strategies

to gain exposure on the U.S. stock market even for large institutional investors.

Finally, Figure 14 plots the difference in Sharpe ratios between our cost-optimized and

standard MV strategies as a function of π. In general cost-optimized strategies scale up

substantially better then their analogs, and they do more so as the severity of price impact

increases. Except for GMV P and MV P1 that when Vt is estimated annually for low values

of π are actually less profitable but not statistically different from the cost-optimied ones,

cost-optimized strategies have Sharpe ratios of at least 0.14 higher. Moreover the displayed

Sharpe ratio differentials are mostly monotonically increasing in π no matter the length of

the rolling window (6 versus 12 months) used to estimated Vt.

5.5 Rationalizing the higher efficiency in targeting risk premia

The fact that cost-optimized strategies targeting higher return are more profitable than their

standard (less constrained) analogs can be rationalized by the Frazzini and Pedersen (2014)

“betting against beta” theory.

The theory original aim is to explain why empirically the capital market line is found much

flatter than it should be under the CAPM. In an economy where different MV investors have

different trading constraints (in the form of margin requirements) more constrained investors

will optimally choose portfolios with higher betas than otherwise optimal to make up for

their impossibility to lever. In particular, this results in an inverse relation between market

alphas and betas, with higher alphas and lower betas the more investors are constrained.

Also efficient portfolios have maximal Sharpe ratios in correspondence of betas less then one,

decreasing(increasing) for higher(lower) betas.

Figure 9 plots the relationship between alphas and betas of our cost-optimized (labeled

as TC) and standard (labeled as Std) MV strategies under the CAPM (leftmost graphs)

and Fama and French (1993) 3 factor representation (rightmost graphs). As usual by now,

starred markers refer to figure statistically significant at least at the 10% level.
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Under both representations cost-optimized strategies have higher alphas (top graphs) and

lower betas (bottom graph). Moreover, the differences in alphas(betas) are monotonically

increasing(decreasing) in the level of targeted risk premium, and almost always statistically

significant for higher levels of targeted premia once the stock risk premia are estimated

over at least the previous 10 years (see all but the magenta and yellow lines). Therefore,

constraining the weights by minimizing over costs produces higher alphas and lower betas.

Moreover, such pattern is more pronounced the more demanding (i.e. the higher) is the

constraint on the minimum risk premium to achieve.

The middle graphs in Figure 9 plots the market betas of our cost-optimized strategies,

already shown to be smaller that those of their standard analogs. Starred markets report

the two-sided test against the alternative that betas are different from one. As before once

we focus on stock risk premia estimates that use at least the past 10 years of data (all but

the magenta and yellow lines), all betas are statistically smaller then one. Once again, this

pattern is line with the “betting against beta” theory since as reported in Figure 5 such

strategies have high Sharpe ratios (almost always above 1.2).

In summary, since cost-minimization is a form of trading constraint imposed on the MV

weights, we can use the Frazzini and Pedersen (2014) “betting against beta” theory to justify

our results.

6 Market timing and estimation error: drivers of mean-

variance profitability

In this section we argue that the market timing abilities of our MV strategies, and the

estimation error negatively influencing their performance, are important factors behind the

profitability of mean-variance strategies over the last 100 years in the U.S. stock market.

Market timing and estimation error have substantial impact on the performance of MV

strategies, with average Sharpe ratio increments (for the case of market timing) and decre-

ments (for the case of estimation error) between 0.3 and 0.45, as well as 0.26 and 0.66

respectively. MV profitability displays a pro-cyclical pattern with magnitudes increasing

in expansions and decreasing in recessions over time. Such dynamics can be explained by
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market timing in expansions and estimation error in recessions. We find substantial positive

correlation between the profitability of MV strategies and their level of market timing (with

low values associated to estimation error), particularly for cost-optimized strategies. The

average correlation over the last 100 years is between 0.28 and 0.56 for standard strategies

and between 0.5 and 0.82 for cost-optimized strategies. The majority of most profitable

strategies have market timing levels belonging to the top tercile, almost always correspond-

ing to positive gaps (our way to detect actual market timing activity). At the same time,

most of the least profitable strategies have market timing levels not higher then the median,

almost always corresponding to negative gaps (our way to detect estimation error).

6.1 Magnitudes of market timing and estimation error

In this subsection we quantify the impact of market timing and estimation error by looking

at the average magnitudes across strategies and µt−Vt rolling-window-length configurations.

We find that market timing induces average annualized after-cost out-of-sample Sharpe ratios

increments between 0.3 and 0.45 during expansions, while estimation error causes average

Sharpe ratios reductions between 0.26 and 0.66 throughout the business cycle. Therefore

we conclude that market timing and estimation error have substantial impact on the perfor-

mance of MV strategies over the last 100 years.

Table 2 displays the dynamics of the average magnitudes of market timing and estimation

error for our MV strategies over the last 100 years. Market timing is defined as the average

of the differentials, when positive at least at the 10% level, between the Sharpe ratio of our

strategies in the baseline setup versus their analogous version where: the vector of stock

risk premia is kept fixed at the in-sample average (column label “µ̄”), the covariance matrix

of the stocks is kept fixed at the in-sample average (column label “V̄ ”), both moments of

the stock return distributions are kept fixed at the in-sample average (column label “µ̄ &

V̄ ”). Such differentials are illustrated in column 2 through column 4 and their average across

types of market timing (from risk premia, covariances or both respectively) is reported in

column 5. Similarly estimation error is defined as the average of the differentials when

negative at least at the 10% level. Such differentials are reported in column 6 through

column 8 and their average across types of estimation error (from risk premia, covariances

or both respectively) is illustrated in column 9. Specifically, a generic numerical entry in
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the table corresponds to the average of the differentials over all the relevant strategies and

across their baseline µt − Vt rolling-window-length configurations. For instance the value

0.2 in the top-left of PANEL A is the average of all the significantly positive differentials

between our standard mean-variance strategies and their fixed risk premia analogs under the

six different µt − Vt rolling-window-length configurations for the baseline strategies (namely

5-0.5,10-0.5,20-0.5,5-1,10-1,20-1 years).

Market timing induces average annualized after-cost out-of-sample Sharpe ratios incre-

ments of 0.3 and 0.45 in the two expansionary sub-sample: 45-72 and 03-17 respectively.26

Cost-optimized strategies are on average better at market timing with average magnitudes

always higher in the aggregate and by type of market timing. In particular, the overall av-

erage market timing of cost optimized(standard) strategies is 0.35(0.2) in the sample 45-72

and 0.51(0.38) in the most recent sub-sample. Moreover, the only instance in which a higher

Sharpe ratio differential for standard strategies is spotted is in the sub-sample 03-17 with

respect to the time-varying management of the stock covariances (column “V̄ ”): PANEL A

and B show an increment of 0.51, or 0.53 if we exclude MV TP from the average, against an

improvement of 0.33 reported in PANEL C. A finding induced by the documented superior

ability of GMV P in market timing stock covariances recently.

If market timing is an important source of profit, estimation error is a well-known serious

problem for MV strategies. In contrast to market timing, we detect estimation error through-

out the business cycle, i.e. in all four sub-sample 26-44,45-72,73-02 and 03-17.27 It ranges

between Sharpe ratio reductions of 0.26 through 0.66 and it is comparable in magnitude

between standard and cost-optimized strategies.28

26Recall from Section 3 that these sub-samples are characterized by low(er) trading frictions and high(er)
market growth.

27Recall from Section 3 that while the sub-samples 45-72 and 03-17 are (mostly) expansionary, the sub-
samples 26-44 and 73-02 are (mostly) recessionary in that they are associated with high(er) levels of trading
frictions and low(er) market growth.

