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ABSTRACT

It is fact that investor behavior is complex, translating into non-linear asset price dy-
namics. This fact implies that auto-correlation in returns varies over time and occa-
sionally differs from zero. Being aware of that, the questions about measurement of
expected return randomness, its predictability and the economic implications arise.
While much attention has been paid to option-implied densities, less on their scal-
ing behavior. The econometric explanation for implied variance scaling non-linear
in horizon is via the underlying’s correlation structure, which is well explained by
fractal geometry. Persistence, as such, is the crucial determinant herein. This work
introduces the well established fractal toolbox to financial options, allowing to es-
timate expected return persistence in a model-free manner. The derived measure is
an ex-ante gauge of randomness and market efficiency, with direct effects on financial
stability, asset prices and risk. While persistence describes the randomness of returns,
the multifractal strength explains how much it can vary over time. Market-crashes,
for example, are a structural break in persistence. The concept of implied fractals is
empirically applied upon daily data of the S&P 500 index. A surprisingly strong pre-
dictability from ex-ante implied on future realized return persistence is detected. It is
demonstrated that this pay-off can be replicated from a portfolio of variance swaps,
reducing the term-structure of variance risk premia down to a single quantity termed
’fractal risk premium’. This portfolio enables a direct bet on the degree of random
walk. It is empirically found to negatively correlate with market fear; a feature which
makes it particularly interesting for hedging against crashes.

1. Introduction
"Three states of matter - solid, liquid, and gas - have long been known. An analogous distinction

between three states of randomness - mild, slow, and wild - arises from the mathematics of fractal
geometry." - B.B. Mandelbrot

The Hurst exponentH determines the self-similarity of returns, closely tied to the degree of randomness,

H
< 0.5 ... anti-persistent (wild; negative auto-corr.)
= 0.5 ... random walk (mild; no auto-corr.)
> 0.5 ... trending (slow; positive auto-corr.)

. The closer returns are to H = 0.5, the higher the degree of randomness. Without randomness, there
is no risk, hence H plays a crucial role in financial markets. Since asset prices are determined by investor
expectations, a natural economic interest lies upon the expectation forH . The concept of self-similar returns
is easily explained visually (Fig.1).
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Figure 1: Simulated paths of fractal motions, H determines the self-similarity of returns (linked to randomness).
When return auto-correlation is zero (fully random), then H = 0.5. In case H varies over time, then prices
are multifractal. Typical characteristics of multifractality are volatility clustering and jump-like behavior. Broad
empirical evidence shows that equity returns are significantly multifractal.

Loosely speaking, financial markets are characterized by times of mild and wild randomness. Take
the time-series of the S&P 500 and break it into fractions of crises and non-crises. What you observe
is high volatility during short periods of crises, and low volatility during long periods of recovery. Plot
the fraction’s variance against the period length, and what you observe is that variance does not scale
1:1 proportional in time. The described pattern is better known as volatility clustering, first recognized
in the 1960s by Benoît Mandelbrot - the man who made fractals popular. As of today, the concept of
generalized scaling laws is extensively used in overall science.1 Fractals, in general, are used to explain a
time-series self-affine structure; the synonym ’auto-correlation’ might be more appealing for economists.
If this structure changes over time, one is speaking of multi-fractality. If not, the series is understood as
monofractal. Rough volatilities, as became recently popular, are an example for the latter. While a series’
distribution is one main feature, its correlation structure is the second one. The implications are severe.
In the context of finance, fractals directly affect market-efficiency, cause volatility clustering (Fig.2),
determine price stability (Fig.1), open new investment strategies, are sourced in investor behavior and befall
structural changes on market-crashes. The more it is important to understand a market’s fractal nature,
especially from an ex-ante point of view.

This work introduces the statistical mechanics required to connect forward-looking information (option
prices, implied volatility) to the expected self-similarity in returns. The link is derived in a model-free
manner, with a simple intuition behind it: The term-structure of variance swaps. The concept is empirically
applied upon daily data of the S&P 500 index (1996-2021). Expected self-similarity (H) is found to
have three remarkable characteristics. First, it strongly deviates from the critical 0.5 level for most of
the time. This implies that the classic random walk assumption is misleading for explaining investor
expectations. Second, there are certain patterns associated to bull- and bear-market phases. Returns are
expected to be trending during growing market phases, and befall harsh drops into anti-persistence with
the outbreak of fear. This brings up the third interesting pattern, that persistence and anti-persistence
occasionally cancel out over an entire business cycle. Hence, investor expectations might follow a

1For example, consider Elsevier’s Scopus online library. Searching the database on 10/19/2021 in paper titles, abstract and
keywords for ’fractals’ returns more than 94’000 studies related to that topic, excluding the fields of mathematics and physics, still
over 40’000 remain. In comparison, ’interest rate’ is only used in about 32’000 papers, ’CAPM’ in around 3’000.
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multifractal random walk for the long run (mean of H close to 0.5). The time-varying behavior of
expected randomness rises a broad variety of economic questions, where only a few of them can be
addressed within this work. Among them: (i) Does implied persistence predict future realizations? (ii)
What does it mean for market efficiency? (iii) How can persistence believes be traded? And, (iv) how
does it relate to financial stability? The paper searches for answers to these questions based on novel insights.

Empirical evidence for realized fractals is very broad and reaches back to [1–4]. More recent works study
fractal patterns of realized returns across different asset classes, such as stocks ([5–12]; high-frequency:
[13, 14]), currencies ([7, 15]), crypto ([16–18]), fixed income ([7, 19]), commodities ([7, 18, 20]), or the
fractal cross-correlation among asset classes ([21]). Fractal analyses of stock market indices are given by
[22–25]. That the multifractality in returns exceeds spurious sources (finite-size, heavy-tail distribution)
was documented in [6, 26–28] and many publications thereafter. Other researcher focused on the roughness
of realized variance ([29–31]), spot implied volatility ([32, 33]) or the persistence of liquidity ([34]) and
trading volume ([31, 35]). Fractal analysis has been also used to test for market efficiency ([19, 36–41]),
to explain the behavior of sentiment ([42]), or to predict market crashes ([43, 44]). [45–47] study the
breakdown in the correlation structure due to crashes in greater detail. On the theoretical side, important
contributions are given by Mandelbrot’s multifractal model of asset returns ([48]), fractional Black-Scholes
([49, 50]) and the recent trend for rough volatility models ([32, 51, 52]). It is also Mandelbrot (e.g., [48]) to
demonstrate that GARCHmodels are unfavorable in describing a return’s correlation nature. This is because
either a very large number of coefficients is needed to match the true dynamics, making interpretation
difficult to impossible. Or, when using only a handful of coefficients, then the long-range memory is falsely
described. Either way, GARCH-like approaches require a larger number of observations for stable serial
correlation estimates, hence are improper in describing current behavior (cp. [47]). Different to that, fractal
methods can reduce the observation number down to a fifth of that (see [53, 54]), hence enable a more ac-
curate measurement of current persistence. This fact is important for understanding the true market behavior.

The paper presented here is significantly distinct from the publications mentioned above, yet
surprisingly simple. Methods and analyses exist for realized series; the novel contribution is to set the
multifractal ideas into an ex-ante perspective. In this sense, it is demonstrated how the term-structure
of implied variance can be combined with the statistical mechanics of multifractals. The output are
ex-ante estimates of local Hurst exponents (current persistence, randomness) and the implied singularity
spectrum (variation in Hurst exponents). Implementation of the non-parametric framework is easy and
requires no specific knowledge nor skills. Comparable model-based approaches seem noncompetitive
for the estimation of implied persistence. On the one hand, there is [48] (and derivations of it) which
can be only solved from simulations. On the other, [49, 50] require the unrealistic assumptions
of returns being mono-fractal and normally distributed. Besides the econometric perspective, the
second contribution of the presented paper comes from an economic point of view, extending existing
knowledge by answering questions (i)-(iv) based on the gathered empirical evidence. For this purpose
daily data of the S&P 500 index (1996-2020) is investigated. A surprisingly strong predictability of
ex-ante implied on future-realized return persistence is detected. This observation is economically
puzzling because the degree of market efficiency becomes forecastable. It is shown that investors
can trade corresponding believes from a long-short portfolio of variance swaps. This portfolio pays
the difference between expected and future-realized persistence, hence is termed the ’fractal risk pre-
mium’. The premium is negatively correlated with market fear, hence can be used to hedge against crash risk.

The reading is set up as follows. Section 2 provides an introduction to fractals and presents the method-
ology. Section 3 carries out the empirical analysis. Section 4 utilizes the collected insights to discuss the
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economic questions. Section 5 concludes.

2. Methodology
The power of multifractal analysis is that it studies the intermittent return structure by combining both

fundamental classes of analyses ([54]): (1) model based analyses of the time-series’ distribution and (2) the
dependency of the ordering. Class (1) analyses show that returns are heavy-tailed, assuming independent
returns. Class (2) analyses show that this iid assumption does not generally hold, but assume normal
distribution. Since financial markets are exposed to both effects simultaneously, they are generally better
described from a multifractal point of view.

To familiarize with the concept, consider a power-law in the fashion of

Fq(�) = c(q)�ℎ(q)

. This builds the very core of multifractal formalism, which will be used to describe the geometry of in-
vestor expectations. In our context, Fq denotes the fluctuation function, directly tied to standard deviations
observed throughout the sample. � represents the time-scale, or window-size, over which the fluctuations
are computed. The coefficient c(q) is usually of less interest, so it is convenient to reduce the power-law to
a proportional form,

Fq(�) ∼ �ℎ(q) (1)

.2 The variable q corresponds to the moment order, like q = 2 for variance. A special emphasizes is put
on the generalized Hurst exponents ℎ(q). If all ℎ(q) exponents equal the same value, then one observes a
monofractal series. In case of ℎ(q) being clearly non-constant, then returns are multifractal. The second-
order Hurst exponent H ≡ ℎ(2) takes on a special role, as it describes the series’ persistence. Classic
Brownian motion is thus a special case of constant ℎ(q) = 0.5,∀q. When H = 0.5 holds only on average,
then one is speaking of multifractal random walk. A typical characteristic of such are price jumps and
volatility clustering. This generalization can be derived from fractal formalism, which is discussed in greater
detail within the next section. The estimation of Fq is presented in 2.2.

2.1. Fractal Formalism
The mathematical foundation of multifractality was significantly emphasized by Benoît Mandelbrot.

Multiplicative cascades (e.g., [48, 55]) play a crucial role herein. Loosely speaking, the procedure is to take
a signal’s scale dependent measure (like variance or entropy) and break it into fractions over the time-line.
Repeat this procedure many times and what you observe is a geometry in the fashion of Fig.2. The figure
nicely visualizes the volatility clustering effect. Mathematical details about the derivation of multiplicative
cascades are discussed in greater detail by [48, 55, 56]. More important for economic applications is the key
result they derive. Generally, a multifractal system is described by

⟨|R(�)|q⟩ ∼ �� (q)+1

for a processR having stationary increments, with � (q) denoting the scaling function and using ⟨⋅⟩ for expec-
tations.3 This power-law relationship can be statistically assessed under different measures, like fluctuation

2Since c(q) is scale independent it is frequently left out during empirical studies. Here, c(q)might be economically interpreted
as the base level of volatility (at � = 1). It is related to the average mass that preserves under the canonical multifractal measure.
That is, the average of Fig.2. Going into technical details is clearly off-topic here, hence the reader interested might address [55, 56].

3Mandelbrot and many other denote the scaling function by ’�’. This can be confusing in the context of financial options where
’�’ is widely used for the time to maturity. Therefore, the scaling function is denoted by ’� ’ instead.
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Figure 2: Multiplicative cascades: Take the scale-dependent measure (e.g., variance) and break it into fractions.
Multifractality characterizes that the mass is different in these fractions. Repeat this process for smaller and
smaller time scales, and the volatility clustering effect becomes visible. Picture taken from [54].

functions or entropy (see [57, 58] for examples). In case returns have a time-varying mean, the stationary
assumption is no longer fulfilled. This issue can be resolved by working with a detrended measure instead.
For this sake, consider the multifractal detrended fluctuation analysis (MF-DFA; [59]) from now on. As of
today it is one of the most widely used techniques for multifractal analyses (cp. [11]). The superior perfor-
mance of MF-DFA in capturing local correlation structures was empirically compared to other methods in
[47]. In this sense,

Fq(�)q ∼ �� (q)+1 (2)

describes the multifractal behavior. The scaling-function � will be linear for a monofractal series (neglecting
spurious sources for now). In case of multifractality, � is strictly convex as proven by [55, 56]. Mandelbrot
also proposes the alternative wording of uni- and multi-scaling to describe mono- and multifractality.4 The
two different scaling coefficients � (q) and ℎ(q) are interrelated by

� (q) = qℎ(q) − 1

. Therefore, a linear � (q) implies a flat ℎ(q) for every level of q, which describes monofractality. Differently,
a convex � (q) implies a non-constant ℎ(q) and the series will be called multifractal. As introduced earlier,
the second order Hurst exponent H ≡ ℎ(2) determines the self-similarity. Substituting for ℎ(q) and taking
logarithms of Eq.2,

lnFq(�) ∼ ℎ(q) ln(�) (3)

yields a simple linear relationship that can be easily fit by regressing lnFq(�) against ln(�) for different
levels of q. The slope coefficient then corresponds to ℎ(q).

4Not to be confused with ’multi-scaling’ as in [60], where the word is used to describe existence of multiple fractal regimes,
i.e. non-linear log-fluctuation plots.
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From a mathematical perspective, the generalized Hurst exponents are only indirect measures of
multifractality. Hölder singularities � are the direct ones. The corresponding density f (�) is called the
multifractal- or singularity spectrum. The singularity measures are connected to the above quantities by

� =
)�
)q

and f (�) = inf
�
[�q − � (q)]

. The multifractal spectrum generally takes on a form of a smooth inverted parabola, potential shapes are
discussed in [48]. Generally, the richer the multifractal strength, the more are ℎ(q) exponents dispersed
and the wider the singularity spectrum becomes. Hence, the following two became common measures for
multifractal strength,

Δℎ = ℎ(qmin) − ℎ(qmax) and Δ� = �(qmin) − �(qmax)

. While the moment order q can theoretically take on any real value (q ∈ ℝ), it is empirically more reason-
able to introduce some boundaries of qmin and qmax. The particular choice of the highest/lowest moment is
discussed in the empirical section.

Local Behavior. Multifractality (Δℎ > 0 and Δ� > 0) implies persistence to vary over time. This is in
contradiction with the classic random walk assumption (and the large body of literature building upon)
assuming zero persistence throughout time. A natural economic interest now lies upon the current degree of
persistence, as it has high implications on stability, investments and risk-management. H as derived from
Eq.3 relates to the persistence for the overall horizon, the local one will be denoted byHt. The term ’local’
means as observed at a point in time t and the small time-window around it, henceHt can be interpreted as
the current degree of persistence.

First, it will be explained how Ht is evaluated for realized returns using existing literature. Then, the
necessary step to estimate expected Ht as implied by options prices is derived. As pointed out in [54,
57], there are generally two formalisms to estimate Ht; one via Legendre transform and one from large
deviation formalism. The latter fits the power-law ’Ft(�) ∼ Ht ln �’ directly for every observation date t.
This is numerically less stable for realized time-series (see [57, 61]), hence the indirect Legendre transform
should be generally preferred. For this sake I follow [62] for the realized return series. It comes with
the great advantage that once the model is calibrated on the overall horizon, it allows to reliably estimate
correlation structures on small time-scales. Hence, the routine outperforms other methods in capturing true
local correlations (cp. [47]). Let c0 denote the intercept of the fit from Eq.3 at q = 2. Next, choose a new
set of time-scales �′. The new time-scales should be small enough to properly capture local fluctuations, the
parameter choice is discussed in greater detail at the empirical section. For all �′, estimate the new local
fluctuations Ft(�′) which can be interpreted as root-mean-squared-errors. The local-in-timeHt(�′) are then
geometrically interpolated from

Ht(�′) =
c0 +H ln �′ − lnFt(�′)

ln n − ln �′
+H (4)

, which spans a time-conditional distribution of Ht(�′) exponents. Note that the large deviation formalism
links the density of allHt(�) exponents (across t and �) to the multifractal spectrum. Hence, it is less surpris-
ing that [62] argue that the width of the time-conditional distribution ofHt(�) represents local multifractality.
The mean of this density relates to the numerically stable estimate of current persistence:

Ht = mean{Ht(�′)} (5)
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In the case of option implied information, the indirect estimation via Legendre formalism is less appeal-
ing as the forward-looking nature gets lost. However, and this is good news, fluctuation functions are directly
traded in the form of variance swaps (or indirectly via options). Hence, implied fluctuation functions will
be numerically more stable than realized once. This is because otherwise arbitrageurs will monetize noise
from expectations. Empirical support for the stability argument is given at section 3. From this follows, that
the direct large deviation formalism is occasionally more reliable here. Therefore, data as observed on t can
be used to evaluate current persistence directly from a linear fit of

lnFt,ℚ(�) ∼ ⟨Ht⟩ ln � (6)

with Ft,ℚ(�) referring to the square-root of implied variance, discussed further below. For example, when
using simple OLS to assess Eq.6, then the regression coefficient ⟨Ht⟩ is the mean of the time-conditional
Ht(�′) distribution.