28Interestingly, if anything estimation error appears slightly bigger for cost-optimized strategies. This
is because using the average within all standard and within all cost-optimized strategies as the statistic to
compare this two class of strategies is misleading. In fact the purpose of this subsection is not such comparison
rather the focus is on the stand-alone average magnitudes. The reason why the average estimation error is
misleading in this context is because it only takes into account the magnitude but not the frequency. For
example, if we compare the average estimation error coming from the stock risk premia in the recent sub-
sample between standard strategies, -0.49 (column 6, labeled “µ̄”, in PANEL A and B), and cost-optimized
ones, -0.55 (column 6, labeled “µ̄”, in PANEL C), we notice how the latter is bigger (even if slightly). If
we take a look at the performance ratios (which are the Sharpe ratio differentials divided by the real-time
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6.2 Pro-cyclical increasing profitability

Next, we look at the dynamics of the MV profitability. We conclude that MV profitability

displays a pro-cyclical pattern with magnitudes increasing in expansions and decreasing in

recessions over time. Such ex-post patterns is correctly anticipated by the ex-ante dynamics

of the MV investment opportunities as we discussed in Section 3.1.

Figure 3 not only shows the recent stark profitability of MV strategies during the mostly

expansionary sub-sample 2003-2017 (green lines), it also shows how the second best overall

performance is achieved during the other mostly expansionary sub-period in our overall

sample, the sub-sample 1945-1972 (magenta lines). Analogously if we look at the most

recessionary periods in our sample, i.e. the sub-sample 1972-2003 (red lines) and sub-sample

1926-1944 (blue lines), we notice how their profitability is the lowest over the entire sample

(with that of 1972-2003 being the lowest over the past 100 years).

6.3 Pro-cyclical increasing market timing and counter-cyclical es-

timation error

As for the case of profitability, we find for the market timing abilities displayed by our

analyzed strategies a pro-cyclical pattern with magnitudes in expansions increasing over

time. Moreover, estimation error is found counter-cyclical with magnitudes in recessions

decreasing over time. Therefore market timing and estimation error together can explain

the dynamics of MV profitability

Table 3, in a fashion very similar to Table 2, displays the dynamics of market timing and

estimation error for our MV strategies over the last 100 years. The only difference is that

figures are sums of Sharpe ratio differentials (statistically significant at the 10% level) rather

than averages. This enable us to focus on the total amount of detected market timing and

estimation error rather than the average magnitude.

Sharpe ratio of the respective strategies) in the top graphs of Figure 7 and 8, we notice how the -0.55
corresponds to the unique instance of estimation error detected at the 10% level when Vt in the baseline
strategy is estimated using the past 6 months (the only negative starred marker in the top right graph of
Figure 7). In contrast, -0.49 is the average across several statistically negative differentials corresponding to
standard strategies estimated when Vt in the baseline strategy uses the past 6 or 12 months (the negative
starred markers in the top left graphs in Figure 7 and 8 respectively).
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Notice how, no matter the type of strategy (standard versus cost-optimized), market

timing is virtually absent in the recessionary sub-samples 26-44 and 73-02 and is generally

present in the remaining two expansionary samples 45-72 and 03-17. In particular, evidence

of market timing of any type (from risk premia, covariances or both) are present in the most

recent sub-sample and are much higher in magnitudes than those present, either exclusively

from the stock risk premia or the covariances, in the 45-72 sub-period. Hence the pattern

of market timing in our strategies is pro-cyclical with magnitudes in expansions increasing

over time.

Analogously inspecting the sum of the gaps induced by estimation error reveils much

bigger impacts (i.e. more negative gaps) from the recessionary periods with magnitudes

in recessions decreasing over time. Hence the patter of estimation error, no matter the

type of strategy (standard versus cost-optimized), is counter-cyclical with magnitudes in

recessionary sub-samples decreasing over time.

6.4 Correlation analysis

The results of this section so far are suggestive of a positive correlation between the profitabil-

ity of mean-variance strategies and the level of market timing, measured via the differentials

between the baseline real-time versions of our strategies and their unimplementable versions

where at least one of the first two moments of the return distribution is fixed (with high, or

positive, values capturing actual market timing and low, or negative, values actual estimation

error).

Table 4 and 5 report such correlation for our standard and cost-optimized strategies

respectively over the 4 sub-samples, 26-44,45-72,73-02 and 03-17, covering the last 100 years.

In particular, for a given sub-sample each row fixes the length of the rolling window used

to estimate the conditional stock risk premia in the baseline setup. Column 4 and 5 look

at the differential where the unimplementable strategy versions have fixed in-sample stock

risk premia µ̄, thus isolating the time-variation impact of the stock risk-premia estimates. In

column 4 the length of the rolling window for the conditional covariance matrix of returns

is fixed at 6 months, while in column 5 it is fixed at 1 year. Similarly column 6 and 7

look at the differentials where the unimplementable strategy versions have fixed in sample

covariance matrix V̄ , and column 8 and 9 at the differentials where the unimplementable
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strategy versions have both moment fixed, i.e. µ̄ and V̄ .

We find substantial positive correlation between the profitability of MV strategies and

their level of market timing , particularly for cost-optimized strategies. The average correla-

tion over the last 100 years is between 0.28 and 0.56 for standard strategies and between 0.5

and 0.82 for cost-optimized strategies. The higher correlation for cost-optimized strategies

mostly come from the 1973-2002 sample, and the recent sample with respect to the market

timing of stock risk premia. In particular, the inabilities of standard strategies to time risk

premia, which we discussed in Section 5, causes the correlation to turn negative.

Table 6 and 7 analyze the relationship between the level of market timing and the

Sharpe ratios of the most and least profitable standard and cost-optimized strategies re-

spectively. Given a specific sub-sample, the upper(lower) part of the panel reports the

baseline most(least) profitable strategy (column 5/9 when the rolling window length for the

conditional covariance is 6 months/1 year) in correspondence of each rolling window length

for the vector of conditional stock risk premia (different rows). Column 6 and 10 display the

percentile of the market timing level distribution associated with the differentials computed

when the unimplementable strategies have their vector of stock risk premia kept fixed at

their in-sample level µ̄. Similarly column 7 and 11 (column 8 and 12) report the differentials

with respect to unimplementable strategies which conditional covariance matrix (and risk

premia vector) is (are) kept fixed at V̄ (& µ̄). Finally, whenever the reported percentile is

associated with a positive(negative) differential we mark the figure with a +(−).

The majority of most profitable strategies have market timing levels belonging to the top

tercile, almost always (half the time in the sample 1926-1944) corresponding to positive gaps

(our way to detect actual market timing activity). In particular, 71%(53%) of the gaps in

the sub-sample 03-17 are in the top tercile for standard(cost-optimized) strategies, of which

83%(88%) are positive. Similarly, the proportions for the sub-sample 73-02 are 59%(80%),

of which 80%(100%) are positive. The proportions for the sub-sample 45-72 are 50%(75%),

of which 100%(100%). The proportions for the sub-sample 26-44 are 100%(100%), of which

55%(50%) are positive.

At the same time (except for standard strategies recently, see motivation below), most

of the least profitable strategies have market timing levels not higher then the median,

almost always corresponding to negative differentials (our way to detect estimation error).
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In particular, 33%(61%) of the differentials in the sub-sample 03-17 are not higher then the

median for standard(cost-optimized) strategies, of which 83%(82%) are negative. Similarly,

the proportions for the sub-sample 73-02 are 78%(61%), of which 100%(100%) are negative.

The proportions for the sub-sample 45-72 are 94%(83%), of which 76%(73%) are negative.

The proportions for the sub-sample 26-44 are 75%(83%), of which 90%(100%) are negative.

The least performing standard strategies in the recent 2003-2017 sample causing the

exception in the trend found above – i.e. MV TP when µt is estimated at least over the past

10 years and Vt over the past 6 months, as well as MV P1 when µt uses the past 10 years

and Vt the past year, and GMV P when Vt uses the past 1 year – have Sharpe ratios never

lower than 0.63, which is very similar to those obtainable by investing in the broad market

ETFs (i.e. 0.69 for SPX and 0.62 for IWM). The fact that those strategies have positive

differentials with market timing percentiles between 50 and 86 is perfectly in line with the

positive correlation between market timing and MV profitability.