Multiple Regimes. If returns follow dynamics of even greater complexity, then one fractal regime might not
be sufficient in describing the geometry of returns. Such a phenomenon can be detected by investigating
the lnFq versus ln � plot. If, after correcting for spurious sources, it evolves non-linear across the scale
range �, then the underlying process is likely to be driven by multiple fractal regimes. For an unbiased
description of the overall dynamics it is then necessary to detect the cross-overs and separate the different
regimes (see e.g., [63]). A finance example is given by [42], who documents that market sentiment is driven
by an anti-persistent regime which is overlapped by noise at very large scales. As for the returns of the S&P
500, however, this work finds that the fractal geometry is best described by a single regime. Hence, the
scaling law of Eq.1 is appropriate for all reasonable horizons �. A piece wise definition of ℎ(q) exponents
for different ranges of � would relax this assumption, but is not necessary for the application at hand.

2.2. Estimating Fluctuation Functions
Let St denote the price of an asset as observed on time t ∈ {1, ..., n}. The log-return for one time-step

(e.g., daily) ahead is thus given as

rt = lnSt+1 − lnSt

. Obviously, rt is a noise like process. Using log-returns instead of discrete ones is not necessary, but it will
evolve handy at our application because the aggregate sequence Rt(�) from simple summation,

Rt(�) =
t+�
∑

k=t
rk (7)

for a time-window of � will equal the period return from t to t+�,Rt(�) ≡ lnSt+� −lnSt. Drawing parallels
to the notation of the MF-DFA founders ([59]), one shall observe that t refers to the segment and � to the
segment-size. Consider expectations ⟨⋅⟩ can be taken under the physical ℙ or the risk-neutral ℚ probability
measure, dependent on the context (realized or implied). Log-returns almost surely have a drift component
⟨rt⟩ ≠ 0 that also varies over time. Hence, rt is likely to be non-stationary to some degree. At this point, the
local de-trending of DFA comes into play,

detrending: Rt(�) − ⟨Rt(�)⟩

to make returns locally stationary. For realized returns, it is usually sufficient to estimate ⟨Rt(�)⟩ from a
linear fit. This is equivalent to substituting rk in Eq.7 by rk − ⟨rk⟩, using the arithmetic mean over [t, t + �]
for the latter term. Higher-order or other de-trending routines can be also applied, see [59] for a discussion.
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Older methods that do not remove local trends were proven to be biased for non-stationary series (see [2]), an
example is the still used (e.g., [33]) R/S analysis based on [64]. After de-trending, the time-local fluctuation
function F 2t (�) is now given by

F 2t (�) = ⟨(Rt(�) − ⟨Rt(�)⟩)2⟩ and Ft(�) =
√

F 2t (�) (8)

. For realized series, this is calculated from

realized: F 2t (�) =
1
�

t+�
∑

k=t
(Rk(�) − ⟨Rt(�)⟩)2

At this point, the crucial step shall be observed that establishes the link between the statistics to the finance
literature. The future price development of S is unknown ex-ante, making it infeasible to approximate indi-
vidual returns a priori. Since [65], however, finance literature came up with the theoretical foundations for
risk-neutral densities as implied by currently traded option prices. This allows to compute ex-ante densities
for Rt(�). From the reasoning of such densities, risk-neutral moments can be derived. The (probably) most
prominent example of such is the CBOE implied volatility index, short ’VIX’ representing one-month-ahead
expectation. The key idea behind this and similar methodologies is to derive risk-neutral moments from the
economic value of contracts replicating the pay-off to the nth power. Following [66], for example, the value
of the volatility contract can be generally defined as Rt(�)2. And consequently, the definition of risk-neutral
variance evolves as

R.N. Variancet(�) = ⟨(Rt(�) − ⟨Rt(�)⟩ℚ)2⟩ℚ

. It is now easy to see that risk-neutral variance is the ex-ante equivalent to the fluctuation function of Eq.9,

R.N. Variancet(�) ≡ F 2t,ℚ(�)

. This builds the bridge between non-linear dynamics and measurable investor expectations.

So to speak, realized fluctuations are computed from log-returns rt, and forward-looking ones from
option implied variance. The subsequent steps are common again. Once time-local fluctuations for different
levels of � are estimated, they need to be transformed into q-order fluctuations Fq(�) with q denoting the
particular moment. For this purpose, the sequences of F 2t (�) will be broken down into segments of size �.
The original routine of [59] chooses the segments to not overlap for the sake of computational effort (step-
size = �). Note that non-overlapping segments make the estimates of Fq(�) sensitive to the particular choice
of � levels. Hence, using maximally overlapping windows instead (i.e., step-size= 1) was found to have
clear advantages with respect to robust estimation of Fq(�) as well as the detection of non-linearities within
(see [42, 58, 60, 67]). Thought researchers exposed to very long sequences might prefer non-overlapping
segments due to computation time; the procedure below presents the more robust fully overlapping ones. In
this sense, moment wise fluctuations follow the statistical mechanics of

Fq(�) =
q

√

√

√

√

1
n

n
∑

t=1

(

Ft(�)
)q (9)

. Having estimates of the q-wise fluctuations enables to investigate the correlation dynamics in greater detail.
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2.3. Trading Fractal Risk
Finance literature put much effort into studying the variance risk premium, which is basically defined

as the difference between realized and risk-neutral log-return variation. The standard instrument to trade
such exposure is via variance swaps. Innovations in that field point to the works of [68] and [69], who,
independently of each other, demonstrate that a portfolio of OTM options and futures can be constructed
to replicate the value of a variance swap. Further, the term structure of the variance risk premium was
recently studied by [70]. Their conclusion, the premium term-structure varies over time and is dependent
on market phases. As discussed above, risk-neutral variance of log-returns is the direct representative of
the expected fluctuation function. Hence, the term-structure of variance risk premia can be reduced down
to fractal risk exposure. The trading of such exposure can be achieved as follows.

A standard variance swap (i.e., ’the log-contract’ [71]) tracks the entropy of log-returns, and not the
variance directly. When assuming stationary returns, one could thus replace the fluctuation functions directly
with the (de-annualized) prices of such variance swaps. In this case, MF-DFA is basically replaced by
the entropy scaling analysis, see [57]. In the presence of jumps and other effects, however, it is known
that the standard variance swap will be a biased proxy of risk-neutral variance. For this sake, consider
an alternative variance swap (like the one of [72]) which replicates the centered second moment (Eq.8).
Generally, a variance swap exchanges realized variation for some pre-specified strike Ṽ . Under the risk-
neutral measure, the value of the variance swap is zero at inception such that Ṽ equals theℚ-expectation for
future realized variation. In practice the swap contracts are quoted in annualized terms, hence risk-neutral
fluctuation functions are equivalent to buying � units of Ṽ , Vt(�) ∶= �Ṽt(�) ≡ F 2t,ℚ(�). Since Vt(�) represents
a traded price it is not put into expectation brackets. From the multifractal formalism we know that

Vt(�) = Vt(1) �2⟨Ht(�)⟩,
lnVt(�) = 2⟨Ht(�)⟩ ln � + lnVt(1)

and

⟨Ht(�)⟩ =
1

ln 2�
[lnVt(�) − lnVt(1)] (10)

. Vt(1) can be interpreted as the price of a short-term variance swap. From the large deviation formalism we
know that the same relation can be used for an approximate of realized Hurst exponent. This proxy will be
denoted by ⇀H ′

t(�). Now, let us define the horizon-specific fractal risk premium FRPt(�) as the difference
between realized and expected Hurst exponents,

FRPt(�) ∶=
⇀H ′

t(�) − ⟨Ht(�)⟩

. Substituting for Eq.10 and rearranging terms, one observes

FRPt(�) =
1

2 ln �

[

ln
⇀V t(�)
Vt(�)

− ln
⇀V t(1)
Vt(1)

]

. So, the term in the brackets represents the log-return of the Vt(�) contract minus the log-return of Vt(1).
Therefore, FRPt(�) is replicated by a portfolio with a long position in a far-end variance swap and a short
position in a near-end swap, overall weighted by one over 2 ln �. In real world applications, it might not be
feasible to trade the very short end variance swap because it is highly affected by market frictions, requires
frequent re-balancing for long-term strategies, or simply might not be available. Therefore, it is more con-
venient to replicate the return from a swap contract that reaches a bit further in maturity. Say, �min is the
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shortest feasible horizon for a traded variance swap falling not into the mentioned pitfalls (e.g., �min = 1
month). The return for Vt(1) is then approximately replicated by

ln
⇀V t(1)
Vt(1)

≊ �−2⟨Ht⟩ ln
⇀V t(�min)
Vt(�min)

where ⟨Ht⟩ can be estimated from Eq.6. Hence, instead of shorting Vt(1) to replicate FRPt(�), one can use
�−2⟨Ht⟩ units of Vt(�). From a replicating portfolio using maturities of one month and longer it is unlikely
that the realized measure ⇀H ′

t(�) reflects local correlation behavior, simply because time-windows are too
large. Thus, ⇀H ′

t(�) should be interpreted as the persistence realized over [t, t + �] rather than current
persistence (i.e.,Ht).

In case of mono-fractality, FRPt(�) should be constant across �, and trading the long-short portfolio is
already a direct bet on the random walk of the underlying. This changes in presence of multi-scaling. As
demonstrated by [62], the mean of the time-conditionalHt(�) distribution is a more stable descriptor of local
persistence, hence

⟨H ′
t ⟩ =

1
n

n
∑

i=1
⟨Ht(�i)⟩

is an sophisticated proxy for a discrete set of variance swaps. Therefore, investing into a portfolio of equally-
weighted FRPt(�) positions,

FRPt =
1
n

n
∑

i=1
FRPt(�i)

represents a more stable bet on the difference between expected and realized persistence. In an economic
sense, FRPt can thus be interpreted as a persistence risk-premium, hence the constructed portfolio can be
called the ’persistence swap’. Technically speaking, the persistence swap allows traders to directly bet on
the degree of random-walk. This allows investors to directly bet on market-efficiency.

3. Empirical Illustration: S&P 500
This section sketches an empirical illustration of implied fractals upon the example of the S&P 500

index. The data frequency is daily, spanning the horizon of January 1996 to December 2020. To demonstrate
that the derived fractal coefficients are not just some statistical artifacts but come with clear implications,
connections are drawn to realized return structures. The option data used is based on OptionMetrics and was
provided by Prof. Grigory Vilkov.5 It contains model-free estimates of simple variance swaps ([72]). There
are two reasons why I decided to use this data set. First, the data is publicly available, hence replication
of this work should be easy. Second, simple variance swaps track the centered second moment and is thus
de-trended. In case of time-varying mean returns this should deliver more reliable results than using more
common entropy tracker (VIX-like contracts).6 Data for the realized price series of the S&P 500 is derived
from Thomson Reuter’s Datastream, building on adjusted closing prices.

5I am thankful to Prof. Grigory Vilkov, Frankfurt School of Finance. The data is publicly available at www.vilkov.net/
codedata.

6Scaling laws of fluctuation functions using log- or simple returns are almost identical up to a minor approximation error. The
difference in scaling coefficients (H) between the two is 0.0002 using realized returns over the total horizon.
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Figure 3: Realized local persistence and log-price of the S&P 500 index. Shaded
areas indicate major and a few minor rapid downturns. A common feature is the harsh
break in the correlation structure, recognized as drops in persistence (Ht). Hence,
crashes cause strong variation in Ht, with multifractality being the consequence. Note:
Ht = 0.5 means random walk, above is trending and below is anti-persistent.

3.1. Parameter Choice
∙ Time-Scale, �. The option dataset covers implied variance estimates with target maturities of 1, 3, 6, 9
and 12 months. This choice seems reasonable from two aspects. First, it is known that the very short-
end of the volatility term structure is highly affected by noise. Hence, the lowest time-scale of one month
avoids to fall inside that range. Second, the very far end of the term-structure is typically illiquid such that
expectations are not properly represented. With the largest time-scale of one year this should not be an issue.
The number of interim time-scales should be linked to the goodness of fit from the regressions of Eq.3; if
the fit is weak, then a larger number of interim time-scales is necessary to stabilize the regression. For the
application at hand, the choice of 34 interm steps turns out to be sufficient. Realized fluctuation functions
are estimated from returns, hence are more exposed to heavy-tail events and other heterogeneous structures.
Thus, � for the realized series is chosen differently, following suggestions of [53]. Generally, the objective
is to choose � for the realized signal as broad as possible, but non-surprisingly there is a trade-off. Going
to small runs the risk of observing an artificial dip on the left-hand-side of the Fq plot, which arises out of
limited precision in the measurement of the series (e.g., prices with only two digits). The smallest time-
scale chosen for this empirical study is thus 10 days. The largest time-scale is a trade-off to the estimation
robustness of the fluctuation functions, the larger � the smaller the number of observations used for Eq.3.
Also, it is documented (e.g., [42]) that if the series is exposed to noise, than this causes a flat-out in the Fq
plot on the right-hand-side. Hence, the particular choice of the largest time-scale was set to �max =

n
10 . The

proper choice of both, �min and �max, is verified upon visual inspection of the Fq plot, which is put to the
appendix. The interim time-scales are constructed from log-equally spacing between �min and �max, using
34 steps. The log-equally spacing ensures that the explanatory variable in Eq.3 is equally spaced, which
supports robustness of the fit.

∙ Fluctuation Order, q. Multifractal DFA principally allows to use any real number for the moment order,
q ∈ ℝ. It is recommended to use both positive and negative values for q to derive both sides of the singularity
spectrum. It is particularly handy to set qmax = -qmin as it allows to directly investigate the symmetry of
the singularity spectrum from visual inspection. The symmetry is economically intersting as it uncovers
information about the leveling of small versus large fluctuations. One recognizes that the sensitivity of Fq
is directly proportional to the level of q. Hence, a too large qmax potentially causes corrupted tails in the
singularity spectrum, which can be examined from visual inspection. For this work, the proper choice of
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qmax was empirically assessed on the realized return series. The procedure was to first estimate the singularity
spectrum for a broader range of qmax = 15, and then reducing down to the range of valid tails. From this,
the choice fell onto qmax = -qmin = 7.5. The moment orders are then chosen as q ∈ [−7.5, 7.5] with interim
step size of 0.5. This allows a smooth visualization of f (�).

∙ Secondary Time-Scale, �′. Option data is per definition time-conditional. Further, by no-arbitrage princi-
ples one can assume that investor expectations are properly incorporated into current option prices at time
t, such that the entire term-structure concurrently changes with updates in the market outlook. From this
reasoning, I set �′ = � estimating time-local implied fractals. However, things are again different at realized
series. The trade-off is between choosing �′ large enough to give proper estimates of Ht(�′) but also small
enough to be considered local at t (see e.g., [53]). Using daily financial data, I presume one- to four trading
weeks with daily interim steps to be a reasonable choice, �′ ∈ [5, 21]. By Eq.5, the estimate of local per-
sistence Ht is less sensitive to the choice of �′ as for example originally proposed by [53], using only one
particular level of �′ instead of a range.