7 Robustness

We check the robustness of our findings in several ways. Specifically, we check whether or not

they are robust to the way we measure costs (with or without TAQ data), how we estimate

the risk premia (with a market model or a 3-factor model a la Fama and French (1993) and

the standard Fama and MacBeth (1973) versus the noise filtering approach of Gagliardini

et al. (2016)) and the covariance matrix (with factor models or via the Ledoit and Wolf

(2017, 2020) shrinkage estimator), as well as to the specific re-balancing frequency (monthly

vs. quarterly) and the composition of the stock universe (whether or not we reduce the stock

universe to: i) the S&P 500 constituents, ii) the same sub-sample of stocks implicitly selected

by the most stringent analyzed rolling-window-length combination of 12 months for Vt and

20 years for µt, or iii) the even more stringent sub-sample of stocks required to estimate V

and µ in-sample).

Our results are found in general robust. We constructively learn that: 1) the trade-off

between bias and estimation error in the covariance matrix estimator is clearly in favor of a

reduction of the latter,29 2) adopting a parsimonious specification for the return generating

29Because the performance of our strategies are much better when we estimate Vt via factor models rather
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process and filtering out part of the noise in the risk premia estimates through the Gagliardini

et al. (2016) approach is the best way, among those analyzed in this paper, to handle stock

risk premia, 30 3) there are economically sizable diversification benefits in investing in all

common stocks.31

In particular, in Section B we confirm that: i) the profitability of MV strategies has never

been as high as recently, ii) GMV P remains among the most profitable textbook strategies

for small investors (in the absence of price impact), and iii) the cost-optimized strategies

remain the best way to efficiently target (higher) risk premia once stock risk premia are

estimated using at least 10 years of data.

In Section 5.2 we have argued that the stabilizing role of cost-optimized weights allows to

market time stock risk premia by smoothing out the extra noise that prevents MV standard

strategies to exploit the information contained in the stock premia. In Section C we confirm

the robustness of our claim to the evaluated alternative scenarios with the exception of the

scenario where our strategies are implemented quarterly. In such scenario our cost-optimized

strategies still outperform but no market timing is detected. We ascribe this lack of findings

to the small sample size. We also notice how allowing for a richer model for the risk premia

and the covariance structure (specifically the Fama and French (1993) 3-factor model versus

the single-factor market model) allows our cost-optimized strategies to additionally engage

in covariance timing, while preserving their ability to time risk premia (coming from the

stabilizing role played by the cost minimization).

In Section D we confirm how cost minimization is also effective in reducing downside risk

as measured via the Maximum Draw Down (MDD), or the average time needed to recover

from the worst incurred loss, in virtually all the analyzed alternative scenarios.

In the main text we showed how cost-optimized mean variance strategies are very prof-

itable options to gain exposure on the market even for large institutional investors. Due to

the computationally intensive nature of the analysis, in Section E we extend this analysis

and confirm such insight to a sub-sample of alternative scenarios. Specifically we focus on

then Shrinkage estimators.
30The one-factor market model within the Gagliardini et al. (2016) is more efficient than the Fama and

French (1993) 3-factor formulation or the single market factor model under the standard Fama and MacBeth
(1973) procedure.

31Performances are lower if we restrict the stock universe to the SP500 stocks.
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the scenarios where: costs are estimated without using TAQ data, stocks are restricted to

be SP500 constituents, and our strategies are rebalanced quarterly. As in the baseline sce-

nario, we find a substantial performance gap between cost-optimized strategies and standard

analogs, which is monotonically increasing in the price pressure severity (or equivalently in

the dollar size of the strategies).

Finally in Section F we confirm the main finding that market timing and estimation

error have non-negligible impacts on the mean-variance performance and share very similar

dynamics over approximately the last 100 years.

All the details are relegated to the Online Appendices.

8 Conclusions

We have analyzed the performance of large-scale Mean-Variance (MV) strategies, invested in

all common stocks on the NYSE/AMEX and NASDAQ, over approximately the last century.

In sharp contrast with investing in anomalies, we documented how profitable is to gain

exposure on the market via the MV criterion recently. Of particular interest is the insight that

the stabilizing role of cost minimization allows to restore the credibility of the capability of

MV strategies to efficiently target risk premia. As a matter of fact cost minimization allows

to: i) profitably target risk premia (unlike their standard analogs), ii) reduce downside

risk (measured by the worst observed loss or the average time to recover from it) and, iii)

enhance the scalability of MV strategies (by directly modeling stock-specific price impact

as a quadratic trading cost) making such strategies appealing options for large investors.

Comparing our results with those found in Maurer et al. (2020) for the FX market highlights

the different role played by cost minimization in MV strategies across markets. In the

stock market where estimation error is a first order concern, cost minimization enhances

the performance mostly by stabilizing the weights. In the FX markets where estimation

error in the mean returns is much less problematic, cost minimization mostly enhances the

performance via direct execution cost reduction.

Moreover, we argued that market timing and estimation error are two important factors

behind the profitability of our analyzed strategies over the last 100 years. They account for

substantial portions of the actual out-of-sample after-cost profitability and can explain its
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long term cyclical dynamics.

Finally, our results are found robust to several alternative scenarios involving different:

ways of estimating costs, model parameters, stock universe and rebalancing frequency.
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Profitability of Mean-Variance Strategies

Figure 3: The profitability of mean-variance strategies in the U.S. stock market is pro-cyclical
and has never been so high as recently. The graph plots the out-of-sample after cost annualized
Sharpe ratios of several mean-variance (MV) strategies against two common benchmarks – the
equally weighted (EW) and the value weighted market portfolio (VW) – over four consecutive
non-overlapping sub-samples covering the period January 1926 - December 2017: the (mostly)
recessionary periods 26/44 and 73/02 (in blue and red) and the (mostly) expansionary periods
45/72 and 03/17 (in magenta and green). All strategies are re-balanced monthly and invest in the
entire universe of common stocks belonging to the NYSE, AMEX and NASDAQ. MVTP is the
MV Tangency Portfolio, GMVP is the Global Minimum Variance Portfolio, while MVP1 through
MVP15 are the frontier portfolios targeting an annualized risk premium of 1, 5, 10 and 15%
respectively. The dotted lines report the Sharpe ratio of the cost optimized version of GMVP,
MVP1, MVP5, MVP10 and MVP15 respectively as described in Section 2.1. Because any MV
strategy requires a vector of risk premia and a covariance matrix, the reported Sharpe ratio of a
given MV strategy is the average across those obtained by combining six different strategies only
differing in the length of the rolling windows used to estimate the covariance matrix (employing
either the past 6 or 12 months) and the premia (employing either the past 60, 120 or 240 months).
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Mean-Variance Strategies vs. Anomalies

Figure 4: In contrast to the past, post-2002 investing in the U.S. stock market according to the
Mean-Variance (MV) criterion is much more profitable than investing in anomalies. The graphs plot
the out-of-sample after-cost annualized Sharpe ratios of our baseline set of analyzed strategies (left
column) – the MV Tangency Portfolio (MVTP), the Global Minimum Variance Portfolio (GMVP),
four frontier portfolios targeting an annualized risk premium of 1, 5, 10 and 15% (MVP1, MVP5,
MVP10 and MVP15), and two common market benchmarks (the equally (EW) and value (VW)
weighted portfolios) – against the leading 23 anomalies studied in Novy-Marx and Velikov (2016)
(right column). All strategies are re-balanced monthly and invest in the entire universe of common
stocks belonging to the NYSE, AMEX and NASDAQ. Solid lines report the Sharpe ratios of the
standard textbook version of the strategies (here labeled “Std” strategies), dotted lines report those
of the cost optimized version of GMVP, MVP1, MVP5, MVP10 and MVP15 as described in Section
2.1 (here labeled “TC” strategies), dashed lines those of the anomalies before cost and dash-dotted
lines those of the anomalies after cost. The different rows display different sub-samples using the
same colors used in Figure 3: from the most recent sample (03-17, top row, green) to the oldest
one (26-44, bottom row, blue).
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Recent Profitability of Mean-Variance Strategies