3.2. Anatomy of Meltdowns
A human can take a pen and draw a square, the sides and angles describe its geometry. Humans can

also cause financial markets to crash; it is then fractal formalism to describe the geometry. Crashes are
recognized in the distribution domain as heavy tails, the scaling of distributions tells an even richer story. A
common feature of market crashes are negative price jumps, caused by non-linear human behavior ([73]).
Volatility is generally considered to be mean-reverting. A jump in price causes a shock in volatility for
the near future, while the expected long-end towards which it converges will be less affected. The realized
fluctuation term-structure thus befalls a sudden non-parallel change, taking the form of a flattening. The
coefficient Ht is strictly tied to the slope of the log term-structure, hence strongly drops when markets
crash. If Ht is not constant, it means that multiple scaling coefficients are necessary to describe the
distribution’s scaling behavior. Hence, returns are multifractal in the presence of jumps. As for volatility, it
will befall high levels during short periods of crashes, until it oscillates around a longer lasting natural level.
Volatility clustering thus means that it does not scale always the same throughout time, hence multiple
fractal structures exist. This simple formulae-free statistical mechanics sum up [48]’s fractal description of
volatility clustering and price jumps.

Before studying implied fractals, attention is put upon the realized behavior of correlation structures
throughout time. To distinguish between implied and future-realized metrics, no superscript will be used for
the former, and ’⇀’ for the latter in the subsequent reading. The focus is thus on realized local persistence
⇀H t for now, before diving deeper into ex-ante observations. The Hurst exponent is computed according
to Section 2. Routines are left aligned such that estimates represent future-realized behavior, unknown ex-
ante. The output is visualized in Fig.3. This plot uncovers important insights that are in line with the above
explained dynamics. When studying the series of realized persistence ⇀H t one recognizes that it oscillates
around the critical 0.5 level. This meaning that random walk might hold on average. A pattern that can be
further observed is that ⇀H t is mainly within the trending region (> 0.5) during bull markets, and in the ’wild-
randomness’ domain at downturns. Thought, this pattern is more pronounced in the last 20 year, but less clear
for the times previous to the Dot-com bubble. The shaded areas at Fig.3 indicate examples of sudden draw-
downs of the S&P 500 index. It is recognized that the (small and larger) crashes are associated to structural
breaks in self-affinity, noticed as drops in ⇀H t. The plot thus allows to gather a deeper understanding of the
market’s realized multifractal behavior. The times of mild (⇀H t ≈ 0.5) and wild (⇀H t < 0.5) randomness are
clearly visible. The stronger ⇀H t deviates from random walk, the easier it is for econometric models to make
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Table 1
Multifractal statistics of implied expectations and realized returns of the S&P 500 index. The Hurst exponent
H = ℎ(2) determines the degree of persistence; for random-walk series, H = 0.5. The spreads Δℎ and Δ�
indicate how much H can vary over time, this is also known as multifractal strength. After correcting for spurious
sources (FSE, heavy-tails), the multifractality remains significant.

implied realized

H 0.524 0.448
Δℎ 0.233 0.218
ℎ(q)min 0.397 0.367
ℎ(q)max 0.630 0.585
)2� (q)∕)q2 -0.008 -0.007
Δ� 0.378 0.390
Δ�spur 0.101 0.247
Δ�nlc 0.277 0.143

R2 0.999 0.998
R2iid 0.158 -0.091

accurate predictions. Thus, knowing ⇀H t ex-ante would come at great advantages. But how to predict ⇀H t?
An educated guess is to rely on the wisdom of the crowd, usingHt as implied by traded option prices.

3.3. Large-Scale Fractals: Implied vs. Realized

Figure 4: Visualization of the S&P 500’s fractal characteristics. The red lines relate
to ex-ante expectations as implied by option prices, the green ones to the statistics as
derived from the index’s realized returns.

The non-flatness of realized local Hurst exponent (Fig.3) demonstrates that the S&P 500 is likely to be
multifractal. To examine whether the non-linear behavior is significant it is useful to build on the Legendre
formalism and study fractals on the large scale. While empirical evidence is already given for realized
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Figure 5: The randomness to expect: time-series of implied versus future-realized
return persistence of the S&P 500 index. The overlap of the two series is very high.
Hence, ex-ante persistence is a qualified predictor of future realized randomness.

returns, themore interesting question is how they compare to implied fractals. To tackle this question implied
fractals are computed according to Section 2, the discussion of economic implications is put to Section 4.
A good point to start with is the output of Fig.3.3. The plot of generalized Hurst exponents ℎ(q) is non-
flat for the implied expectations as well as for the realized returns. Given that both ℎ(q) functions are not
flat, one observes at first sight that multifractality is not only given at realized returns, but also ex-ante.
The realized ℎ(q) function seems approximately linear, while the implied one features a modest curvature.
Despite the shape, the slopes of the ℎ(q) functions seem very similar. What clearly differs between ex-ante
and realized ℎ(q) is the intercept. It is observed thatH = 0.52 for the implied andH = 0.45 for the realized
signal. This means that risk-neutral expectations, more or less, believe in random-walk, while realized
returns have a tendency for anti-persistence. The gap between implied and realizedH potentially diminishes
after correcting for the variance risk premium. The second plot of interest is the scaling function � (q). Both
functions intersect at � (0) = −1, which is a general feature of fluctuations. As the ℎ(q)’s are not constant,
it is less surprising that the scaling functions are not linear, hence also reject uniscaling behavior. Special
attention should be put on the curvature. Tab.1 reports the convexity of the scaling function, estimated by

)2� (q)∕)q2 =
[� (qmax) − � (0)][� (0) − � (qmin)]

[qmax − qmin]2

. Here we observe that both functions are convex, with the implied one showing a slightly stronger pattern
than the realized ones. This is consistent with theΔℎ estimates and indicates that both series are multifractal.
Visual inspection of � (q) confirms the proper choice of qmax. The latter is also confirmed from studying the
tails of the multifractal spectra: The smooth inverted parabola shape as discussed in [55] holds up to qmax
and down to qmin. The peak of of f (�) being equal to one is an universal characteristic. That this peak is
shifted to the left for the realized and more to the right for the implied expectations also indicates that the
former has a lower degree of persistence. Besides the locations, the spectra width’s seem equivalent, so the
raw multifractal strengths are similar. A more loosely interpretation of the spectrum width is as the variation
of randomness. A difference between the two is given at the skew of the distributions. The realized spectrum
demonstrates a right skew while the implied one a left skew. This uncovers the leveling effect.

From a statistical point of view it should bementioned that spurious effects exist that artificially inflate the
width of the multifractal spectrum. The first of such sources is applying Eq.3 on non-linear log-fluctuation
functions. There are a few reasons why log-Fq(�) plots can become non-linear. The most commonly known
ones are insufficient de-trending ([59]), an improper choice of �min and �max ([53]) or the existence of multi-
ple fractal regimes ([42]). Hence, inspecting the fluctuation functions visually is important. For this study,

W. Schadner: Working Paper Page 14 of 26



linearity at the described setting holds; plots are attached at the appendix. Once Fq(�) functions per se are
separated from inappropriate areas, still two spurious sources remain. Those two sources are the finite size
([74, 75]) and the heavy-tail distribution effect ([76]). For realized signals, it is convenient to capture the
two spurious effects from running an identical MF-DFA upon a surrogate sequence of the original returns.
The surrogate sequence should be transformed such that it preserves the same degree of linear correlation
(i.e., identicalH) and the same distribution of x, while destroying all non-linear correlation (i.e., true multi-
fractality). To achieve that, I follow [42] and use the iterated amplitude adjusted Fourier transform (iAAFT;
[77]). The spread in singularity exponent of the surrogate sequence Δ�sur thus represents spurious mul-
tifractality. Deducting it from the raw spread Δ� hence leaves the degree of non-linear correlation Δ�nlc ,
which is the measure of pure multifractality. The pure multifractal width can thus be easily estimated for
realized returns. For implied expectations without data for the incremental process, however, assessment
is difficult. To come up with a sophisticated approximate I impose two assumptions. First, the horizon for
implied volatilities is theoretically unbound, hence there will be no finite size effect. Second, the heavy-tail
effect is the same for the implied as for realized sequence. Both assumptions might be relaxed for follow
up research, but are an educated guess here. After deducting spurious spreads from raw ones, it is observed
that significant multifractality as measured upon Δ�nlc remains for both. This implies non-linear correlation
risk. It should be further emphasized that regression fits of the fractal formalism on fluctuation functions are
measured by the coefficient of determination R2 and reported in the last row of Tab.1. As can be seen, the
multifractal framework explains the market behavior very well with goodness of fits larger or equal 0.998.
For comparison, the iid assumption (ℎ(q) = 0.5,∀q) yields R2iid’s of 0.158 and -0.0913, hence clearly fails
to properly explain market dynamics.7

3.4. Local Behavior and future-realized Returns

Figure 6: Time-conditional implied persistence versus future realized persistence (left)
and next day variance (right).

The large-scale analysis confirms that the S&P 500 is significantly multi-fractal, with similar singularity
spectra for realized returns and implied believes. In the economic context, however, the local measure
of randomness, Ht, might be of greater interest. The analysis sketches comparisons of implied Ht to
future-realized ⇀Ht and the next-day realized volatility ⇀� . For the latter, data from the Oxford-Man Insti-
tute is used. It contains daily variance estimates as computed on high-frequency returns (5minutes interval).8

7R2iid are computed as coefficients of determination from fitting Eq.3 with fixed ℎ(q) = 0.5.
8The data is publicly available at https://realized.oxford-man.ox.ac.uk/.
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Let us first investigate the time-series ofHt and
⇀Ht; Fig.6 draws the plot. Just from visual inspection it is

already apparent that the assumption of constant ⇀Ht does not hold. Both series, implied and future-realized,
seem to oscillate around the magical 0.5 level. Hence, random walk might hold on average. However,
local persistence occasionally deviates from 0.5 quite strongly, especially during strong boom markets and
crashes. It is remarkably that implied Ht closely tracks the future realized one. At this point I would like
to emphasize that Ht is completely derived from ex-ante variances, while ⇀Ht uses realized returns; two
different datasets from two different sources. The more it is surprising that the both series are overlapping
in such a high degree. The intuitive explanation for why this is the case may arise from arbitrage-freeness
of the volatility term-structure. When liquid option prices of different maturities are free of arbitrage,
then they embed an unbiased (risk-neutral) expectation of future variance. As a consequence, the implied
power-law scaling will be also unbiased, hence impliedHt should closely track the future realized one. This
principle explains the high Pearson’s correlation of 0.663 betweenHt and

⇀Ht. A second observation is that
implied Ht is on average larger than future-realized ⇀Ht by 0.050. Such a pattern occurs when the variance
risk premium is large for near-term options but decreases the longer the maturity. Hence, a ’persistence risk
premium’ in the sense of Ht >

⇀Ht agrees with the empirical observations (and economic arguments) of
[70] that the expected variance risk premium term-structure is on average downward sloping. As discussed
before, another pattern that also immediately catches the eye is the behavior around the three crises that
occured during the observation horizion (Dot-com 2002, Financial 2008, COVID 2020). Ht seems to be
above average during bullish market phases, but is harshly dropping with the out-break of a crisis event.
The very same statement holds for realized persistence ⇀Ht. From this follows that implied Hurst exponents
might be interpreted in terms of market mood: neutral if 0.5, bullish if above and pessimistic if below.
This idea was already sketched in [78], arguing via the fractional Black-Scholes model ([49, 50]) though.
Following the sentiment interpretation, growing market phases are characterized by trending returns, while
pessimistic times show strongly overreacting patterns. Technically speaking, the more Ht differs from
0.5, the less random the market is and the easier it becomes for econometric models to predict short term
returns. This is statistical mechanic is quite intuitive since local persistence is a measure of auto-correlation.
Therefore, as ex-ante implied Ht closely tracks future realized ⇀H t, it is a highly qualified measure for the
randomness to expect, with economic implications to market sentiment, market efficiency, econometric
forecasting and investment strategies.

It is thus of particular interest to study realized return structures in greater detail. Fig.6 visualizes the
plots of implied Ht versus the realized persistence and realized next-day’s log-volatility. The plots allow
to gather a deeper understanding of the linkages between implied fractals to future return structures. From
visual inspection it is observed that, as presumed, the relation between Ht and

⇀Ht is linear. The Pearson’s
correlation is high at 0.66. Given Eq.2, a linear relation is also expected betweenHt and log-volatility. This
is confirmed by Fig.6. Here the Pearson’s correlation is even stronger at -0.82. This significant relation
embeds a very high potential for implied fractals to predict the high-frequency return variance for the next
day. Since there is a strong link between Ht and log-⇀� , it will mean that returns are heteroskedastic in Ht;
a fact that can be useful for econometric forecasts of short-term returns. The negative relations states that
when implied Ht is low today, then there will be great intra-day return variance tomorrow. Hence, it will
be more difficult to predict short-term returns for times when Ht < 0.5. Whenever Ht > 0.5, it seems that
investors are safe to not expect strong negative price drops for the next day. Market crashes, characterized
by strong negative price jumps, seem to happen only for times of Ht < 0.5. Implied multifractality thus
seems to explain future risks well. The picture looks like market turmoils of high volatility are only possible
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Table 2
OLS regression of implied Ht and implied volatility on future realized persistence and next-day variance. Option
implied information is a significant predictor for the future degree of randomness.

dependent variable
real. ⇀H t+1 real. ln⇀� t+1

Intercept 0.071*** 0.071*** -3.536*** -3.745***

(0.006) (0.006) (0.072) (0.062)

imp. Ht 0.785*** 0.785*** -12.821*** -12.449***

(0.011) (0.01) (0.125) (0.109)

imp. ln �′t -0.146*** 1.650***

(0.003) (0.040)

Obs. 6288 6288 5265 5265
Adj. R2 0.440 0.575 0.666 0.748

Note: * p<0.05; ** p<0.01; *** p<0.001

when ex-anteHt indicates anti-persistence for the returns to follow.

To quantify the predictive potential of implied fractals, simple OLS regressions for the linear relations as
detected in Fig.6 are run. That is, ex-ante data versus future realized ⇀Ht and log-

⇀� t+1. Two models are used
each; one using onlyHt as the predictor and one additionally including the log implied volatility ln �t with
a maturity of 30 days. To not fall into the multicolinearity trap, the latter is orthogonalized into ln �′t by first
regressingHt on ln �t and then deducting the fit. The results from the four regressions are presented in Tab.2.
All regression coefficients turn out to be highly significant. This is less surprising given the large number
of observations. The first regression, Ht on

⇀H t, indicates a positive intercept and the coefficient smaller
one. These two patterns favor the existence of a fractal risk premium. The goodness-of-fit R2 = 0.44 was
already indirectly reported before, since at this setting it equals the square root of the Pearson correlation.
When additionally including the implied volatility, the predictive potential as measured upon R2 increases
to 0.58. This observations allows the conclusion that future realized persistence and consequently market
efficiency can indeed be predicted. The predictive regression of the ex-ante measures on the next intra-day
return variance sketches an even stronger picture.

3.5. Fractal Risk Premium
This section studies the time-series of the realized fractal risk premium. For this purpose it builds on

synthetic prices of simple variance swaps ([72]), hence uses the same data as above. FRP is calculated
according to section 3.3. Since � ∈ {1, 3, 6, 9, 12} months, it follows that ⇀H ′

t is an average Hurst exponent
over a longer horizon, as opposed to ⇀H t which describes current correlation behavior. The time-series of
estimated fractal risk premium is displayed in Fig.7. On average, the fractal risk-premium is negative, hence
the investor taking the opposite positions makes capital gains most of the times. However, the special pattern
arises that FRPt spikes significantly when markets show sudden downturns. The pattern is less surprising
considering the multifractal dynamics caused by a fast varying short-end and slow varying long-end of
fluctuations. This characteristic makes the persistence swap attractive for investors seeking for insurance
against unexpected market crashes. (... TBD ...)
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Figure 7: Log-price of the S&P 500 versus the price of the persistence swap. The
contract is designed as a long-short position of variance swaps with different maturi-
ties, monetizing the difference between implied and realized persistence (1 year). The
premium is thoroughly negative during bull markets, but befalls remarkable spikes on
market downturns. This feature makes the peristence swap interesting for hedging
against market crashes.