Figure 5: Post-2002, once stock risk premia are reliably estimated, cost-optimized Mean-Variance
(MV) strategies targeting higher premia are very profitable in gaining exposure on the market,
while the textbook Global Minimum Variance Portfolio (GMVP) remains an efficient alternative.
The figure shows the annualized out-of-sample after-cost Sharpe ratios of our analyzed strategies
(defined in the previous figures and in Section 2.1). The MV strategies are benchmarked against the
equally (EW) and (VW) value weighted market portfolios as well as the SPDR and the IWM ETFs
(mimicking the exposure to the S&P 500 and the Russell’s 2000 indices), are re-balanced monthly
and invest in the entire universe of common NYSE, AMEX and NASDAQ stocks over the period
January 2003 - December 2017. Each graph differs in the length (in years) of the rolling windows
used to estimate the risk premia vector µt (5,10,20) and the covariance matrix of return Vt (0.5,1).
Sharpe ratios of given strategies that are better at the 10% level than: the EW, the VW, both the
SPDR and the IWM ETFs, and their standard analogs (if they refer to cost-optimized strategies)
are marked with a star, a diamond, a square and a circle respectively. Markers for standard(cost-
optimized) strategies are reported in black(red). We test for Sharpe ratio differences using block
bootstrapping (block sizes of 5 obs.) accounting for heteroskedasticity, cross- and auto-correlation
(Ledoit and Wolf (2008)).
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Market Timing vs Estimation Error:
Vt rolling window of 6 months, sample 2003-2017

Figure 7: Standard strategies mostly time stock covariances and suffer from estimation error in-
duced by stock premia. Cost-optimized strategies mostly time stock premia and suffers much less
from estimation error. The performance ratios are computed for our strategies over the monthly
period January 2003 - December 2017. Top/middle/bottom graphs isolate the effects coming from
market timing (positive gap), or suffering from estimation error (negative gap) from the condi-
tional stock premia/covariances/premia & covariances. The leftmost(rightmost) graphs refer to
standard(cost-optimized) strategies. Starred markes identified ratios different from zero at the 10%
level. Standard errors are computed following Ledoit and Wolf (2008) as explained in Figure 5.

46



Market Timing vs Estimation Error:
Vt rolling window of 1 year, sample 2003-2017

Figure 8: Standard strategies mostly time stock covariances and suffer from estimation error in-
duced by stock premia. Cost-optimized strategies mostly time stock premia and suffers much less
from estimation error. The performance ratios are computed for our strategies over the monthly
period January 2003 - December 2017. Top/middle/bottom graphs isolate the effects coming from
market timing (positive gap), or suffering from estimation error (negative gap) from the condi-
tional stock premia/covariances/premia & covariances. The leftmost(rightmost) graphs refer to
standard(cost-optimized) strategies. Starred markes identified ratios different from zero at the 10%
level. Standard errors are computed following Ledoit and Wolf (2008) as explained in Figure 5.
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Market αs and βs of cost-optimized and standard
mean-variance strategies, sample 2003-3017

Figure 9: Frazzini et al. (2014) “betting against beta” theory can explain the patterns in our
strategies (described in the previous figures) over the monthly sample 2003-2017. Cost-optimized
strategies have higher(lower) alphas(betas) than their (less constrained) standard analogs as shown
in the top(bottom) graphs. Market betas of cost optimized strategies, plotted in the middle graphs,
are found smaller then 1. Leftmost(rightmost) plots assume the CAPM(Fama and French (1993) 3
factor) representation for the returns. Starred markers in top and bottom graphs highlight figures
statistically significant at the 10% level, while those in middle graphs are significantly different
from one. Standard errors use the Newey and West (1987) ,Newey and West (1994) automatic
correction for heteroskedastity and autovorrelation.
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Downside risk: cost-optimized versus standard mean-variance
strategies

Figure 11: Cost-minimization is a useful stabilizing device to reduce downside risk as measured via
the worst experienced loss (Maximum Draw Down or MDD) or by the average number of years to
recover from it. The top graph plot the difference in absolute MDDs between our cost-optimized and
standard strategies (which are described in Section 2.1) for the six different estimation configuration.
Each configuration only differs in the rolling window lengths (expressed in years in the legend of the
bottom figure) used to estimate the conditional vector of risk premia and the covariance matrix of
returns. The bottom graph plots the difference in the average number of years required to recover
from the worst observed loss between the cost-optimized and the standard strategies. The average
number of years to recover from the worst loss is computed as the ratio of a strategy absolute MDD
and its average excess return. The sample is every month from January 2003 to December 2017.
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Price Impact: standard mean-variance strategies

Figure 12: Standard mena-variance strategies are sensitive to price impact, however the Global
Minimum Variance Portfolio (GMVP) can actually scale up if properly parametrized. The graphs
plots the annualized after-cost out-of-sample Sharpe ratios of our standard strategies (described
in Section 2.1 and printed in the legend) as a function of the price impact parameter π, which is
inversely related to the liquidity and depth of the market and positively related to the portfolio
size of the investors. Each graph differs in the combinations of rolling window lengths (in years)
used to estimate the conditional risk premia µt and covariance matrix Vt as specified in the plots’
sub-titles. Starred markers refer to ratios bigger than those of the EW and VW at the 10% level.
We test for differences in Sharpe ratios using block bootstrapping with block sizes of 5 observations
to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf (2008)). The sample
is every month from January 2003 to December 2017.
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Price Impact: cost-optimized mean-variance strategies

Figure 13: Cost-optimized strategies robustly scale up and are very profitable options to gain
exposure on the market even for large institutional investors. The graphs plots the annualized
after-cost out-of-sample Sharpe ratios of our cost-optimized strategies (described in Section 2.1
and printed in the legend) as a function of the price impact parameter π, which is inversely related
to the liquidity and depth of the market and positively related to the portfolio size of the investors.
Each graph differs in the combinations of rolling window lengths (in years) used to estimate the
conditional risk premia µt and covariance matrix Vt as specified in the plots’ sub-titles. Starred
markers refer to ratios bigger than those of the EW and VW at the 10% level. We test for
differences in Sharpe ratios using block bootstrapping with block sizes of 5 observations to account
for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf (2008)). The sample is every
month from January 2003 to December 2017.
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Price Impact: cost-optimized vs. standard mean-variance
strategies

Figure 14: Cost-optimized mean-variance strategies consistently scale up more and are less sensi-
tive to changes in price impact. The graphs plots the annualized after-cost out-of-sample Sharpe
ratio differentials between our cost-optimized and standard strategies (described in Section 2.1 and
printed in the legend) as a function of the price impact parameter π, which is inversely related to
the liquidity and depth of the market and positively related to the portfolio size of the investors.
Each graph differs in the combinations of rolling window lengths (in years) used to estimate the
conditional risk premia µt and covariance matrix Vt as specified in the plots’ sub-titles. Starred
markers refer to ratio differential significant at the 10% level. We test for differences in Sharpe
ratios using block bootstrapping with block sizes of 5 observations to account for heteroskedasticity,
cross- and auto-correlation (Ledoit and Wolf (2008)). The sample is every month from January
2003 to December 2017.
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Table 1: Cost-minimization as an economically justified way to bound weights

Strategy GMVP MVP1 MVP5 MVP10 MVP15

∆SR: Cost-Optimized - Standard (no-short selling)

µ = 5y, V = 0.5y 0.36 0.35 0.34 0.20 0.26

µ = 10y, V = 0.5y 0.36 0.52 0.78∗∗∗ 0.76∗∗∗ 0.76∗∗∗

µ = 20y, V = 0.5y 0.36 0.72∗ 0.60∗ 0.76∗∗∗ 0.79∗∗∗

µ = 5y, V = 1y 0.17 0.10 0.46∗ 0.39 0.36

µ = 10y, V = 1y 0.17 0.33 0.43∗ 0.56∗∗ 0.67∗∗∗

µ = 20y, V = 1y 0.17 0.53 0.41 0.50∗ 0.59∗∗

∆SR: Cost-Optimized - Standard (no-short selling, 1% upper bound)