4. Discussion
Coincidence?

With an eye on Fig.5, when implied persistence has been largely unnoticed so far, how does it come
that it highly overlaps with future realized ⇀H t? A plausible explanation is that much effort has been paid
on arbitrage-free calibration of volatility dynamics, long before fractal methods received attention in the
discipline of finance. In that sense, investment research works hard to make precise predictions for future
variance over a wide domain of horizons. The S&P 500 index itself and the options written upon are
highly liquid, which makes systematic mismatches costly. Hence, significant mis-believes are unlikely to
survive for the long run. Therefore, the term-structure of implied volatilities will be highly correlated with
the term-structure of future-realized volatilities. Recap that the term-structure fluctuation determines the
scaling coefficient, it is thus natural that impliedHt is strongly correlated with future realized

⇀H t.

So to say, when ex-ante expectations are not systematically mis-estimating future realizations, implied
Ht will be a good predictor of

⇀H t. A generally noticed fact about volatilities is their mean reverting behavior.
This means that the short-end volatility has a tendency to converge towards its long-end. Hence, near-term
volatility fluctuates more strongly and the far-end rather slowly. With the outbreak of an adverse events,
volatilities - implied and realized - spikes up drastically for the short-end but modestly for the long one.
Hence, one observes a structural break in the fluctuation scaling behavior, and a drastic drop in local Hurst
exponent. Therefore, it is natural that market crashes are not just spikes in variance, but also structural breaks
in the correlation function. From the mean-reverting variance it follows that local Hurst exponents will also
revert back to a natural level.

Comparable Approaches
Implied Hurst exponents were previously computed for example in [78], who addressed the topic

building on the fractional Black-Scholes market model ([49, 50]). This model utilizes the fractional
Brownian motion, which implies two crucial assumptions. First, it assumes that returns are normally
distributed, hence in contradiction with implied volatility smirks. Second, it assumes returns are
monofractal, thus rejects that Ht will vary in time. Those two flaws might be disfavored for empirical
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researchers. The non-parametric implied MF-DFA as proposed within this work does not require such or
any further specific assumptions. Other methodological issues arise at the estimation of realized fractals.
It should be mentioned that the very first empirical work that introduced the statistics of persistence is
the rescaled-range (R/S) analysis of Hurst ([64]), thus the wording ’Hurst exponent’. Since then, it was
recognized ([2]) that if the series is non-stationary, then estimates will be biased and a proper de-trending
is obligatory. I guess most researcher agree upon the fact that mean returns are time-varying, thus building
on simple R/S does not make much of a sense for financial return data. A recent example is given by the
contradicting results of [33] (R/S) and [42] (MF-DFA), both running persistence analyses for the VIX
index. Another flaw arises from the proper usage of the empirical toolbox. In that sense, using R/S or DFA
on simple rolling windows does not properly represent the local correlation structure. This is due to two
reason. Either windows are chosen to long such that local effects are blurred and smoothed out to long-term
average. Or, windows are too small such that estimating correlations from a handful of observations is
highly unreliable. This is why [53, 57] came up with the discussed geometrical work-around (Eqs.4). The
bias of rolling window estimates is demonstrated by [47], visualizing the problematic from simulated series.
They bring clear evidence that Ht under [53]’s MF-DFA approach truly captures the local correlation
structures, while this is not the case for rolling window estimates (e.g., used in [43]).

From the above stated reasons it is less surprising that the MF-DFA method experienced a tremendous
growth of usage within its 20 years of existence. Thought, while handy to match with ex-ante variance, the
method is also not perfect. A document issue arises at a very low or even negative domain of ℎ(q) exponent,
where the method might not be reliable (cp. [59]). While this is not an issue for random-walk-like series
(e.g., equity returns), oscillating around H = 0.5, this occasionally becomes reasonable for variances that
are documented to be rough.

Market-Efficiency
The early version of [79]’s EMH (efficient market hypothesis) considers market returns to follow a

classic random walk. This clearly only holds for H ≈ 0.5. The approximate sign enters here because of
trading costs and other frictions, such that small deviations are not profitable to monetize. Thus, when
H deviates strongly from the magical 0.5 level, then weak-form EMH will not hold. This is why several
papers empirically studied EMH based on the Hurst exponent, examples are [38–40]. Much evidence
points into the direction that the Hurst exponent of a financial market oscillates around 0.5 or is slightly
above. It should be further highlighted that many studies up to today use outdated empirical methods that
were proven to be biased for a market’s non-linear dynamics. [64]’s R/S analysis is one example for this.
Another one, also quite frequently used, are rolling-window routines of second-order methods (e.g, DFA,
R/S). Note that [43] provide evidence that second-order methods require at least 200 observations in order
to yield reliable estimates of H . This aspect is crucial, and [47] demonstrate very clearly how the rolling
window routines fail to capture local correlation behavior. It is especially due to two reasons, either the
the windows are chosen to small (e.g., below 200 observations), then the estimation via second-order
methods runs into unreliable estimates. Or, windows are chosen to large, such that the estimates gets
averaged out and do not properly represent local behavior. Similar arguments are brought in [53, 57],
from which the MF-DFA approach is emphasized to be superior in that aspect. Nonetheless, from the
empirical insights of the correlation patterns the fractal market hypothesis (FMH) evolved, which puts the
focus mainly on the overall Hurst exponent H . The broad consensus supports the idea that large markets
are information efficient, yet show significant fractal patterns. The frictions are argued to arise due to
trading costs and high bid-ask spreads. Overall, however, the frictions are argued to be non-profitable
and H ≈ 0.5 holds approximately. While much of the FMH arguments focus on the H exponent itself,
Mandelbrot [73] brings in a different perspective from the evidence of multifractality. It is widely accepted
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that financial markets are characterized by H ≈ 0.5 and Δℎ, in simple words, this is referred to as the
multifractal random walk. Mandelbrot’s point of view on this behavior is that even thought correlation
structures and changes within exist, markets are still efficient as long as the fractal patterns are unpredictable.

The empirical evidence as found above contradicts this statement by large. Ex-ante believes on Ht
seems to predict future realized ones quite well. This evidence is thus finance-theoretically challenging.
On the one hand, market efficiency causes that public information is properly represented in option
prices, such that they adequately represent the expected future development. On the other hand, the
term structure of implied variance uncovers that believes strongly deviate from the Ht = 0.5 level
quite often, see Fig.5. This deviation together with the predictability of local correlation structure
rises the potential for trading strategies, which simply use option and historical return data. As
mentioned before, a feature of market-crashes is the structural break in correlation ([80, 81]), recog-
nized as a harsh drop in local persistence. With an eye on Fig.5, one recognizes that at the harsh drops
that initialize a crises,Ht is slightly lagged compared to ⇀H t. Therefore, sudden jumps are still unpredictable.

To close the discussion on market efficiency, I would like to emphasize that technical analysis frequently
misunderstands the concept of Hurst exponents. Fractal structures are used to argue in favor of their trading
signals. The key issue mistaken herein is the difference between ’trend’ and ’trending’. The former cor-
responds to the arithmetic mean, the latter one to fractals, both being literally decoupled from each other.
Consequently, a time-series can be trending but still show a negative trend, and vice versa. Hence, this is
one potential pitfal in the interpretation of Hurst exponents. The second one is also simple; there is simply
no statistical nor economic reason why the Hurst exponent as realized on past returns should repeat itself in
the future. Quite the opposite seems the case, considering [42]’s empirical evidence that Ht is highly anti-
self-similar. Hence, using H estimates from historical returns is very likely to be useless for permanently
profitable trading strategies.

Investment Opportunities
Fractal market hypothesis relaxes classic EMH under two conditions. First, Hurst exponents deviate

only slightly from 0.5 such that monetizing auto-correlated returns is not profitable after trading costs and
market frictions. Second, when returns are significantly multifractal, then markets are still efficient as
long as Hurst exponents are unpredictable. With the empirical insights from above, the entire situation
becomes puzzling. If option prices were significantly misestimating local persistence, then this would
enable arbitrage opportunities in the option market. On the other hand, this implies that Hurst exponents
and consequently short-term returns become predictable, especially for the times whereHt is quite different
from 0.5. The empirical evidence from above points into the direction that especially the latter is the
case. This raises potential for investment strategies that monetize expected auto-correlation in returns. At
this point it is important to not mistake the wording ’trend’ by ’trending’, as they can be mathematically
independent. Stock returns might have a negative trend (mean < 0) while simultaneously being trending
(H > 0.5); the other way around is also possible. It seems that technical analysts occasionally mistake the
usage of Hurst exponents as ’trend’ to motivate their approach. Also, the wording of stock momentum -
referring to a positive return in the previous month - forms a potential fallacy. The one is trend continuation,
but this positive mean return can also happen atH < 0.5. This pattern can be seen for example at the early
recovery period from the financial crises in 2009. Overall, however, the picture looks like bull markets have
trending returns and bear market anti-persistent ones (cp. Fig.3).