µ = 5y, V = 0.5y 0.50 0.55 -0.08 -0.20 -0.16

µ = 10y, V = 0.5y 0.50 0.69∗∗ 0.79∗∗∗ 0.84∗∗∗ 0.70∗∗∗

µ = 20y, V = 0.5y 0.50 0.70 0.63∗ 0.77∗∗∗ 0.82∗∗∗

µ = 5y, V = 1y 0.35 0.36 0.05 -0.09 -0.07

µ = 10y, V = 1y 0.35 0.57 0.56∗∗ 0.68∗∗∗ 0.61∗∗∗

µ = 20y, V = 1y 0.35 0.58 0.46 0.55∗ 0.64∗∗

∆SR: Cost-Optimized - Standard (no-short selling, 2% upper bound)

µ = 5y, V = 0.5y 0.43 0.44 -0.03 -0.20 -0.17

µ = 10y, V = 0.5y 0.43 0.56 0.78∗∗∗ 0.80∗∗∗ 0.66∗∗∗

µ = 20y, V = 0.5y 0.43 0.67 0.61∗ 0.77∗∗∗ 0.82∗∗∗

µ = 5y, V = 1y 0.26 0.22 0.12 -0.10 -0.12

µ = 10y, V = 1y 0.26 0.41 0.48∗ 0.64∗∗∗ 0.59∗∗∗

µ = 20y, V = 1y 0.26 0.53 0.44 0.56∗ 0.65∗∗

Notes: Cost minimization is an economically justified way to bound the mean-variance weights by only
trading in some stocks to maximize the before-cost risk-return trade-off if the initial allocation is too dis-
placed. The table reports the annualized after-cost out-of-sample Sharpe ratio differentials, ∆SR between
our cost-optimized strategies (described in Section 2.1) and their standard analogs when their weights are
constrained to: be non-negative (top panel), be non negative and additionally no more than 1% (middle
panel) or 2% (bottom panel). Every raw in a given panel refers to a different rolling window length com-
bination (expressed in years) used to estimate µt and Vt. The sample is every month from January 2003
to December 2017. Standard errors for ∆SR are estimated using block bootstrapping with block sizes of 5
observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf (2008)). ”,∗∗

and ∗ highlight figures statistically significant at the 10%, 5% and 1% level.
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Internet Appendix

A Robustness: The alternative scenarios

In this section we detail the list of alternative scenarios which we use to test the robustness

of our analysis conducted in the main text.

A.1 SP500 universe

This scenario is the same as the baseline with the exception that the stock universe considered

only includes stocks that belongs to the SP500 index. Before March 1957, date in which

the SP500 index was established, we consider the sample in which in each month we retain

the 500 highest stocks by end-of-month market capitalization among all the common stocks

traded in AMEX/NYSE. This scenario will enable us to gauge the effect of small stocks

(which are now not in the sample) as well as more broadly the effect of diversification (since

this is a sub-sample of our baseline universe) in our analysis.

A.2 Quarterly frequency

This scenario only differs from the baseline in that we re-balance our strategies quarterly

rather than monthly. Given our monthly holding period returns from CRSP we obtain the

quarterly analogs by compounding in each quarter the monthly returns: i.e. the quarter-end

q realized return of stock i is defined as retq ≡
∏3

i=1(1 + retmi
) where retmi

is the CRSP

monthly holding period return realized at the end of month mi. In a similar fashion we

obtain the quarterly excess returns and the market excess returns from the monthly analogs.

To estimate the conditional vector of risk premia following the baseline approach (i.e. via the

missing-at-random two-step Fama and MacBeth (1973) procedure developed in Gagliardini

et al. (2016)) we feed the algorithm with quarterly data and obtain quarterly estimates.

Finally, to estimates the conditional covariance matrix of returns we use the same baseline

approach (i.e. we compute the covariance matrix implied by the 1-factor market model, also

(improperly) referred to as the CAPM) using all business days available over the previous 6
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or 12 months and then transforming the estimates to the quarterly frequency by multiplying

by 252 and dividing by 4. This scenario will enable us to gauge the effect of the re-balancing

frequency in our analysis.

A.3 [V, µ] = [1, 20]y universe

This scenario only differs from the baseline in that it restricts the universe of stocks available

for trading to those available to a MV investor who estimates the conditional vector of risk

premia µt and the covariance matrix Vt using the previous 20 and 1 year of data respectively.

This universe coincides with one of our 6 combination for the rolling window lengths used to

compute µt and Vt. Under our filters, this combination requires stocks to have non-missing

estimates in 80% of the past 20 and 1 years respectively. Any stock that does not satisfy

the former(latter) requirement is excluded in the formation of MV strategies that use stock

premia (covariance) information. Therefore, each of the 6 different µt − Vt scenarios has a

different implied stock universe. In order to isolate the effect of this artifact we perform

our analysis in all the six different scenarios by fixing (restricting) the stock universe to the

smallest implied one.

A.4 Without TAQ data

In the baseline scenario, we estimate the conditional vector of proportional costs Ct as in

Chen and Velikov (2020) using TAQ data (and ISSM for data in the 80s).32 The ISSM-TAQ

data covers the period 1983-2016. For 2017 and for 1926 through 1983 we use low-frequency

spread measurements from the literature as detailed below. In this scenario we estimate

these costs using only the low-frequency spread measurements. Specifically again following

Chen and Velikov (2020) we compute four different proxies and use the simple average as our

spread. The proxies are the Hasbrouck (2009)’s Gibbs sampler estimates, the Corwin and

Schultz (2012)’s high-low spread, the Abdi and Ranaldo (2017)’s close-high-low spreads and

the volume-over-volatility estimate based on Kyle and Obizhaev (2016)’s micro-structure

invariant hypothesis.33 This scenario mainly allows us to gauge the effect of TAQ data on

32Please refer to Chen and Velikov (2020) for additional details.
33Please refer to Chen and Velikov (2020) for additional details.
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our analysis.

A.5 CAPM µ (Fama and MacBeth (1973) approach)

In this scenario we depart from the baseline only with respect to the way we estimate the

vector of conditional risk premia. In particular, instead of using the missing-at-random two-

step Fama and MacBeth (1973) procedure developed in Gagliardini et al. (2016), we simply

use the classical Fama and MacBeth (1973) procedure without the statistical filter applied in

the second step following Gagliardini et al. (2016). This scenario mainly allows us to gauge

the effect of the statistical filter applied in the second step in the Gagliardini et al. (2016)

methodology.

A.6 FF3 µ and V (Gagliardini et al. (2016) approach)

In this scenario we estimates the conditional vector of risk premia and covariance matrix

using the Fama and French (1993) 3-factor model representation instead of the CAPM (or

market model) one from the baseline scenario. Ceteris paribus, all estimations are carried

out exactly as in the baseline scenario, we are just adding HML and SMB as two additional

factors on top of the market factor. This scenario allows us to gauge the effect of a richer

model for estimating the first two conditional moments of the returns’ distribution.

A.7 Shrinkaged V

In this scenario we depart from the baseline by estimating the conditional covariance matrix

of returns via the shrinkage estimator developed in Ledoit and Wolf (2017, 2020). In contrast

to the baseline scenario, we use a statistical nonparametric approach for estimating V instead

of a model-based approach. This scenario allows us to gauge the effect of the trade-off

between estimation error and bias implied in the estimation of V . While shrinkage methods

are mostly designed to minimize the bias issue, model-based estimator mostly minimizes

estimation error.
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A.8 Unconditional universe

This scenario similarly to the “[V, µ] = [1, 20]y universe” scenario restricts the implied uni-

verse of tradeble stocks. This time we look at the stocks that would be unrealistically (i.e.

not in real time) available to an MV investor who would have access to the overall in-sample

estimates of the first two moments of the returns’ distribution. This is a stricter subset of

any of the real-time universes implied by our 6 baseline combinations of different rolling

window lengths for the estimation of the conditional vector of risk premia µt and covariance

matrix Vt. This is because in this scenario we require stocks that are not present in the entire

sample of reference (mainly the sample 2003-2017) at least 80% of the time to be discarded.

The purpose of this scenario is primarily the one of gauging the effect of market timing and

estimation error by offsetting the potential bias due to change in the implied stock universe

composition which is potentially affecting our baseline analysis as explained at the end of

Section 5.2.

B Robustness: Recent mean-variance profitability

We confirm under our alternative scenarios the robustness of the insights from the main

text that: i) the profitability of MV strategies has never been as high as recently, ii) GMV P

remains among the most profitable textbook strategies, and iii) the cost-optimized strategies

remain the best way to efficiently target (higher) risk premia once stock risk premia are

estimated using at least 10 years of data. We also find that: 1) there are economically

sizable diversification benefits in investing in all common stocks, 2) at least in recent times

and for portfolios of thousands of stocks, the trade-off between bias and estimation error in

the covariance estimator is clearly in favor of a reduction of the latter, and 3) the second

step in Gagliardini et al. (2016) approach that we use in the baseline scenario to estimate

the conditional stock risk premia is useful in filtering out a portion of the noise present in

the estimates.

As Figure 3 in the main text, Figure 15 plots the average annualized out-of-sample after-

cost Sharpe ratios of our analyzed strategies in the eight alternative scenarios described

in Section A. As in the main text, the after-cost performances of the MV strategies post

2002 (displayed in green) is found at record heights, and cost-optimized strategies (in dotted

4



green) dominates textbook analogs (in solid green) at targeting higher returns.

As in Figure 5 in the main text, Figure 16 through 23 plot the actual out-of-sample

performance for each risk premium - covariance rolling-window-length combination behind

the averages displayed in Figure 15 in the eight alternative scenarios described in Section

A. In economic terms GMV P remains among the most profitable textbook strategies,34

and the cost-optimized strategies remain the best way to efficiently target (higher) risk

premia once stock risk premia are estimated using at least 10 years of data. The Sharpe

ratios of MV TP5tc through MV P15tc are never below 1 and most of the times at least

1.2. The Sharpe ratios of GMV P are also mostly above 1 except when we estimate the

conditional covariance matrix via the Ledoit and Wolf (2017, 2020) shrinkage estimator

instead of imposing a factor structure: in this case the ratios are between 0.73 and 0.78.

Therefore we conclude that, at least in recent times and for portfolios of thousands of stocks,

the trade-off between bias and estimation error in the covariance estimator is clearly in favor

of a reduction of the latter.

From a statistical point of view, GMV P is not better then the SPDR and IWM ETFs (i.e.

the markers are not surrounded by a black square) when the covariance matrix is estimated

over the last 6 months, we invest in SP500 or in the unconditional stock universe, re-balance

quarterly and do not use TAQ data to estimate transaction costs. Moreover GMV P is

not significantly better then any of our benchmarks (EW,VW and the SPDR and IWM

ETFs at least at the 10% level) when the covariance estimator is the Ledoit and Wolf (2017,

2020) shrinkage estimator and when we re-balance quarterly and the covariance matrix is

our baseline estimated over the past 12 months (i.e. when markers are not surrounded

by anything). The performance of our cost-optimized strategies targeting higher returns,

once stock premia are estimated over at least the last 10 years, is more stable. MV P5tc

through MV P15tc are generally statistically better then our benchmarks (i.e. markers are

surrounded by a red star, a diamond and a square for significance with respect to EW,VW

and the ETFs respectively) and often statistically better then their analog counterparts

(markers surrounded by red circles). Notable exceptions are represented by the scenario

34A notable exception might be the unconditional stock universe scenario when risk premia are estimated
with a rolling window of 10 years or less. In these cases the performance gap with MV P1 appears substantial,
more then 0.2 when Vt is estimated over the past 6 months and approximately 0.4 when Vt is estimated
annually. However, even in such circumstances the Sharpe ratio of GMV P is quite high and almost 1.
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where we re-balance quarterly, in the 20-1 year rolling-window-length combination for the

stock premia and their covariances, and under the market model assumption for the return

generation process when we estimate the conditional vector of risk premia via the canonical

Fama and MacBeth (1973) procedure and use the last 12 months to estimate the covariance

matrix. The latter finding confirm the usefulness of the second step of the Gagliardini et al.

(2016) in filtering out a portion of the noise present in the estimates.

The last noteworthy insight is about the role of diversification. If we compare the per-

formance in our baseline scenario (Figure 5) where we invest in all common stocks in the

NYSE/AMEX and NASDAQ, with the sub-universe of stocks only belonging to the S&P

500 (Figure 16) we notice how investing in GMV P and MV P5tc trough MV TP15tc is

consistently more profitable when small stocks are included. That is the Sharpe ratios are

all higher under the baseline scenario. Remember that the performance is after cost so it

already accounts for the higher cost of trading small stocks. We conclude that there are

economically sizable diversification benefits in investing in all common stocks.

C Robustness: Cost-minimization to unlock stock pre-

mia information

In Section 5.2 we have argued that the stabilizing role of cost-optimized weights allows to

market time stock risk premia by smoothing out the extra noise that prevents MV standard

strategies to exploit the information contained in the stock premia. In this section we

confirm the robustness of our claim to the evaluated alternative scenarios with the exception

of the scenarios where our strategies are implemented quarterly. In such scenario our cost-

optimized strategies still outperform but no market timing is detected. We ascribe this

lack of findings to the small sample size. We also notice how allowing for a richer model

for the risk premia and the covariance structure (specifically the Fama and French (1993)

3-factor model versus the single-factor market model, or CAPM) allows our cost-optimized

strategies to additionally engage in covariance timing, while preserving their ability to time

risk premia (coming from the stabilizing role played by the cost minimization). Finally, as

in the previous section we find additional evidence in the ability of the Gagliardini et al.

(2016) procedure to filter out noise in the risk premia estimates through the second step.
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As in Section 5.2, our claim is based on the following findings: i) our most profitable

cost-optimized strategies, those targeting higher returns, dominates their textbook analogs

in terms of after-cost out-of-sample Sharpe ratios, ii) their risk primia timing abilities are

substantially higher, iii) the contribution of risk premia timing is substantially higher than

that from timing the covariances for our most profitable cost-optimized strategies, and iv)

our most profitable textbook strategies market time stock covariances. For our baseline

setup findings ii) through iv) were displayed in Figure 7 and 8 via performance ratios,35

while finding i) was displayed in Figure 5 via our canonical metric: the out-of-sample after-

cost Sharpe ratio. In an analog fashion Figure 24 through 31 present the robustness for

findings ii) through iv), while Figure 16 through 23 report the robustness for i) relative to

our alternative scenarios described in Section A.

Findings i) through iv) are in general robust with one major exception: the scenario

where we re-balance at the quarterly frequency. In such scenario, despite finding that our

cost-optimized strategies dominates their standard analogs (especially when we estimate

the covariance matrix using the last 6 months of data), we do not detect any statistically

significant sign of market timing from them. This lack of results might be due to the

reduced sample size which under our quarterly re-balancing scheme is now a third of the

main sample with only 60 observations. Other noticeble patterns are those emerging from the

scenario where risk premia are estimated via Fama and MacBeth (1973) imposing a CAPM

representation and the scenario where we estimate the return moments under the Fama

and French (1993) structure. In the latter scenario, while cost-optimized strategies targeting

higher returns still dominates their textbook analogs (with performances in the same order of

magnitude of those from the baseline scenario) and display substantially higher risk premia

timing activity, they also display a considerable amount of covariance timing (in the same

order of magnitude of that from risk premia). Therefore, allowing for a richer covariance

structure allows our cost-optimized strategies to additionally engage in covariance timing,

while preserving their ability to time risk premia (coming from the stabilizing role played

by the cost minimization). Finally, the noise filtering second step in the Gagliardini et al.