Consider now an investor who wants to monetize the predictable persistence of daily S&P 500 returns,
his/her strategy could look as follows. Investments in the index are not directly possible, hence one has to
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use ETFs or futures. For this sake price data of the SPDR S&P 500 ETF (SPY) is used. Based on [82]
one can assume transaction costs in the size of 1.25 basis points per trade. Since implied Ht overestimates
realizedHt on average, the physically expected ⟨Ht⟩ℙ will be computed as the implied one plus the average
difference (time-expanding) between implied and realized. The investor now allocates between the risk-
free rate (1 month treasury bill) and the ETF. Each day, the allocation decision is based on the information
of ⟨Ht⟩ℙ and the one-day historical return rt.9 The investor expects a positive return for the next day if
(i) ⟨Ht⟩ℙ > 0.5 and rt > 0 or if (ii) ⟨Ht⟩ℙ < 0.5 and rt < 0. In such cases the investment is into the
ETF. Otherwise the index is expected to have a negative return and the investment is into the risk-free rate.
The performance of this strategy compared to the S&P 500 is now as follows. Run over the entire horizon
(1996-2020), the index had a mean return of 8.7% p.a. while the strategy outperformed this at 10.8% and
9.2% (before/after trading costs). At the same time realized standard deviations were higher for the index
at 18.9% compared to 14.3% of the strategy. This results into Sharpe ratios of 0.346 (index) versus 0.601
and 0.490 (before/after costs). Hence, the randomness timing strategy outperforms the index in absolute
and relative terms. Especially when it comes to crash risk, the strategy seems to be very favorable as the
max-drawdown is reduced from -0.596 (index) to -0.243 (strategy). This little example demonstrates the
usefulness of option implied persistence. (another simple example: invest only ifHt > 0.55.)

5. Conclusion
Volatility clustering is a well establish stylized fact, which was first described in the 1960s inherently via

fractal geometry. Yet it is surprising that finance literature heavily sticks to the strict assumption of classic
random walk. It is fact that asset returns follow highly complex dynamics, caused by investor’s non-linear
behavior and economic interaction effects. Hence, it is unreasonable to assume that the degree of randomness
is always the same. The basic machinery of financial markets is to aggregate investor expectations into asset
prices. The more it is important to understand the dynamics of such forward-looking believes. What fractal
geometry basically does is to describe how fluctuations scale in horizon. This scaling behavior, in turn, maps
into the correlation structure of returns, hence determines the degree of randomness. Aim of the presented
paper is to show how these fundamental statistical mechanics can be applied upon the term-structure of
option implied volatilities, reflecting investor’s forward-looking expectations. When assuming that (liquid)
option prices are free of arbitrage, then the natural consequence is that the slope of the log-term structure
Ht relates to the ℚ implied expectation of future return persistence. Thought it is known that this slope
varies substantially over time (especially on crashes), it contradicts the assumption that investors believe in
classic random walk. Technically speaking, the greater the variability ofHt the stronger the multi-fractality.
A stylized feature of such is the anatomy of market meltdowns, characterized by a significant break in the
correlation structure. This can be early detected from option implied Ht. Exposure to persistence can be
achieved from a long-short portfolio of variance swaps with different maturities. This makes betting on
random walk straight forward. The associated risk mark-up is coined ’fractal risk premium’ FRP herein.
Empirical investigation upon the S&P 500 uncovers that option implied persistence closely tracks temporal
persistence of future realized returns. Hence, the randomness to expect is well captured within option data.
The consequence is that the degree of future randomness is well predictable from the scaling of implied
volatilities, which leaves a puzzle in terms of market efficiency. As for FRP , it is found to be thoroughly
negative, except on market crashes. Hence, the persistence bet can be used as an insurance tool to hedge
against surprising market downturns. The economic/behavioral reasons why and how long and short-ends
of the volatility term-structure vary have been already extensively discussed in finance literature. Distinct
to that, this work simply uses fractal formalism to describe the geometry of expectations, enabling a holistic
description.

9End-of-day data is used, hence it is assumed that trades are made with the closing of markets.
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Appendix
A1 - Fluctuation Plots

Figure 8: Fluctuation functions Fq versus time scale � per moment q for implied volatilities (left) and realized
returns (right). The linear relationship holds well throughout �, hence a single fractal regime properly describes
the expected and realized return dynamics.

A2 - Rough Volatility
The methodology also applies to recent developments of rough volatility option pricing models, which

are found to have a very high fit to empirical data at a low number of parameters. The key idea behind those
models is that the process of log-variance is assumed to follow a fractional Brownian motion, which is the
monofractal generalization of classic Brownian motion. The empirical evidence points into the direction
that variance is typically highly anti-persistent at H < 0.5, hence the term "rough" evolved.10 Models that
recently emerged from the literature are for example the rough Heston or the rough Bergomi. There are
two ways to assess implied multifractality of the variance process. The first one is to use term-structures
of volatility options or the CBOE Volatility-of-Volatility index to run the very same procedure as described
above. The second routine presented here emerges from the scaling behavior of implied skewness. For this
purpose let us focus on a metric that is frequently used to motivate rough volatility: the at-the-mones (ATM)
volatility skew  t(�). It is defined as

 t(�) =
|

|

|

|

|

)�BS,t(�)
)k

|

|

|

|

|k=0

with �BS as Black-Scholes implied volatilities and k as the log forward moneyness. Note that �BS represents
an iid-annualized measure, hence �BS

√

� is the Black-Scholes standard-deviation from 0 to �, and  ̄t(�) ∶=
10When simulating fractal Brownian motions, the picture gets smoother the larger H − 0.5 and it becomes rougher for series

H < 0.5. See Fig.1.
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√

� the horizon specific ATM skew. As demonstrated in [51], if volatility is fractal, then  t(�) follows
a power-law in the fashion of

 t(�) ∼ �Ht−0.5 ⟹  ̄t(�) ∼ �Ht

. What the abovementionedmodels all assume is that volatility is mono-fractal, which requires ∀t∶ Ht = H .
The generalization to multifractality can now be made in a similar fashion as above. Consider

⟨ ̄q(�)⟩q =
q
√

⟨ ̄t(�)q⟩

similarly to Eq.9, hence multifractality is determined by

⟨ ̄q(�)⟩q ∼ �ℎ(q) (11)

when ℎ(q) ≠ const. The estimation of generalized Hurst exponents ℎ(q) can again be made by taking logs
of Eq.11 and apply linear fits q-wise.

At this point, a deeper understanding for the coefficient  ̄(�) should be emphasized. In particular, it cor-
responds to the slope of the strike-wise �BS

√

� surface. Readers familiar with the estimation of risk-neutral
moments might already guess the direction. It is an unspoken law that the slope of the implied volatility
surface is the crucial driver of risk-neutral skewness. Following [66, 83], for example, approximating the
implied volatility surface from Gram-Charlier expansion it evolves that  (�) ≈ �BS(�, k = 0) skew(�)∕6
where skew denotes the risk-neutral Pearson’s skewness (i.e., central and standardized). Testing the Gram-
Charlier expansion, empirical support for the implied volatility surface being affine in its risk-neutral mo-
ments is given by [66, 84]. They report significant evidence that the slope is linear in skew. Note that the
valid domain of skew is limited within a Gram-Charlier expansion, [85] therefore propose to use the more
broader Cornish-Fisher expansion. Models correcting for the modest non-linearities in the slope-skew rela-
tionship are given by [86]. A deep discussion on the link between risk-neutral skewness and non-parametric
slope proxies is given by [87]. All in all, evidence points into the direction that the slope is a deterministic
function of skew,

 (�) ∼ skew

. Hence, when using one of the above mentioned models that explicitly specify the link allows to estimate
the variance process’ multifractal behavior out of skew estimates. This fact forms the appealing connection
to the rich body of literature on risk-neutral skewness. It might be of further interest for applications outside
the discipline of finance.
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