(2016) used in our baseline also has an impact on the stock premia timing abilities of cost-

optimizing strategies: while the risk premia timing abilities from MV P10tc and MV P15tc

35Defined as the Sharpe ratio differentials described in Section 2.3 divided by the real-time performance
of our strategies.
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are substatially higher then those (if any) form MV P10 and MV P15 when the covariance

matrix is estimating using the previous 6 months of data, unlike in our baseline scenario such

difference disappears when the covariance matrix uses the past year of data. In line with

what discussed in Section B, this finding corroborates the ability of the Gagliardini et al.

(2016) procedure to filter out noise in the risk premia estimates through the second step.

D Robustness: Cost-minimization to reduce downside

risk

As in the main text (see Section 5.3), we confirm how cost minimization is also effective in

reducing downside risk as measured via the Maximum Draw Down (MDD), or the average

time needed to recover from the worst incurred loss, in virtually all the alternative scenarios

detailed in Section A.

Analogously from the top graph of Figure 11, Figure 32 reports the differences in abso-

lute MDDs between mean-variance cost-optimized and standard analog strategies for the

alternative scenarios. Except from MV P1 under the scenario where the conditional return

moments are those implied by the Fama and French (1993) 3-factor model and µt is com-

puted using the past 5 years of data, cost optimized strategies enjoy (much) lower worst

losses as measure by their MDDs.

Similar unreported graphs, available upon requests, also show how cost optimized strate-

gies continue to br able to recover faster from their worst incurred losses. Here the only

exception is represented by the scenario where we restrict the stock universe to the SP500

constituents for the case where µt is estimated using the past 5 years of data.

E Robustness: Cost-minimization to scale up

In Section 5.4 we have shown that minimizing over costs enhances the scalability of our

mean-variance strategies. In particular, handling price impact as a type of cost, quadratic

in the size of the trades, consistently delivers higher Sharpe ratios at any analyzed (average)
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level of price pressure. Since quadratic costs are a popular why to handle price pressure,36

we concluded that cost optimized mean variance strategies appear profitable options to gain

exposure on the market even for large institutional investors.

In this section we show that this insight is robust to: the way we measure costs, the

presence of small stocks, and the rebalancing frequency of our portfolios. We do so by

focusing on the scenarios where: costs are estimated without using TAQ data, stocks are

restricted to be SP500 constituents, and our strategies are rebalanced quarterly. As in the

baseline scenario, the performance gap between cost-optimized and standard analogs is on

average monotonically increasing in the price pressure severity (or equivalently in the dollar

size of the strategies).37

As Figure 14 in the main text, Figure 33-35 plot the differences in annualized after-cost

Sharpe ratios between our cost-optimized and standard analog strategies as a function of the

price impact parameter π. Starred markers highlight differences that are significant at the

10% level. The range for π covers the interval [0, 1.6]; this is in contrast with the interval

[0, 3.4] adopted in the main analysis. For the case of the SP500 scenario there is a precise

reason,38 while for the other cases we saved on computational time.39

Estimating costs without using TAQ data, discarding small stocks or rebalance quarterly

do not change the qualitative dynamics for the price impact found in the main analysis.

Adopting cost-optimized strategies enhance the after-cost performance at any level of π (all

the plotted Sharpe ratio differentials are positive), the benefits are increasing in the price

pressure severity (most differentials are monotonically increasing in π), and the effects are

more marked when we estimate the conditional covariance matrix of stock returns over the

last 6 rather 12 months.

36See Dybvig and Pezzo (2020) and references therein.
37We did not perform the robustness on the remaining scenarios detailed in Section A due to the compu-

tationally intensive nature of such checks. We are willing to perform such robustness upon requests.
38Analogously to the baseline scenario but only using stocks that belongs to the SP500, we linearize the

square-root price impact function from Figure 2 of Frazzini et al. (2015) and use the trade sizes of our
analyzed strategies in the absence of price impact to derive π as a function of portfolio sizes ranging from 1
million to 10000 billions USD. Inspecting such function reveals how after a size of 10 billions USD, π caps
at 1.55. The entire procedure is detailed in footnote 24 in the main text.

39The interval length can be broaden upon request.
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F Robustness: Market timing and estimation error as

drivers of mean-variance profitability

In this section we extend the analysis conducted in Section 6 to our alternative scenarios

described in Section A. We confirm the main insights that market timing and estimation

error have non-negligible impacts on the mean-variance performance and share very similar

dynamics. We also learn how estimating risk premia through a parsimonious specification

for the return representation while filtering out part of the noise following Gagliardini et al.

(2016) helps identifying such patterns.

F.1 Magnitudes of market timing and estimation error

There is quite some variability in the magnitudes of market timing and estimation error across

our scenarios, however the general tendency that emerges is in line with the insights from

the main text. Most importantly their economic impact is quite substantial, ranging form

average Sharpe ratios increments between 0.08 and 0.50 due to market impact and average

decrements between 0.35 and 0.61 due to estimation error. Moreover average market timing

magnitudes are consistently high across scenarios in expansions (almost always above 0.16

with an average of 0.27 for the subsample 45-72 and never below 0.37 with an average of 0.50

for the most recent subsample 03-17) and low in recessions - signaling a substantial impact

of estimation error (with Sharpe ratio decrements of at least 0.28 in the subsample 26-44

and at least 0.43 in the subsample 73-02).

In line with the stabilizing role of cost optimization found in the main analysis, we

also find that market timing is (somewhat) higher for transaction-cost optimized strategies

while the opposite is true for estimation error (with magnitudes higher in absolute terms for

standard strategies).

This results are shown in Table 9 for the first 7 scenarios detailed in Section A (with

the exception of the “unconditional universe” scenario).40 The table reports for each of the

analyzed scenario the average market timing and estimation error magnitudes across the

40Which is very similar in nature to the scenario “[V, µ] = [1, 20]y” and which results, when analyzed in
Section C in the most recent subsample 03-17, are found very similar to the baseline.
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three types of comparisons where the real-time strategies are benchmarked against their

unimplementable analogs with fixed in-sample first, second and combined first and second

moments of the returns’ distribution.41

F.2 Pro-cyclical increasing profitability

Once established that market timing and estimation error robustly have non-negligible im-

pact on the performance of our strategies over the last 100 years, we analyze in the alternative

scenarios described in Section A the characteristics of such performance.

Figure 15 confirms how, as in the baseline scenario presented in Figure 3 and correctly

anticipated by the ex-ante dynamics of the MV investment opportunities discussed in Sec-

tion 3.1, the performance of our analyzed strategies appears pro-cyclical with magnitudes

increasing in expansions. For extra details on the graphs please refer to Section 6.2.

We therefore retain the baseline conclusion that the performance of our strategies is high

in expansionary periods where trading frictions (measured by median bid-ask spreads) are

low and low in recessionary periods where the same trading frictions are high.

F.3 Pro-cyclical increasing market timing and counter-cyclical es-

timation error

We confirm in our analyzed alternative scenarios described in Section A that: 1) aggregate

market timing, defined as the sum of all the individual strategies’ impacts, is in general

pro-cyclical and increasing over time and 2) aggregate estimation error, defined as the sum

of all the individual strategies’ impacts, is counter-cyclical with magnitudes decreasing over

time.

Table 9 displays the results for the first 7 scenarios detailed in Section A (with the

exception of the “unconditional universe” scenario).42 The table reports for each of the

analyzed scenario the sum of market timing and estimation error magnitudes across the

41That is, for each analyzed scenario we only report the columns labeled “Mean” in Table 2 from the main
text.

42The last scenario is by construction very similar to the third and thus left out for brevity from the
current analysis. Results upon request are available but in line with all the other presented in this section.
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three types of comparisons where the real-time strategies are benchmarked against their

unimplementable analogs with fixed in-sample first, second and combined first and second

moments of the returns’ distribution.43 At it is immediately apparent by looking at the

“Total” columns, market timing across scenarios is higher in the expansionary periods 45-72

and 03-17 with the level being higher in the most recent sample and estimation error is

lower in the recessionary periods 26=44 and 73-02 with the level being lower in the most

recent sample. These patterns, when detected (i.e. when different from 0) are reflected in

the majority of the analyzed scenarios for both cost-optimized and traditional mean-variance

strategies.44

As in the baseline scenario, this patterns suggest that market timing and estimation error

are important drivers behind mean-variance profitability over the last 100 years in the U.S.

stock market.

F.4 Correlation analysis

In this subsection we estimate the correlation between market timing (or negative estimation

error) and mean-variance profitability for our alternative scenarios. With the exception of

the “CAPM µ” and “FF3” scenarios, we confirm the existence of a meaningful positive

relationship. The exceptions highlight the delicate role played by the risk premia estimation

which are more transparent when parsimoniously estimated as a one factor (market) model

via the noise filtering procedure of Gagliardini et al. (2016).

As in the baseline scenario, we measure the correlation of the Sharpe ratio differential

between a given strategy and its unimplementable analog where at least one of the first

two moments of the returns’ distribution are fixed at their in-sample levels with the Sharpe

ratio level of the implementable strategy. Table 10 shows the average correlation across risk

premia estimates (with rolling windows of 5,10 and 20 years) and sample periods (26-44

through 03-17) for each analyzed alternative scenario in the case we fix the first, second or

both moments of the returns’ distribution under the estimates for the covariance matrix V

43That is, for each analyzed scenario we only report the columns labeled “Total” in Table 3 from the main
text.

44Notable exceptions are the “quarterly” and “CAPM µ” scenarios for the cost-optimized strategies and
the estimates from the sample period 26-44 in the “Shrinkaged V” scenario for the standard strategies.
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using rolling windows of either 6 or 12 months.

Concentrating on the rightmost panel reporting the combined effects of the first and

second moments of the returns distribution, i.e. the correlation between market timing

(negative estimation error) induced by both risk premia and covariances and the mean-

variance strategies’ performance, we mostly observe a positive relationship. In particular,

whenever we estimate risk premia through the market model (also improperly referred to

as the CAPM model) under the noise filtering procedure of Gagliardini et al. (2016) as in

the baseline setup, we find a positive association between market timing and performance

no matter if: we discard small stocks (“SP500” scenario), we trade quarterly (“quarterly”

scenario), we reduce the implied stock universe to that available if we estimate V and µ using

a 1 and 20 year rolling window respectively (“[V µ] = [1, 20]y” scenario), we discard TAQ data

when measuring the costs (“No TAQ” scenario), or we estimate V through the shrinkaged

estimator developed in Ledoit and Wolf (2017, 2020) (“Shrinkaged V ” scenario). While

such combined contributions predominantly come from timing risk premia in the “SP500”

scenario and from using a rolling window of 1 year for V for the case of standard strategies

in the “[V µ] = [1, 20]y” scenario, they more generally come from both risk premia and

covariance timing in isolation for the rest of the cases (see the leftmost and the middle

panels). Moreover, as in the main scenario we notice how cost-optimized strategies displays

a higher correlation than their standard analogs.

Lastly, it is interesting to notice how negative the correlation is for the “CAPM µ” and

the “FF3” scenarios where risk premia are not estimated via the market model following

the Gagliardini et al. (2016) procedure. A negative relationship for the “CAPM µ” scenario

is consistent with the pattern of the aggregate market timing and estimation error found

in Table 9 where for standard strategies we found a pro-cyclical pattern for market timing

but partially fail to find a counter cyclical pattern for estimation error (due to the measure-

ments in the 26-44 subsample), and for cost-optimized strategies we find an unusually high

amount of market timing in the recessionary 73-02 period and fail to detect estimation error

everywhere except in the 26-44 period. For the case “FF3” scenarios a negative correlation

appears instead in contrast with the results from Table 9. These findings are in line with the

well-known presence of noise in the risk premia estimates obscuring the underlying patterns.

It therefore seems from our analysis that adopting a parsimonious specification for the return

13



representation and filtering out part of the noise through the Gagliardini et al. (2016) is the

most efficient approach among the one analyzed in this paper.
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Recent Profitability of Mean-Variance Strategies: S&P 500
stocks

Figure 16: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: quarterly
re-balancing

Figure 17: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: 20-1 years
risk premia - covariance rolling-window-length combination

implied universe

Figure 18: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: estimating
costs without TAQ data

Figure 19: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: estimating
CAPM risk premia via Fama and MacBeth (1973)

Figure 20: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: estimating
Fama and French (1993) risk premia and covariances

Figure 21: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies: estimating
the covariance matrix via the Ledoit and Wolf (2017, 2020)

shrinkage estimator

Figure 22: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Recent Profitability of Mean-Variance Strategies:
unconditional stock universe

Figure 23: Figure 16 and all the subsequent ones until Figure 23 decompose the average perfor-
mance shown in Figure 15 across the six baseline risk premia - covariance rolling window-length
configurations over every month (or quarter for Figure 17) between January 2003 and December
2017. Each of these 8 figure refer to a different alternative scenario as detailed in Section A.
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Price Impact: cost-optimized vs. standard mean-variance
strategies, no TAQ

Figure 33: Cost-optimized mean-variance strategies continue to consistently scale up more in
presence of price impact when cost are estimated without using TAQ data. The graphs plots
the annualized after-cost out-of-sample Sharpe ratio differentials between our cost-optimized and
standard strategies (described in Section 2.1 and printed in the legend) as a function of the price
impact parameter π, which is inversely related to the liquidity and depth of the market and posi-
tively related to the portfolio size of the investors. Each graph differs in the combinations of rolling
window lengths (in years) used to estimate the conditional risk premia µt and covariance matrix
Vt as specified in the plots’ sub-titles. Starred markers refer to ratio differential significant at the
10% level. We test for differences in Sharpe ratios using block bootstrapping with block sizes of 5
observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf (2008)).
The sample is every month from January 2003 to December 2017.

33



Price Impact: cost-optimized vs. standard mean-variance
strategies, SP500 universe

Figure 34: Cost-optimized mean-variance strategies continue to consistently scale up more in
presence of price impact when we restrict the stocks universe to the SP500 constituents. The
graphs plots the annualized after-cost out-of-sample Sharpe ratio differentials between our cost-
optimized and standard strategies (described in Section 2.1 and printed in the legend) as a function
of the price impact parameter π, which is inversely related to the liquidity and depth of the market
and positively related to the portfolio size of the investors. Each graph differs in the combinations
of rolling window lengths (in years) used to estimate the conditional risk premia µt and covariance
matrix Vt as specified in the plots’ sub-titles. Starred markers refer to ratio differential significant
at the 10% level. We test for differences in Sharpe ratios using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf
(2008)). The sample is every month from January 2003 to December 2017.
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Price Impact: cost-optimized vs. standard mean-variance
strategies, quarterly re-balancing

Figure 35: Cost-optimized mean-variance strategies continue to consistently scale up more in
presence of price impact when we re-balance at the quarterly (rather then at the monthly) frequency.
The graphs plots the annualized after-cost out-of-sample Sharpe ratio differentials between our cost-
optimized and standard strategies (described in Section 2.1 and printed in the legend) as a function
of the price impact parameter π, which is inversely related to the liquidity and depth of the market
and positively related to the portfolio size of the investors. Each graph differs in the combinations
of rolling window lengths (in years) used to estimate the conditional risk premia µt and covariance
matrix Vt as specified in the plots’ sub-titles. Starred markers refer to ratio differential significant
at the 10% level. We test for differences in Sharpe ratios using block bootstrapping with block sizes
of 5 observations to account for heteroskedasticity, cross- and auto-correlation (Ledoit and Wolf
(2008)). The sample is every month from January 2003 to December 2017.
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